xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.h (revision 1c2dd16a)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13 
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 
20 enum {
21 	EFX_REV_SIENA_A0 = 0,
22 	EFX_REV_HUNT_A0 = 1,
23 };
24 
25 static inline int efx_nic_rev(struct efx_nic *efx)
26 {
27 	return efx->type->revision;
28 }
29 
30 u32 efx_farch_fpga_ver(struct efx_nic *efx);
31 
32 /* Read the current event from the event queue */
33 static inline efx_qword_t *efx_event(struct efx_channel *channel,
34 				     unsigned int index)
35 {
36 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
37 		(index & channel->eventq_mask);
38 }
39 
40 /* See if an event is present
41  *
42  * We check both the high and low dword of the event for all ones.  We
43  * wrote all ones when we cleared the event, and no valid event can
44  * have all ones in either its high or low dwords.  This approach is
45  * robust against reordering.
46  *
47  * Note that using a single 64-bit comparison is incorrect; even
48  * though the CPU read will be atomic, the DMA write may not be.
49  */
50 static inline int efx_event_present(efx_qword_t *event)
51 {
52 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
53 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
54 }
55 
56 /* Returns a pointer to the specified transmit descriptor in the TX
57  * descriptor queue belonging to the specified channel.
58  */
59 static inline efx_qword_t *
60 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
61 {
62 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
63 }
64 
65 /* Get partner of a TX queue, seen as part of the same net core queue */
66 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
67 {
68 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
69 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
70 	else
71 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
72 }
73 
74 /* Report whether this TX queue would be empty for the given write_count.
75  * May return false negative.
76  */
77 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
78 					 unsigned int write_count)
79 {
80 	unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
81 
82 	if (empty_read_count == 0)
83 		return false;
84 
85 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
86 }
87 
88 /* Report whether the NIC considers this TX queue empty, using
89  * packet_write_count (the write count recorded for the last completable
90  * doorbell push).  May return false negative.  EF10 only, which is OK
91  * because only EF10 supports PIO.
92  */
93 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
94 {
95 	EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
96 	return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
97 }
98 
99 /* Decide whether we can use TX PIO, ie. write packet data directly into
100  * a buffer on the device.  This can reduce latency at the expense of
101  * throughput, so we only do this if both hardware and software TX rings
102  * are empty.  This also ensures that only one packet at a time can be
103  * using the PIO buffer.
104  */
105 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
106 {
107 	struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
108 
109 	return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
110 	       efx_nic_tx_is_empty(partner);
111 }
112 
113 /* Decide whether to push a TX descriptor to the NIC vs merely writing
114  * the doorbell.  This can reduce latency when we are adding a single
115  * descriptor to an empty queue, but is otherwise pointless.  Further,
116  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
117  * triggered if we don't check this.
118  * We use the write_count used for the last doorbell push, to get the
119  * NIC's view of the tx queue.
