xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.h (revision 2dc313ec)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13 
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 
20 enum {
21 	EFX_REV_FALCON_A0 = 0,
22 	EFX_REV_FALCON_A1 = 1,
23 	EFX_REV_FALCON_B0 = 2,
24 	EFX_REV_SIENA_A0 = 3,
25 	EFX_REV_HUNT_A0 = 4,
26 };
27 
28 static inline int efx_nic_rev(struct efx_nic *efx)
29 {
30 	return efx->type->revision;
31 }
32 
33 u32 efx_farch_fpga_ver(struct efx_nic *efx);
34 
35 /* NIC has two interlinked PCI functions for the same port. */
36 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
37 {
38 	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
39 }
40 
41 /* Read the current event from the event queue */
42 static inline efx_qword_t *efx_event(struct efx_channel *channel,
43 				     unsigned int index)
44 {
45 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46 		(index & channel->eventq_mask);
47 }
48 
49 /* See if an event is present
50  *
51  * We check both the high and low dword of the event for all ones.  We
52  * wrote all ones when we cleared the event, and no valid event can
53  * have all ones in either its high or low dwords.  This approach is
54  * robust against reordering.
55  *
56  * Note that using a single 64-bit comparison is incorrect; even
57  * though the CPU read will be atomic, the DMA write may not be.
58  */
59 static inline int efx_event_present(efx_qword_t *event)
60 {
61 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
63 }
64 
65 /* Returns a pointer to the specified transmit descriptor in the TX
66  * descriptor queue belonging to the specified channel.
67  */
68 static inline efx_qword_t *
69 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
70 {
71 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
72 }
73 
74 /* Get partner of a TX queue, seen as part of the same net core queue */
75 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
76 {
77 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
78 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
79 	else
80 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
81 }
82 
83 /* Report whether this TX queue would be empty for the given write_count.
84  * May return false negative.
85  */
86 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
87 					 unsigned int write_count)
88 {
89 	unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
90 
91 	if (empty_read_count == 0)
92 		return false;
93 
94 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
95 }
96 
97 /* Decide whether we can use TX PIO, ie. write packet data directly into
98  * a buffer on the device.  This can reduce latency at the expense of
99  * throughput, so we only do this if both hardware and software TX rings
100  * are empty.  This also ensures that only one packet at a time can be
101  * using the PIO buffer.
102  */
103 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
104 {
105 	struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
106 	return tx_queue->piobuf &&
107 	       __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
108 	       __efx_nic_tx_is_empty(partner, partner->insert_count);
109 }
110 
111 /* Decide whether to push a TX descriptor to the NIC vs merely writing
112  * the doorbell.  This can reduce latency when we are adding a single
113  * descriptor to an empty queue, but is otherwise pointless.  Further,
114  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
115  * triggered if we don't check this.
116  * We use the write_count used for the last doorbell push, to get the
117  * NIC's view of the tx queue.
118  */
119 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
120 					    unsigned int write_count)
121 {
122 	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
123 
124 	tx_queue->empty_read_count = 0;
125 	return was_empty && tx_queue->write_count - write_count == 1;
126 }
127 
128 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
129 static inline efx_qword_t *
130 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
131 {
132 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
133 }
134 
135 enum {
136 	PHY_TYPE_NONE = 0,
137 	PHY_TYPE_TXC43128 = 1,
138 	PHY_TYPE_88E1111 = 2,
139 	PHY_TYPE_SFX7101 = 3,
140 	PHY_TYPE_QT2022C2 = 4,
141 	PHY_TYPE_PM8358 = 6,
142 	PHY_TYPE_SFT9001A = 8,
143 	PHY_TYPE_QT2025C = 9,
144 	PHY_TYPE_SFT9001B = 10,
145 };
146 
147 #define FALCON_XMAC_LOOPBACKS			\
148 	((1 << LOOPBACK_XGMII) |		\
149 	 (1 << LOOPBACK_XGXS) |			\
150 	 (1 << LOOPBACK_XAUI))
151 
152 /* Alignment of PCIe DMA boundaries (4KB) */
153 #define EFX_PAGE_SIZE	4096
154 /* Size and alignment of buffer table entries (same) */
155 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
156 
157 /* NIC-generic software stats */
158 enum {
159 	GENERIC_STAT_rx_noskb_drops,
160 	GENERIC_STAT_rx_nodesc_trunc,
161 	GENERIC_STAT_COUNT
162 };
163 
164 /**
165  * struct falcon_board_type - board operations and type information
166  * @id: Board type id, as found in NVRAM
167  * @init: Allocate resources and initialise peripheral hardware
168  * @init_phy: Do board-specific PHY initialisation
169  * @fini: Shut down hardware and free resources
170  * @set_id_led: Set state of identifying LED or revert to automatic function
171  * @monitor: Board-specific health check function
172  */
173 struct falcon_board_type {
174 	u8 id;
175 	int (*init) (struct efx_nic *nic);
176 	void (*init_phy) (struct efx_nic *efx);
177 	void (*fini) (struct efx_nic *nic);
178 	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
179 	int (*monitor) (struct efx_nic *nic);
180 };
181 
182 /**
183  * struct falcon_board - board information
184  * @type: Type of board
185  * @major: Major rev. ('A', 'B' ...)
