1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2006-2011 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #ifndef EFX_NIC_H 12 #define EFX_NIC_H 13 14 #include <linux/i2c-algo-bit.h> 15 #include "net_driver.h" 16 #include "efx.h" 17 #include "mcdi.h" 18 #include "spi.h" 19 20 /* 21 * Falcon hardware control 22 */ 23 24 enum { 25 EFX_REV_FALCON_A0 = 0, 26 EFX_REV_FALCON_A1 = 1, 27 EFX_REV_FALCON_B0 = 2, 28 EFX_REV_SIENA_A0 = 3, 29 }; 30 31 static inline int efx_nic_rev(struct efx_nic *efx) 32 { 33 return efx->type->revision; 34 } 35 36 extern u32 efx_nic_fpga_ver(struct efx_nic *efx); 37 38 /* NIC has two interlinked PCI functions for the same port. */ 39 static inline bool efx_nic_is_dual_func(struct efx_nic *efx) 40 { 41 return efx_nic_rev(efx) < EFX_REV_FALCON_B0; 42 } 43 44 enum { 45 PHY_TYPE_NONE = 0, 46 PHY_TYPE_TXC43128 = 1, 47 PHY_TYPE_88E1111 = 2, 48 PHY_TYPE_SFX7101 = 3, 49 PHY_TYPE_QT2022C2 = 4, 50 PHY_TYPE_PM8358 = 6, 51 PHY_TYPE_SFT9001A = 8, 52 PHY_TYPE_QT2025C = 9, 53 PHY_TYPE_SFT9001B = 10, 54 }; 55 56 #define FALCON_XMAC_LOOPBACKS \ 57 ((1 << LOOPBACK_XGMII) | \ 58 (1 << LOOPBACK_XGXS) | \ 59 (1 << LOOPBACK_XAUI)) 60 61 #define FALCON_GMAC_LOOPBACKS \ 62 (1 << LOOPBACK_GMAC) 63 64 /* Alignment of PCIe DMA boundaries (4KB) */ 65 #define EFX_PAGE_SIZE 4096 66 /* Size and alignment of buffer table entries (same) */ 67 #define EFX_BUF_SIZE EFX_PAGE_SIZE 68 69 /** 70 * struct falcon_board_type - board operations and type information 71 * @id: Board type id, as found in NVRAM 72 * @init: Allocate resources and initialise peripheral hardware 73 * @init_phy: Do board-specific PHY initialisation 74 * @fini: Shut down hardware and free resources 75 * @set_id_led: Set state of identifying LED or revert to automatic function 76 * @monitor: Board-specific health check function 77 */ 78 struct falcon_board_type { 79 u8 id; 80 int (*init) (struct efx_nic *nic); 81 void (*init_phy) (struct efx_nic *efx); 82 void (*fini) (struct efx_nic *nic); 83 void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode); 84 int (*monitor) (struct efx_nic *nic); 85 }; 86 87 /** 88 * struct falcon_board - board information 89 * @type: Type of board 90 * @major: Major rev. ('A', 'B' ...) 91 * @minor: Minor rev. (0, 1, ...) 92 * @i2c_adap: I2C adapter for on-board peripherals 93 * @i2c_data: Data for bit-banging algorithm 94 * @hwmon_client: I2C client for hardware monitor 95 * @ioexp_client: I2C client for power/port control 96 */ 97 struct falcon_board { 98 const struct falcon_board_type *type; 99 int major; 100 int minor; 101 struct i2c_adapter i2c_adap; 102 struct i2c_algo_bit_data i2c_data; 103 struct i2c_client *hwmon_client, *ioexp_client; 104 }; 105 106 /** 107 * struct falcon_nic_data - Falcon NIC state 108 * @pci_dev2: Secondary function of Falcon A 109 * @board: Board state and functions 110 * @stats_disable_count: Nest count for disabling statistics fetches 111 * @stats_pending: Is there a pending DMA of MAC statistics. 112 * @stats_timer: A timer for regularly fetching MAC statistics. 113 * @stats_dma_done: Pointer to the flag which indicates DMA completion. 