xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.h (revision 183233be)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13 
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 
20 enum {
21 	EFX_REV_FALCON_A0 = 0,
22 	EFX_REV_FALCON_A1 = 1,
23 	EFX_REV_FALCON_B0 = 2,
24 	EFX_REV_SIENA_A0 = 3,
25 	EFX_REV_HUNT_A0 = 4,
26 };
27 
28 static inline int efx_nic_rev(struct efx_nic *efx)
29 {
30 	return efx->type->revision;
31 }
32 
33 extern u32 efx_farch_fpga_ver(struct efx_nic *efx);
34 
35 /* NIC has two interlinked PCI functions for the same port. */
36 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
37 {
38 	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
39 }
40 
41 /* Read the current event from the event queue */
42 static inline efx_qword_t *efx_event(struct efx_channel *channel,
43 				     unsigned int index)
44 {
45 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46 		(index & channel->eventq_mask);
47 }
48 
49 /* See if an event is present
50  *
51  * We check both the high and low dword of the event for all ones.  We
52  * wrote all ones when we cleared the event, and no valid event can
53  * have all ones in either its high or low dwords.  This approach is
54  * robust against reordering.
55  *
56  * Note that using a single 64-bit comparison is incorrect; even
57  * though the CPU read will be atomic, the DMA write may not be.
58  */
59 static inline int efx_event_present(efx_qword_t *event)
60 {
61 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
63 }
64 
65 /* Returns a pointer to the specified transmit descriptor in the TX
66  * descriptor queue belonging to the specified channel.
67  */
68 static inline efx_qword_t *
69 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
70 {
71 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
72 }
73 
74 /* Decide whether to push a TX descriptor to the NIC vs merely writing
75  * the doorbell.  This can reduce latency when we are adding a single
76  * descriptor to an empty queue, but is otherwise pointless.  Further,
77  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
78  * triggered if we don't check this.
79  */
80 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
81 					    unsigned int write_count)
82 {
83 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
84 
85 	if (empty_read_count == 0)
86 		return false;
87 
88 	tx_queue->empty_read_count = 0;
89 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
90 		&& tx_queue->write_count - write_count == 1;
91 }
92 
93 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
94 static inline efx_qword_t *
95 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
96 {
97 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
98 }
99 
100 enum {
101 	PHY_TYPE_NONE = 0,
102 	PHY_TYPE_TXC43128 = 1,
103 	PHY_TYPE_88E1111 = 2,
104 	PHY_TYPE_SFX7101 = 3,
105 	PHY_TYPE_QT2022C2 = 4,
106 	PHY_TYPE_PM8358 = 6,
107 	PHY_TYPE_SFT9001A = 8,
108 	PHY_TYPE_QT2025C = 9,
109 	PHY_TYPE_SFT9001B = 10,
110 };
111 
112 #define FALCON_XMAC_LOOPBACKS			\
113 	((1 << LOOPBACK_XGMII) |		\
114 	 (1 << LOOPBACK_XGXS) |			\
115 	 (1 << LOOPBACK_XAUI))
116 
117 /* Alignment of PCIe DMA boundaries (4KB) */
118 #define EFX_PAGE_SIZE	4096
119 /* Size and alignment of buffer table entries (same) */
120 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
121 
122 /**
123  * struct falcon_board_type - board operations and type information
124  * @id: Board type id, as found in NVRAM
125  * @init: Allocate resources and initialise peripheral hardware
126  * @init_phy: Do board-specific PHY initialisation
127  * @fini: Shut down hardware and free resources
128  * @set_id_led: Set state of identifying LED or revert to automatic function
129  * @monitor: Board-specific health check function
130  */
131 struct falcon_board_type {
132 	u8 id;
133 	int (*init) (struct efx_nic *nic);
134 	void (*init_phy) (struct efx_nic *efx);
135 	void (*fini) (struct efx_nic *nic);
136 	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
137 	int (*monitor) (struct efx_nic *nic);
138 };
139 
140 /**
141  * struct falcon_board - board information
142  * @type: Type of board
143  * @major: Major rev. ('A', 'B' ...)
