xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.c (revision f7251a9c)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
60 
61 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63 
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
65 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
67 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
68 			   efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
74 			   (_tx_queue)->queue)
75 
76 /**************************************************************************
77  *
78  * Solarstorm hardware access
79  *
80  **************************************************************************/
81 
82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83 				     unsigned int index)
84 {
85 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86 			value, index);
87 }
88 
89 /* Read the current event from the event queue */
90 static inline efx_qword_t *efx_event(struct efx_channel *channel,
91 				     unsigned int index)
92 {
93 	return ((efx_qword_t *) (channel->eventq.addr)) +
94 		(index & channel->eventq_mask);
95 }
96 
97 /* See if an event is present
98  *
99  * We check both the high and low dword of the event for all ones.  We
100  * wrote all ones when we cleared the event, and no valid event can
101  * have all ones in either its high or low dwords.  This approach is
102  * robust against reordering.
103  *
104  * Note that using a single 64-bit comparison is incorrect; even
105  * though the CPU read will be atomic, the DMA write may not be.
106  */
107 static inline int efx_event_present(efx_qword_t *event)
108 {
109 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
111 }
112 
113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114 				     const efx_oword_t *mask)
115 {
116 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118 }
119 
120 int efx_nic_test_registers(struct efx_nic *efx,
121 			   const struct efx_nic_register_test *regs,
122 			   size_t n_regs)
123 {
124 	unsigned address = 0, i, j;
125 	efx_oword_t mask, imask, original, reg, buf;
126 
127 	for (i = 0; i < n_regs; ++i) {
128 		address = regs[i].address;
129 		mask = imask = regs[i].mask;
130 		EFX_INVERT_OWORD(imask);
131 
132 		efx_reado(efx, &original, address);
133 
134 		/* bit sweep on and off */
135 		for (j = 0; j < 128; j++) {
136 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
137 				continue;
138 
139 			/* Test this testable bit can be set in isolation */
140 			EFX_AND_OWORD(reg, original, mask);
141 			EFX_SET_OWORD32(reg, j, j, 1);
142 
143 			efx_writeo(efx, &reg, address);
144 			efx_reado(efx, &buf, address);
145 
146 			if (efx_masked_compare_oword(&reg, &buf, &mask))
147 				goto fail;
148 
149 			/* Test this testable bit can be cleared in isolation */
150 			EFX_OR_OWORD(reg, original, mask);
151 			EFX_SET_OWORD32(reg, j, j, 0);
152 
153 			efx_writeo(efx, &reg, address);
154 			efx_reado(efx, &buf, address);
155 
156 			if (efx_masked_compare_oword(&reg, &buf, &mask))
157 				goto fail;
158 		}
159 
160 		efx_writeo(efx, &original, address);
161 	}
162 
163 	return 0;
164 
165 fail:
166 	netif_err(efx, hw, efx->net_dev,
167 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
168 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
169 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
170 	return -EIO;
171 }
172 
173 /**************************************************************************
174  *
175  * Special buffer handling
176  * Special buffers are used for event queues and the TX and RX
177  * descriptor rings.
178  *
179  *************************************************************************/
180 
181 /*
182  * Initialise a special buffer
183  *
184  * This will define a buffer (previously allocated via
185  * efx_alloc_special_buffer()) in the buffer table, allowing
186  * it to be used for event queues, descriptor rings etc.
187  */
188 static void
189 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
190 {
191 	efx_qword_t buf_desc;
192 	unsigned int index;
193 	dma_addr_t dma_addr;
194 	int i;
195 
196 	EFX_BUG_ON_PARANOID(!buffer->addr);
197 
198 	/* Write buffer descriptors to NIC */
199 	for (i = 0; i < buffer->entries; i++) {
200 		index = buffer->index + i;
201 		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
202 		netif_dbg(efx, probe, efx->net_dev,
203 			  "mapping special buffer %d at %llx\n",
204 			  index, (unsigned long long)dma_addr);
205 		EFX_POPULATE_QWORD_3(buf_desc,
206 				     FRF_AZ_BUF_ADR_REGION, 0,
207 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
208 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
209 		efx_write_buf_tbl(efx, &buf_desc, index);
210 	}
211 }
212 
213 /* Unmaps a buffer and clears the buffer table entries */
214 static void
215 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
216 {
217 	efx_oword_t buf_tbl_upd;
218 	unsigned int start = buffer->index;
219 	unsigned int end = (buffer->index + buffer->entries - 1);
220 
221 	if (!buffer->entries)
222 		return;
223 
224 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
225 		  buffer->index, buffer->index + buffer->entries - 1);
226 
227 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
228 			     FRF_AZ_BUF_UPD_CMD, 0,
229 			     FRF_AZ_BUF_CLR_CMD, 1,
230 			     FRF_AZ_BUF_CLR_END_ID, end,
231 			     FRF_AZ_BUF_CLR_START_ID, start);
232 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
233 }
234 
235 /*
236  * Allocate a new special buffer
237  *
238  * This allocates memory for a new buffer, clears it and allocates a
239  * new buffer ID range.  It does not write into the buffer table.
240  *
241  * This call will allocate 4KB buffers, since 8KB buffers can't be
242  * used for event queues and descriptor rings.
243  */
244 static int efx_alloc_special_buffer(struct efx_nic *efx,
245 				    struct efx_special_buffer *buffer,
246 				    unsigned int len)
247 {
248 	len = ALIGN(len, EFX_BUF_SIZE);
249 
250 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
251 					  &buffer->dma_addr, GFP_KERNEL);
252 	if (!buffer->addr)
253 		return -ENOMEM;
254 	buffer->len = len;
255 	buffer->entries = len / EFX_BUF_SIZE;
256 	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
257 
258 	/* All zeros is a potentially valid event so memset to 0xff */
259 	memset(buffer->addr, 0xff, len);
260 
261 	/* Select new buffer ID */
262 	buffer->index = efx->next_buffer_table;
263 	efx->next_buffer_table += buffer->entries;
264 #ifdef CONFIG_SFC_SRIOV
265 	BUG_ON(efx_sriov_enabled(efx) &&
266 	       efx->vf_buftbl_base < efx->next_buffer_table);
267 #endif
268 
269 	netif_dbg(efx, probe, efx->net_dev,
270 		  "allocating special buffers %d-%d at %llx+%x "
271 		  "(virt %p phys %llx)\n", buffer->index,
272 		  buffer->index + buffer->entries - 1,
273 		  (u64)buffer->dma_addr, len,
274 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
275 
276 	return 0;
277 }
278 
279 static void
280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281 {
282 	if (!buffer->addr)
283 		return;
284 
285 	netif_dbg(efx, hw, efx->net_dev,
286 		  "deallocating special buffers %d-%d at %llx+%x "
287 		  "(virt %p phys %llx)\n", buffer->index,
288 		  buffer->index + buffer->entries - 1,
289 		  (u64)buffer->dma_addr, buffer->len,
290 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
291 
292 	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293 			  buffer->dma_addr);
294 	buffer->addr = NULL;
295 	buffer->entries = 0;
296 }
297 
298 /**************************************************************************
299  *
300  * Generic buffer handling
301  * These buffers are used for interrupt status, MAC stats, etc.