120  */
121 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
122 					    unsigned int write_count)
123 {
124 	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
125 
126 	tx_queue->empty_read_count = 0;
127 	return was_empty && tx_queue->write_count - write_count == 1;
128 }
129 
130 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
131 static inline efx_qword_t *
132 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
133 {
134 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
135 }
136 
137 enum {
138 	PHY_TYPE_NONE = 0,
139 	PHY_TYPE_TXC43128 = 1,
140 	PHY_TYPE_88E1111 = 2,
141 	PHY_TYPE_SFX7101 = 3,
142 	PHY_TYPE_QT2022C2 = 4,
143 	PHY_TYPE_PM8358 = 6,
144 	PHY_TYPE_SFT9001A = 8,
145 	PHY_TYPE_QT2025C = 9,
146 	PHY_TYPE_SFT9001B = 10,
147 };
148 
149 /* Alignment of PCIe DMA boundaries (4KB) */
150 #define EFX_PAGE_SIZE	4096
151 /* Size and alignment of buffer table entries (same) */
152 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
153 
154 /* NIC-generic software stats */
155 enum {
156 	GENERIC_STAT_rx_noskb_drops,
157 	GENERIC_STAT_rx_nodesc_trunc,
158 	GENERIC_STAT_COUNT
159 };
160 
161 enum {
162 	SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
163 	SIENA_STAT_tx_good_bytes,
164 	SIENA_STAT_tx_bad_bytes,
165 	SIENA_STAT_tx_packets,
166 	SIENA_STAT_tx_bad,
167 	SIENA_STAT_tx_pause,
168 	SIENA_STAT_tx_control,
169 	SIENA_STAT_tx_unicast,
170 	SIENA_STAT_tx_multicast,
171 	SIENA_STAT_tx_broadcast,
172 	SIENA_STAT_tx_lt64,
173 	SIENA_STAT_tx_64,
174 	SIENA_STAT_tx_65_to_127,
175 	SIENA_STAT_tx_128_to_255,
176 	SIENA_STAT_tx_256_to_511,
177 	SIENA_STAT_tx_512_to_1023,
178 	SIENA_STAT_tx_1024_to_15xx,
179 	SIENA_STAT_tx_15xx_to_jumbo,
180 	SIENA_STAT_tx_gtjumbo,
181 	SIENA_STAT_tx_collision,
182 	SIENA_STAT_tx_single_collision,
183 	SIENA_STAT_tx_multiple_collision,
184 	SIENA_STAT_tx_excessive_collision,
185 	SIENA_STAT_tx_deferred,
186 	SIENA_STAT_tx_late_collision,
187 	SIENA_STAT_tx_excessive_deferred,
188 	SIENA_STAT_tx_non_tcpudp,
189 	SIENA_STAT_tx_mac_src_error,
190 	SIENA_STAT_tx_ip_src_error,
191 	SIENA_STAT_rx_bytes,
192 	SIENA_STAT_rx_good_bytes,
193 	SIENA_STAT_rx_bad_bytes,
194 	SIENA_STAT_rx_packets,
195 	SIENA_STAT_rx_good,
196 	SIENA_STAT_rx_bad,
197 	SIENA_STAT_rx_pause,
198 	SIENA_STAT_rx_control,
199 	SIENA_STAT_rx_unicast,
200 	SIENA_STAT_rx_multicast,
201 	SIENA_STAT_rx_broadcast,
202 	SIENA_STAT_rx_lt64,
203 	SIENA_STAT_rx_64,
204 	SIENA_STAT_rx_65_to_127,
205 	SIENA_STAT_rx_128_to_255,
206 	SIENA_STAT_rx_256_to_511,
207 	SIENA_STAT_rx_512_to_1023,
208 	SIENA_STAT_rx_1024_to_15xx,
209 	SIENA_STAT_rx_15xx_to_jumbo,
210 	SIENA_STAT_rx_gtjumbo,
211 	SIENA_STAT_rx_bad_gtjumbo,
212 	SIENA_STAT_rx_overflow,
213 	SIENA_STAT_rx_false_carrier,
214 	SIENA_STAT_rx_symbol_error,
215 	SIENA_STAT_rx_align_error,
216 	SIENA_STAT_rx_length_error,
217 	SIENA_STAT_rx_internal_error,
218 	SIENA_STAT_rx_nodesc_drop_cnt,
219 	SIENA_STAT_COUNT
220 };
221 
222 /**
223  * struct siena_nic_data - Siena NIC state
224  * @efx: Pointer back to main interface structure
225  * @wol_filter_id: Wake-on-LAN packet filter id
226  * @stats: Hardware statistics
227  * @vf: Array of &struct siena_vf objects
228  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
229  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
230  * @local_addr_list: List of local addresses. Protected by %local_lock.
231  * @local_page_list: List of DMA addressable pages used to broadcast
232  *	%local_addr_list. Protected by %local_lock.
233  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
234  * @peer_work: Work item to broadcast peer addresses to VMs.
