xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.c (revision fae8563b)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
60 
61 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63 
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
65 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
67 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
68 			   efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
74 			   (_tx_queue)->queue)
75 
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77 
78 /**************************************************************************
79  *
80  * Solarstorm hardware access
81  *
82  **************************************************************************/
83 
84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85 				     unsigned int index)
86 {
87 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88 			value, index);
89 }
90 
91 /* Read the current event from the event queue */
92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93 				     unsigned int index)
94 {
95 	return ((efx_qword_t *) (channel->eventq.addr)) +
96 		(index & channel->eventq_mask);
97 }
98 
99 /* See if an event is present
100  *
101  * We check both the high and low dword of the event for all ones.  We
102  * wrote all ones when we cleared the event, and no valid event can
103  * have all ones in either its high or low dwords.  This approach is
104  * robust against reordering.
105  *
106  * Note that using a single 64-bit comparison is incorrect; even
107  * though the CPU read will be atomic, the DMA write may not be.
108  */
109 static inline int efx_event_present(efx_qword_t *event)
110 {
111 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114 
115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116 				     const efx_oword_t *mask)
117 {
118 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121 
122 int efx_nic_test_registers(struct efx_nic *efx,
123 			   const struct efx_nic_register_test *regs,
124 			   size_t n_regs)
125 {
126 	unsigned address = 0, i, j;
127 	efx_oword_t mask, imask, original, reg, buf;
128 
129 	for (i = 0; i < n_regs; ++i) {
130 		address = regs[i].address;
131 		mask = imask = regs[i].mask;
132 		EFX_INVERT_OWORD(imask);
133 
134 		efx_reado(efx, &original, address);
135 
136 		/* bit sweep on and off */
137 		for (j = 0; j < 128; j++) {
138 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
139 				continue;
140 
141 			/* Test this testable bit can be set in isolation */
142 			EFX_AND_OWORD(reg, original, mask);
143 			EFX_SET_OWORD32(reg, j, j, 1);
144 
145 			efx_writeo(efx, &reg, address);
146 			efx_reado(efx, &buf, address);
147 
148 			if (efx_masked_compare_oword(&reg, &buf, &mask))
149 				goto fail;
150 
151 			/* Test this testable bit can be cleared in isolation */
152 			EFX_OR_OWORD(reg, original, mask);
153 			EFX_SET_OWORD32(reg, j, j, 0);
154 
155 			efx_writeo(efx, &reg, address);
156 			efx_reado(efx, &buf, address);
157 
158 			if (efx_masked_compare_oword(&reg, &buf, &mask))
159 				goto fail;
160 		}
161 
162 		efx_writeo(efx, &original, address);
163 	}
164 
165 	return 0;
166 
167 fail:
168 	netif_err(efx, hw, efx->net_dev,
169 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172 	return -EIO;
173 }
174 
175 /**************************************************************************
176  *
177  * Special buffer handling
178  * Special buffers are used for event queues and the TX and RX
179  * descriptor rings.
180  *
181  *************************************************************************/
182 
183 /*
184  * Initialise a special buffer
185  *
186  * This will define a buffer (previously allocated via
187  * efx_alloc_special_buffer()) in the buffer table, allowing
188  * it to be used for event queues, descriptor rings etc.
189  */
190 static void
191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193 	efx_qword_t buf_desc;
194 	unsigned int index;
195 	dma_addr_t dma_addr;
196 	int i;
197 
198 	EFX_BUG_ON_PARANOID(!buffer->addr);
199 
200 	/* Write buffer descriptors to NIC */
201 	for (i = 0; i < buffer->entries; i++) {
202 		index = buffer->index + i;
203 		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204 		netif_dbg(efx, probe, efx->net_dev,
205 			  "mapping special buffer %d at %llx\n",
206 			  index, (unsigned long long)dma_addr);
207 		EFX_POPULATE_QWORD_3(buf_desc,
208 				     FRF_AZ_BUF_ADR_REGION, 0,
209 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211 		efx_write_buf_tbl(efx, &buf_desc, index);
212 	}
213 }
214 
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219 	efx_oword_t buf_tbl_upd;
220 	unsigned int start = buffer->index;
221 	unsigned int end = (buffer->index + buffer->entries - 1);
222 
223 	if (!buffer->entries)
224 		return;
225 
226 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227 		  buffer->index, buffer->index + buffer->entries - 1);
228 
229 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
230 			     FRF_AZ_BUF_UPD_CMD, 0,
231 			     FRF_AZ_BUF_CLR_CMD, 1,
232 			     FRF_AZ_BUF_CLR_END_ID, end,
233 			     FRF_AZ_BUF_CLR_START_ID, start);
234 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236 
237 /*
238  * Allocate a new special buffer
239  *
240  * This allocates memory for a new buffer, clears it and allocates a
241  * new buffer ID range.  It does not write into the buffer table.
242  *
243  * This call will allocate 4KB buffers, since 8KB buffers can't be
244  * used for event queues and descriptor rings.
245  */
246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247 				    struct efx_special_buffer *buffer,
248 				    unsigned int len)
249 {
250 	len = ALIGN(len, EFX_BUF_SIZE);
251 
252 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253 					  &buffer->dma_addr, GFP_KERNEL);
254 	if (!buffer->addr)
255 		return -ENOMEM;
256 	buffer->len = len;
257 	buffer->entries = len / EFX_BUF_SIZE;
258 	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259 
260 	/* Select new buffer ID */
261 	buffer->index = efx->next_buffer_table;
262 	efx->next_buffer_table += buffer->entries;
263 #ifdef CONFIG_SFC_SRIOV
264 	BUG_ON(efx_sriov_enabled(efx) &&
265 	       efx->vf_buftbl_base < efx->next_buffer_table);
266 #endif
267 
268 	netif_dbg(efx, probe, efx->net_dev,
269 		  "allocating special buffers %d-%d at %llx+%x "
270 		  "(virt %p phys %llx)\n", buffer->index,
271 		  buffer->index + buffer->entries - 1,
272 		  (u64)buffer->dma_addr, len,
273 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
274 
275 	return 0;
276 }
277 
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281 	if (!buffer->addr)
282 		return;
283 
284 	netif_dbg(efx, hw, efx->net_dev,
285 		  "deallocating special buffers %d-%d at %llx+%x "
286 		  "(virt %p phys %llx)\n", buffer->index,
287 		  buffer->index + buffer->entries - 1,
288 		  (u64)buffer->dma_addr, buffer->len,
289 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
290 
291 	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292 			  buffer->dma_addr);
293 	buffer->addr = NULL;
294 	buffer->entries = 0;
295 }
296 
297 /**************************************************************************
298  *
299  * Generic buffer handling
300  * These buffers are used for interrupt status, MAC stats, etc.
301  *
302  **************************************************************************/
303 
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305 			 unsigned int len)
306 {
307 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
308 					  &buffer->dma_addr, GFP_ATOMIC);
309 	if (!buffer->addr)
310 		return -ENOMEM;
311 	buffer->len = len;
312 	memset(buffer->addr, 0, len);
313 	return 0;
314 }
315 
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318 	if (buffer->addr) {
319 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
320 				  buffer->addr, buffer->dma_addr);
321 		buffer->addr = NULL;
322 	}
323 }
324 
325 /**************************************************************************
326  *
327  * TX path
328  *
329  **************************************************************************/
330 
331 /* Returns a pointer to the specified transmit descriptor in the TX
332  * descriptor queue belonging to the specified channel.