302  *
303  **************************************************************************/
304 
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306 			 unsigned int len)
307 {
308 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309 					  &buffer->dma_addr, GFP_ATOMIC);
310 	if (!buffer->addr)
311 		return -ENOMEM;
312 	buffer->len = len;
313 	memset(buffer->addr, 0, len);
314 	return 0;
315 }
316 
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 {
319 	if (buffer->addr) {
320 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321 				  buffer->addr, buffer->dma_addr);
322 		buffer->addr = NULL;
323 	}
324 }
325 
326 /**************************************************************************
327  *
328  * TX path
329  *
330  **************************************************************************/
331 
332 /* Returns a pointer to the specified transmit descriptor in the TX
333  * descriptor queue belonging to the specified channel.
334  */
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337 {
338 	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
339 }
340 
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343 {
344 	unsigned write_ptr;
345 	efx_dword_t reg;
346 
347 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
348 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349 	efx_writed_page(tx_queue->efx, &reg,
350 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351 }
352 
353 /* Write pointer and first descriptor for TX descriptor ring */
354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355 				    const efx_qword_t *txd)
356 {
357 	unsigned write_ptr;
358 	efx_oword_t reg;
359 
360 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
361 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
362 
363 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
366 	reg.qword[0] = *txd;
367 	efx_writeo_page(tx_queue->efx, &reg,
368 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369 }
370 
371 static inline bool
372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373 {
374 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375 
376 	if (empty_read_count == 0)
377 		return false;
378 
379 	tx_queue->empty_read_count = 0;
380 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
381 }
382 
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389 
390 	struct efx_tx_buffer *buffer;
391 	efx_qword_t *txd;
392 	unsigned write_ptr;
393 	unsigned old_write_count = tx_queue->write_count;
394 
395 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396 
397 	do {
398 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399 		buffer = &tx_queue->buffer[write_ptr];
400 		txd = efx_tx_desc(tx_queue, write_ptr);
401 		++tx_queue->write_count;
402 
403 		/* Create TX descriptor ring entry */
404 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405 		EFX_POPULATE_QWORD_4(*txd,
406 				     FSF_AZ_TX_KER_CONT,
407 				     buffer->flags & EFX_TX_BUF_CONT,
408 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409 				     FSF_AZ_TX_KER_BUF_REGION, 0,
410 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411 	} while (tx_queue->write_count != tx_queue->insert_count);
412 
413 	wmb(); /* Ensure descriptors are written before they are fetched */
414 
415 	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416 		txd = efx_tx_desc(tx_queue,
417 				  old_write_count & tx_queue->ptr_mask);
418 		efx_push_tx_desc(tx_queue, txd);
419 		++tx_queue->pushes;
420 	} else {
421 		efx_notify_tx_desc(tx_queue);
422 	}
423 }
424 
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428 	struct efx_nic *efx = tx_queue->efx;
429 	unsigned entries;
430 
431 	entries = tx_queue->ptr_mask + 1;
432 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
433 					entries * sizeof(efx_qword_t));
434 }
435 
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438 	struct efx_nic *efx = tx_queue->efx;
439 	efx_oword_t reg;
440 
441 	/* Pin TX descriptor ring */
442 	efx_init_special_buffer(efx, &tx_queue->txd);
443 
444 	/* Push TX descriptor ring to card */
445 	EFX_POPULATE_OWORD_10(reg,
446 			      FRF_AZ_TX_DESCQ_EN, 1,
447 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450 			      FRF_AZ_TX_DESCQ_EVQ_ID,
451 			      tx_queue->channel->channel,
452 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454 			      FRF_AZ_TX_DESCQ_SIZE,
455 			      __ffs(tx_queue->txd.entries),
456 			      FRF_AZ_TX_DESCQ_TYPE, 0,
457 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458 
459 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463 				    !csum);
464 	}
465 
466 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467 			 tx_queue->queue);
468 
469 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470 		/* Only 128 bits in this register */
471 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472 
473 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475 			clear_bit_le(tx_queue->queue, (void *)&reg);
476 		else
477 			set_bit_le(tx_queue->queue, (void *)&reg);
478 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479 	}
480 
481 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482 		EFX_POPULATE_OWORD_1(reg,
483 				     FRF_BZ_TX_PACE,
484 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485 				     FFE_BZ_TX_PACE_OFF :
486 				     FFE_BZ_TX_PACE_RESERVED);
487 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488 				 tx_queue->queue);
489 	}
490 }
491 
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494 	struct efx_nic *efx = tx_queue->efx;
495 	efx_oword_t tx_flush_descq;
496 
497 	EFX_POPULATE_OWORD_2(tx_flush_descq,
498 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
499 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
500 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
501 }
502 
503 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
504 {
505 	struct efx_nic *efx = tx_queue->efx;
506 	efx_oword_t tx_desc_ptr;
507 
508 	/* Remove TX descriptor ring from card */
509 	EFX_ZERO_OWORD(tx_desc_ptr);
510 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
511 			 tx_queue->queue);
512 
513 	/* Unpin TX descriptor ring */
514 	efx_fini_special_buffer(efx, &tx_queue->txd);
515 }
516 
517 /* Free buffers backing TX queue */
518 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
519 {
520 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
521 }
522 
523 /**************************************************************************
524  *
525  * RX path
526  *
527  **************************************************************************/
528 
529 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
530 static inline efx_qword_t *
531 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
532 {
533 	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
534 }
535 
536 /* This creates an entry in the RX descriptor queue */
537 static inline void
538 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
539 {
540 	struct efx_rx_buffer *rx_buf;
541 	efx_qword_t *rxd;
542 
543 	rxd = efx_rx_desc(rx_queue, index);
544 	rx_buf = efx_rx_buffer(rx_queue, index);
545 	EFX_POPULATE_QWORD_3(*rxd,
546 			     FSF_AZ_RX_KER_BUF_SIZE,
547 			     rx_buf->len -
548 			     rx_queue->efx->type->rx_buffer_padding,
549 			     FSF_AZ_RX_KER_BUF_REGION, 0,
550 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
551 }
552 
553 /* This writes to the RX_DESC_WPTR register for the specified receive
554  * descriptor ring.
