xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.h (revision 15e47304)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13 
14 #include <linux/i2c-algo-bit.h>
15 #include "net_driver.h"
16 #include "efx.h"
17 #include "mcdi.h"
18 #include "spi.h"
19 
20 /*
21  * Falcon hardware control
22  */
23 
24 enum {
25 	EFX_REV_FALCON_A0 = 0,
26 	EFX_REV_FALCON_A1 = 1,
27 	EFX_REV_FALCON_B0 = 2,
28 	EFX_REV_SIENA_A0 = 3,
29 };
30 
31 static inline int efx_nic_rev(struct efx_nic *efx)
32 {
33 	return efx->type->revision;
34 }
35 
36 extern u32 efx_nic_fpga_ver(struct efx_nic *efx);
37 
38 /* NIC has two interlinked PCI functions for the same port. */
39 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
40 {
41 	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
42 }
43 
44 enum {
45 	PHY_TYPE_NONE = 0,
46 	PHY_TYPE_TXC43128 = 1,
47 	PHY_TYPE_88E1111 = 2,
48 	PHY_TYPE_SFX7101 = 3,
49 	PHY_TYPE_QT2022C2 = 4,
50 	PHY_TYPE_PM8358 = 6,
51 	PHY_TYPE_SFT9001A = 8,
52 	PHY_TYPE_QT2025C = 9,
53 	PHY_TYPE_SFT9001B = 10,
54 };
55 
56 #define FALCON_XMAC_LOOPBACKS			\
57 	((1 << LOOPBACK_XGMII) |		\
58 	 (1 << LOOPBACK_XGXS) |			\
59 	 (1 << LOOPBACK_XAUI))
60 
61 #define FALCON_GMAC_LOOPBACKS			\
62 	(1 << LOOPBACK_GMAC)
63 
64 /* Alignment of PCIe DMA boundaries (4KB) */
65 #define EFX_PAGE_SIZE	4096
66 /* Size and alignment of buffer table entries (same) */
67 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
68 
69 /**
70  * struct falcon_board_type - board operations and type information
71  * @id: Board type id, as found in NVRAM
72  * @init: Allocate resources and initialise peripheral hardware
73  * @init_phy: Do board-specific PHY initialisation
74  * @fini: Shut down hardware and free resources
75  * @set_id_led: Set state of identifying LED or revert to automatic function
76  * @monitor: Board-specific health check function
77  */
78 struct falcon_board_type {
79 	u8 id;
80 	int (*init) (struct efx_nic *nic);
81 	void (*init_phy) (struct efx_nic *efx);
82 	void (*fini) (struct efx_nic *nic);
83 	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
84 	int (*monitor) (struct efx_nic *nic);
85 };
86 
87 /**
88  * struct falcon_board - board information
89  * @type: Type of board
90  * @major: Major rev. ('A', 'B' ...)
91  * @minor: Minor rev. (0, 1, ...)
92  * @i2c_adap: I2C adapter for on-board peripherals
93  * @i2c_data: Data for bit-banging algorithm
94  * @hwmon_client: I2C client for hardware monitor
95  * @ioexp_client: I2C client for power/port control
96  */
97 struct falcon_board {
98 	const struct falcon_board_type *type;
99 	int major;
100 	int minor;
101 	struct i2c_adapter i2c_adap;
102 	struct i2c_algo_bit_data i2c_data;
103 	struct i2c_client *hwmon_client, *ioexp_client;
104 };
105 
106 /**
107  * struct falcon_nic_data - Falcon NIC state
108  * @pci_dev2: Secondary function of Falcon A
109  * @board: Board state and functions
110  * @stats_disable_count: Nest count for disabling statistics fetches
111  * @stats_pending: Is there a pending DMA of MAC statistics.
112  * @stats_timer: A timer for regularly fetching MAC statistics.
113  * @stats_dma_done: Pointer to the flag which indicates DMA completion.