333  */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337 	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339 
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343 	unsigned write_ptr;
344 	efx_dword_t reg;
345 
346 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348 	efx_writed_page(tx_queue->efx, &reg,
349 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351 
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354 				    const efx_qword_t *txd)
355 {
356 	unsigned write_ptr;
357 	efx_oword_t reg;
358 
359 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361 
362 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
365 	reg.qword[0] = *txd;
366 	efx_writeo_page(tx_queue->efx, &reg,
367 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369 
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374 
375 	if (empty_read_count == 0)
376 		return false;
377 
378 	tx_queue->empty_read_count = 0;
379 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
380 		&& tx_queue->write_count - write_count == 1;
381 }
382 
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389 
390 	struct efx_tx_buffer *buffer;
391 	efx_qword_t *txd;
392 	unsigned write_ptr;
393 	unsigned old_write_count = tx_queue->write_count;
394 
395 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396 
397 	do {
398 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399 		buffer = &tx_queue->buffer[write_ptr];
400 		txd = efx_tx_desc(tx_queue, write_ptr);
401 		++tx_queue->write_count;
402 
403 		/* Create TX descriptor ring entry */
404 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405 		EFX_POPULATE_QWORD_4(*txd,
406 				     FSF_AZ_TX_KER_CONT,
407 				     buffer->flags & EFX_TX_BUF_CONT,
408 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409 				     FSF_AZ_TX_KER_BUF_REGION, 0,
410 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411 	} while (tx_queue->write_count != tx_queue->insert_count);
412 
413 	wmb(); /* Ensure descriptors are written before they are fetched */
414 
415 	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416 		txd = efx_tx_desc(tx_queue,
417 				  old_write_count & tx_queue->ptr_mask);
418 		efx_push_tx_desc(tx_queue, txd);
419 		++tx_queue->pushes;
420 	} else {
421 		efx_notify_tx_desc(tx_queue);
422 	}
423 }
424 
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428 	struct efx_nic *efx = tx_queue->efx;
429 	unsigned entries;
430 
431 	entries = tx_queue->ptr_mask + 1;
432 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
433 					entries * sizeof(efx_qword_t));
434 }
435 
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438 	struct efx_nic *efx = tx_queue->efx;
439 	efx_oword_t reg;
440 
441 	/* Pin TX descriptor ring */
442 	efx_init_special_buffer(efx, &tx_queue->txd);
443 
444 	/* Push TX descriptor ring to card */
445 	EFX_POPULATE_OWORD_10(reg,
446 			      FRF_AZ_TX_DESCQ_EN, 1,
447 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450 			      FRF_AZ_TX_DESCQ_EVQ_ID,
451 			      tx_queue->channel->channel,
452 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454 			      FRF_AZ_TX_DESCQ_SIZE,
455 			      __ffs(tx_queue->txd.entries),
456 			      FRF_AZ_TX_DESCQ_TYPE, 0,
457 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458 
459 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463 				    !csum);
464 	}
465 
466 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467 			 tx_queue->queue);
468 
469 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470 		/* Only 128 bits in this register */
471 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472 
473 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475 			__clear_bit_le(tx_queue->queue, &reg);
476 		else
477 			__set_bit_le(tx_queue->queue, &reg);
478 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479 	}
480 
481 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482 		EFX_POPULATE_OWORD_1(reg,
483 				     FRF_BZ_TX_PACE,
484 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485 				     FFE_BZ_TX_PACE_OFF :
486 				     FFE_BZ_TX_PACE_RESERVED);
487 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488 				 tx_queue->queue);
489 	}
490 }
491 
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494 	struct efx_nic *efx = tx_queue->efx;
495 	efx_oword_t tx_flush_descq;
496 
497 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
498 	atomic_set(&tx_queue->flush_outstanding, 1);
499 
500 	EFX_POPULATE_OWORD_2(tx_flush_descq,
501 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
502 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
503 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
504 }
505 
506 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
507 {
508 	struct efx_nic *efx = tx_queue->efx;
509 	efx_oword_t tx_desc_ptr;
510 
511 	/* Remove TX descriptor ring from card */
512 	EFX_ZERO_OWORD(tx_desc_ptr);
513 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
514 			 tx_queue->queue);
515 
516 	/* Unpin TX descriptor ring */
517 	efx_fini_special_buffer(efx, &tx_queue->txd);
518 }
519 
520 /* Free buffers backing TX queue */
521 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
522 {
523 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
524 }
525 
526 /**************************************************************************
527  *
528  * RX path
529  *
530  **************************************************************************/
531 
532 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
533 static inline efx_qword_t *
534 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
535 {
536 	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
537 }
538 
539 /* This creates an entry in the RX descriptor queue */
540 static inline void
541 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
542 {
543 	struct efx_rx_buffer *rx_buf;
544 	efx_qword_t *rxd;
545 
546 	rxd = efx_rx_desc(rx_queue, index);
547 	rx_buf = efx_rx_buffer(rx_queue, index);
548 	EFX_POPULATE_QWORD_3(*rxd,
549 			     FSF_AZ_RX_KER_BUF_SIZE,
550 			     rx_buf->len -
551 			     rx_queue->efx->type->rx_buffer_padding,
552 			     FSF_AZ_RX_KER_BUF_REGION, 0,
553 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
554 }
555 
556 /* This writes to the RX_DESC_WPTR register for the specified receive
557  * descriptor ring.
558  */
559 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
560 {
561 	struct efx_nic *efx = rx_queue->efx;
562 	efx_dword_t reg;
563 	unsigned write_ptr;
564 
565 	while (rx_queue->notified_count != rx_queue->added_count) {
566 		efx_build_rx_desc(
567 			rx_queue,
568 			rx_queue->notified_count & rx_queue->ptr_mask);
569 		++rx_queue->notified_count;
570 	}
571 
572 	wmb();
573 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
574 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
575 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
576 			efx_rx_queue_index(rx_queue));
577 }
578 
579 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
580 {
581 	struct efx_nic *efx = rx_queue->efx;
582 	unsigned entries;
583 
584 	entries = rx_queue->ptr_mask + 1;
585 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
586 					entries * sizeof(efx_qword_t));
587 }
588 
589 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
590 {
591 	efx_oword_t rx_desc_ptr;
592 	struct efx_nic *efx = rx_queue->efx;
593 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
594 	bool iscsi_digest_en = is_b0;
595 
596 	netif_dbg(efx, hw, efx->net_dev,
597 		  "RX queue %d ring in special buffers %d-%d\n",
598 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
599 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
600 
601 	/* Pin RX descriptor ring */
602 	efx_init_special_buffer(efx, &rx_queue->rxd);
603 
604 	/* Push RX descriptor ring to card */
605 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
606 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
607 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
608 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
609 			      FRF_AZ_RX_DESCQ_EVQ_ID,
610 			      efx_rx_queue_channel(rx_queue)->channel,
611 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
612 			      FRF_AZ_RX_DESCQ_LABEL,
613 			      efx_rx_queue_index(rx_queue),
614 			      FRF_AZ_RX_DESCQ_SIZE,
615 			      __ffs(rx_queue->rxd.entries),
616 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
617 			      /* For >=B0 this is scatter so disable */
618 			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
619 			      FRF_AZ_RX_DESCQ_EN, 1);
620 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
621 			 efx_rx_queue_index(rx_queue));
622 }
623 
624 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
625 {
626 	struct efx_nic *efx = rx_queue->efx;
627 	efx_oword_t rx_flush_descq;
628 
629 	EFX_POPULATE_OWORD_2(rx_flush_descq,
630 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
631 			     FRF_AZ_RX_FLUSH_DESCQ,
632 			     efx_rx_queue_index(rx_queue));
633 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
634 }
635 
636 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
637 {
638 	efx_oword_t rx_desc_ptr;
639 	struct efx_nic *efx = rx_queue->efx;
640 
641 	/* Remove RX descriptor ring from card */
642 	EFX_ZERO_OWORD(rx_desc_ptr);
643 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
644 			 efx_rx_queue_index(rx_queue));
645 
646 	/* Unpin RX descriptor ring */
647 	efx_fini_special_buffer(efx, &rx_queue->rxd);
648 }
649 
650 /* Free buffers backing RX queue */
651 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
652 {
653 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
654 }
655 
656 /**************************************************************************
657  *
658  * Flush handling
659  *
660  **************************************************************************/
661 
662 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
663  * or more RX flushes can be kicked off.