555  */
556 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
557 {
558 	struct efx_nic *efx = rx_queue->efx;
559 	efx_dword_t reg;
560 	unsigned write_ptr;
561 
562 	while (rx_queue->notified_count != rx_queue->added_count) {
563 		efx_build_rx_desc(
564 			rx_queue,
565 			rx_queue->notified_count & rx_queue->ptr_mask);
566 		++rx_queue->notified_count;
567 	}
568 
569 	wmb();
570 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
571 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
572 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
573 			efx_rx_queue_index(rx_queue));
574 }
575 
576 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
577 {
578 	struct efx_nic *efx = rx_queue->efx;
579 	unsigned entries;
580 
581 	entries = rx_queue->ptr_mask + 1;
582 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
583 					entries * sizeof(efx_qword_t));
584 }
585 
586 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
587 {
588 	efx_oword_t rx_desc_ptr;
589 	struct efx_nic *efx = rx_queue->efx;
590 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
591 	bool iscsi_digest_en = is_b0;
592 
593 	netif_dbg(efx, hw, efx->net_dev,
594 		  "RX queue %d ring in special buffers %d-%d\n",
595 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
596 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
597 
598 	/* Pin RX descriptor ring */
599 	efx_init_special_buffer(efx, &rx_queue->rxd);
600 
601 	/* Push RX descriptor ring to card */
602 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
603 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
604 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
605 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
606 			      FRF_AZ_RX_DESCQ_EVQ_ID,
607 			      efx_rx_queue_channel(rx_queue)->channel,
608 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
609 			      FRF_AZ_RX_DESCQ_LABEL,
610 			      efx_rx_queue_index(rx_queue),
611 			      FRF_AZ_RX_DESCQ_SIZE,
612 			      __ffs(rx_queue->rxd.entries),
613 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
614 			      /* For >=B0 this is scatter so disable */
615 			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
616 			      FRF_AZ_RX_DESCQ_EN, 1);
617 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
618 			 efx_rx_queue_index(rx_queue));
619 }
620 
621 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
622 {
623 	struct efx_nic *efx = rx_queue->efx;
624 	efx_oword_t rx_flush_descq;
625 
626 	EFX_POPULATE_OWORD_2(rx_flush_descq,
627 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
628 			     FRF_AZ_RX_FLUSH_DESCQ,
629 			     efx_rx_queue_index(rx_queue));
630 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
631 }
632 
633 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
634 {
635 	efx_oword_t rx_desc_ptr;
636 	struct efx_nic *efx = rx_queue->efx;
637 
638 	/* Remove RX descriptor ring from card */
639 	EFX_ZERO_OWORD(rx_desc_ptr);
640 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
641 			 efx_rx_queue_index(rx_queue));
642 
643 	/* Unpin RX descriptor ring */
644 	efx_fini_special_buffer(efx, &rx_queue->rxd);
645 }
646 
647 /* Free buffers backing RX queue */
648 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
649 {
650 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
651 }
652 
653 /**************************************************************************
654  *
655  * Flush handling
656  *
657  **************************************************************************/
658 
659 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
660  * or more RX flushes can be kicked off.
661  */
662 static bool efx_flush_wake(struct efx_nic *efx)
663 {
664 	/* Ensure that all updates are visible to efx_nic_flush_queues() */
665 	smp_mb();
666 
667 	return (atomic_read(&efx->drain_pending) == 0 ||
668 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
669 		 && atomic_read(&efx->rxq_flush_pending) > 0));
670 }
671 
672 /* Flush all the transmit queues, and continue flushing receive queues until
673  * they're all flushed. Wait for the DRAIN events to be recieved so that there
674  * are no more RX and TX events left on any channel. */
675 int efx_nic_flush_queues(struct efx_nic *efx)
676 {
677 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
678 	struct efx_channel *channel;
679 	struct efx_rx_queue *rx_queue;
680 	struct efx_tx_queue *tx_queue;
681 	int rc = 0;
682 
683 	efx->fc_disable++;
684 	efx->type->prepare_flush(efx);
685 
686 	efx_for_each_channel(channel, efx) {
687 		efx_for_each_channel_tx_queue(tx_queue, channel) {
688 			atomic_inc(&efx->drain_pending);
689 			efx_flush_tx_queue(tx_queue);
690 		}
691 		efx_for_each_channel_rx_queue(rx_queue, channel) {
692 			atomic_inc(&efx->drain_pending);
693 			rx_queue->flush_pending = true;
694 			atomic_inc(&efx->rxq_flush_pending);
695 		}
696 	}
697 
698 	while (timeout && atomic_read(&efx->drain_pending) > 0) {
699 		/* If SRIOV is enabled, then offload receive queue flushing to
700 		 * the firmware (though we will still have to poll for
701 		 * completion). If that fails, fall back to the old scheme.
702 		 */
703 		if (efx_sriov_enabled(efx)) {
704 			rc = efx_mcdi_flush_rxqs(efx);
705 			if (!rc)
706 				goto wait;
707 		}
708 
709 		/* The hardware supports four concurrent rx flushes, each of
710 		 * which may need to be retried if there is an outstanding
711 		 * descriptor fetch
712 		 */
713 		efx_for_each_channel(channel, efx) {
714 			efx_for_each_channel_rx_queue(rx_queue, channel) {
715 				if (atomic_read(&efx->rxq_flush_outstanding) >=
716 				    EFX_RX_FLUSH_COUNT)
717 					break;
718 
719 				if (rx_queue->flush_pending) {
720 					rx_queue->flush_pending = false;
721 					atomic_dec(&efx->rxq_flush_pending);
722 					atomic_inc(&efx->rxq_flush_outstanding);
723 					efx_flush_rx_queue(rx_queue);
724 				}
725 			}
726 		}
727 
728 	wait:
729 		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
730 					     timeout);
731 	}
732 
733 	if (atomic_read(&efx->drain_pending)) {
734 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
735 			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
736 			  atomic_read(&efx->rxq_flush_outstanding),
737 			  atomic_read(&efx->rxq_flush_pending));
738 		rc = -ETIMEDOUT;
739 
740 		atomic_set(&efx->drain_pending, 0);
741 		atomic_set(&efx->rxq_flush_pending, 0);
742 		atomic_set(&efx->rxq_flush_outstanding, 0);
743 	}
744 
745 	efx->fc_disable--;
746 
747 	return rc;
748 }
749 
750 /**************************************************************************
751  *
752  * Event queue processing
753  * Event queues are processed by per-channel tasklets.
754  *
755  **************************************************************************/
756 
757 /* Update a channel's event queue's read pointer (RPTR) register
758  *
759  * This writes the EVQ_RPTR_REG register for the specified channel's
760  * event queue.
761  */
762 void efx_nic_eventq_read_ack(struct efx_channel *channel)
763 {
764 	efx_dword_t reg;
765 	struct efx_nic *efx = channel->efx;
766 
767 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
768 			     channel->eventq_read_ptr & channel->eventq_mask);
769 	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
770 			 channel->channel);
771 }
772 
773 /* Use HW to insert a SW defined event */
774 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
775 			efx_qword_t *event)
776 {
777 	efx_oword_t drv_ev_reg;
778 
779 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
780 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
781 	drv_ev_reg.u32[0] = event->u32[0];
782 	drv_ev_reg.u32[1] = event->u32[1];
783 	drv_ev_reg.u32[2] = 0;
784 	drv_ev_reg.u32[3] = 0;
785 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
786 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
787 }
788 
789 static void efx_magic_event(struct efx_channel *channel, u32 magic)
790 {
791 	efx_qword_t event;
792 
793 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
794 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
795 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
796 	efx_generate_event(channel->efx, channel->channel, &event);
797 }
798 
799 /* Handle a transmit completion event
800  *
801  * The NIC batches TX completion events; the message we receive is of
802  * the form "complete all TX events up to this index".