114 * @spi_flash: SPI flash device 115 * @spi_eeprom: SPI EEPROM device 116 * @spi_lock: SPI bus lock 117 * @mdio_lock: MDIO bus lock 118 * @xmac_poll_required: XMAC link state needs polling 119 */ 120 struct falcon_nic_data { 121 struct pci_dev *pci_dev2; 122 struct falcon_board board; 123 unsigned int stats_disable_count; 124 bool stats_pending; 125 struct timer_list stats_timer; 126 u32 *stats_dma_done; 127 struct efx_spi_device spi_flash; 128 struct efx_spi_device spi_eeprom; 129 struct mutex spi_lock; 130 struct mutex mdio_lock; 131 bool xmac_poll_required; 132 }; 133 134 static inline struct falcon_board *falcon_board(struct efx_nic *efx) 135 { 136 struct falcon_nic_data *data = efx->nic_data; 137 return &data->board; 138 } 139 140 /** 141 * struct siena_nic_data - Siena NIC state 142 * @mcdi: Management-Controller-to-Driver Interface 143 * @wol_filter_id: Wake-on-LAN packet filter id 144 * @hwmon: Hardware monitor state 145 */ 146 struct siena_nic_data { 147 struct efx_mcdi_iface mcdi; 148 int wol_filter_id; 149 #ifdef CONFIG_SFC_MCDI_MON 150 struct efx_mcdi_mon hwmon; 151 #endif 152 }; 153 154 #ifdef CONFIG_SFC_MCDI_MON 155 static inline struct efx_mcdi_mon *efx_mcdi_mon(struct efx_nic *efx) 156 { 157 struct siena_nic_data *nic_data; 158 EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0); 159 nic_data = efx->nic_data; 160 return &nic_data->hwmon; 161 } 162 #endif 163 164 /* 165 * On the SFC9000 family each port is associated with 1 PCI physical 166 * function (PF) handled by sfc and a configurable number of virtual 167 * functions (VFs) that may be handled by some other driver, often in 168 * a VM guest. The queue pointer registers are mapped in both PF and 169 * VF BARs such that an 8K region provides access to a single RX, TX 170 * and event queue (collectively a Virtual Interface, VI or VNIC). 171 * 172 * The PF has access to all 1024 VIs while VFs are mapped to VIs 173 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered 174 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE). 175 * The number of VIs and the VI_SCALE value are configurable but must 176 * be established at boot time by firmware. 177 */ 178 179 /* Maximum VI_SCALE parameter supported by Siena */ 180 #define EFX_VI_SCALE_MAX 6 181 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX), 182 * so this is the smallest allowed value. */ 183 #define EFX_VI_BASE 128U 184 /* Maximum number of VFs allowed */ 185 #define EFX_VF_COUNT_MAX 127 186 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */ 187 #define EFX_MAX_VF_EVQ_SIZE 8192UL 188 /* The number of buffer table entries reserved for each VI on a VF */ 189 #define EFX_VF_BUFTBL_PER_VI \ 190 ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \ 191 sizeof(efx_qword_t) / EFX_BUF_SIZE) 192 193 #ifdef CONFIG_SFC_SRIOV 194 195 static inline bool efx_sriov_wanted(struct efx_nic *efx) 196 { 197 return efx->vf_count != 0; 198 } 199 static inline bool efx_sriov_enabled(struct efx_nic *efx) 200 { 201 return efx->vf_init_count != 0; 202 } 203 static inline unsigned int efx_vf_size(struct efx_nic *efx) 204 { 205 return 1 << efx->vi_scale; 206 } 207 208 extern int efx_init_sriov(void); 209 extern void efx_sriov_probe(struct efx_nic *efx); 210 extern int efx_sriov_init(struct efx_nic *efx); 211 extern void efx_sriov_mac_address_changed(struct efx_nic *efx); 212 extern void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event); 213 extern void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event); 214 extern void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event); 215 extern void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq); 216 extern void efx_sriov_flr(struct efx_nic *efx, unsigned flr); 217 extern void efx_sriov_reset(struct efx_nic *efx); 218 extern void efx_sriov_fini(struct efx_nic *efx); 219 extern void efx_fini_sriov(void); 220 221 #else 222 223 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; } 224 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; } 225 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; } 226 227 static inline int