144  * @minor: Minor rev. (0, 1, ...)
145  * @i2c_adap: I2C adapter for on-board peripherals
146  * @i2c_data: Data for bit-banging algorithm
147  * @hwmon_client: I2C client for hardware monitor
148  * @ioexp_client: I2C client for power/port control
149  */
150 struct falcon_board {
151 	const struct falcon_board_type *type;
152 	int major;
153 	int minor;
154 	struct i2c_adapter i2c_adap;
155 	struct i2c_algo_bit_data i2c_data;
156 	struct i2c_client *hwmon_client, *ioexp_client;
157 };
158 
159 /**
160  * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
161  * @device_id:		Controller's id for the device
162  * @size:		Size (in bytes)
163  * @addr_len:		Number of address bytes in read/write commands
164  * @munge_address:	Flag whether addresses should be munged.
165  *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
166  *	use bit 3 of the command byte as address bit A8, rather
167  *	than having a two-byte address.  If this flag is set, then
168  *	commands should be munged in this way.
169  * @erase_command:	Erase command (or 0 if sector erase not needed).
170  * @erase_size:		Erase sector size (in bytes)
171  *	Erase commands affect sectors with this size and alignment.
172  *	This must be a power of two.
173  * @block_size:		Write block size (in bytes).
174  *	Write commands are limited to blocks with this size and alignment.
175  */
176 struct falcon_spi_device {
177 	int device_id;
178 	unsigned int size;
179 	unsigned int addr_len;
180 	unsigned int munge_address:1;
181 	u8 erase_command;
182 	unsigned int erase_size;
183 	unsigned int block_size;
184 };
185 
186 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
187 {
188 	return spi->size != 0;
189 }
190 
191 enum {
192 	FALCON_STAT_tx_bytes,
193 	FALCON_STAT_tx_packets,
194 	FALCON_STAT_tx_pause,
195 	FALCON_STAT_tx_control,
196 	FALCON_STAT_tx_unicast,
197 	FALCON_STAT_tx_multicast,
198 	FALCON_STAT_tx_broadcast,
199 	FALCON_STAT_tx_lt64,
200 	FALCON_STAT_tx_64,
201 	FALCON_STAT_tx_65_to_127,
202 	FALCON_STAT_tx_128_to_255,
203 	FALCON_STAT_tx_256_to_511,
204 	FALCON_STAT_tx_512_to_1023,
205 	FALCON_STAT_tx_1024_to_15xx,
206 	FALCON_STAT_tx_15xx_to_jumbo,
207 	FALCON_STAT_tx_gtjumbo,
208 	FALCON_STAT_tx_non_tcpudp,
209 	FALCON_STAT_tx_mac_src_error,
210 	FALCON_STAT_tx_ip_src_error,
211 	FALCON_STAT_rx_bytes,
212 	FALCON_STAT_rx_good_bytes,
213 	FALCON_STAT_rx_bad_bytes,
214 	FALCON_STAT_rx_packets,
215 	FALCON_STAT_rx_good,
216 	FALCON_STAT_rx_bad,
217 	FALCON_STAT_rx_pause,
218 	FALCON_STAT_rx_control,
219 	FALCON_STAT_rx_unicast,
220 	FALCON_STAT_rx_multicast,
221 	FALCON_STAT_rx_broadcast,
222 	FALCON_STAT_rx_lt64,
223 	FALCON_STAT_rx_64,
224 	FALCON_STAT_rx_65_to_127,
225 	FALCON_STAT_rx_128_to_255,
226 	FALCON_STAT_rx_256_to_511,
227 	FALCON_STAT_rx_512_to_1023,
228 	FALCON_STAT_rx_1024_to_15xx,
229 	FALCON_STAT_rx_15xx_to_jumbo,
230 	FALCON_STAT_rx_gtjumbo,
231 	FALCON_STAT_rx_bad_lt64,
232 	FALCON_STAT_rx_bad_gtjumbo,
233 	FALCON_STAT_rx_overflow,
234 	FALCON_STAT_rx_symbol_error,
235 	FALCON_STAT_rx_align_error,
236 	FALCON_STAT_rx_length_error,
237 	FALCON_STAT_rx_internal_error,
238 	FALCON_STAT_rx_nodesc_drop_cnt,
239 	FALCON_STAT_COUNT
240 };
241 
242 /**
243  * struct falcon_nic_data - Falcon NIC state
244  * @pci_dev2: Secondary function of Falcon A
245  * @board: Board state and functions
246  * @stats: Hardware statistics
247  * @stats_disable_count: Nest count for disabling statistics fetches
248  * @stats_pending: Is there a pending DMA of MAC statistics.