803  */
804 static int
805 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
806 {
807 	unsigned int tx_ev_desc_ptr;
808 	unsigned int tx_ev_q_label;
809 	struct efx_tx_queue *tx_queue;
810 	struct efx_nic *efx = channel->efx;
811 	int tx_packets = 0;
812 
813 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
814 		return 0;
815 
816 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
817 		/* Transmit completion */
818 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
819 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
820 		tx_queue = efx_channel_get_tx_queue(
821 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
822 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
823 			      tx_queue->ptr_mask);
824 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
825 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
826 		/* Rewrite the FIFO write pointer */
827 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
828 		tx_queue = efx_channel_get_tx_queue(
829 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
830 
831 		netif_tx_lock(efx->net_dev);
832 		efx_notify_tx_desc(tx_queue);
833 		netif_tx_unlock(efx->net_dev);
834 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
835 		   EFX_WORKAROUND_10727(efx)) {
836 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
837 	} else {
838 		netif_err(efx, tx_err, efx->net_dev,
839 			  "channel %d unexpected TX event "
840 			  EFX_QWORD_FMT"\n", channel->channel,
841 			  EFX_QWORD_VAL(*event));
842 	}
843 
844 	return tx_packets;
845 }
846 
847 /* Detect errors included in the rx_evt_pkt_ok bit. */
848 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
849 				const efx_qword_t *event)
850 {
851 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
852 	struct efx_nic *efx = rx_queue->efx;
853 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
854 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
855 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
856 	bool rx_ev_other_err, rx_ev_pause_frm;
857 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
858 	unsigned rx_ev_pkt_type;
859 
860 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
861 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
862 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
863 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
864 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
865 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
866 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
867 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
868 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
869 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
870 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
871 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
872 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
873 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
874 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
875 
876 	/* Every error apart from tobe_disc and pause_frm */
877 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
878 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
879 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
880 
881 	/* Count errors that are not in MAC stats.  Ignore expected
882 	 * checksum errors during self-test. */
883 	if (rx_ev_frm_trunc)
884 		++channel->n_rx_frm_trunc;
885 	else if (rx_ev_tobe_disc)
886 		++channel->n_rx_tobe_disc;
887 	else if (!efx->loopback_selftest) {
888 		if (rx_ev_ip_hdr_chksum_err)
889 			++channel->n_rx_ip_hdr_chksum_err;
890 		else if (rx_ev_tcp_udp_chksum_err)
891 			++channel->n_rx_tcp_udp_chksum_err;
892 	}
893 
894 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
895 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
896 	 * to a FIFO overflow.
897 	 */
898 #ifdef DEBUG
899 	if (rx_ev_other_err && net_ratelimit()) {
900 		netif_dbg(efx, rx_err, efx->net_dev,
901 			  " RX queue %d unexpected RX event "
902 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
903 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
904 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
905 			  rx_ev_ip_hdr_chksum_err ?
906 			  " [IP_HDR_CHKSUM_ERR]" : "",
907 			  rx_ev_tcp_udp_chksum_err ?
908 			  " [TCP_UDP_CHKSUM_ERR]" : "",
909 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
910 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
911 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
912 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
913 			  rx_ev_pause_frm ? " [PAUSE]" : "");
914 	}
915 #endif
916 
917 	/* The frame must be discarded if any of these are true. */
918 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
919 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
920 		EFX_RX_PKT_DISCARD : 0;
921 }
922 
923 /* Handle receive events that are not in-order. */
924 static void
925 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
926 {
927 	struct efx_nic *efx = rx_queue->efx;
928 	unsigned expected, dropped;
929 
930 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
931 	dropped = (index - expected) & rx_queue->ptr_mask;
932 	netif_info(efx, rx_err, efx->net_dev,
933 		   "dropped %d events (index=%d expected=%d)\n",
934 		   dropped, index, expected);
935 
936 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
937 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
938 }
939 
940 /* Handle a packet received event
941  *
942  * The NIC gives a "discard" flag if it's a unicast packet with the
943  * wrong destination address
944  * Also "is multicast" and "matches multicast filter" flags can be used to
945  * discard non-matching multicast packets.
946  */
947 static void
948 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
949 {
950 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
951 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
952 	unsigned expected_ptr;
953 	bool rx_ev_pkt_ok;
954 	u16 flags;
955 	struct efx_rx_queue *rx_queue;
956 	struct efx_nic *efx = channel->efx;
957 
958 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
959 		return;
960 
961 	/* Basic packet information */
962 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
963 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
964 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
965 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
966 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
967 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
968 		channel->channel);
969 
970 	rx_queue = efx_channel_get_rx_queue(channel);
971 
972 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
973 	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
974 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
975 		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
976 
977 	if (likely(rx_ev_pkt_ok)) {
978 		/* If packet is marked as OK and packet type is TCP/IP or
979 		 * UDP/IP, then we can rely on the hardware checksum.
980 		 */
981 		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
982 			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
983 			EFX_RX_PKT_CSUMMED : 0;
984 	} else {
985 		flags = efx_handle_rx_not_ok(rx_queue, event);
986 	}
987 
988 	/* Detect multicast packets that didn't match the filter */
989 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
990 	if (rx_ev_mcast_pkt) {
991 		unsigned int rx_ev_mcast_hash_match =
992 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
993 
994 		if (unlikely(!rx_ev_mcast_hash_match)) {
995 			++channel->n_rx_mcast_mismatch;
996 			flags |= EFX_RX_PKT_DISCARD;
997 		}
998 	}
999 
1000 	channel->irq_mod_score += 2;
1001 
1002 	/* Handle received packet */
1003 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1004 }
1005 
1006 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1007  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1008  * of all transmit completions.
1009  */
1010 static void
1011 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1012 {
1013 	struct efx_tx_queue *tx_queue;
1014 	int qid;
1015 
1016 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1017 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1018 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1019 					    qid % EFX_TXQ_TYPES);
1020 
1021 		efx_magic_event(tx_queue->channel,
1022 				EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1023 	}
1024 }
1025 
1026 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1027  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1028  * the RX queue back to the mask of RX queues in need of flushing.
1029  */
1030 static void
1031 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1032 {
1033 	struct efx_channel *channel;
1034 	struct efx_rx_queue *rx_queue;
1035 	int qid;
1036 	bool failed;
1037 
1038 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1039 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1040 	if (qid >= efx->n_channels)
1041 		return;
1042 	channel = efx_get_channel(efx, qid);
1043 	if (!efx_channel_has_rx_queue(channel))
1044 		return;
1045 	rx_queue = efx_channel_get_rx_queue(channel);
1046 
1047 	if (failed) {
1048 		netif_info(efx, hw, efx->net_dev,
1049 			   "RXQ %d flush retry\n", qid);
1050 		rx_queue->flush_pending = true;
1051 		atomic_inc(&efx->rxq_flush_pending);
1052 	} else {
1053 		efx_magic_event(efx_rx_queue_channel(rx_queue),
1054 				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1055 	}
1056 	atomic_dec(&efx->rxq_flush_outstanding);
1057 	if (efx_flush_wake(efx))
1058 		wake_up(&efx->flush_wq);
1059 }
1060 
1061 static void
1062 efx_handle_drain_event(struct efx_channel *channel)
1063 {
1064 	struct efx_nic *efx = channel->efx;
1065 
1066 	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1067 	atomic_dec(&efx->drain_pending);
1068 	if (efx_flush_wake(efx))
1069 		wake_up(&efx->flush_wq);
1070 }
1071 
1072 static void
1073 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1074 {
1075 	struct efx_nic *efx = channel->efx;
1076 	struct efx_rx_queue *rx_queue =
1077 		efx_channel_has_rx_queue(channel) ?