664  */
665 static bool efx_flush_wake(struct efx_nic *efx)
666 {
667 	/* Ensure that all updates are visible to efx_nic_flush_queues() */
668 	smp_mb();
669 
670 	return (atomic_read(&efx->drain_pending) == 0 ||
671 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
672 		 && atomic_read(&efx->rxq_flush_pending) > 0));
673 }
674 
675 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
676 {
677 	bool i = true;
678 	efx_oword_t txd_ptr_tbl;
679 	struct efx_channel *channel;
680 	struct efx_tx_queue *tx_queue;
681 
682 	efx_for_each_channel(channel, efx) {
683 		efx_for_each_channel_tx_queue(tx_queue, channel) {
684 			efx_reado_table(efx, &txd_ptr_tbl,
685 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
686 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
687 					    FRF_AZ_TX_DESCQ_FLUSH) ||
688 			    EFX_OWORD_FIELD(txd_ptr_tbl,
689 					    FRF_AZ_TX_DESCQ_EN)) {
690 				netif_dbg(efx, hw, efx->net_dev,
691 					  "flush did not complete on TXQ %d\n",
692 					  tx_queue->queue);
693 				i = false;
694 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
695 						  1, 0)) {
696 				/* The flush is complete, but we didn't
697 				 * receive a flush completion event
698 				 */
699 				netif_dbg(efx, hw, efx->net_dev,
700 					  "flush complete on TXQ %d, so drain "
701 					  "the queue\n", tx_queue->queue);
702 				/* Don't need to increment drain_pending as it
703 				 * has already been incremented for the queues
704 				 * which did not drain
705 				 */
706 				efx_magic_event(channel,
707 						EFX_CHANNEL_MAGIC_TX_DRAIN(
708 							tx_queue));
709 			}
710 		}
711 	}
712 
713 	return i;
714 }
715 
716 /* Flush all the transmit queues, and continue flushing receive queues until
717  * they're all flushed. Wait for the DRAIN events to be recieved so that there
718  * are no more RX and TX events left on any channel. */
719 int efx_nic_flush_queues(struct efx_nic *efx)
720 {
721 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
722 	struct efx_channel *channel;
723 	struct efx_rx_queue *rx_queue;
724 	struct efx_tx_queue *tx_queue;
725 	int rc = 0;
726 
727 	efx->type->prepare_flush(efx);
728 
729 	efx_for_each_channel(channel, efx) {
730 		efx_for_each_channel_tx_queue(tx_queue, channel) {
731 			atomic_inc(&efx->drain_pending);
732 			efx_flush_tx_queue(tx_queue);
733 		}
734 		efx_for_each_channel_rx_queue(rx_queue, channel) {
735 			atomic_inc(&efx->drain_pending);
736 			rx_queue->flush_pending = true;
737 			atomic_inc(&efx->rxq_flush_pending);
738 		}
739 	}
740 
741 	while (timeout && atomic_read(&efx->drain_pending) > 0) {
742 		/* If SRIOV is enabled, then offload receive queue flushing to
743 		 * the firmware (though we will still have to poll for
744 		 * completion). If that fails, fall back to the old scheme.
745 		 */
746 		if (efx_sriov_enabled(efx)) {
747 			rc = efx_mcdi_flush_rxqs(efx);
748 			if (!rc)
749 				goto wait;
750 		}
751 
752 		/* The hardware supports four concurrent rx flushes, each of
753 		 * which may need to be retried if there is an outstanding
754 		 * descriptor fetch
755 		 */
756 		efx_for_each_channel(channel, efx) {
757 			efx_for_each_channel_rx_queue(rx_queue, channel) {
758 				if (atomic_read(&efx->rxq_flush_outstanding) >=
759 				    EFX_RX_FLUSH_COUNT)
760 					break;
761 
762 				if (rx_queue->flush_pending) {
763 					rx_queue->flush_pending = false;
764 					atomic_dec(&efx->rxq_flush_pending);
765 					atomic_inc(&efx->rxq_flush_outstanding);
766 					efx_flush_rx_queue(rx_queue);
767 				}
768 			}
769 		}
770 
771 	wait:
772 		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
773 					     timeout);
774 	}
775 
776 	if (atomic_read(&efx->drain_pending) &&
777 	    !efx_check_tx_flush_complete(efx)) {
778 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
779 			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
780 			  atomic_read(&efx->rxq_flush_outstanding),
781 			  atomic_read(&efx->rxq_flush_pending));
782 		rc = -ETIMEDOUT;
783 
784 		atomic_set(&efx->drain_pending, 0);
785 		atomic_set(&efx->rxq_flush_pending, 0);
786 		atomic_set(&efx->rxq_flush_outstanding, 0);
787 	}
788 
789 	efx->type->finish_flush(efx);
790 
791 	return rc;
792 }
793 
794 /**************************************************************************
795  *
796  * Event queue processing
797  * Event queues are processed by per-channel tasklets.
798  *
799  **************************************************************************/
800 
801 /* Update a channel's event queue's read pointer (RPTR) register
802  *
803  * This writes the EVQ_RPTR_REG register for the specified channel's
804  * event queue.
805  */
806 void efx_nic_eventq_read_ack(struct efx_channel *channel)
807 {
808 	efx_dword_t reg;
809 	struct efx_nic *efx = channel->efx;
810 
811 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
812 			     channel->eventq_read_ptr & channel->eventq_mask);
813 
814 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
815 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
816 	 */
817 	efx_writed(efx, &reg,
818 		   efx->type->evq_rptr_tbl_base +
819 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
820 }
821 
822 /* Use HW to insert a SW defined event */
823 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
824 			efx_qword_t *event)
825 {
826 	efx_oword_t drv_ev_reg;
827 
828 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
829 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
830 	drv_ev_reg.u32[0] = event->u32[0];
831 	drv_ev_reg.u32[1] = event->u32[1];
832 	drv_ev_reg.u32[2] = 0;
833 	drv_ev_reg.u32[3] = 0;
834 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
835 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
836 }
837 
838 static void efx_magic_event(struct efx_channel *channel, u32 magic)
839 {
840 	efx_qword_t event;
841 
842 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
843 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
844 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
845 	efx_generate_event(channel->efx, channel->channel, &event);
846 }
847 
848 /* Handle a transmit completion event
849  *
850  * The NIC batches TX completion events; the message we receive is of
851  * the form "complete all TX events up to this index".
852  */
853 static int
854 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
855 {
856 	unsigned int tx_ev_desc_ptr;
857 	unsigned int tx_ev_q_label;
858 	struct efx_tx_queue *tx_queue;
859 	struct efx_nic *efx = channel->efx;
860 	int tx_packets = 0;
861 
862 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
863 		return 0;
864 
865 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
866 		/* Transmit completion */
867 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
868 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
869 		tx_queue = efx_channel_get_tx_queue(
870 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
871 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
872 			      tx_queue->ptr_mask);
873 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
874 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
875 		/* Rewrite the FIFO write pointer */
876 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
877 		tx_queue = efx_channel_get_tx_queue(
878 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
879 
880 		netif_tx_lock(efx->net_dev);
881 		efx_notify_tx_desc(tx_queue);
882 		netif_tx_unlock(efx->net_dev);
883 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
884 		   EFX_WORKAROUND_10727(efx)) {
885 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
886 	} else {
887 		netif_err(efx, tx_err, efx->net_dev,
888 			  "channel %d unexpected TX event "
889 			  EFX_QWORD_FMT"\n", channel->channel,
890 			  EFX_QWORD_VAL(*event));
891 	}
892 
893 	return tx_packets;
894 }
895 
896 /* Detect errors included in the rx_evt_pkt_ok bit. */
897 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
898 				const efx_qword_t *event)
899 {
900 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
901 	struct efx_nic *efx = rx_queue->efx;
902 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
903 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
904 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
905 	bool rx_ev_other_err, rx_ev_pause_frm;
906 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
907 	unsigned rx_ev_pkt_type;
908 
909 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
910 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
911 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
912 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
913 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
914 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
915 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
916 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
917 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
918 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
919 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
920 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
921 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
922 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
923 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
924 
925 	/* Every error apart from tobe_disc and pause_frm */
926 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
927 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
928 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
929 
930 	/* Count errors that are not in MAC stats.  Ignore expected
931 	 * checksum errors during self-test. */
932 	if (rx_ev_frm_trunc)
933 		++channel->n_rx_frm_trunc;
934 	else if (rx_ev_tobe_disc)
935 		++channel->n_rx_tobe_disc;
936 	else if (!efx->loopback_selftest) {
937 		if (rx_ev_ip_hdr_chksum_err)
938 			++channel->n_rx_ip_hdr_chksum_err;
939 		else if (rx_ev_tcp_udp_chksum_err)
940 			++channel->n_rx_tcp_udp_chksum_err;
941 	}
942 
943 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
944 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
945 	 * to a FIFO overflow.