186  * @minor: Minor rev. (0, 1, ...)
187  * @i2c_adap: I2C adapter for on-board peripherals
188  * @i2c_data: Data for bit-banging algorithm
189  * @hwmon_client: I2C client for hardware monitor
190  * @ioexp_client: I2C client for power/port control
191  */
192 struct falcon_board {
193 	const struct falcon_board_type *type;
194 	int major;
195 	int minor;
196 	struct i2c_adapter i2c_adap;
197 	struct i2c_algo_bit_data i2c_data;
198 	struct i2c_client *hwmon_client, *ioexp_client;
199 };
200 
201 /**
202  * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
203  * @device_id:		Controller's id for the device
204  * @size:		Size (in bytes)
205  * @addr_len:		Number of address bytes in read/write commands
206  * @munge_address:	Flag whether addresses should be munged.
207  *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
208  *	use bit 3 of the command byte as address bit A8, rather
209  *	than having a two-byte address.  If this flag is set, then
210  *	commands should be munged in this way.
211  * @erase_command:	Erase command (or 0 if sector erase not needed).
212  * @erase_size:		Erase sector size (in bytes)
213  *	Erase commands affect sectors with this size and alignment.
214  *	This must be a power of two.
215  * @block_size:		Write block size (in bytes).
216  *	Write commands are limited to blocks with this size and alignment.
217  */
218 struct falcon_spi_device {
219 	int device_id;
220 	unsigned int size;
221 	unsigned int addr_len;
222 	unsigned int munge_address:1;
223 	u8 erase_command;
224 	unsigned int erase_size;
225 	unsigned int block_size;
226 };
227 
228 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
229 {
230 	return spi->size != 0;
231 }
232 
233 enum {
234 	FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
235 	FALCON_STAT_tx_packets,
236 	FALCON_STAT_tx_pause,
237 	FALCON_STAT_tx_control,
238 	FALCON_STAT_tx_unicast,
239 	FALCON_STAT_tx_multicast,
240 	FALCON_STAT_tx_broadcast,
241 	FALCON_STAT_tx_lt64,
242 	FALCON_STAT_tx_64,
243 	FALCON_STAT_tx_65_to_127,
244 	FALCON_STAT_tx_128_to_255,
245 	FALCON_STAT_tx_256_to_511,
246 	FALCON_STAT_tx_512_to_1023,
247 	FALCON_STAT_tx_1024_to_15xx,
248 	FALCON_STAT_tx_15xx_to_jumbo,
249 	FALCON_STAT_tx_gtjumbo,
250 	FALCON_STAT_tx_non_tcpudp,
251 	FALCON_STAT_tx_mac_src_error,
252 	FALCON_STAT_tx_ip_src_error,
253 	FALCON_STAT_rx_bytes,
254 	FALCON_STAT_rx_good_bytes,
255 	FALCON_STAT_rx_bad_bytes,
256 	FALCON_STAT_rx_packets,
257 	FALCON_STAT_rx_good,
258 	FALCON_STAT_rx_bad,
259 	FALCON_STAT_rx_pause,
260 	FALCON_STAT_rx_control,
261 	FALCON_STAT_rx_unicast,
262 	FALCON_STAT_rx_multicast,
263 	FALCON_STAT_rx_broadcast,
264 	FALCON_STAT_rx_lt64,
265 	FALCON_STAT_rx_64,
266 	FALCON_STAT_rx_65_to_127,
267 	FALCON_STAT_rx_128_to_255,
268 	FALCON_STAT_rx_256_to_511,
269 	FALCON_STAT_rx_512_to_1023,
270 	FALCON_STAT_rx_1024_to_15xx,
271 	FALCON_STAT_rx_15xx_to_jumbo,
272 	FALCON_STAT_rx_gtjumbo,
273 	FALCON_STAT_rx_bad_lt64,
274 	FALCON_STAT_rx_bad_gtjumbo,
275 	FALCON_STAT_rx_overflow,
276 	FALCON_STAT_rx_symbol_error,
277 	FALCON_STAT_rx_align_error,
278 	FALCON_STAT_rx_length_error,
279 	FALCON_STAT_rx_internal_error,
280 	FALCON_STAT_rx_nodesc_drop_cnt,
281 	FALCON_STAT_COUNT
282 };
283 
284 /**
285  * struct falcon_nic_data - Falcon NIC state
286  * @pci_dev2: Secondary function of Falcon A
287  * @board: Board state and functions
288  * @stats: Hardware statistics
289  * @stats_disable_count: Nest count for disabling statistics fetches
290  * @stats_pending: Is there a pending DMA of MAC statistics.