249  * @stats_timer: A timer for regularly fetching MAC statistics.
250  * @spi_flash: SPI flash device
251  * @spi_eeprom: SPI EEPROM device
252  * @spi_lock: SPI bus lock
253  * @mdio_lock: MDIO bus lock
254  * @xmac_poll_required: XMAC link state needs polling
255  */
256 struct falcon_nic_data {
257 	struct pci_dev *pci_dev2;
258 	struct falcon_board board;
259 	u64 stats[FALCON_STAT_COUNT];
260 	unsigned int stats_disable_count;
261 	bool stats_pending;
262 	struct timer_list stats_timer;
263 	struct falcon_spi_device spi_flash;
264 	struct falcon_spi_device spi_eeprom;
265 	struct mutex spi_lock;
266 	struct mutex mdio_lock;
267 	bool xmac_poll_required;
268 };
269 
270 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
271 {
272 	struct falcon_nic_data *data = efx->nic_data;
273 	return &data->board;
274 }
275 
276 enum {
277 	SIENA_STAT_tx_bytes,
278 	SIENA_STAT_tx_good_bytes,
279 	SIENA_STAT_tx_bad_bytes,
280 	SIENA_STAT_tx_packets,
281 	SIENA_STAT_tx_bad,
282 	SIENA_STAT_tx_pause,
283 	SIENA_STAT_tx_control,
284 	SIENA_STAT_tx_unicast,
285 	SIENA_STAT_tx_multicast,
286 	SIENA_STAT_tx_broadcast,
287 	SIENA_STAT_tx_lt64,
288 	SIENA_STAT_tx_64,
289 	SIENA_STAT_tx_65_to_127,
290 	SIENA_STAT_tx_128_to_255,
291 	SIENA_STAT_tx_256_to_511,
292 	SIENA_STAT_tx_512_to_1023,
293 	SIENA_STAT_tx_1024_to_15xx,
294 	SIENA_STAT_tx_15xx_to_jumbo,
295 	SIENA_STAT_tx_gtjumbo,
296 	SIENA_STAT_tx_collision,
297 	SIENA_STAT_tx_single_collision,
298 	SIENA_STAT_tx_multiple_collision,
299 	SIENA_STAT_tx_excessive_collision,
300 	SIENA_STAT_tx_deferred,
301 	SIENA_STAT_tx_late_collision,
302 	SIENA_STAT_tx_excessive_deferred,
303 	SIENA_STAT_tx_non_tcpudp,
304 	SIENA_STAT_tx_mac_src_error,
305 	SIENA_STAT_tx_ip_src_error,
306 	SIENA_STAT_rx_bytes,
307 	SIENA_STAT_rx_good_bytes,
308 	SIENA_STAT_rx_bad_bytes,
309 	SIENA_STAT_rx_packets,
310 	SIENA_STAT_rx_good,
311 	SIENA_STAT_rx_bad,
312 	SIENA_STAT_rx_pause,
313 	SIENA_STAT_rx_control,
314 	SIENA_STAT_rx_unicast,
315 	SIENA_STAT_rx_multicast,
316 	SIENA_STAT_rx_broadcast,
317 	SIENA_STAT_rx_lt64,
318 	SIENA_STAT_rx_64,
319 	SIENA_STAT_rx_65_to_127,