235  */
236 struct siena_nic_data {
237 	struct efx_nic *efx;
238 	int wol_filter_id;
239 	u64 stats[SIENA_STAT_COUNT];
240 #ifdef CONFIG_SFC_SRIOV
241 	struct siena_vf *vf;
242 	struct efx_channel *vfdi_channel;
243 	unsigned vf_buftbl_base;
244 	struct efx_buffer vfdi_status;
245 	struct list_head local_addr_list;
246 	struct list_head local_page_list;
247 	struct mutex local_lock;
248 	struct work_struct peer_work;
249 #endif
250 };
251 
252 enum {
253 	EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
254 	EF10_STAT_port_tx_packets,
255 	EF10_STAT_port_tx_pause,
256 	EF10_STAT_port_tx_control,
257 	EF10_STAT_port_tx_unicast,
258 	EF10_STAT_port_tx_multicast,
259 	EF10_STAT_port_tx_broadcast,
260 	EF10_STAT_port_tx_lt64,
261 	EF10_STAT_port_tx_64,
262 	EF10_STAT_port_tx_65_to_127,
263 	EF10_STAT_port_tx_128_to_255,
264 	EF10_STAT_port_tx_256_to_511,
265 	EF10_STAT_port_tx_512_to_1023,
266 	EF10_STAT_port_tx_1024_to_15xx,
267 	EF10_STAT_port_tx_15xx_to_jumbo,
268 	EF10_STAT_port_rx_bytes,
269 	EF10_STAT_port_rx_bytes_minus_good_bytes,
270 	EF10_STAT_port_rx_good_bytes,
271 	EF10_STAT_port_rx_bad_bytes,
272 	EF10_STAT_port_rx_packets,
273 	EF10_STAT_port_rx_good,
274 	EF10_STAT_port_rx_bad,
275 	EF10_STAT_port_rx_pause,
276 	EF10_STAT_port_rx_control,
277 	EF10_STAT_port_rx_unicast,
278 	EF10_STAT_port_rx_multicast,
279 	EF10_STAT_port_rx_broadcast,
280 	EF10_STAT_port_rx_lt64,
281 	EF10_STAT_port_rx_64,
282 	EF10_STAT_port_rx_65_to_127,
283 	EF10_STAT_port_rx_128_to_255,
284 	EF10_STAT_port_rx_256_to_511,
285 	EF10_STAT_port_rx_512_to_1023,
286 	EF10_STAT_port_rx_1024_to_15xx,
287 	EF10_STAT_port_rx_15xx_to_jumbo,
288 	EF10_STAT_port_rx_gtjumbo,
289 	EF10_STAT_port_rx_bad_gtjumbo,
290 	EF10_STAT_port_rx_overflow,
291 	EF10_STAT_port_rx_align_error,
292 	EF10_STAT_port_rx_length_error,
293 	EF10_STAT_port_rx_nodesc_drops,
294 	EF10_STAT_port_rx_pm_trunc_bb_overflow,
295 	EF10_STAT_port_rx_pm_discard_bb_overflow,
296 	EF10_STAT_port_rx_pm_trunc_vfifo_full,
297 	EF10_STAT_port_rx_pm_discard_vfifo_full,
298 	EF10_STAT_port_rx_pm_trunc_qbb,
299 	EF10_STAT_port_rx_pm_discard_qbb,
300 	EF10_STAT_port_rx_pm_discard_mapping,
301 	EF10_STAT_port_rx_dp_q_disabled_packets,
302 	EF10_STAT_port_rx_dp_di_dropped_packets,
303 	EF10_STAT_port_rx_dp_streaming_packets,
304 	EF10_STAT_port_rx_dp_hlb_fetch,
305 	EF10_STAT_port_rx_dp_hlb_wait,
306 	EF10_STAT_rx_unicast,
307 	EF10_STAT_rx_unicast_bytes,
308 	EF10_STAT_rx_multicast,
309 	EF10_STAT_rx_multicast_bytes,
310 	EF10_STAT_rx_broadcast,
311 	EF10_STAT_rx_broadcast_bytes,
312 	EF10_STAT_rx_bad,
313 	EF10_STAT_rx_bad_bytes,
314 	EF10_STAT_rx_overflow,
315 	EF10_STAT_tx_unicast,
316 	EF10_STAT_tx_unicast_bytes,
317 	EF10_STAT_tx_multicast,
318 	EF10_STAT_tx_multicast_bytes,
319 	EF10_STAT_tx_broadcast,
320 	EF10_STAT_tx_broadcast_bytes,
321 	EF10_STAT_tx_bad,
322 	EF10_STAT_tx_bad_bytes,
323 	EF10_STAT_tx_overflow,
324 	EF10_STAT_COUNT
325 };
326 
327 /* Maximum number of TX PIO buffers we may allocate to a function.