291  * @stats_timer: A timer for regularly fetching MAC statistics.
292  * @spi_flash: SPI flash device
293  * @spi_eeprom: SPI EEPROM device
294  * @spi_lock: SPI bus lock
295  * @mdio_lock: MDIO bus lock
296  * @xmac_poll_required: XMAC link state needs polling
297  */
298 struct falcon_nic_data {
299 	struct pci_dev *pci_dev2;
300 	struct falcon_board board;
301 	u64 stats[FALCON_STAT_COUNT];
302 	unsigned int stats_disable_count;
303 	bool stats_pending;
304 	struct timer_list stats_timer;
305 	struct falcon_spi_device spi_flash;
306 	struct falcon_spi_device spi_eeprom;
307 	struct mutex spi_lock;
308 	struct mutex mdio_lock;
309 	bool xmac_poll_required;
310 };
311 
312 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
313 {
314 	struct falcon_nic_data *data = efx->nic_data;
315 	return &data->board;
316 }
317 
318 enum {
319 	SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
320 	SIENA_STAT_tx_good_bytes,
321 	SIENA_STAT_tx_bad_bytes,
322 	SIENA_STAT_tx_packets,
323 	SIENA_STAT_tx_bad,
324 	SIENA_STAT_tx_pause,
325 	SIENA_STAT_tx_control,
326 	SIENA_STAT_tx_unicast,
327 	SIENA_STAT_tx_multicast,
328 	SIENA_STAT_tx_broadcast,
329 	SIENA_STAT_tx_lt64,
330 	SIENA_STAT_tx_64,
331 	SIENA_STAT_tx_65_to_127,
332 	SIENA_STAT_tx_128_to_255,
333 	SIENA_STAT_tx_256_to_511,
334 	SIENA_STAT_tx_512_to_1023,
335 	SIENA_STAT_tx_1024_to_15xx,
336 	SIENA_STAT_tx_15xx_to_jumbo,
337 	SIENA_STAT_tx_gtjumbo,
338 	SIENA_STAT_tx_collision,
339 	SIENA_STAT_tx_single_collision,
340 	SIENA_STAT_tx_multiple_collision,
341 	SIENA_STAT_tx_excessive_collision,
342 	SIENA_STAT_tx_deferred,
343 	SIENA_STAT_tx_late_collision,
344 	SIENA_STAT_tx_excessive_deferred,
345 	SIENA_STAT_tx_non_tcpudp,
346 	SIENA_STAT_tx_mac_src_error,
347 	SIENA_STAT_tx_ip_src_error,
348 	SIENA_STAT_rx_bytes,
349 	SIENA_STAT_rx_good_bytes,
350 	SIENA_STAT_rx_bad_bytes,
351 	SIENA_STAT_rx_packets,
352 	SIENA_STAT_rx_good,
353 	SIENA_STAT_rx_bad,
354 	SIENA_STAT_rx_pause,
355 	SIENA_STAT_rx_control,
356 	SIENA_STAT_rx_unicast,
357 	SIENA_STAT_rx_multicast,
358 	SIENA_STAT_rx_broadcast,
359 	SIENA_STAT_rx_lt64,
360 	SIENA_STAT_rx_64,
361 	SIENA_STAT_rx_65_to_127,
362 	SIENA_STAT_rx_128_to_255,
363 	SIENA_STAT_rx_256_to_511,
364 	SIENA_STAT_rx_512_to_1023,
365 	SIENA_STAT_rx_1024_to_15xx,
366 	SIENA_STAT_rx_15xx_to_jumbo,
367 	SIENA_STAT_rx_gtjumbo,
368 	SIENA_STAT_rx_bad_gtjumbo,
369 	SIENA_STAT_rx_overflow,
370 	SIENA_STAT_rx_false_carrier,
371 	SIENA_STAT_rx_symbol_error,
372 	SIENA_STAT_rx_align_error,
373 	SIENA_STAT_rx_length_error,
374 	SIENA_STAT_rx_internal_error,
375 	SIENA_STAT_rx_nodesc_drop_cnt,
376 	SIENA_STAT_COUNT
377 };
378 
379 /**
380  * struct siena_nic_data - Siena NIC state
381  * @efx: Pointer back to main interface structure
382  * @wol_filter_id: Wake-on-LAN packet filter id
383  * @stats: Hardware statistics
384  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
385  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
386  * @local_addr_list: List of local addresses. Protected by %local_lock.