946 	 */
947 #ifdef DEBUG
948 	if (rx_ev_other_err && net_ratelimit()) {
949 		netif_dbg(efx, rx_err, efx->net_dev,
950 			  " RX queue %d unexpected RX event "
951 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
952 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
953 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
954 			  rx_ev_ip_hdr_chksum_err ?
955 			  " [IP_HDR_CHKSUM_ERR]" : "",
956 			  rx_ev_tcp_udp_chksum_err ?
957 			  " [TCP_UDP_CHKSUM_ERR]" : "",
958 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
959 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
960 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
961 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
962 			  rx_ev_pause_frm ? " [PAUSE]" : "");
963 	}
964 #endif
965 
966 	/* The frame must be discarded if any of these are true. */
967 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
968 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
969 		EFX_RX_PKT_DISCARD : 0;
970 }
971 
972 /* Handle receive events that are not in-order. */
973 static void
974 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
975 {
976 	struct efx_nic *efx = rx_queue->efx;
977 	unsigned expected, dropped;
978 
979 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
980 	dropped = (index - expected) & rx_queue->ptr_mask;
981 	netif_info(efx, rx_err, efx->net_dev,
982 		   "dropped %d events (index=%d expected=%d)\n",
983 		   dropped, index, expected);
984 
985 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
986 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
987 }
988 
989 /* Handle a packet received event
990  *
991  * The NIC gives a "discard" flag if it's a unicast packet with the
992  * wrong destination address
993  * Also "is multicast" and "matches multicast filter" flags can be used to
994  * discard non-matching multicast packets.
995  */
996 static void
997 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
998 {
999 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1000 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1001 	unsigned expected_ptr;
1002 	bool rx_ev_pkt_ok;
1003 	u16 flags;
1004 	struct efx_rx_queue *rx_queue;
1005 	struct efx_nic *efx = channel->efx;
1006 
1007 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1008 		return;
1009 
1010 	/* Basic packet information */
1011 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1012 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1013 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1014 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
1015 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
1016 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1017 		channel->channel);
1018 
1019 	rx_queue = efx_channel_get_rx_queue(channel);
1020 
1021 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1022 	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1023 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
1024 		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1025 
1026 	if (likely(rx_ev_pkt_ok)) {
1027 		/* If packet is marked as OK and packet type is TCP/IP or
1028 		 * UDP/IP, then we can rely on the hardware checksum.
1029 		 */
1030 		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1031 			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1032 			EFX_RX_PKT_CSUMMED : 0;
1033 	} else {
1034 		flags = efx_handle_rx_not_ok(rx_queue, event);
1035 	}
1036 
1037 	/* Detect multicast packets that didn't match the filter */
1038 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1039 	if (rx_ev_mcast_pkt) {
1040 		unsigned int rx_ev_mcast_hash_match =
1041 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1042 
1043 		if (unlikely(!rx_ev_mcast_hash_match)) {
1044 			++channel->n_rx_mcast_mismatch;
1045 			flags |= EFX_RX_PKT_DISCARD;
1046 		}
1047 	}
1048 
1049 	channel->irq_mod_score += 2;
1050 
1051 	/* Handle received packet */
1052 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1053 }
1054 
1055 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1056  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1057  * of all transmit completions.
1058  */
1059 static void
1060 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1061 {
1062 	struct efx_tx_queue *tx_queue;
1063 	int qid;
1064 
1065 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1066 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1067 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1068 					    qid % EFX_TXQ_TYPES);
1069 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1070 			efx_magic_event(tx_queue->channel,
1071 					EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1072 		}
1073 	}
1074 }
1075 
1076 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1077  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1078  * the RX queue back to the mask of RX queues in need of flushing.
1079  */
1080 static void
1081 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1082 {
1083 	struct efx_channel *channel;
1084 	struct efx_rx_queue *rx_queue;
1085 	int qid;
1086 	bool failed;
1087 
1088 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1089 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1090 	if (qid >= efx->n_channels)
1091 		return;
1092 	channel = efx_get_channel(efx, qid);
1093 	if (!efx_channel_has_rx_queue(channel))
1094 		return;
1095 	rx_queue = efx_channel_get_rx_queue(channel);
1096 
1097 	if (failed) {
1098 		netif_info(efx, hw, efx->net_dev,
1099 			   "RXQ %d flush retry\n", qid);
1100 		rx_queue->flush_pending = true;
1101 		atomic_inc(&efx->rxq_flush_pending);
1102 	} else {
1103 		efx_magic_event(efx_rx_queue_channel(rx_queue),
1104 				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1105 	}
1106 	atomic_dec(&efx->rxq_flush_outstanding);
1107 	if (efx_flush_wake(efx))
1108 		wake_up(&efx->flush_wq);
1109 }
1110 
1111 static void
1112 efx_handle_drain_event(struct efx_channel *channel)
1113 {
1114 	struct efx_nic *efx = channel->efx;
1115 
1116 	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1117 	atomic_dec(&efx->drain_pending);
1118 	if (efx_flush_wake(efx))
1119 		wake_up(&efx->flush_wq);
1120 }
1121 
1122 static void
1123 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1124 {
1125 	struct efx_nic *efx = channel->efx;
1126 	struct efx_rx_queue *rx_queue =
1127 		efx_channel_has_rx_queue(channel) ?
1128 		efx_channel_get_rx_queue(channel) : NULL;
1129 	unsigned magic, code;
1130 
1131 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1132 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1133 
1134 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1135 		channel->event_test_cpu = raw_smp_processor_id();
1136 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1137 		/* The queue must be empty, so we won't receive any rx
1138 		 * events, so efx_process_channel() won't refill the
1139 		 * queue. Refill it here */
1140 		efx_fast_push_rx_descriptors(rx_queue);
1141 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1142 		rx_queue->enabled = false;
1143 		efx_handle_drain_event(channel);
1144 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1145 		efx_handle_drain_event(channel);
1146 	} else {
1147 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1148 			  "generated event "EFX_QWORD_FMT"\n",
1149 			  channel->channel, EFX_QWORD_VAL(*event));
1150 	}
1151 }
1152 
1153 static void
1154 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1155 {
1156 	struct efx_nic *efx = channel->efx;
1157 	unsigned int ev_sub_code;
1158 	unsigned int ev_sub_data;
1159 
1160 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1161 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1162 
1163 	switch (ev_sub_code) {
1164 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1165 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1166 			   channel->channel, ev_sub_data);
1167 		efx_handle_tx_flush_done(efx, event);
1168 		efx_sriov_tx_flush_done(efx, event);
1169 		break;
1170 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1171 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1172 			   channel->channel, ev_sub_data);
1173 		efx_handle_rx_flush_done(efx, event);
1174 		efx_sriov_rx_flush_done(efx, event);
1175 		break;
1176 	case FSE_AZ_EVQ_INIT_DONE_EV:
1177 		netif_dbg(efx, hw, efx->net_dev,
1178 			  "channel %d EVQ %d initialised\n",
1179 			  channel->channel, ev_sub_data);
1180 		break;
1181 	case FSE_AZ_SRM_UPD_DONE_EV:
1182 		netif_vdbg(efx, hw, efx->net_dev,
1183 			   "channel %d SRAM update done\n", channel->channel);
1184 		break;
1185 	case FSE_AZ_WAKE_UP_EV:
1186 		netif_vdbg(efx, hw, efx->net_dev,
1187 			   "channel %d RXQ %d wakeup event\n",
1188 			   channel->channel, ev_sub_data);
1189 		break;
1190 	case FSE_AZ_TIMER_EV:
1191 		netif_vdbg(efx, hw, efx->net_dev,
1192 			   "channel %d RX queue %d timer expired\n",
1193 			   channel->channel, ev_sub_data);
1194 		break;
1195 	case FSE_AA_RX_RECOVER_EV:
1196 		netif_err(efx, rx_err, efx->net_dev,
1197 			  "channel %d seen DRIVER RX_RESET event. "
1198 			"Resetting.\n", channel->channel);
1199 		atomic_inc(&efx->rx_reset);