328  * This matches the total number of buffers on each SFC9100-family
329  * controller.
330  */
331 #define EF10_TX_PIOBUF_COUNT 16
332 
333 /**
334  * struct efx_ef10_nic_data - EF10 architecture NIC state
335  * @mcdi_buf: DMA buffer for MCDI
336  * @warm_boot_count: Last seen MC warm boot count
337  * @vi_base: Absolute index of first VI in this function
338  * @n_allocated_vis: Number of VIs allocated to this function
339  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
340  * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
341  * @n_piobufs: Number of PIO buffers allocated to this function
342  * @wc_membase: Base address of write-combining mapping of the memory BAR
343  * @pio_write_base: Base address for writing PIO buffers
344  * @pio_write_vi_base: Relative VI number for @pio_write_base
345  * @piobuf_handle: Handle of each PIO buffer allocated
346  * @piobuf_size: size of a single PIO buffer
347  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
348  *	reboot
349  * @rx_rss_context: Firmware handle for our RSS context
350  * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
351  * @stats: Hardware statistics
352  * @workaround_35388: Flag: firmware supports workaround for bug 35388
353  * @workaround_26807: Flag: firmware supports workaround for bug 26807
354  * @workaround_61265: Flag: firmware supports workaround for bug 61265
355  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
356  *	after MC reboot
357  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
358  *	%MC_CMD_GET_CAPABILITIES response)
359  * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
360  * %MC_CMD_GET_CAPABILITIES response)
361  * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
362  * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
363  * @vport_id: The function's vport ID, only relevant for PFs
364  * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
365  * @pf_index: The number for this PF, or the parent PF if this is a VF
366 #ifdef CONFIG_SFC_SRIOV
367  * @vf: Pointer to VF data structure
368 #endif
369  * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
370  * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
371  * @vlan_lock: Lock to serialize access to vlan_list.
372  * @udp_tunnels: UDP tunnel port numbers and types.
373  * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
374  *	@udp_tunnels to hardware and thus the push must be re-done.
375  * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
376  */
377 struct efx_ef10_nic_data {
378 	struct efx_buffer mcdi_buf;
379 	u16 warm_boot_count;
380 	unsigned int vi_base;
381 	unsigned int n_allocated_vis;
382 	bool must_realloc_vis;
383 	bool must_restore_filters;
384 	unsigned int n_piobufs;
385 	void __iomem *wc_membase, *pio_write_base;
386 	unsigned int pio_write_vi_base;
387 	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
388 	u16 piobuf_size;
389 	bool must_restore_piobufs;
390 	u32 rx_rss_context;
391 	bool rx_rss_context_exclusive;
392 	u64 stats[EF10_STAT_COUNT];
393 	bool workaround_35388;
394 	bool workaround_26807;
395 	bool workaround_61265;
396 	bool must_check_datapath_caps;
397 	u32 datapath_caps;
398 	u32 datapath_caps2;
399 	unsigned int rx_dpcpu_fw_id;
400 	unsigned int tx_dpcpu_fw_id;
401 	unsigned int vport_id;
402 	bool must_probe_vswitching;
403 	unsigned int pf_index;
404 	u8 port_id[ETH_ALEN];
405 #ifdef CONFIG_SFC_SRIOV
406 	unsigned int vf_index;
407 	struct ef10_vf *vf;
408 #endif
409 	u8 vport_mac[ETH_ALEN];
410 	struct list_head vlan_list;
411 	struct mutex vlan_lock;
412 	struct efx_udp_tunnel udp_tunnels[16];
413 	bool udp_tunnels_dirty;
414 	struct mutex udp_tunnels_lock;
415 };
416 
417 int efx_init_sriov(void);
418 void efx_fini_sriov(void);
419 
420 struct ethtool_ts_info;
421 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
422 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
423 void efx_ptp_remove(struct efx_nic *efx);
424 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
425 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
426 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
427 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
428 int efx_ptp_get_mode(struct efx_nic *efx);
429 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
430 			unsigned int new_mode);
431 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
432 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
433 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