387  * @local_page_list: List of DMA addressable pages used to broadcast
388  *	%local_addr_list. Protected by %local_lock.
389  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
390  * @peer_work: Work item to broadcast peer addresses to VMs.
391  */
392 struct siena_nic_data {
393 	struct efx_nic *efx;
394 	int wol_filter_id;
395 	u64 stats[SIENA_STAT_COUNT];
396 #ifdef CONFIG_SFC_SRIOV
397 	struct efx_channel *vfdi_channel;
398 	unsigned vf_buftbl_base;
399 	struct efx_buffer vfdi_status;
400 	struct list_head local_addr_list;
401 	struct list_head local_page_list;
402 	struct mutex local_lock;
403 	struct work_struct peer_work;
404 #endif
405 };
406 
407 enum {
408 	EF10_STAT_tx_bytes = GENERIC_STAT_COUNT,
409 	EF10_STAT_tx_packets,
410 	EF10_STAT_tx_pause,
411 	EF10_STAT_tx_control,
412 	EF10_STAT_tx_unicast,
413 	EF10_STAT_tx_multicast,
414 	EF10_STAT_tx_broadcast,
415 	EF10_STAT_tx_lt64,
416 	EF10_STAT_tx_64,
417 	EF10_STAT_tx_65_to_127,
418 	EF10_STAT_tx_128_to_255,
419 	EF10_STAT_tx_256_to_511,
420 	EF10_STAT_tx_512_to_1023,
421 	EF10_STAT_tx_1024_to_15xx,
422 	EF10_STAT_tx_15xx_to_jumbo,
423 	EF10_STAT_rx_bytes,
424 	EF10_STAT_rx_bytes_minus_good_bytes,
425 	EF10_STAT_rx_good_bytes,
426 	EF10_STAT_rx_bad_bytes,
427 	EF10_STAT_rx_packets,
428 	EF10_STAT_rx_good,
429 	EF10_STAT_rx_bad,
430 	EF10_STAT_rx_pause,
431 	EF10_STAT_rx_control,
432 	EF10_STAT_rx_unicast,
433 	EF10_STAT_rx_multicast,
434 	EF10_STAT_rx_broadcast,
435 	EF10_STAT_rx_lt64,
436 	EF10_STAT_rx_64,
437 	EF10_STAT_rx_65_to_127,
438 	EF10_STAT_rx_128_to_255,
439 	EF10_STAT_rx_256_to_511,
440 	EF10_STAT_rx_512_to_1023,
441 	EF10_STAT_rx_1024_to_15xx,
442 	EF10_STAT_rx_15xx_to_jumbo,
443 	EF10_STAT_rx_gtjumbo,
444 	EF10_STAT_rx_bad_gtjumbo,
445 	EF10_STAT_rx_overflow,
446 	EF10_STAT_rx_align_error,
447 	EF10_STAT_rx_length_error,
448 	EF10_STAT_rx_nodesc_drops,
449 	EF10_STAT_rx_pm_trunc_bb_overflow,
450 	EF10_STAT_rx_pm_discard_bb_overflow,
451 	EF10_STAT_rx_pm_trunc_vfifo_full,
452 	EF10_STAT_rx_pm_discard_vfifo_full,
453 	EF10_STAT_rx_pm_trunc_qbb,
454 	EF10_STAT_rx_pm_discard_qbb,
455 	EF10_STAT_rx_pm_discard_mapping,
456 	EF10_STAT_rx_dp_q_disabled_packets,
457 	EF10_STAT_rx_dp_di_dropped_packets,
458 	EF10_STAT_rx_dp_streaming_packets,
459 	EF10_STAT_rx_dp_hlb_fetch,
460 	EF10_STAT_rx_dp_hlb_wait,
461 	EF10_STAT_COUNT
462 };
463 
464 /* Maximum number of TX PIO buffers we may allocate to a function.