320 	SIENA_STAT_rx_128_to_255,
321 	SIENA_STAT_rx_256_to_511,
322 	SIENA_STAT_rx_512_to_1023,
323 	SIENA_STAT_rx_1024_to_15xx,
324 	SIENA_STAT_rx_15xx_to_jumbo,
325 	SIENA_STAT_rx_gtjumbo,
326 	SIENA_STAT_rx_bad_gtjumbo,
327 	SIENA_STAT_rx_overflow,
328 	SIENA_STAT_rx_false_carrier,
329 	SIENA_STAT_rx_symbol_error,
330 	SIENA_STAT_rx_align_error,
331 	SIENA_STAT_rx_length_error,
332 	SIENA_STAT_rx_internal_error,
333 	SIENA_STAT_rx_nodesc_drop_cnt,
334 	SIENA_STAT_COUNT
335 };
336 
337 /**
338  * struct siena_nic_data - Siena NIC state
339  * @wol_filter_id: Wake-on-LAN packet filter id
340  * @stats: Hardware statistics
341  */
342 struct siena_nic_data {
343 	int wol_filter_id;
344 	u64 stats[SIENA_STAT_COUNT];
345 };
346 
347 enum {
348 	EF10_STAT_tx_bytes,
349 	EF10_STAT_tx_packets,
350 	EF10_STAT_tx_pause,
351 	EF10_STAT_tx_control,
352 	EF10_STAT_tx_unicast,
353 	EF10_STAT_tx_multicast,
354 	EF10_STAT_tx_broadcast,
355 	EF10_STAT_tx_lt64,
356 	EF10_STAT_tx_64,
357 	EF10_STAT_tx_65_to_127,
358 	EF10_STAT_tx_128_to_255,
359 	EF10_STAT_tx_256_to_511,
360 	EF10_STAT_tx_512_to_1023,
361 	EF10_STAT_tx_1024_to_15xx,
362 	EF10_STAT_tx_15xx_to_jumbo,
363 	EF10_STAT_rx_bytes,
364 	EF10_STAT_rx_bytes_minus_good_bytes,
365 	EF10_STAT_rx_good_bytes,
366 	EF10_STAT_rx_bad_bytes,
367 	EF10_STAT_rx_packets,
368 	EF10_STAT_rx_good,
369 	EF10_STAT_rx_bad,
370 	EF10_STAT_rx_pause,
371 	EF10_STAT_rx_control,
372 	EF10_STAT_rx_unicast,
373 	EF10_STAT_rx_multicast,
374 	EF10_STAT_rx_broadcast,
375 	EF10_STAT_rx_lt64,
376 	EF10_STAT_rx_64,
377 	EF10_STAT_rx_65_to_127,
378 	EF10_STAT_rx_128_to_255,
379 	EF10_STAT_rx_256_to_511,
380 	EF10_STAT_rx_512_to_1023,
381 	EF10_STAT_rx_1024_to_15xx,
382 	EF10_STAT_rx_15xx_to_jumbo,
383 	EF10_STAT_rx_gtjumbo,
384 	EF10_STAT_rx_bad_gtjumbo,
385 	EF10_STAT_rx_overflow,
386 	EF10_STAT_rx_align_error,
387 	EF10_STAT_rx_length_error,
388 	EF10_STAT_rx_nodesc_drops,
389 	EF10_STAT_COUNT
390 };
391 
392 /* Maximum number of TX PIO buffers we may allocate to a function.
393  * This matches the total number of buffers on each SFC9100-family
394  * controller.