434 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
435 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
436 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
437 				   struct sk_buff *skb);
438 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
439 					       struct sk_buff *skb)
440 {
441 	if (channel->sync_events_state == SYNC_EVENTS_VALID)
442 		__efx_rx_skb_attach_timestamp(channel, skb);
443 }
444 void efx_ptp_start_datapath(struct efx_nic *efx);
445 void efx_ptp_stop_datapath(struct efx_nic *efx);
446 
447 extern const struct efx_nic_type falcon_a1_nic_type;
448 extern const struct efx_nic_type falcon_b0_nic_type;
449 extern const struct efx_nic_type siena_a0_nic_type;
450 extern const struct efx_nic_type efx_hunt_a0_nic_type;
451 extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
452 
453 /**************************************************************************
454  *
455  * Externs
456  *
457  **************************************************************************
458  */
459 
460 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
461 
462 /* TX data path */
463 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
464 {
465 	return tx_queue->efx->type->tx_probe(tx_queue);
466 }
467 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
468 {
469 	tx_queue->efx->type->tx_init(tx_queue);
470 }
471 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
472 {
473 	tx_queue->efx->type->tx_remove(tx_queue);
474 }
475 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
476 {
477 	tx_queue->efx->type->tx_write(tx_queue);
478 }
479 
480 /* RX data path */
481 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
482 {
483 	return rx_queue->efx->type->rx_probe(rx_queue);
484 }
485 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
486 {
487 	rx_queue->efx->type->rx_init(rx_queue);
488 }
489 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
490 {
491 	rx_queue->efx->type->rx_remove(rx_queue);
492 }
493 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
494 {
495 	rx_queue->efx->type->rx_write(rx_queue);
496 }
497 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
498 {
499 	rx_queue->efx->type->rx_defer_refill(rx_queue);
500 }
501 
502 /* Event data path */
503 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
504 {
505 	return channel->efx->type->ev_probe(channel);
506 }
507 static inline int efx_nic_init_eventq(struct efx_channel *channel)
508 {
509 	return channel->efx->type->ev_init(channel);
510 }
511 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
512 {
513 	channel->efx->type->ev_fini(channel);
514 }
515 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
516 {
517 	channel->efx->type->ev_remove(channel);
518 }
519 static inline int
520 efx_nic_process_eventq(struct efx_channel *channel, int quota)
521 {
522 	return channel->efx->type->ev_process(channel, quota);
523 }
524 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
525 {
526 	channel->efx->type->ev_read_ack(channel);
527 }
528 void efx_nic_event_test_start(struct efx_channel *channel);
529 
530 /* Falcon/Siena queue operations */
531 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
532 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
533 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
534 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
535 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
536 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
537 				    dma_addr_t dma_addr, unsigned int len);
538 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
539 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
540 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
541 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
542 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
543 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
544 int efx_farch_ev_probe(struct efx_channel *channel);
545 int efx_farch_ev_init(struct efx_channel *channel);
546 void efx_farch_ev_fini(struct efx_channel *channel);
547 void efx_farch_ev_remove(struct efx_channel *channel);
548 int efx_farch_ev_process(struct efx_channel *channel, int quota);
549 void efx_farch_ev_read_ack(struct efx_channel *channel);
550 void efx_farch_ev_test_generate(struct efx_channel *channel);
551 
552 /* Falcon/Siena filter operations */
553 int efx_farch_filter_table_probe(struct efx_nic *efx);
554 void efx_farch_filter_table_restore(struct efx_nic *efx);
555 void efx_farch_filter_table_remove(struct efx_nic *efx);