1078 		efx_channel_get_rx_queue(channel) : NULL;
1079 	unsigned magic, code;
1080 
1081 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1082 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1083 
1084 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1085 		channel->event_test_cpu = raw_smp_processor_id();
1086 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1087 		/* The queue must be empty, so we won't receive any rx
1088 		 * events, so efx_process_channel() won't refill the
1089 		 * queue. Refill it here */
1090 		efx_fast_push_rx_descriptors(rx_queue);
1091 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1092 		rx_queue->enabled = false;
1093 		efx_handle_drain_event(channel);
1094 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1095 		efx_handle_drain_event(channel);
1096 	} else {
1097 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1098 			  "generated event "EFX_QWORD_FMT"\n",
1099 			  channel->channel, EFX_QWORD_VAL(*event));
1100 	}
1101 }
1102 
1103 static void
1104 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1105 {
1106 	struct efx_nic *efx = channel->efx;
1107 	unsigned int ev_sub_code;
1108 	unsigned int ev_sub_data;
1109 
1110 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1111 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1112 
1113 	switch (ev_sub_code) {
1114 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1115 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1116 			   channel->channel, ev_sub_data);
1117 		efx_handle_tx_flush_done(efx, event);
1118 		efx_sriov_tx_flush_done(efx, event);
1119 		break;
1120 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1121 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1122 			   channel->channel, ev_sub_data);
1123 		efx_handle_rx_flush_done(efx, event);
1124 		efx_sriov_rx_flush_done(efx, event);
1125 		break;
1126 	case FSE_AZ_EVQ_INIT_DONE_EV:
1127 		netif_dbg(efx, hw, efx->net_dev,
1128 			  "channel %d EVQ %d initialised\n",
1129 			  channel->channel, ev_sub_data);
1130 		break;
1131 	case FSE_AZ_SRM_UPD_DONE_EV:
1132 		netif_vdbg(efx, hw, efx->net_dev,
1133 			   "channel %d SRAM update done\n", channel->channel);
1134 		break;
1135 	case FSE_AZ_WAKE_UP_EV:
1136 		netif_vdbg(efx, hw, efx->net_dev,
1137 			   "channel %d RXQ %d wakeup event\n",
1138 			   channel->channel, ev_sub_data);
1139 		break;
1140 	case FSE_AZ_TIMER_EV:
1141 		netif_vdbg(efx, hw, efx->net_dev,
1142 			   "channel %d RX queue %d timer expired\n",
1143 			   channel->channel, ev_sub_data);
1144 		break;
1145 	case FSE_AA_RX_RECOVER_EV:
1146 		netif_err(efx, rx_err, efx->net_dev,
1147 			  "channel %d seen DRIVER RX_RESET event. "
1148 			"Resetting.\n", channel->channel);
1149 		atomic_inc(&efx->rx_reset);
1150 		efx_schedule_reset(efx,
1151 				   EFX_WORKAROUND_6555(efx) ?
1152 				   RESET_TYPE_RX_RECOVERY :
1153 				   RESET_TYPE_DISABLE);
1154 		break;
1155 	case FSE_BZ_RX_DSC_ERROR_EV:
1156 		if (ev_sub_data < EFX_VI_BASE) {
1157 			netif_err(efx, rx_err, efx->net_dev,
1158 				  "RX DMA Q %d reports descriptor fetch error."
1159 				  " RX Q %d is disabled.\n", ev_sub_data,
1160 				  ev_sub_data);
1161 			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1162 		} else
1163 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1164 		break;
1165 	case FSE_BZ_TX_DSC_ERROR_EV:
1166 		if (ev_sub_data < EFX_VI_BASE) {
1167 			netif_err(efx, tx_err, efx->net_dev,
1168 				  "TX DMA Q %d reports descriptor fetch error."
1169 				  " TX Q %d is disabled.\n", ev_sub_data,
1170 				  ev_sub_data);
1171 			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1172 		} else
1173 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1174 		break;
1175 	default:
1176 		netif_vdbg(efx, hw, efx->net_dev,
1177 			   "channel %d unknown driver event code %d "
1178 			   "data %04x\n", channel->channel, ev_sub_code,
1179 			   ev_sub_data);
1180 		break;
1181 	}
1182 }
1183 
1184 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1185 {
1186 	struct efx_nic *efx = channel->efx;
1187 	unsigned int read_ptr;
1188 	efx_qword_t event, *p_event;
1189 	int ev_code;
1190 	int tx_packets = 0;
1191 	int spent = 0;
1192 
1193 	read_ptr = channel->eventq_read_ptr;
1194 
1195 	for (;;) {
1196 		p_event = efx_event(channel, read_ptr);
1197 		event = *p_event;
1198 
1199 		if (!efx_event_present(&event))
1200 			/* End of events */
1201 			break;
1202 
1203 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1204 			   "channel %d event is "EFX_QWORD_FMT"\n",
1205 			   channel->channel, EFX_QWORD_VAL(event));
1206 
1207 		/* Clear this event by marking it all ones */
1208 		EFX_SET_QWORD(*p_event);
1209 
1210 		++read_ptr;
1211 
1212 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1213 
1214 		switch (ev_code) {
1215 		case FSE_AZ_EV_CODE_RX_EV:
1216 			efx_handle_rx_event(channel, &event);
1217 			if (++spent == budget)
1218 				goto out;
1219 			break;
1220 		case FSE_AZ_EV_CODE_TX_EV:
1221 			tx_packets += efx_handle_tx_event(channel, &event);
1222 			if (tx_packets > efx->txq_entries) {
1223 				spent = budget;
1224 				goto out;
1225 			}
1226 			break;
1227 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1228 			efx_handle_generated_event(channel, &event);
1229 			break;
1230 		case FSE_AZ_EV_CODE_DRIVER_EV:
1231 			efx_handle_driver_event(channel, &event);
1232 			break;
1233 		case FSE_CZ_EV_CODE_USER_EV:
1234 			efx_sriov_event(channel, &event);
1235 			break;
1236 		case FSE_CZ_EV_CODE_MCDI_EV:
1237 			efx_mcdi_process_event(channel, &event);
1238 			break;
1239 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1240 			if (efx->type->handle_global_event &&
1241 			    efx->type->handle_global_event(channel, &event))
1242 				break;
1243 			/* else fall through */
1244 		default:
1245 			netif_err(channel->efx, hw, channel->efx->net_dev,
1246 				  "channel %d unknown event type %d (data "
1247 				  EFX_QWORD_FMT ")\n", channel->channel,
1248 				  ev_code, EFX_QWORD_VAL(event));
1249 		}
1250 	}
1251 
1252 out:
1253 	channel->eventq_read_ptr = read_ptr;
1254 	return spent;
1255 }
1256 
1257 /* Check whether an event is present in the eventq at the current
1258  * read pointer.  Only useful for self-test.