395  */
396 #define EF10_TX_PIOBUF_COUNT 16
397 
398 /**
399  * struct efx_ef10_nic_data - EF10 architecture NIC state
400  * @mcdi_buf: DMA buffer for MCDI
401  * @warm_boot_count: Last seen MC warm boot count
402  * @vi_base: Absolute index of first VI in this function
403  * @n_allocated_vis: Number of VIs allocated to this function
404  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
405  * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
406  * @n_piobufs: Number of PIO buffers allocated to this function
407  * @wc_membase: Base address of write-combining mapping of the memory BAR
408  * @pio_write_base: Base address for writing PIO buffers
409  * @pio_write_vi_base: Relative VI number for @pio_write_base
410  * @piobuf_handle: Handle of each PIO buffer allocated
411  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
412  *	reboot
413  * @rx_rss_context: Firmware handle for our RSS context
414  * @stats: Hardware statistics
415  * @workaround_35388: Flag: firmware supports workaround for bug 35388
416  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
417  *	after MC reboot
418  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
419  *	%MC_CMD_GET_CAPABILITIES response)
420  */
421 struct efx_ef10_nic_data {
422 	struct efx_buffer mcdi_buf;
423 	u16 warm_boot_count;
424 	unsigned int vi_base;
425 	unsigned int n_allocated_vis;
426 	bool must_realloc_vis;
427 	bool must_restore_filters;
428 	unsigned int n_piobufs;
429 	void __iomem *wc_membase, *pio_write_base;
430 	unsigned int pio_write_vi_base;
431 	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
432 	bool must_restore_piobufs;
433 	u32 rx_rss_context;
434 	u64 stats[EF10_STAT_COUNT];
435 	bool workaround_35388;
436 	bool must_check_datapath_caps;
437 	u32 datapath_caps;
438 };
439 
440 /*
441  * On the SFC9000 family each port is associated with 1 PCI physical
442  * function (PF) handled by sfc and a configurable number of virtual
443  * functions (VFs) that may be handled by some other driver, often in
444  * a VM guest.  The queue pointer registers are mapped in both PF and
445  * VF BARs such that an 8K region provides access to a single RX, TX
446  * and event queue (collectively a Virtual Interface, VI or VNIC).
447  *
448  * The PF has access to all 1024 VIs while VFs are mapped to VIs
449  * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
450  * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
451  * The number of VIs and the VI_SCALE value are configurable but must
452  * be established at boot time by firmware.
453  */
454 
455 /* Maximum VI_SCALE parameter supported by Siena */
456 #define EFX_VI_SCALE_MAX 6
457 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
458  * so this is the smallest allowed value. */
459 #define EFX_VI_BASE 128U
460 /* Maximum number of VFs allowed */
461 #define EFX_VF_COUNT_MAX 127
462 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
463 #define EFX_MAX_VF_EVQ_SIZE 8192UL
464 /* The number of buffer table entries reserved for each VI on a VF */
465 #define EFX_VF_BUFTBL_PER_VI					\
466 	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
467 	 sizeof(efx_qword_t) / EFX_BUF_SIZE)
468 
469 #ifdef CONFIG_SFC_SRIOV
470 
471 static inline bool efx_sriov_wanted(struct efx_nic *efx)
472 {
473 	return efx->vf_count != 0;
474 }
475 static inline bool efx_sriov_enabled(struct efx_nic *efx)
476 {
477 	return efx->vf_init_count != 0;
478 }
479 static inline unsigned int efx_vf_size(struct efx_nic *efx)
480 {
481 	return 1 << efx->vi_scale;
482 }
483 
484 extern int efx_init_sriov(void);
485 extern void efx_sriov_probe(struct efx_nic *efx);
486 extern int efx_sriov_init(struct efx_nic *efx);
487 extern void efx_sriov_mac_address_changed(struct efx_nic *efx);
488 extern void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
489 extern void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
490 extern void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
491 extern void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
492 extern void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
493 extern void efx_sriov_reset(struct efx_nic *efx);
494 extern void efx_sriov_fini(struct efx_nic *efx);
495 extern void efx_fini_sriov(void);
496 
497 #else
498 
499 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
500 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
501 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
502 
503 static inline int efx_init_sriov(void) { return 0; }
504 static inline void efx_sriov_probe(struct efx_nic *efx) {}
505 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
506 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
507 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
508 					   efx_qword_t *event) {}
509 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
510 					   efx_qword_t *event) {}
511 static inline void efx_sriov_event(struct efx_channel *channel,
512 				   efx_qword_t *event) {}
513 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
514 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
515 static inline void efx_sriov_reset(struct efx_nic *efx) {}
516 static inline void efx_sriov_fini(struct efx_nic *efx) {}
517 static inline void efx_fini_sriov(void) {}
518 
519 #endif
520 
521 extern int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
522 extern int efx_sriov_set_vf_vlan(struct net_device *dev, int vf,
523 				 u16 vlan, u8 qos);
524 extern int efx_sriov_get_vf_config(struct net_device *dev, int vf,
525 				   struct ifla_vf_info *ivf);
526 extern int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
527 				     bool spoofchk);
528 
529 struct ethtool_ts_info;
530 extern void efx_ptp_probe(struct efx_nic *efx);
531 extern int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd);
532 extern void efx_ptp_get_ts_info(struct efx_nic *efx,
533 				struct ethtool_ts_info *ts_info);