556 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
557 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
558 			    bool replace);
559 int efx_farch_filter_remove_safe(struct efx_nic *efx,
560 				 enum efx_filter_priority priority,
561 				 u32 filter_id);
562 int efx_farch_filter_get_safe(struct efx_nic *efx,
563 			      enum efx_filter_priority priority, u32 filter_id,
564 			      struct efx_filter_spec *);
565 int efx_farch_filter_clear_rx(struct efx_nic *efx,
566 			      enum efx_filter_priority priority);
567 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
568 				   enum efx_filter_priority priority);
569 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
570 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
571 				enum efx_filter_priority priority, u32 *buf,
572 				u32 size);
573 #ifdef CONFIG_RFS_ACCEL
574 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
575 				struct efx_filter_spec *spec);
576 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
577 				     unsigned int index);
578 #endif
579 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
580 
581 bool efx_nic_event_present(struct efx_channel *channel);
582 
583 /* Some statistics are computed as A - B where A and B each increase
584  * linearly with some hardware counter(s) and the counters are read
585  * asynchronously.  If the counters contributing to B are always read
586  * after those contributing to A, the computed value may be lower than
587  * the true value by some variable amount, and may decrease between
588  * subsequent computations.
589  *
590  * We should never allow statistics to decrease or to exceed the true
591  * value.  Since the computed value will never be greater than the
592  * true value, we can achieve this by only storing the computed value
593  * when it increases.
594  */
595 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
596 {
597 	if ((s64)(diff - *stat) > 0)
598 		*stat = diff;
599 }
600 
601 /* Interrupts */
602 int efx_nic_init_interrupt(struct efx_nic *efx);
603 int efx_nic_irq_test_start(struct efx_nic *efx);
604 void efx_nic_fini_interrupt(struct efx_nic *efx);
605 
606 /* Falcon/Siena interrupts */
607 void efx_farch_irq_enable_master(struct efx_nic *efx);
608 int efx_farch_irq_test_generate(struct efx_nic *efx);
609 void efx_farch_irq_disable_master(struct efx_nic *efx);
610 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
611 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
612 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
613 
614 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
615 {
616 	return ACCESS_ONCE(channel->event_test_cpu);
617 }
618 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
619 {
620 	return ACCESS_ONCE(efx->last_irq_cpu);
621 }
622 
623 /* Global Resources */
624 int efx_nic_flush_queues(struct efx_nic *efx);
625 void siena_prepare_flush(struct efx_nic *efx);
626 int efx_farch_fini_dmaq(struct efx_nic *efx);
627 void efx_farch_finish_flr(struct efx_nic *efx);
628 void siena_finish_flush(struct efx_nic *efx);
629 void falcon_start_nic_stats(struct efx_nic *efx);
630 void falcon_stop_nic_stats(struct efx_nic *efx);
631 int falcon_reset_xaui(struct efx_nic *efx);
632 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
633 void efx_farch_init_common(struct efx_nic *efx);
634 void efx_ef10_handle_drain_event(struct efx_nic *efx);
635 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
636 void efx_farch_rx_pull_indir_table(struct efx_nic *efx);
637 
638 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
639 			 unsigned int len, gfp_t gfp_flags);
640 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
641 
642 /* Tests */
643 struct efx_farch_register_test {
644 	unsigned address;
645 	efx_oword_t mask;
646 };
647 int efx_farch_test_registers(struct efx_nic *efx,
648 			     const struct efx_farch_register_test *regs,
649 			     size_t n_regs);
650 
651 size_t efx_nic_get_regs_len(struct efx_nic *efx);
652 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
653 
654 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
655 			      const unsigned long *mask, u8 *names);
656 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
657 			  const unsigned long *mask, u64 *stats,
658 			  const void *dma_buf, bool accumulate);
659 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
660 
661 #define EFX_MAX_FLUSH_TIME 5000
662 
663 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
664 			      efx_qword_t *event);
665 
666 #endif /* EFX_NIC_H */
667