1259  */
1260 bool efx_nic_event_present(struct efx_channel *channel)
1261 {
1262 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1263 }
1264 
1265 /* Allocate buffer table entries for event queue */
1266 int efx_nic_probe_eventq(struct efx_channel *channel)
1267 {
1268 	struct efx_nic *efx = channel->efx;
1269 	unsigned entries;
1270 
1271 	entries = channel->eventq_mask + 1;
1272 	return efx_alloc_special_buffer(efx, &channel->eventq,
1273 					entries * sizeof(efx_qword_t));
1274 }
1275 
1276 void efx_nic_init_eventq(struct efx_channel *channel)
1277 {
1278 	efx_oword_t reg;
1279 	struct efx_nic *efx = channel->efx;
1280 
1281 	netif_dbg(efx, hw, efx->net_dev,
1282 		  "channel %d event queue in special buffers %d-%d\n",
1283 		  channel->channel, channel->eventq.index,
1284 		  channel->eventq.index + channel->eventq.entries - 1);
1285 
1286 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1287 		EFX_POPULATE_OWORD_3(reg,
1288 				     FRF_CZ_TIMER_Q_EN, 1,
1289 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1290 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1291 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1292 	}
1293 
1294 	/* Pin event queue buffer */
1295 	efx_init_special_buffer(efx, &channel->eventq);
1296 
1297 	/* Fill event queue with all ones (i.e. empty events) */
1298 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1299 
1300 	/* Push event queue to card */
1301 	EFX_POPULATE_OWORD_3(reg,
1302 			     FRF_AZ_EVQ_EN, 1,
1303 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1304 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1305 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1306 			 channel->channel);
1307 
1308 	efx->type->push_irq_moderation(channel);
1309 }
1310 
1311 void efx_nic_fini_eventq(struct efx_channel *channel)
1312 {
1313 	efx_oword_t reg;
1314 	struct efx_nic *efx = channel->efx;
1315 
1316 	/* Remove event queue from card */
1317 	EFX_ZERO_OWORD(reg);
1318 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1319 			 channel->channel);
1320 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1321 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1322 
1323 	/* Unpin event queue */
1324 	efx_fini_special_buffer(efx, &channel->eventq);
1325 }
1326 
1327 /* Free buffers backing event queue */
1328 void efx_nic_remove_eventq(struct efx_channel *channel)
1329 {
1330 	efx_free_special_buffer(channel->efx, &channel->eventq);
1331 }
1332 
1333 
1334 void efx_nic_event_test_start(struct efx_channel *channel)
1335 {
1336 	channel->event_test_cpu = -1;
1337 	smp_wmb();
1338 	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1339 }
1340 
1341 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1342 {
1343 	efx_magic_event(efx_rx_queue_channel(rx_queue),
1344 			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1345 }
1346 
1347 /**************************************************************************
1348  *
1349  * Hardware interrupts
1350  * The hardware interrupt handler does very little work; all the event
1351  * queue processing is carried out by per-channel tasklets.
1352  *
1353  **************************************************************************/
1354 
1355 /* Enable/disable/generate interrupts */
1356 static inline void efx_nic_interrupts(struct efx_nic *efx,
1357 				      bool enabled, bool force)
1358 {
1359 	efx_oword_t int_en_reg_ker;
1360 
1361 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1362 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1363 			     FRF_AZ_KER_INT_KER, force,
1364 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1365 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1366 }
1367 
1368 void efx_nic_enable_interrupts(struct efx_nic *efx)
1369 {
1370 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1371 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1372 
1373 	efx_nic_interrupts(efx, true, false);
1374 }
1375 
1376 void efx_nic_disable_interrupts(struct efx_nic *efx)
1377 {
1378 	/* Disable interrupts */
1379 	efx_nic_interrupts(efx, false, false);
1380 }
1381 
1382 /* Generate a test interrupt
1383  * Interrupt must already have been enabled, otherwise nasty things
1384  * may happen.
1385  */
1386 void efx_nic_irq_test_start(struct efx_nic *efx)
1387 {
1388 	efx->last_irq_cpu = -1;
1389 	smp_wmb();
1390 	efx_nic_interrupts(efx, true, true);
1391 }
1392 
1393 /* Process a fatal interrupt
1394  * Disable bus mastering ASAP and schedule a reset
1395  */
1396 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1397 {
1398 	struct falcon_nic_data *nic_data = efx->nic_data;
1399 	efx_oword_t *int_ker = efx->irq_status.addr;
1400 	efx_oword_t fatal_intr;
1401 	int error, mem_perr;
1402 
1403 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1404 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1405 
1406 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1407 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1408 		  EFX_OWORD_VAL(fatal_intr),
1409 		  error ? "disabling bus mastering" : "no recognised error");
1410 
1411 	/* If this is a memory parity error dump which blocks are offending */
1412 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1413 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1414 	if (mem_perr) {
1415 		efx_oword_t reg;
1416 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1417 		netif_err(efx, hw, efx->net_dev,
1418 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1419 			  EFX_OWORD_VAL(reg));
1420 	}
1421 
1422 	/* Disable both devices */
1423 	pci_clear_master(efx->pci_dev);
1424 	if (efx_nic_is_dual_func(efx))
1425 		pci_clear_master(nic_data->pci_dev2);
1426 	efx_nic_disable_interrupts(efx);
1427 
1428 	/* Count errors and reset or disable the NIC accordingly */
1429 	if (efx->int_error_count == 0 ||
1430 	    time_after(jiffies, efx->int_error_expire)) {
1431 		efx->int_error_count = 0;
1432 		efx->int_error_expire =
1433 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1434 	}
1435 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1436 		netif_err(efx, hw, efx->net_dev,
1437 			  "SYSTEM ERROR - reset scheduled\n");
1438 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1439 	} else {
1440 		netif_err(efx, hw, efx->net_dev,
1441 			  "SYSTEM ERROR - max number of errors seen."
1442 			  "NIC will be disabled\n");
1443 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1444 	}
1445 
1446 	return IRQ_HANDLED;
1447 }
1448 
1449 /* Handle a legacy interrupt
1450  * Acknowledges the interrupt and schedule event queue processing.
1451  */
1452 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1453 {
1454 	struct efx_nic *efx = dev_id;
1455 	efx_oword_t *int_ker = efx->irq_status.addr;
1456 	irqreturn_t result = IRQ_NONE;
1457 	struct efx_channel *channel;
1458 	efx_dword_t reg;
1459 	u32 queues;
1460 	int syserr;
1461 
1462 	/* Could this be ours?  If interrupts are disabled then the
1463 	 * channel state may not be valid.
1464 	 */
1465 	if (!efx->legacy_irq_enabled)
1466 		return result;
1467 
1468 	/* Read the ISR which also ACKs the interrupts */
1469 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1470 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1471 
1472 	/* Handle non-event-queue sources */
1473 	if (queues & (1U << efx->irq_level)) {
1474 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1475 		if (unlikely(syserr))
1476 			return efx_nic_fatal_interrupt(efx);
1477 		efx->last_irq_cpu = raw_smp_processor_id();
1478 	}
1479 
1480 	if (queues != 0) {
1481 		if (EFX_WORKAROUND_15783(efx))
1482 			efx->irq_zero_count = 0;
1483 
1484 		/* Schedule processing of any interrupting queues */
1485 		efx_for_each_channel(channel, efx) {
1486 			if (queues & 1)
1487 				efx_schedule_channel_irq(channel);
1488 			queues >>= 1;
1489 		}
1490 		result = IRQ_HANDLED;
1491 
1492 	} else if (EFX_WORKAROUND_15783(efx)) {
1493 		efx_qword_t *event;
1494 
1495 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1496 		 * because this might be a shared interrupt. */
1497 		if (efx->irq_zero_count++ == 0)
1498 			result = IRQ_HANDLED;
1499 
1500 		/* Ensure we schedule or rearm all event queues */
1501 		efx_for_each_channel(channel, efx) {
1502 			event = efx_event(channel, channel->eventq_read_ptr);
1503 			if (efx_event_present(event))
1504 				efx_schedule_channel_irq(channel);
1505 			else
1506 				efx_nic_eventq_read_ack(channel);
1507 		}
1508 	}
1509 
1510 	if (result == IRQ_HANDLED)
1511 		netif_vdbg(efx, intr, efx->net_dev,
1512 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1513 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1514 
1515 	return result;
1516 }
1517 
1518 /* Handle an MSI interrupt
1519  *
1520  * Handle an MSI hardware interrupt.  This routine schedules event
1521  * queue processing.  No interrupt acknowledgement cycle is necessary.