1200 		efx_schedule_reset(efx,
1201 				   EFX_WORKAROUND_6555(efx) ?
1202 				   RESET_TYPE_RX_RECOVERY :
1203 				   RESET_TYPE_DISABLE);
1204 		break;
1205 	case FSE_BZ_RX_DSC_ERROR_EV:
1206 		if (ev_sub_data < EFX_VI_BASE) {
1207 			netif_err(efx, rx_err, efx->net_dev,
1208 				  "RX DMA Q %d reports descriptor fetch error."
1209 				  " RX Q %d is disabled.\n", ev_sub_data,
1210 				  ev_sub_data);
1211 			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1212 		} else
1213 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1214 		break;
1215 	case FSE_BZ_TX_DSC_ERROR_EV:
1216 		if (ev_sub_data < EFX_VI_BASE) {
1217 			netif_err(efx, tx_err, efx->net_dev,
1218 				  "TX DMA Q %d reports descriptor fetch error."
1219 				  " TX Q %d is disabled.\n", ev_sub_data,
1220 				  ev_sub_data);
1221 			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1222 		} else
1223 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1224 		break;
1225 	default:
1226 		netif_vdbg(efx, hw, efx->net_dev,
1227 			   "channel %d unknown driver event code %d "
1228 			   "data %04x\n", channel->channel, ev_sub_code,
1229 			   ev_sub_data);
1230 		break;
1231 	}
1232 }
1233 
1234 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1235 {
1236 	struct efx_nic *efx = channel->efx;
1237 	unsigned int read_ptr;
1238 	efx_qword_t event, *p_event;
1239 	int ev_code;
1240 	int tx_packets = 0;
1241 	int spent = 0;
1242 
1243 	read_ptr = channel->eventq_read_ptr;
1244 
1245 	for (;;) {
1246 		p_event = efx_event(channel, read_ptr);
1247 		event = *p_event;
1248 
1249 		if (!efx_event_present(&event))
1250 			/* End of events */
1251 			break;
1252 
1253 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1254 			   "channel %d event is "EFX_QWORD_FMT"\n",
1255 			   channel->channel, EFX_QWORD_VAL(event));
1256 
1257 		/* Clear this event by marking it all ones */
1258 		EFX_SET_QWORD(*p_event);
1259 
1260 		++read_ptr;
1261 
1262 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1263 
1264 		switch (ev_code) {
1265 		case FSE_AZ_EV_CODE_RX_EV:
1266 			efx_handle_rx_event(channel, &event);
1267 			if (++spent == budget)
1268 				goto out;
1269 			break;
1270 		case FSE_AZ_EV_CODE_TX_EV:
1271 			tx_packets += efx_handle_tx_event(channel, &event);
1272 			if (tx_packets > efx->txq_entries) {
1273 				spent = budget;
1274 				goto out;
1275 			}
1276 			break;
1277 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1278 			efx_handle_generated_event(channel, &event);
1279 			break;
1280 		case FSE_AZ_EV_CODE_DRIVER_EV:
1281 			efx_handle_driver_event(channel, &event);
1282 			break;
1283 		case FSE_CZ_EV_CODE_USER_EV:
1284 			efx_sriov_event(channel, &event);
1285 			break;
1286 		case FSE_CZ_EV_CODE_MCDI_EV:
1287 			efx_mcdi_process_event(channel, &event);
1288 			break;
1289 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1290 			if (efx->type->handle_global_event &&
1291 			    efx->type->handle_global_event(channel, &event))
1292 				break;
1293 			/* else fall through */
1294 		default:
1295 			netif_err(channel->efx, hw, channel->efx->net_dev,
1296 				  "channel %d unknown event type %d (data "
1297 				  EFX_QWORD_FMT ")\n", channel->channel,
1298 				  ev_code, EFX_QWORD_VAL(event));
1299 		}
1300 	}
1301 
1302 out:
1303 	channel->eventq_read_ptr = read_ptr;
1304 	return spent;
1305 }
1306 
1307 /* Check whether an event is present in the eventq at the current
1308  * read pointer.  Only useful for self-test.
1309  */
1310 bool efx_nic_event_present(struct efx_channel *channel)
1311 {
1312 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1313 }
1314 
1315 /* Allocate buffer table entries for event queue */
1316 int efx_nic_probe_eventq(struct efx_channel *channel)
1317 {
1318 	struct efx_nic *efx = channel->efx;
1319 	unsigned entries;
1320 
1321 	entries = channel->eventq_mask + 1;
1322 	return efx_alloc_special_buffer(efx, &channel->eventq,
1323 					entries * sizeof(efx_qword_t));
1324 }
1325 
1326 void efx_nic_init_eventq(struct efx_channel *channel)
1327 {
1328 	efx_oword_t reg;
1329 	struct efx_nic *efx = channel->efx;
1330 
1331 	netif_dbg(efx, hw, efx->net_dev,
1332 		  "channel %d event queue in special buffers %d-%d\n",
1333 		  channel->channel, channel->eventq.index,
1334 		  channel->eventq.index + channel->eventq.entries - 1);
1335 
1336 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1337 		EFX_POPULATE_OWORD_3(reg,
1338 				     FRF_CZ_TIMER_Q_EN, 1,
1339 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1340 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1341 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1342 	}
1343 
1344 	/* Pin event queue buffer */
1345 	efx_init_special_buffer(efx, &channel->eventq);
1346 
1347 	/* Fill event queue with all ones (i.e. empty events) */
1348 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1349 
1350 	/* Push event queue to card */
1351 	EFX_POPULATE_OWORD_3(reg,
1352 			     FRF_AZ_EVQ_EN, 1,
1353 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1354 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1355 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1356 			 channel->channel);
1357 
1358 	efx->type->push_irq_moderation(channel);
1359 }
1360 
1361 void efx_nic_fini_eventq(struct efx_channel *channel)
1362 {
1363 	efx_oword_t reg;
1364 	struct efx_nic *efx = channel->efx;
1365 
1366 	/* Remove event queue from card */
1367 	EFX_ZERO_OWORD(reg);
1368 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1369 			 channel->channel);
1370 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1371 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1372 
1373 	/* Unpin event queue */
1374 	efx_fini_special_buffer(efx, &channel->eventq);
1375 }
1376 
1377 /* Free buffers backing event queue */
1378 void efx_nic_remove_eventq(struct efx_channel *channel)
1379 {
1380 	efx_free_special_buffer(channel->efx, &channel->eventq);
1381 }
1382 
1383 
1384 void efx_nic_event_test_start(struct efx_channel *channel)
1385 {
1386 	channel->event_test_cpu = -1;
1387 	smp_wmb();
1388 	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1389 }
1390 
1391 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1392 {
1393 	efx_magic_event(efx_rx_queue_channel(rx_queue),
1394 			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1395 }
1396 
1397 /**************************************************************************
1398  *
1399  * Hardware interrupts
1400  * The hardware interrupt handler does very little work; all the event
1401  * queue processing is carried out by per-channel tasklets.