efx_init_sriov(void) { return 0; } 228 static inline void efx_sriov_probe(struct efx_nic *efx) {} 229 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; } 230 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {} 231 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx, 232 efx_qword_t *event) {} 233 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx, 234 efx_qword_t *event) {} 235 static inline void efx_sriov_event(struct efx_channel *channel, 236 efx_qword_t *event) {} 237 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {} 238 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {} 239 static inline void efx_sriov_reset(struct efx_nic *efx) {} 240 static inline void efx_sriov_fini(struct efx_nic *efx) {} 241 static inline void efx_fini_sriov(void) {} 242 243 #endif 244 245 extern int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac); 246 extern int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, 247 u16 vlan, u8 qos); 248 extern int efx_sriov_get_vf_config(struct net_device *dev, int vf, 249 struct ifla_vf_info *ivf); 250 extern int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf, 251 bool spoofchk); 252 253 extern const struct efx_nic_type falcon_a1_nic_type; 254 extern const struct efx_nic_type falcon_b0_nic_type; 255 extern const struct efx_nic_type siena_a0_nic_type; 256 257 /************************************************************************** 258 * 259 * Externs 260 * 261 ************************************************************************** 262 */ 263 264 extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info); 265 266 /* TX data path */ 267 extern int efx_nic_probe_tx(struct efx_tx_queue *tx_queue); 268 extern void efx_nic_init_tx(struct efx_tx_queue *tx_queue); 269 extern void efx_nic_fini_tx(struct efx_tx_queue *tx_queue); 270 extern void efx_nic_remove_tx(struct efx_tx_queue *tx_queue); 271 extern void efx_nic_push_buffers(struct efx_tx_queue *tx_queue); 272 273 /* RX data path */ 274 extern int efx_nic_probe_rx(struct efx_rx_queue *rx_queue); 275 extern void efx_nic_init_rx(struct efx_rx_queue *rx_queue); 276 extern void efx_nic_fini_rx(struct efx_rx_queue *rx_queue); 277 extern void efx_nic_remove_rx(struct efx_rx_queue *rx_queue); 278 extern void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue); 279 extern void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue); 280 281 /* Event data path */ 282 extern int efx_nic_probe_eventq(struct efx_channel *channel); 283 extern void efx_nic_init_eventq(struct efx_channel *channel); 284 extern void efx_nic_fini_eventq(struct efx_channel *channel); 285 extern void efx_nic_remove_eventq(struct efx_channel *channel); 286 extern int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota); 287 extern void efx_nic_eventq_read_ack(struct efx_channel *channel); 288 extern bool efx_nic_event_present(struct efx_channel *channel); 289 290 /* MAC/PHY */ 291 extern void falcon_drain_tx_fifo(struct efx_nic *efx); 292 extern void falcon_reconfigure_mac_wrapper(struct efx_nic *efx); 293 extern bool falcon_xmac_check_fault(struct efx_nic *efx); 294 extern int falcon_reconfigure_xmac(struct efx_nic *efx); 295 extern void falcon_update_stats_xmac(struct efx_nic *efx); 296 297 /* Some statistics are computed as A - B where A and B each increase 298 * linearly with some hardware counter(s) and the counters are read 299 * asynchronously. If the counters contributing to B are always read 300 * after those contributing to A, the computed value may be lower than 301 * the true value by some variable amount, and may decrease between 302 * subsequent computations. 