1522  * Also, we never need to check that the interrupt is for us, since
1523  * MSI interrupts cannot be shared.
1524  */
1525 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1526 {
1527 	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1528 	struct efx_nic *efx = channel->efx;
1529 	efx_oword_t *int_ker = efx->irq_status.addr;
1530 	int syserr;
1531 
1532 	netif_vdbg(efx, intr, efx->net_dev,
1533 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1534 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1535 
1536 	/* Handle non-event-queue sources */
1537 	if (channel->channel == efx->irq_level) {
1538 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1539 		if (unlikely(syserr))
1540 			return efx_nic_fatal_interrupt(efx);
1541 		efx->last_irq_cpu = raw_smp_processor_id();
1542 	}
1543 
1544 	/* Schedule processing of the channel */
1545 	efx_schedule_channel_irq(channel);
1546 
1547 	return IRQ_HANDLED;
1548 }
1549 
1550 
1551 /* Setup RSS indirection table.
1552  * This maps from the hash value of the packet to RXQ
1553  */
1554 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1555 {
1556 	size_t i = 0;
1557 	efx_dword_t dword;
1558 
1559 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1560 		return;
1561 
1562 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1563 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1564 
1565 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1566 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1567 				     efx->rx_indir_table[i]);
1568 		efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1569 	}
1570 }
1571 
1572 /* Hook interrupt handler(s)
1573  * Try MSI and then legacy interrupts.
1574  */
1575 int efx_nic_init_interrupt(struct efx_nic *efx)
1576 {
1577 	struct efx_channel *channel;
1578 	int rc;
1579 
1580 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1581 		irq_handler_t handler;
1582 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1583 			handler = efx_legacy_interrupt;
1584 		else
1585 			handler = falcon_legacy_interrupt_a1;
1586 
1587 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1588 				 efx->name, efx);
1589 		if (rc) {
1590 			netif_err(efx, drv, efx->net_dev,
1591 				  "failed to hook legacy IRQ %d\n",
1592 				  efx->pci_dev->irq);
1593 			goto fail1;
1594 		}
1595 		return 0;
1596 	}
1597 
1598 	/* Hook MSI or MSI-X interrupt */
1599 	efx_for_each_channel(channel, efx) {
1600 		rc = request_irq(channel->irq, efx_msi_interrupt,
1601 				 IRQF_PROBE_SHARED, /* Not shared */
1602 				 efx->channel_name[channel->channel],
1603 				 &efx->channel[channel->channel]);
1604 		if (rc) {
1605 			netif_err(efx, drv, efx->net_dev,
1606 				  "failed to hook IRQ %d\n", channel->irq);
1607 			goto fail2;
1608 		}
1609 	}
1610 
1611 	return 0;
1612 
1613  fail2:
1614 	efx_for_each_channel(channel, efx)
1615 		free_irq(channel->irq, &efx->channel[channel->channel]);
1616  fail1:
1617 	return rc;
1618 }
1619 
1620 void efx_nic_fini_interrupt(struct efx_nic *efx)
1621 {
1622 	struct efx_channel *channel;
1623 	efx_oword_t reg;
1624 
1625 	/* Disable MSI/MSI-X interrupts */
1626 	efx_for_each_channel(channel, efx) {
1627 		if (channel->irq)
1628 			free_irq(channel->irq, &efx->channel[channel->channel]);
1629 	}
1630 
1631 	/* ACK legacy interrupt */
1632 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1633 		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1634 	else
1635 		falcon_irq_ack_a1(efx);
1636 
1637 	/* Disable legacy interrupt */
1638 	if (efx->legacy_irq)
1639 		free_irq(efx->legacy_irq, efx);
1640 }
1641 
1642 /* Looks at available SRAM resources and works out how many queues we
1643  * can support, and where things like descriptor caches should live.
1644  *
1645  * SRAM is split up as follows:
1646  * 0                          buftbl entries for channels
1647  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1648  * efx->rx_dc_base            RX descriptor caches
1649  * efx->tx_dc_base            TX descriptor caches
1650  */
1651 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1652 {
1653 	unsigned vi_count, buftbl_min;
1654 
1655 	/* Account for the buffer table entries backing the datapath channels
1656 	 * and the descriptor caches for those channels.
1657 	 */
1658 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1659 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1660 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1661 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1662 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1663 
1664 #ifdef CONFIG_SFC_SRIOV
1665 	if (efx_sriov_wanted(efx)) {
1666 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1667 
1668 		efx->vf_buftbl_base = buftbl_min;
1669 
1670 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1671 		vi_count = max(vi_count, EFX_VI_BASE);
1672 		buftbl_free = (sram_lim_qw - buftbl_min -
1673 			       vi_count * vi_dc_entries);
1674 
1675 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1676 				  efx_vf_size(efx));
1677 		vf_limit = min(buftbl_free / entries_per_vf,
1678 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1679 
1680 		if (efx->vf_count > vf_limit) {
1681 			netif_err(efx, probe, efx->net_dev,
1682 				  "Reducing VF count from from %d to %d\n",
1683 				  efx->vf_count, vf_limit);
1684 			efx->vf_count = vf_limit;
1685 		}
1686 		vi_count += efx->vf_count * efx_vf_size(efx);
1687 	}
1688 #endif
1689 
1690 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1691 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1692 }
1693 
1694 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1695 {
1696 	efx_oword_t altera_build;
1697 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1698 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1699 }
1700 
1701 void efx_nic_init_common(struct efx_nic *efx)
1702 {
1703 	efx_oword_t temp;
1704 
1705 	/* Set positions of descriptor caches in SRAM. */
1706 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1707 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1708 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1709 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1710 
1711 	/* Set TX descriptor cache size. */
1712 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1713 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1714 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1715 
1716 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1717 	 * this allows most efficient prefetching.
1718 	 */
1719 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1720 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1721 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1722 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1723 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1724 
1725 	/* Program INT_KER address */
1726 	EFX_POPULATE_OWORD_2(temp,
1727 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1728 			     EFX_INT_MODE_USE_MSI(efx),
1729 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1730 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1731 
1732 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1733 		/* Use an interrupt level unused by event queues */
1734 		efx->irq_level = 0x1f;
1735 	else
1736 		/* Use a valid MSI-X vector */
1737 		efx->irq_level = 0;
1738 
1739 	/* Enable all the genuinely fatal interrupts.  (They are still
1740 	 * masked by the overall interrupt mask, controlled by
1741 	 * falcon_interrupts()).