1402  *
1403  **************************************************************************/
1404 
1405 /* Enable/disable/generate interrupts */
1406 static inline void efx_nic_interrupts(struct efx_nic *efx,
1407 				      bool enabled, bool force)
1408 {
1409 	efx_oword_t int_en_reg_ker;
1410 
1411 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1412 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413 			     FRF_AZ_KER_INT_KER, force,
1414 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1415 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416 }
1417 
1418 void efx_nic_enable_interrupts(struct efx_nic *efx)
1419 {
1420 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1421 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422 
1423 	efx_nic_interrupts(efx, true, false);
1424 }
1425 
1426 void efx_nic_disable_interrupts(struct efx_nic *efx)
1427 {
1428 	/* Disable interrupts */
1429 	efx_nic_interrupts(efx, false, false);
1430 }
1431 
1432 /* Generate a test interrupt
1433  * Interrupt must already have been enabled, otherwise nasty things
1434  * may happen.
1435  */
1436 void efx_nic_irq_test_start(struct efx_nic *efx)
1437 {
1438 	efx->last_irq_cpu = -1;
1439 	smp_wmb();
1440 	efx_nic_interrupts(efx, true, true);
1441 }
1442 
1443 /* Process a fatal interrupt
1444  * Disable bus mastering ASAP and schedule a reset
1445  */
1446 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1447 {
1448 	struct falcon_nic_data *nic_data = efx->nic_data;
1449 	efx_oword_t *int_ker = efx->irq_status.addr;
1450 	efx_oword_t fatal_intr;
1451 	int error, mem_perr;
1452 
1453 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1454 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1455 
1456 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1457 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1458 		  EFX_OWORD_VAL(fatal_intr),
1459 		  error ? "disabling bus mastering" : "no recognised error");
1460 
1461 	/* If this is a memory parity error dump which blocks are offending */
1462 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1463 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1464 	if (mem_perr) {
1465 		efx_oword_t reg;
1466 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1467 		netif_err(efx, hw, efx->net_dev,
1468 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1469 			  EFX_OWORD_VAL(reg));
1470 	}
1471 
1472 	/* Disable both devices */
1473 	pci_clear_master(efx->pci_dev);
1474 	if (efx_nic_is_dual_func(efx))
1475 		pci_clear_master(nic_data->pci_dev2);
1476 	efx_nic_disable_interrupts(efx);
1477 
1478 	/* Count errors and reset or disable the NIC accordingly */
1479 	if (efx->int_error_count == 0 ||
1480 	    time_after(jiffies, efx->int_error_expire)) {
1481 		efx->int_error_count = 0;
1482 		efx->int_error_expire =
1483 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1484 	}
1485 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1486 		netif_err(efx, hw, efx->net_dev,
1487 			  "SYSTEM ERROR - reset scheduled\n");
1488 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1489 	} else {
1490 		netif_err(efx, hw, efx->net_dev,
1491 			  "SYSTEM ERROR - max number of errors seen."
1492 			  "NIC will be disabled\n");
1493 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1494 	}
1495 
1496 	return IRQ_HANDLED;
1497 }
1498 
1499 /* Handle a legacy interrupt
1500  * Acknowledges the interrupt and schedule event queue processing.
1501  */
1502 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1503 {
1504 	struct efx_nic *efx = dev_id;
1505 	efx_oword_t *int_ker = efx->irq_status.addr;
1506 	irqreturn_t result = IRQ_NONE;
1507 	struct efx_channel *channel;
1508 	efx_dword_t reg;
1509 	u32 queues;
1510 	int syserr;
1511 
1512 	/* Could this be ours?  If interrupts are disabled then the
1513 	 * channel state may not be valid.
1514 	 */
1515 	if (!efx->legacy_irq_enabled)
1516 		return result;
1517 
1518 	/* Read the ISR which also ACKs the interrupts */
1519 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1520 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1521 
1522 	/* Handle non-event-queue sources */
1523 	if (queues & (1U << efx->irq_level)) {
1524 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1525 		if (unlikely(syserr))
1526 			return efx_nic_fatal_interrupt(efx);
1527 		efx->last_irq_cpu = raw_smp_processor_id();
1528 	}
1529 
1530 	if (queues != 0) {
1531 		if (EFX_WORKAROUND_15783(efx))
1532 			efx->irq_zero_count = 0;
1533 
1534 		/* Schedule processing of any interrupting queues */
1535 		efx_for_each_channel(channel, efx) {
1536 			if (queues & 1)
1537 				efx_schedule_channel_irq(channel);
1538 			queues >>= 1;
1539 		}
1540 		result = IRQ_HANDLED;
1541 
1542 	} else if (EFX_WORKAROUND_15783(efx)) {
1543 		efx_qword_t *event;
1544 
1545 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1546 		 * because this might be a shared interrupt. */
1547 		if (efx->irq_zero_count++ == 0)
1548 			result = IRQ_HANDLED;
1549 
1550 		/* Ensure we schedule or rearm all event queues */
1551 		efx_for_each_channel(channel, efx) {
1552 			event = efx_event(channel, channel->eventq_read_ptr);
1553 			if (efx_event_present(event))
1554 				efx_schedule_channel_irq(channel);
1555 			else
1556 				efx_nic_eventq_read_ack(channel);
1557 		}
1558 	}
1559 
1560 	if (result == IRQ_HANDLED)
1561 		netif_vdbg(efx, intr, efx->net_dev,
1562 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1563 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1564 
1565 	return result;
1566 }
1567 
1568 /* Handle an MSI interrupt
1569  *
1570  * Handle an MSI hardware interrupt.  This routine schedules event
1571  * queue processing.  No interrupt acknowledgement cycle is necessary.
1572  * Also, we never need to check that the interrupt is for us, since
1573  * MSI interrupts cannot be shared.
1574  */
1575 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1576 {
1577 	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1578 	struct efx_nic *efx = channel->efx;
1579 	efx_oword_t *int_ker = efx->irq_status.addr;
1580 	int syserr;
1581 
1582 	netif_vdbg(efx, intr, efx->net_dev,
1583 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1584 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1585 
1586 	/* Handle non-event-queue sources */
1587 	if (channel->channel == efx->irq_level) {
1588 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1589 		if (unlikely(syserr))
1590 			return efx_nic_fatal_interrupt(efx);
1591 		efx->last_irq_cpu = raw_smp_processor_id();
1592 	}
1593 
1594 	/* Schedule processing of the channel */
1595 	efx_schedule_channel_irq(channel);
1596 
1597 	return IRQ_HANDLED;
1598 }
1599 
1600 
1601 /* Setup RSS indirection table.
1602  * This maps from the hash value of the packet to RXQ
1603  */
1604 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1605 {
1606 	size_t i = 0;
1607 	efx_dword_t dword;
1608 
1609 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1610 		return;
1611 
1612 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1613 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1614 
1615 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1616 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1617 				     efx->rx_indir_table[i]);
1618 		efx_writed(efx, &dword,
1619 			   FR_BZ_RX_INDIRECTION_TBL +
1620 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1621 	}
1622 }
1623 
1624 /* Hook interrupt handler(s)
1625  * Try MSI and then legacy interrupts.