114  * @spi_flash: SPI flash device
115  * @spi_eeprom: SPI EEPROM device
116  * @spi_lock: SPI bus lock
117  * @mdio_lock: MDIO bus lock
118  * @xmac_poll_required: XMAC link state needs polling
119  */
120 struct falcon_nic_data {
121 	struct pci_dev *pci_dev2;
122 	struct falcon_board board;
123 	unsigned int stats_disable_count;
124 	bool stats_pending;
125 	struct timer_list stats_timer;
126 	u32 *stats_dma_done;
127 	struct efx_spi_device spi_flash;
128 	struct efx_spi_device spi_eeprom;
129 	struct mutex spi_lock;
130 	struct mutex mdio_lock;
131 	bool xmac_poll_required;
132 };
133 
134 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
135 {
136 	struct falcon_nic_data *data = efx->nic_data;
137 	return &data->board;
138 }
139 
140 /**
141  * struct siena_nic_data - Siena NIC state
142  * @mcdi: Management-Controller-to-Driver Interface
143  * @wol_filter_id: Wake-on-LAN packet filter id
144  * @hwmon: Hardware monitor state
145  */
146 struct siena_nic_data {
147 	struct efx_mcdi_iface mcdi;
148 	int wol_filter_id;
149 #ifdef CONFIG_SFC_MCDI_MON
150 	struct efx_mcdi_mon hwmon;
151 #endif
152 };
153 
154 #ifdef CONFIG_SFC_MCDI_MON
155 static inline struct efx_mcdi_mon *efx_mcdi_mon(struct efx_nic *efx)
156 {
157 	struct siena_nic_data *nic_data;
158 	EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
159 	nic_data = efx->nic_data;
160 	return &nic_data->hwmon;
161 }
162 #endif
163 
164 /*
165  * On the SFC9000 family each port is associated with 1 PCI physical
166  * function (PF) handled by sfc and a configurable number of virtual
167  * functions (VFs) that may be handled by some other driver, often in
168  * a VM guest.  The queue pointer registers are mapped in both PF and
169  * VF BARs such that an 8K region provides access to a single RX, TX
170  * and event queue (collectively a Virtual Interface, VI or VNIC).
171  *
172  * The PF has access to all 1024 VIs while VFs are mapped to VIs
173  * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
174  * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
175  * The number of VIs and the VI_SCALE value are configurable but must
176  * be established at boot time by firmware.
177  */
178 
179 /* Maximum VI_SCALE parameter supported by Siena */
180 #define EFX_VI_SCALE_MAX 6
181 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
182  * so this is the smallest allowed value. */
183 #define EFX_VI_BASE 128U
184 /* Maximum number of VFs allowed */
185 #define EFX_VF_COUNT_MAX 127
186 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
187 #define EFX_MAX_VF_EVQ_SIZE 8192UL
188 /* The number of buffer table entries reserved for each VI on a VF */
189 #define EFX_VF_BUFTBL_PER_VI					\
190 	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
191 	 sizeof(efx_qword_t) / EFX_BUF_SIZE)
192 
193 #ifdef CONFIG_SFC_SRIOV
194 
195 static inline bool efx_sriov_wanted(struct efx_nic *efx)
196 {
197 	return efx->vf_count != 0;
198 }
199 static inline bool efx_sriov_enabled(struct efx_nic *efx)
200 {
201 	return efx->vf_init_count != 0;
202 }
203 static inline unsigned int efx_vf_size(struct efx_nic *efx)
204 {
205 	return 1 << efx->vi_scale;
206 }
207 
208 extern int efx_init_sriov(void);
209 extern void efx_sriov_probe(struct efx_nic *efx);
210 extern int efx_sriov_init(struct efx_nic *efx);
211 extern void efx_sriov_mac_address_changed(struct efx_nic *efx);
212 extern void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
213 extern void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
214 extern void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
215 extern void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
216 extern void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
217 extern void efx_sriov_reset(struct efx_nic *efx);
218 extern void efx_sriov_fini(struct efx_nic *efx);
219 extern void efx_fini_sriov(void);
220 
221 #else
222 
223 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
224 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