534 extern bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
535 extern int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
536 extern void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
537 
538 extern const struct efx_nic_type falcon_a1_nic_type;
539 extern const struct efx_nic_type falcon_b0_nic_type;
540 extern const struct efx_nic_type siena_a0_nic_type;
541 extern const struct efx_nic_type efx_hunt_a0_nic_type;
542 
543 /**************************************************************************
544  *
545  * Externs
546  *
547  **************************************************************************
548  */
549 
550 extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
551 
552 /* TX data path */
553 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
554 {
555 	return tx_queue->efx->type->tx_probe(tx_queue);
556 }
557 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
558 {
559 	tx_queue->efx->type->tx_init(tx_queue);
560 }
561 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
562 {
563 	tx_queue->efx->type->tx_remove(tx_queue);
564 }
565 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
566 {
567 	tx_queue->efx->type->tx_write(tx_queue);
568 }
569 
570 /* RX data path */
571 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
572 {
573 	return rx_queue->efx->type->rx_probe(rx_queue);
574 }
575 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
576 {
577 	rx_queue->efx->type->rx_init(rx_queue);
578 }
579 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
580 {
581 	rx_queue->efx->type->rx_remove(rx_queue);
582 }
583 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
584 {
585 	rx_queue->efx->type->rx_write(rx_queue);
586 }
587 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
588 {
589 	rx_queue->efx->type->rx_defer_refill(rx_queue);
590 }
591 
592 /* Event data path */
593 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
594 {
595 	return channel->efx->type->ev_probe(channel);
596 }
597 static inline int efx_nic_init_eventq(struct efx_channel *channel)
598 {
599 	return channel->efx->type->ev_init(channel);
600 }
601 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
602 {
603 	channel->efx->type->ev_fini(channel);
604 }
605 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
606 {
607 	channel->efx->type->ev_remove(channel);
608 }
609 static inline int
610 efx_nic_process_eventq(struct efx_channel *channel, int quota)
611 {
612 	return channel->efx->type->ev_process(channel, quota);
613 }
614 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
615 {
616 	channel->efx->type->ev_read_ack(channel);
617 }
618 extern void efx_nic_event_test_start(struct efx_channel *channel);
619 
620 /* Falcon/Siena queue operations */
621 extern int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
622 extern void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
623 extern void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
624 extern void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
625 extern void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
626 extern int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
627 extern void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
628 extern void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
629 extern void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
630 extern void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
631 extern void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
632 extern int efx_farch_ev_probe(struct efx_channel *channel);
633 extern int efx_farch_ev_init(struct efx_channel *channel);
634 extern void efx_farch_ev_fini(struct efx_channel *channel);
635 extern void efx_farch_ev_remove(struct efx_channel *channel);
636 extern int efx_farch_ev_process(struct efx_channel *channel, int quota);
637 extern void efx_farch_ev_read_ack(struct efx_channel *channel);
638 extern void efx_farch_ev_test_generate(struct efx_channel *channel);
639 
640 /* Falcon/Siena filter operations */
641 extern int efx_farch_filter_table_probe(struct efx_nic *efx);
642 extern void efx_farch_filter_table_restore(struct efx_nic *efx);
643 extern void efx_farch_filter_table_remove(struct efx_nic *efx);
644 extern void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
645 extern s32 efx_farch_filter_insert(struct efx_nic *efx,
646 				   struct efx_filter_spec *spec, bool replace);
647 extern int efx_farch_filter_remove_safe(struct efx_nic *efx,
648 					enum efx_filter_priority priority,
649 					u32 filter_id);
650 extern int efx_farch_filter_get_safe(struct efx_nic *efx,
651 				     enum efx_filter_priority priority,
652 				     u32 filter_id, struct efx_filter_spec *);
653 extern void efx_farch_filter_clear_rx(struct efx_nic *efx,
654 				      enum efx_filter_priority priority);
655 extern u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
656 					  enum efx_filter_priority priority);
657 extern u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
658 extern s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
659 				       enum efx_filter_priority priority,
660 				       u32 *buf, u32 size);
661 #ifdef CONFIG_RFS_ACCEL
662 extern s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
663 				       struct efx_filter_spec *spec);
664 extern bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
665 					    unsigned int index);
666 #endif
667 extern void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
668 
669 extern bool efx_nic_event_present(struct efx_channel *channel);
670 
671 /* Some statistics are computed as A - B where A and B each increase
672  * linearly with some hardware counter(s) and the counters are read
673  * asynchronously.  If the counters contributing to B are always read
674  * after those contributing to A, the computed value may be lower than
675  * the true value by some variable amount, and may decrease between
676  * subsequent computations.