465  * This matches the total number of buffers on each SFC9100-family
466  * controller.
467  */
468 #define EF10_TX_PIOBUF_COUNT 16
469 
470 /**
471  * struct efx_ef10_nic_data - EF10 architecture NIC state
472  * @mcdi_buf: DMA buffer for MCDI
473  * @warm_boot_count: Last seen MC warm boot count
474  * @vi_base: Absolute index of first VI in this function
475  * @n_allocated_vis: Number of VIs allocated to this function
476  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
477  * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
478  * @n_piobufs: Number of PIO buffers allocated to this function
479  * @wc_membase: Base address of write-combining mapping of the memory BAR
480  * @pio_write_base: Base address for writing PIO buffers
481  * @pio_write_vi_base: Relative VI number for @pio_write_base
482  * @piobuf_handle: Handle of each PIO buffer allocated
483  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
484  *	reboot
485  * @rx_rss_context: Firmware handle for our RSS context
486  * @stats: Hardware statistics
487  * @workaround_35388: Flag: firmware supports workaround for bug 35388
488  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
489  *	after MC reboot
490  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
491  *	%MC_CMD_GET_CAPABILITIES response)
492  */
493 struct efx_ef10_nic_data {
494 	struct efx_buffer mcdi_buf;
495 	u16 warm_boot_count;
496 	unsigned int vi_base;
497 	unsigned int n_allocated_vis;
498 	bool must_realloc_vis;
499 	bool must_restore_filters;
500 	unsigned int n_piobufs;
501 	void __iomem *wc_membase, *pio_write_base;
502 	unsigned int pio_write_vi_base;
503 	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
504 	bool must_restore_piobufs;
505 	u32 rx_rss_context;
506 	u64 stats[EF10_STAT_COUNT];
507 	bool workaround_35388;
508 	bool must_check_datapath_caps;
509 	u32 datapath_caps;
510 };
511 
512 /*
513  * On the SFC9000 family each port is associated with 1 PCI physical
514  * function (PF) handled by sfc and a configurable number of virtual
515  * functions (VFs) that may be handled by some other driver, often in
516  * a VM guest.  The queue pointer registers are mapped in both PF and
517  * VF BARs such that an 8K region provides access to a single RX, TX
518  * and event queue (collectively a Virtual Interface, VI or VNIC).
519  *
520  * The PF has access to all 1024 VIs while VFs are mapped to VIs
521  * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
522  * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
523  * The number of VIs and the VI_SCALE value are configurable but must
524  * be established at boot time by firmware.
525  */
526 
527 /* Maximum VI_SCALE parameter supported by Siena */
528 #define EFX_VI_SCALE_MAX 6
529 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
530  * so this is the smallest allowed value. */
531 #define EFX_VI_BASE 128U
532 /* Maximum number of VFs allowed */
533 #define EFX_VF_COUNT_MAX 127
534 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
535 #define EFX_MAX_VF_EVQ_SIZE 8192UL
536 /* The number of buffer table entries reserved for each VI on a VF */
537 #define EFX_VF_BUFTBL_PER_VI					\
538 	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
539 	 sizeof(efx_qword_t) / EFX_BUF_SIZE)
540 
541 #ifdef CONFIG_SFC_SRIOV
542 
543 static inline bool efx_sriov_wanted(struct efx_nic *efx)
544 {
545 	return efx->vf_count != 0;
546 }
547 static inline bool efx_sriov_enabled(struct efx_nic *efx)
548 {
549 	return efx->vf_init_count != 0;
550 }
551 static inline unsigned int efx_vf_size(struct efx_nic *efx)
552 {
553 	return 1 << efx->vi_scale;
554 }
555 
556 int efx_init_sriov(void);
557 void efx_sriov_probe(struct efx_nic *efx);
558 int efx_sriov_init(struct efx_nic *efx);
559 void efx_sriov_mac_address_changed(struct efx_nic *efx);
560 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
561 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
562 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
563 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
564 void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
565 void efx_sriov_reset(struct efx_nic *efx);
566 void efx_sriov_fini(struct efx_nic *efx);
567 void efx_fini_sriov(void);
568 
569 #else
570 
571 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
572 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
573 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
574 
575 static inline int efx_init_sriov(void) { return 0; }
576 static inline void efx_sriov_probe(struct efx_nic *efx) {}
577 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
578 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
579 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
580 					   efx_qword_t *event) {}
581 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
582 					   efx_qword_t *event) {}
583 static inline void efx_sriov_event(struct efx_channel *channel,
584 				   efx_qword_t *event) {}
585 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