1626  */
1627 int efx_nic_init_interrupt(struct efx_nic *efx)
1628 {
1629 	struct efx_channel *channel;
1630 	int rc;
1631 
1632 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1633 		irq_handler_t handler;
1634 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1635 			handler = efx_legacy_interrupt;
1636 		else
1637 			handler = falcon_legacy_interrupt_a1;
1638 
1639 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1640 				 efx->name, efx);
1641 		if (rc) {
1642 			netif_err(efx, drv, efx->net_dev,
1643 				  "failed to hook legacy IRQ %d\n",
1644 				  efx->pci_dev->irq);
1645 			goto fail1;
1646 		}
1647 		return 0;
1648 	}
1649 
1650 	/* Hook MSI or MSI-X interrupt */
1651 	efx_for_each_channel(channel, efx) {
1652 		rc = request_irq(channel->irq, efx_msi_interrupt,
1653 				 IRQF_PROBE_SHARED, /* Not shared */
1654 				 efx->channel_name[channel->channel],
1655 				 &efx->channel[channel->channel]);
1656 		if (rc) {
1657 			netif_err(efx, drv, efx->net_dev,
1658 				  "failed to hook IRQ %d\n", channel->irq);
1659 			goto fail2;
1660 		}
1661 	}
1662 
1663 	return 0;
1664 
1665  fail2:
1666 	efx_for_each_channel(channel, efx)
1667 		free_irq(channel->irq, &efx->channel[channel->channel]);
1668  fail1:
1669 	return rc;
1670 }
1671 
1672 void efx_nic_fini_interrupt(struct efx_nic *efx)
1673 {
1674 	struct efx_channel *channel;
1675 	efx_oword_t reg;
1676 
1677 	/* Disable MSI/MSI-X interrupts */
1678 	efx_for_each_channel(channel, efx) {
1679 		if (channel->irq)
1680 			free_irq(channel->irq, &efx->channel[channel->channel]);
1681 	}
1682 
1683 	/* ACK legacy interrupt */
1684 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1685 		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1686 	else
1687 		falcon_irq_ack_a1(efx);
1688 
1689 	/* Disable legacy interrupt */
1690 	if (efx->legacy_irq)
1691 		free_irq(efx->legacy_irq, efx);
1692 }
1693 
1694 /* Looks at available SRAM resources and works out how many queues we
1695  * can support, and where things like descriptor caches should live.
1696  *
1697  * SRAM is split up as follows:
1698  * 0                          buftbl entries for channels
1699  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1700  * efx->rx_dc_base            RX descriptor caches
1701  * efx->tx_dc_base            TX descriptor caches
1702  */
1703 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1704 {
1705 	unsigned vi_count, buftbl_min;
1706 
1707 	/* Account for the buffer table entries backing the datapath channels
1708 	 * and the descriptor caches for those channels.
1709 	 */
1710 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1711 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1712 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1713 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1714 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1715 
1716 #ifdef CONFIG_SFC_SRIOV
1717 	if (efx_sriov_wanted(efx)) {
1718 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1719 
1720 		efx->vf_buftbl_base = buftbl_min;
1721 
1722 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1723 		vi_count = max(vi_count, EFX_VI_BASE);
1724 		buftbl_free = (sram_lim_qw - buftbl_min -
1725 			       vi_count * vi_dc_entries);
1726 
1727 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1728 				  efx_vf_size(efx));
1729 		vf_limit = min(buftbl_free / entries_per_vf,
1730 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1731 
1732 		if (efx->vf_count > vf_limit) {
1733 			netif_err(efx, probe, efx->net_dev,
1734 				  "Reducing VF count from from %d to %d\n",
1735 				  efx->vf_count, vf_limit);
1736 			efx->vf_count = vf_limit;
1737 		}
1738 		vi_count += efx->vf_count * efx_vf_size(efx);
1739 	}
1740 #endif
1741 
1742 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1743 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1744 }
1745 
1746 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1747 {
1748 	efx_oword_t altera_build;
1749 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1750 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1751 }
1752 
1753 void efx_nic_init_common(struct efx_nic *efx)
1754 {
1755 	efx_oword_t temp;
1756 
1757 	/* Set positions of descriptor caches in SRAM. */
1758 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1759 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1760 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1761 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1762 
1763 	/* Set TX descriptor cache size. */
1764 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1765 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1766 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1767 
1768 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1769 	 * this allows most efficient prefetching.
1770 	 */
1771 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1772 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1773 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1774 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1775 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1776 
1777 	/* Program INT_KER address */
1778 	EFX_POPULATE_OWORD_2(temp,
1779 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1780 			     EFX_INT_MODE_USE_MSI(efx),
1781 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1782 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1783 
1784 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1785 		/* Use an interrupt level unused by event queues */
1786 		efx->irq_level = 0x1f;
1787 	else
1788 		/* Use a valid MSI-X vector */
1789 		efx->irq_level = 0;
1790 
1791 	/* Enable all the genuinely fatal interrupts.  (They are still
1792 	 * masked by the overall interrupt mask, controlled by
1793 	 * falcon_interrupts()).
1794 	 *
1795 	 * Note: All other fatal interrupts are enabled
1796 	 */
1797 	EFX_POPULATE_OWORD_3(temp,
1798 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1799 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1800 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1801 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1802 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1803 	EFX_INVERT_OWORD(temp);
1804 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1805 
1806 	efx_nic_push_rx_indir_table(efx);
1807 
1808 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1809 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1810 	 */
1811 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1812 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1813 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1814 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1815 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1816 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1817 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1818 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1819 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1820 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1821 	/* Disable hardware watchdog which can misfire */
1822 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1823 	/* Squash TX of packets of 16 bytes or less */
1824 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1825 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1826 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1827 
1828 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1829 		EFX_POPULATE_OWORD_4(temp,
1830 				     /* Default values */
1831 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1832 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1833 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1834 				     /* Allow large pace values in the
1835 				      * fast bin. */
1836 				     FRF_BZ_TX_PACE_BIN_TH,
1837 				     FFE_BZ_TX_PACE_RESERVED);
1838 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1839 	}
1840 }
1841 
1842 /* Register dump */
1843 
1844 #define REGISTER_REVISION_A	1
1845 #define REGISTER_REVISION_B	2
1846 #define REGISTER_REVISION_C	3
1847 #define REGISTER_REVISION_Z	3	/* latest revision */
1848 
1849 struct efx_nic_reg {
1850 	u32 offset:24;
1851 	u32 min_revision:2, max_revision:2;
1852 };
1853 
1854 #define REGISTER(name, min_rev, max_rev) {				\
1855 	FR_ ## min_rev ## max_rev ## _ ## name,				\
1856 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1857 }
1858 #define REGISTER_AA(name) REGISTER(name, A, A)
1859 #define REGISTER_AB(name) REGISTER(name, A, B)
1860 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1861 #define REGISTER_BB(name) REGISTER(name, B, B)