677  *
678  * We should never allow statistics to decrease or to exceed the true
679  * value.  Since the computed value will never be greater than the
680  * true value, we can achieve this by only storing the computed value
681  * when it increases.
682  */
683 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
684 {
685 	if ((s64)(diff - *stat) > 0)
686 		*stat = diff;
687 }
688 
689 /* Interrupts */
690 extern int efx_nic_init_interrupt(struct efx_nic *efx);
691 extern void efx_nic_irq_test_start(struct efx_nic *efx);
692 extern void efx_nic_fini_interrupt(struct efx_nic *efx);
693 
694 /* Falcon/Siena interrupts */
695 extern void efx_farch_irq_enable_master(struct efx_nic *efx);
696 extern void efx_farch_irq_test_generate(struct efx_nic *efx);
697 extern void efx_farch_irq_disable_master(struct efx_nic *efx);
698 extern irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
699 extern irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
700 extern irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
701 
702 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
703 {
704 	return ACCESS_ONCE(channel->event_test_cpu);
705 }
706 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
707 {
708 	return ACCESS_ONCE(efx->last_irq_cpu);
709 }
710 
711 /* Global Resources */
712 extern int efx_nic_flush_queues(struct efx_nic *efx);
713 extern void siena_prepare_flush(struct efx_nic *efx);
714 extern int efx_farch_fini_dmaq(struct efx_nic *efx);
715 extern void siena_finish_flush(struct efx_nic *efx);
716 extern void falcon_start_nic_stats(struct efx_nic *efx);
717 extern void falcon_stop_nic_stats(struct efx_nic *efx);
718 extern int falcon_reset_xaui(struct efx_nic *efx);
719 extern void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
720 extern void efx_farch_init_common(struct efx_nic *efx);
721 extern void efx_ef10_handle_drain_event(struct efx_nic *efx);
722 static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
723 {
724 	efx->type->rx_push_indir_table(efx);
725 }
726 extern void efx_farch_rx_push_indir_table(struct efx_nic *efx);
727 
728 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
729 			 unsigned int len, gfp_t gfp_flags);
730 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
731 
732 /* Tests */
733 struct efx_farch_register_test {
734 	unsigned address;
735 	efx_oword_t mask;
736 };
737 extern int efx_farch_test_registers(struct efx_nic *efx,
738 				    const struct efx_farch_register_test *regs,
739 				    size_t n_regs);
740 
741 extern size_t efx_nic_get_regs_len(struct efx_nic *efx);
742 extern void efx_nic_get_regs(struct efx_nic *efx, void *buf);
743 
744 extern size_t
745 efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
746 		       const unsigned long *mask, u8 *names);
747 extern void
748 efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
749 		     const unsigned long *mask,
750 		     u64 *stats, const void *dma_buf, bool accumulate);
751 
752 #define EFX_MAX_FLUSH_TIME 5000
753 
754 extern void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
755 				     efx_qword_t *event);
756 
757 #endif /* EFX_NIC_H */
758