586 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
587 static inline void efx_sriov_reset(struct efx_nic *efx) {}
588 static inline void efx_sriov_fini(struct efx_nic *efx) {}
589 static inline void efx_fini_sriov(void) {}
590 
591 #endif
592 
593 int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
594 int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
595 int efx_sriov_get_vf_config(struct net_device *dev, int vf,
596 			    struct ifla_vf_info *ivf);
597 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
598 			      bool spoofchk);
599 
600 struct ethtool_ts_info;
601 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
602 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
603 void efx_ptp_remove(struct efx_nic *efx);
604 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
605 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
606 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
607 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
608 int efx_ptp_get_mode(struct efx_nic *efx);
609 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
610 			unsigned int new_mode);
611 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
612 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
613 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
614 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
615 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
616 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
617 				   struct sk_buff *skb);
618 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
619 					       struct sk_buff *skb)
620 {
621 	if (channel->sync_events_state == SYNC_EVENTS_VALID)
622 		__efx_rx_skb_attach_timestamp(channel, skb);
623 }
624 void efx_ptp_start_datapath(struct efx_nic *efx);
625 void efx_ptp_stop_datapath(struct efx_nic *efx);
626 
627 extern const struct efx_nic_type falcon_a1_nic_type;
628 extern const struct efx_nic_type falcon_b0_nic_type;
629 extern const struct efx_nic_type siena_a0_nic_type;
630 extern const struct efx_nic_type efx_hunt_a0_nic_type;
631 
632 /**************************************************************************
633  *
634  * Externs
635  *
636  **************************************************************************
637  */
638 
639 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
640 
641 /* TX data path */
642 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
643 {
644 	return tx_queue->efx->type->tx_probe(tx_queue);
645 }
646 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
647 {
648 	tx_queue->efx->type->tx_init(tx_queue);
649 }
650 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
651 {
652 	tx_queue->efx->type->tx_remove(tx_queue);
653 }
654 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
655 {
656 	tx_queue->efx->type->tx_write(tx_queue);
657 }
658 
659 /* RX data path */
660 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
661 {
662 	return rx_queue->efx->type->rx_probe(rx_queue);
663 }
664 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
665 {
666 	rx_queue->efx->type->rx_init(rx_queue);
667 }
668 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
669 {
670 	rx_queue->efx->type->rx_remove(rx_queue);
671 }
672 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
673 {
674 	rx_queue->efx->type->rx_write(rx_queue);
675 }
676 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
677 {
678 	rx_queue->efx->type->rx_defer_refill(rx_queue);
679 }
680 
681 /* Event data path */
682 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
683 {
684 	return channel->efx->type->ev_probe(channel);
685 }
686 static inline int efx_nic_init_eventq(struct efx_channel *channel)
687 {
688 	return channel->efx->type->ev_init(channel);
689 }
690 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
691 {
692 	channel->efx->type->ev_fini(channel);
693 }
694 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
695 {
696 	channel->efx->type->ev_remove(channel);
697 }
698 static inline int
699 efx_nic_process_eventq(struct efx_channel *channel, int quota)
700 {
701 	return channel->efx->type->ev_process(channel, quota);
702 }
703 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
704 {
705 	channel->efx->type->ev_read_ack(channel);
706 }
707 void efx_nic_event_test_start(struct efx_channel *channel);
708 
709 /* Falcon/Siena queue operations */
710 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
711 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
712 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
713 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
714 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
715 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
716 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
717 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
718 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
719 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
720 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
721 int efx_farch_ev_probe(struct efx_channel *channel);
722 int efx_farch_ev_init(struct efx_channel *channel);