225 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
226 
227 static inline int efx_init_sriov(void) { return 0; }
228 static inline void efx_sriov_probe(struct efx_nic *efx) {}
229 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
230 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
231 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
232 					   efx_qword_t *event) {}
233 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
234 					   efx_qword_t *event) {}
235 static inline void efx_sriov_event(struct efx_channel *channel,
236 				   efx_qword_t *event) {}
237 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
238 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
239 static inline void efx_sriov_reset(struct efx_nic *efx) {}
240 static inline void efx_sriov_fini(struct efx_nic *efx) {}
241 static inline void efx_fini_sriov(void) {}
242 
243 #endif
244 
245 extern int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
246 extern int efx_sriov_set_vf_vlan(struct net_device *dev, int vf,
247 				 u16 vlan, u8 qos);
248 extern int efx_sriov_get_vf_config(struct net_device *dev, int vf,
249 				   struct ifla_vf_info *ivf);
250 extern int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
251 				     bool spoofchk);
252 
253 extern const struct efx_nic_type falcon_a1_nic_type;
254 extern const struct efx_nic_type falcon_b0_nic_type;
255 extern const struct efx_nic_type siena_a0_nic_type;
256 
257 /**************************************************************************
258  *
259  * Externs
260  *
261  **************************************************************************
262  */
263 
264 extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
265 
266 /* TX data path */
267 extern int efx_nic_probe_tx(struct efx_tx_queue *tx_queue);
268 extern void efx_nic_init_tx(struct efx_tx_queue *tx_queue);
269 extern void efx_nic_fini_tx(struct efx_tx_queue *tx_queue);
270 extern void efx_nic_remove_tx(struct efx_tx_queue *tx_queue);
271 extern void efx_nic_push_buffers(struct efx_tx_queue *tx_queue);
272 
273 /* RX data path */
274 extern int efx_nic_probe_rx(struct efx_rx_queue *rx_queue);
275 extern void efx_nic_init_rx(struct efx_rx_queue *rx_queue);
276 extern void efx_nic_fini_rx(struct efx_rx_queue *rx_queue);
277 extern void efx_nic_remove_rx(struct efx_rx_queue *rx_queue);
278 extern void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue);
279 extern void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue);
280 
281 /* Event data path */
282 extern int efx_nic_probe_eventq(struct efx_channel *channel);
283 extern void efx_nic_init_eventq(struct efx_channel *channel);
284 extern void efx_nic_fini_eventq(struct efx_channel *channel);
285 extern void efx_nic_remove_eventq(struct efx_channel *channel);
286 extern int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota);
287 extern void efx_nic_eventq_read_ack(struct efx_channel *channel);
288 extern bool efx_nic_event_present(struct efx_channel *channel);
289 
290 /* MAC/PHY */
291 extern void falcon_drain_tx_fifo(struct efx_nic *efx);
292 extern void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
293 extern bool falcon_xmac_check_fault(struct efx_nic *efx);
294 extern int falcon_reconfigure_xmac(struct efx_nic *efx);
295 extern void falcon_update_stats_xmac(struct efx_nic *efx);
296 
297 /* Some statistics are computed as A - B where A and B each increase
298  * linearly with some hardware counter(s) and the counters are read
299  * asynchronously.  If the counters contributing to B are always read
300  * after those contributing to A, the computed value may be lower than
301  * the true value by some variable amount, and may decrease between
302  * subsequent computations.
303  *
304  * We should never allow statistics to decrease or to exceed the true
305  * value.  Since the computed value will never be greater than the
306  * true value, we can achieve this by only storing the computed value
307  * when it increases.