303 * 304 * We should never allow statistics to decrease or to exceed the true 305 * value. Since the computed value will never be greater than the 306 * true value, we can achieve this by only storing the computed value 307 * when it increases. 308 */ 309 static inline void efx_update_diff_stat(u64 *stat, u64 diff) 310 { 311 if ((s64)(diff - *stat) > 0) 312 *stat = diff; 313 } 314 315 /* Interrupts and test events */ 316 extern int efx_nic_init_interrupt(struct efx_nic *efx); 317 extern void efx_nic_enable_interrupts(struct efx_nic *efx); 318 extern void efx_nic_event_test_start(struct efx_channel *channel); 319 extern void efx_nic_irq_test_start(struct efx_nic *efx); 320 extern void efx_nic_disable_interrupts(struct efx_nic *efx); 321 extern void efx_nic_fini_interrupt(struct efx_nic *efx); 322 extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx); 323 extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id); 324 extern void falcon_irq_ack_a1(struct efx_nic *efx); 325 326 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel) 327 { 328 return ACCESS_ONCE(channel->event_test_cpu); 329 } 330 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx) 331 { 332 return ACCESS_ONCE(efx->last_irq_cpu); 333 } 334 335 /* Global Resources */ 336 extern int efx_nic_flush_queues(struct efx_nic *efx); 337 extern void falcon_start_nic_stats(struct efx_nic *efx); 338 extern void falcon_stop_nic_stats(struct efx_nic *efx); 339 extern void falcon_setup_xaui(struct efx_nic *efx); 340 extern int falcon_reset_xaui(struct efx_nic *efx); 341 extern void 342 efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw); 343 extern void efx_nic_init_common(struct efx_nic *efx); 344 extern void efx_nic_push_rx_indir_table(struct efx_nic *efx); 345 346 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, 347 unsigned int len); 348 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer); 349 350 /* Tests */ 351 struct efx_nic_register_test { 352 unsigned address; 353 efx_oword_t mask; 354 }; 355 extern int efx_nic_test_registers(struct efx_nic *efx, 356 const struct efx_nic_register_test *regs, 357 size_t n_regs); 358 359 extern size_t efx_nic_get_regs_len(struct efx_nic *efx); 360 extern void efx_nic_get_regs(struct efx_nic *efx, void *buf); 361 362 /************************************************************************** 363 * 364 * Falcon MAC stats 365 * 366 ************************************************************************** 367 */ 368 369 #define FALCON_STAT_OFFSET(falcon_stat) EFX_VAL(falcon_stat, offset) 370 #define FALCON_STAT_WIDTH(falcon_stat) EFX_VAL(falcon_stat, WIDTH) 371 372 /* Retrieve statistic from statistics block */ 373 #define FALCON_STAT(efx, falcon_stat, efx_stat) do { \ 374 if (FALCON_STAT_WIDTH(falcon_stat) == 16) \ 375 (efx)->mac_stats.efx_stat += le16_to_cpu( \ 376 *((__force __le16 *) \ 377 (efx->stats_buffer.addr + \ 378 FALCON_STAT_OFFSET(falcon_stat)))); \ 379 else if (FALCON_STAT_WIDTH(falcon_stat) == 32) \ 380 (efx)->mac_stats.efx_stat += le32_to_cpu( \ 381 *((__force __le32 *) \ 382 (efx->stats_buffer.addr + \ 383 FALCON_STAT_OFFSET(falcon_stat)))); \ 384 else \ 385 (efx)->mac_stats.efx_stat += le64_to_cpu( \ 386 *((__force __le64 *) \ 387 (efx->stats_buffer.addr + \ 388 FALCON_STAT_OFFSET(falcon_stat)))); \ 389 } while (0) 390 391 #define FALCON_MAC_STATS_SIZE 0x100 392 393 #define MAC_DATA_LBN 0 394 #define MAC_DATA_WIDTH 32 395 396 extern void efx_generate_event(struct efx_nic *efx, unsigned int evq, 397 efx_qword_t *event); 398 399 extern void falcon_poll_xmac(struct efx_nic *efx); 400 401 #endif /* EFX_NIC_H */ 402