1862 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1863 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1864 
1865 static const struct efx_nic_reg efx_nic_regs[] = {
1866 	REGISTER_AZ(ADR_REGION),
1867 	REGISTER_AZ(INT_EN_KER),
1868 	REGISTER_BZ(INT_EN_CHAR),
1869 	REGISTER_AZ(INT_ADR_KER),
1870 	REGISTER_BZ(INT_ADR_CHAR),
1871 	/* INT_ACK_KER is WO */
1872 	/* INT_ISR0 is RC */
1873 	REGISTER_AZ(HW_INIT),
1874 	REGISTER_CZ(USR_EV_CFG),
1875 	REGISTER_AB(EE_SPI_HCMD),
1876 	REGISTER_AB(EE_SPI_HADR),
1877 	REGISTER_AB(EE_SPI_HDATA),
1878 	REGISTER_AB(EE_BASE_PAGE),
1879 	REGISTER_AB(EE_VPD_CFG0),
1880 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1881 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1882 	/* PCIE_CORE_INDIRECT is indirect */
1883 	REGISTER_AB(NIC_STAT),
1884 	REGISTER_AB(GPIO_CTL),
1885 	REGISTER_AB(GLB_CTL),
1886 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1887 	REGISTER_BZ(DP_CTRL),
1888 	REGISTER_AZ(MEM_STAT),
1889 	REGISTER_AZ(CS_DEBUG),
1890 	REGISTER_AZ(ALTERA_BUILD),
1891 	REGISTER_AZ(CSR_SPARE),
1892 	REGISTER_AB(PCIE_SD_CTL0123),
1893 	REGISTER_AB(PCIE_SD_CTL45),
1894 	REGISTER_AB(PCIE_PCS_CTL_STAT),
1895 	/* DEBUG_DATA_OUT is not used */
1896 	/* DRV_EV is WO */
1897 	REGISTER_AZ(EVQ_CTL),
1898 	REGISTER_AZ(EVQ_CNT1),
1899 	REGISTER_AZ(EVQ_CNT2),
1900 	REGISTER_AZ(BUF_TBL_CFG),
1901 	REGISTER_AZ(SRM_RX_DC_CFG),
1902 	REGISTER_AZ(SRM_TX_DC_CFG),
1903 	REGISTER_AZ(SRM_CFG),
1904 	/* BUF_TBL_UPD is WO */
1905 	REGISTER_AZ(SRM_UPD_EVQ),
1906 	REGISTER_AZ(SRAM_PARITY),
1907 	REGISTER_AZ(RX_CFG),
1908 	REGISTER_BZ(RX_FILTER_CTL),
1909 	/* RX_FLUSH_DESCQ is WO */
1910 	REGISTER_AZ(RX_DC_CFG),
1911 	REGISTER_AZ(RX_DC_PF_WM),
1912 	REGISTER_BZ(RX_RSS_TKEY),
1913 	/* RX_NODESC_DROP is RC */
1914 	REGISTER_AA(RX_SELF_RST),
1915 	/* RX_DEBUG, RX_PUSH_DROP are not used */
1916 	REGISTER_CZ(RX_RSS_IPV6_REG1),
1917 	REGISTER_CZ(RX_RSS_IPV6_REG2),
1918 	REGISTER_CZ(RX_RSS_IPV6_REG3),
1919 	/* TX_FLUSH_DESCQ is WO */
1920 	REGISTER_AZ(TX_DC_CFG),
1921 	REGISTER_AA(TX_CHKSM_CFG),
1922 	REGISTER_AZ(TX_CFG),
1923 	/* TX_PUSH_DROP is not used */
1924 	REGISTER_AZ(TX_RESERVED),
1925 	REGISTER_BZ(TX_PACE),
1926 	/* TX_PACE_DROP_QID is RC */
1927 	REGISTER_BB(TX_VLAN),
1928 	REGISTER_BZ(TX_IPFIL_PORTEN),
1929 	REGISTER_AB(MD_TXD),
1930 	REGISTER_AB(MD_RXD),
1931 	REGISTER_AB(MD_CS),
1932 	REGISTER_AB(MD_PHY_ADR),
1933 	REGISTER_AB(MD_ID),
1934 	/* MD_STAT is RC */
1935 	REGISTER_AB(MAC_STAT_DMA),
1936 	REGISTER_AB(MAC_CTRL),
1937 	REGISTER_BB(GEN_MODE),
1938 	REGISTER_AB(MAC_MC_HASH_REG0),
1939 	REGISTER_AB(MAC_MC_HASH_REG1),
1940 	REGISTER_AB(GM_CFG1),
1941 	REGISTER_AB(GM_CFG2),
1942 	/* GM_IPG and GM_HD are not used */
1943 	REGISTER_AB(GM_MAX_FLEN),
1944 	/* GM_TEST is not used */
1945 	REGISTER_AB(GM_ADR1),
1946 	REGISTER_AB(GM_ADR2),
1947 	REGISTER_AB(GMF_CFG0),
1948 	REGISTER_AB(GMF_CFG1),
1949 	REGISTER_AB(GMF_CFG2),
1950 	REGISTER_AB(GMF_CFG3),
1951 	REGISTER_AB(GMF_CFG4),
1952 	REGISTER_AB(GMF_CFG5),
1953 	REGISTER_BB(TX_SRC_MAC_CTL),
1954 	REGISTER_AB(XM_ADR_LO),
1955 	REGISTER_AB(XM_ADR_HI),
1956 	REGISTER_AB(XM_GLB_CFG),
1957 	REGISTER_AB(XM_TX_CFG),
1958 	REGISTER_AB(XM_RX_CFG),
1959 	REGISTER_AB(XM_MGT_INT_MASK),
1960 	REGISTER_AB(XM_FC),
1961 	REGISTER_AB(XM_PAUSE_TIME),
1962 	REGISTER_AB(XM_TX_PARAM),
1963 	REGISTER_AB(XM_RX_PARAM),
1964 	/* XM_MGT_INT_MSK (note no 'A') is RC */
1965 	REGISTER_AB(XX_PWR_RST),
1966 	REGISTER_AB(XX_SD_CTL),
1967 	REGISTER_AB(XX_TXDRV_CTL),
1968 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1969 	/* XX_CORE_STAT is partly RC */
1970 };
1971 
1972 struct efx_nic_reg_table {
1973 	u32 offset:24;
1974 	u32 min_revision:2, max_revision:2;
1975 	u32 step:6, rows:21;
1976 };
1977 
1978 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1979 	offset,								\
1980 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
1981 	step, rows							\
1982 }
1983 #define REGISTER_TABLE(name, min_rev, max_rev)				\
1984 	REGISTER_TABLE_DIMENSIONS(					\
1985 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1986 		min_rev, max_rev,					\
1987 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1988 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1989 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1990 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1991 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1992 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1993 #define REGISTER_TABLE_BB_CZ(name)					\
1994 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1995 				  FR_BZ_ ## name ## _STEP,		\
1996 				  FR_BB_ ## name ## _ROWS),		\
1997 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1998 				  FR_BZ_ ## name ## _STEP,		\
1999 				  FR_CZ_ ## name ## _ROWS)
2000 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2001 
2002 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2003 	/* DRIVER is not used */
2004 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2005 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
2006 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2007 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2008 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2009 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2010 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2011 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2012 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2013 	/* We can't reasonably read all of the buffer table (up to 8MB!).
2014 	 * However this driver will only use a few entries.  Reading
2015 	 * 1K entries allows for some expansion of queue count and
2016 	 * size before we need to change the version. */
2017 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2018 				  A, A, 8, 1024),
2019 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2020 				  B, Z, 8, 1024),
2021 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2022 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
2023 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2024 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2025 	/* TX_FILTER_TBL0 is huge and not used by this driver */
2026 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2027 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
2028 	/* MSIX_PBA_TABLE is not mapped */
2029 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2030 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2031 };
2032 
2033 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2034 {
2035 	const struct efx_nic_reg *reg;
2036 	const struct efx_nic_reg_table *table;
2037 	size_t len = 0;
2038 
2039 	for (reg = efx_nic_regs;
2040 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2041 	     reg++)
2042 		if (efx->type->revision >= reg->min_revision &&
2043 		    efx->type->revision <= reg->max_revision)
2044 			len += sizeof(efx_oword_t);
2045 
2046 	for (table = efx_nic_reg_tables;
2047 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2048 	     table++)
2049 		if (efx->type->revision >= table->min_revision &&
2050 		    efx->type->revision <= table->max_revision)
2051 			len += table->rows * min_t(size_t, table->step, 16);
2052 
2053 	return len;
2054 }
2055 
2056 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2057 {
2058 	const struct efx_nic_reg *reg;
2059 	const struct efx_nic_reg_table *table;
2060 
2061 	for (reg = efx_nic_regs;
2062 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2063 	     reg++) {
2064 		if (efx->type->revision >= reg->min_revision &&
2065 		    efx->type->revision <= reg->max_revision) {
2066 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2067 			buf += sizeof(efx_oword_t);
2068 		}
2069 	}
2070 
2071 	for (table = efx_nic_reg_tables;
2072 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2073 	     table++) {
2074 		size_t size, i;
2075 
2076 		if (!(efx->type->revision >= table->min_revision &&
2077 		      efx->type->revision <= table->max_revision))
2078 			continue;
2079 
2080 		size = min_t(size_t, table->step, 16);
2081 
2082 		for (i = 0; i < table->rows; i++) {
2083 			switch (table->step) {
2084 			case 4: /* 32-bit SRAM */
2085 				efx_readd(efx, buf, table->offset + 4 * i);
2086 				break;
2087 			case 8: /* 64-bit SRAM */
2088 				efx_sram_readq(efx,
2089 					       efx->membase + table->offset,
2090 					       buf, i);
2091 				break;
2092 			case 16: /* 128-bit-readable register */
2093 				efx_reado_table(efx, buf, table->offset, i);
2094 				break;
2095 			case 32: /* 128-bit register, interleaved */
2096 				efx_reado_table(efx, buf, table->offset, 2 * i);
2097 				break;
2098 			default:
2099 				WARN_ON(1);
2100 				return;
2101 			}
2102 			buf += size;
2103 		}
2104 	}
2105 }
2106