308  */
309 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
310 {
311 	if ((s64)(diff - *stat) > 0)
312 		*stat = diff;
313 }
314 
315 /* Interrupts and test events */
316 extern int efx_nic_init_interrupt(struct efx_nic *efx);
317 extern void efx_nic_enable_interrupts(struct efx_nic *efx);
318 extern void efx_nic_event_test_start(struct efx_channel *channel);
319 extern void efx_nic_irq_test_start(struct efx_nic *efx);
320 extern void efx_nic_disable_interrupts(struct efx_nic *efx);
321 extern void efx_nic_fini_interrupt(struct efx_nic *efx);
322 extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx);
323 extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id);
324 extern void falcon_irq_ack_a1(struct efx_nic *efx);
325 
326 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
327 {
328 	return ACCESS_ONCE(channel->event_test_cpu);
329 }
330 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
331 {
332 	return ACCESS_ONCE(efx->last_irq_cpu);
333 }
334 
335 /* Global Resources */
336 extern int efx_nic_flush_queues(struct efx_nic *efx);
337 extern void falcon_start_nic_stats(struct efx_nic *efx);
338 extern void falcon_stop_nic_stats(struct efx_nic *efx);
339 extern void falcon_setup_xaui(struct efx_nic *efx);
340 extern int falcon_reset_xaui(struct efx_nic *efx);
341 extern void
342 efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
343 extern void efx_nic_init_common(struct efx_nic *efx);
344 extern void efx_nic_push_rx_indir_table(struct efx_nic *efx);
345 
346 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
347 			 unsigned int len);
348 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
349 
350 /* Tests */
351 struct efx_nic_register_test {
352 	unsigned address;
353 	efx_oword_t mask;
354 };
355 extern int efx_nic_test_registers(struct efx_nic *efx,
356 				  const struct efx_nic_register_test *regs,
357 				  size_t n_regs);
358 
359 extern size_t efx_nic_get_regs_len(struct efx_nic *efx);
360 extern void efx_nic_get_regs(struct efx_nic *efx, void *buf);
361 
362 /**************************************************************************
363  *
364  * Falcon MAC stats
365  *
366  **************************************************************************
367  */
368 
369 #define FALCON_STAT_OFFSET(falcon_stat) EFX_VAL(falcon_stat, offset)
370 #define FALCON_STAT_WIDTH(falcon_stat) EFX_VAL(falcon_stat, WIDTH)
371 
372 /* Retrieve statistic from statistics block */
373 #define FALCON_STAT(efx, falcon_stat, efx_stat) do {		\
374 	if (FALCON_STAT_WIDTH(falcon_stat) == 16)		\
375 		(efx)->mac_stats.efx_stat += le16_to_cpu(	\
376 			*((__force __le16 *)				\
377 			  (efx->stats_buffer.addr +		\
378 			   FALCON_STAT_OFFSET(falcon_stat))));	\
379 	else if (FALCON_STAT_WIDTH(falcon_stat) == 32)		\
380 		(efx)->mac_stats.efx_stat += le32_to_cpu(	\
381 			*((__force __le32 *)				\
382 			  (efx->stats_buffer.addr +		\
383 			   FALCON_STAT_OFFSET(falcon_stat))));	\
384 	else							\
385 		(efx)->mac_stats.efx_stat += le64_to_cpu(	\
386 			*((__force __le64 *)				\
387 			  (efx->stats_buffer.addr +		\
388 			   FALCON_STAT_OFFSET(falcon_stat))));	\
389 	} while (0)
390 
391 #define FALCON_MAC_STATS_SIZE 0x100
392 
393 #define MAC_DATA_LBN 0
394 #define MAC_DATA_WIDTH 32
395 
396 extern void efx_generate_event(struct efx_nic *efx, unsigned int evq,
397 			       efx_qword_t *event);
398 
399 extern void falcon_poll_xmac(struct efx_nic *efx);
400 
401 #endif /* EFX_NIC_H */
402