723 void efx_farch_ev_fini(struct efx_channel *channel);
724 void efx_farch_ev_remove(struct efx_channel *channel);
725 int efx_farch_ev_process(struct efx_channel *channel, int quota);
726 void efx_farch_ev_read_ack(struct efx_channel *channel);
727 void efx_farch_ev_test_generate(struct efx_channel *channel);
728 
729 /* Falcon/Siena filter operations */
730 int efx_farch_filter_table_probe(struct efx_nic *efx);
731 void efx_farch_filter_table_restore(struct efx_nic *efx);
732 void efx_farch_filter_table_remove(struct efx_nic *efx);
733 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
734 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
735 			    bool replace);
736 int efx_farch_filter_remove_safe(struct efx_nic *efx,
737 				 enum efx_filter_priority priority,
738 				 u32 filter_id);
739 int efx_farch_filter_get_safe(struct efx_nic *efx,
740 			      enum efx_filter_priority priority, u32 filter_id,
741 			      struct efx_filter_spec *);
742 int efx_farch_filter_clear_rx(struct efx_nic *efx,
743 			      enum efx_filter_priority priority);
744 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
745 				   enum efx_filter_priority priority);
746 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
747 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
748 				enum efx_filter_priority priority, u32 *buf,
749 				u32 size);
750 #ifdef CONFIG_RFS_ACCEL
751 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
752 				struct efx_filter_spec *spec);
753 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
754 				     unsigned int index);
755 #endif
756 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
757 
758 bool efx_nic_event_present(struct efx_channel *channel);
759 
760 /* Some statistics are computed as A - B where A and B each increase
761  * linearly with some hardware counter(s) and the counters are read
762  * asynchronously.  If the counters contributing to B are always read
763  * after those contributing to A, the computed value may be lower than
764  * the true value by some variable amount, and may decrease between
765  * subsequent computations.
766  *
767  * We should never allow statistics to decrease or to exceed the true
768  * value.  Since the computed value will never be greater than the
769  * true value, we can achieve this by only storing the computed value
770  * when it increases.
771  */
772 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
773 {
774 	if ((s64)(diff - *stat) > 0)
775 		*stat = diff;
776 }
777 
778 /* Interrupts */
779 int efx_nic_init_interrupt(struct efx_nic *efx);
780 void efx_nic_irq_test_start(struct efx_nic *efx);
781 void efx_nic_fini_interrupt(struct efx_nic *efx);
782 
783 /* Falcon/Siena interrupts */
784 void efx_farch_irq_enable_master(struct efx_nic *efx);
785 void efx_farch_irq_test_generate(struct efx_nic *efx);
786 void efx_farch_irq_disable_master(struct efx_nic *efx);
787 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
788 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
789 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
790 
791 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
792 {
793 	return ACCESS_ONCE(channel->event_test_cpu);
794 }
795 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
796 {
797 	return ACCESS_ONCE(efx->last_irq_cpu);
798 }
799 
800 /* Global Resources */
801 int efx_nic_flush_queues(struct efx_nic *efx);
802 void siena_prepare_flush(struct efx_nic *efx);
803 int efx_farch_fini_dmaq(struct efx_nic *efx);
804 void efx_farch_finish_flr(struct efx_nic *efx);
805 void siena_finish_flush(struct efx_nic *efx);
806 void falcon_start_nic_stats(struct efx_nic *efx);
807 void falcon_stop_nic_stats(struct efx_nic *efx);
808 int falcon_reset_xaui(struct efx_nic *efx);
809 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
810 void efx_farch_init_common(struct efx_nic *efx);
811 void efx_ef10_handle_drain_event(struct efx_nic *efx);
812 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
813 
814 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
815 			 unsigned int len, gfp_t gfp_flags);
816 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
817 
818 /* Tests */
819 struct efx_farch_register_test {
820 	unsigned address;
821 	efx_oword_t mask;
822 };
823 int efx_farch_test_registers(struct efx_nic *efx,
824 			     const struct efx_farch_register_test *regs,
825 			     size_t n_regs);
826 
827 size_t efx_nic_get_regs_len(struct efx_nic *efx);
828 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
829 
830 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
831 			      const unsigned long *mask, u8 *names);
832 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
833 			  const unsigned long *mask, u64 *stats,
834 			  const void *dma_buf, bool accumulate);
835 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
836 
837 #define EFX_MAX_FLUSH_TIME 5000
838 
839 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
840 			      efx_qword_t *event);
841 
842 #endif /* EFX_NIC_H */
843