1742 	 *
1743 	 * Note: All other fatal interrupts are enabled
1744 	 */
1745 	EFX_POPULATE_OWORD_3(temp,
1746 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1747 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1748 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1749 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1750 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1751 	EFX_INVERT_OWORD(temp);
1752 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1753 
1754 	efx_nic_push_rx_indir_table(efx);
1755 
1756 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1757 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1758 	 */
1759 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1760 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1761 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1762 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1763 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1764 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1765 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1766 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1767 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1768 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1769 	/* Disable hardware watchdog which can misfire */
1770 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1771 	/* Squash TX of packets of 16 bytes or less */
1772 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1773 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1774 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1775 
1776 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1777 		EFX_POPULATE_OWORD_4(temp,
1778 				     /* Default values */
1779 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1780 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1781 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1782 				     /* Allow large pace values in the
1783 				      * fast bin. */
1784 				     FRF_BZ_TX_PACE_BIN_TH,
1785 				     FFE_BZ_TX_PACE_RESERVED);
1786 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1787 	}
1788 }
1789 
1790 /* Register dump */
1791 
1792 #define REGISTER_REVISION_A	1
1793 #define REGISTER_REVISION_B	2
1794 #define REGISTER_REVISION_C	3
1795 #define REGISTER_REVISION_Z	3	/* latest revision */
1796 
1797 struct efx_nic_reg {
1798 	u32 offset:24;
1799 	u32 min_revision:2, max_revision:2;
1800 };
1801 
1802 #define REGISTER(name, min_rev, max_rev) {				\
1803 	FR_ ## min_rev ## max_rev ## _ ## name,				\
1804 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1805 }
1806 #define REGISTER_AA(name) REGISTER(name, A, A)
1807 #define REGISTER_AB(name) REGISTER(name, A, B)
1808 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1809 #define REGISTER_BB(name) REGISTER(name, B, B)
1810 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1811 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1812 
1813 static const struct efx_nic_reg efx_nic_regs[] = {
1814 	REGISTER_AZ(ADR_REGION),
1815 	REGISTER_AZ(INT_EN_KER),
1816 	REGISTER_BZ(INT_EN_CHAR),
1817 	REGISTER_AZ(INT_ADR_KER),
1818 	REGISTER_BZ(INT_ADR_CHAR),
1819 	/* INT_ACK_KER is WO */
1820 	/* INT_ISR0 is RC */
1821 	REGISTER_AZ(HW_INIT),
1822 	REGISTER_CZ(USR_EV_CFG),
1823 	REGISTER_AB(EE_SPI_HCMD),
1824 	REGISTER_AB(EE_SPI_HADR),
1825 	REGISTER_AB(EE_SPI_HDATA),
1826 	REGISTER_AB(EE_BASE_PAGE),
1827 	REGISTER_AB(EE_VPD_CFG0),
1828 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1829 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1830 	/* PCIE_CORE_INDIRECT is indirect */
1831 	REGISTER_AB(NIC_STAT),
1832 	REGISTER_AB(GPIO_CTL),
1833 	REGISTER_AB(GLB_CTL),
1834 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1835 	REGISTER_BZ(DP_CTRL),
1836 	REGISTER_AZ(MEM_STAT),
1837 	REGISTER_AZ(CS_DEBUG),
1838 	REGISTER_AZ(ALTERA_BUILD),
1839 	REGISTER_AZ(CSR_SPARE),
1840 	REGISTER_AB(PCIE_SD_CTL0123),
1841 	REGISTER_AB(PCIE_SD_CTL45),
1842 	REGISTER_AB(PCIE_PCS_CTL_STAT),
1843 	/* DEBUG_DATA_OUT is not used */
1844 	/* DRV_EV is WO */
1845 	REGISTER_AZ(EVQ_CTL),
1846 	REGISTER_AZ(EVQ_CNT1),
1847 	REGISTER_AZ(EVQ_CNT2),
1848 	REGISTER_AZ(BUF_TBL_CFG),
1849 	REGISTER_AZ(SRM_RX_DC_CFG),
1850 	REGISTER_AZ(SRM_TX_DC_CFG),
1851 	REGISTER_AZ(SRM_CFG),
1852 	/* BUF_TBL_UPD is WO */
1853 	REGISTER_AZ(SRM_UPD_EVQ),
1854 	REGISTER_AZ(SRAM_PARITY),
1855 	REGISTER_AZ(RX_CFG),
1856 	REGISTER_BZ(RX_FILTER_CTL),
1857 	/* RX_FLUSH_DESCQ is WO */
1858 	REGISTER_AZ(RX_DC_CFG),
1859 	REGISTER_AZ(RX_DC_PF_WM),
1860 	REGISTER_BZ(RX_RSS_TKEY),
1861 	/* RX_NODESC_DROP is RC */
1862 	REGISTER_AA(RX_SELF_RST),
1863 	/* RX_DEBUG, RX_PUSH_DROP are not used */
1864 	REGISTER_CZ(RX_RSS_IPV6_REG1),
1865 	REGISTER_CZ(RX_RSS_IPV6_REG2),
1866 	REGISTER_CZ(RX_RSS_IPV6_REG3),
1867 	/* TX_FLUSH_DESCQ is WO */
1868 	REGISTER_AZ(TX_DC_CFG),
1869 	REGISTER_AA(TX_CHKSM_CFG),
1870 	REGISTER_AZ(TX_CFG),
1871 	/* TX_PUSH_DROP is not used */
1872 	REGISTER_AZ(TX_RESERVED),
1873 	REGISTER_BZ(TX_PACE),
1874 	/* TX_PACE_DROP_QID is RC */
1875 	REGISTER_BB(TX_VLAN),
1876 	REGISTER_BZ(TX_IPFIL_PORTEN),
1877 	REGISTER_AB(MD_TXD),
1878 	REGISTER_AB(MD_RXD),
1879 	REGISTER_AB(MD_CS),
1880 	REGISTER_AB(MD_PHY_ADR),
1881 	REGISTER_AB(MD_ID),
1882 	/* MD_STAT is RC */
1883 	REGISTER_AB(MAC_STAT_DMA),
1884 	REGISTER_AB(MAC_CTRL),
1885 	REGISTER_BB(GEN_MODE),
1886 	REGISTER_AB(MAC_MC_HASH_REG0),
1887 	REGISTER_AB(MAC_MC_HASH_REG1),
1888 	REGISTER_AB(GM_CFG1),
1889 	REGISTER_AB(GM_CFG2),
1890 	/* GM_IPG and GM_HD are not used */
1891 	REGISTER_AB(GM_MAX_FLEN),
1892 	/* GM_TEST is not used */
1893 	REGISTER_AB(GM_ADR1),
1894 	REGISTER_AB(GM_ADR2),
1895 	REGISTER_AB(GMF_CFG0),
1896 	REGISTER_AB(GMF_CFG1),
1897 	REGISTER_AB(GMF_CFG2),
1898 	REGISTER_AB(GMF_CFG3),
1899 	REGISTER_AB(GMF_CFG4),
1900 	REGISTER_AB(GMF_CFG5),
1901 	REGISTER_BB(TX_SRC_MAC_CTL),
1902 	REGISTER_AB(XM_ADR_LO),
1903 	REGISTER_AB(XM_ADR_HI),
1904 	REGISTER_AB(XM_GLB_CFG),
1905 	REGISTER_AB(XM_TX_CFG),
1906 	REGISTER_AB(XM_RX_CFG),
1907 	REGISTER_AB(XM_MGT_INT_MASK),
1908 	REGISTER_AB(XM_FC),
1909 	REGISTER_AB(XM_PAUSE_TIME),
1910 	REGISTER_AB(XM_TX_PARAM),
1911 	REGISTER_AB(XM_RX_PARAM),
1912 	/* XM_MGT_INT_MSK (note no 'A') is RC */
1913 	REGISTER_AB(XX_PWR_RST),
1914 	REGISTER_AB(XX_SD_CTL),
1915 	REGISTER_AB(XX_TXDRV_CTL),
1916 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1917 	/* XX_CORE_STAT is partly RC */
1918 };
1919 
1920 struct efx_nic_reg_table {
1921 	u32 offset:24;
1922 	u32 min_revision:2, max_revision:2;
1923 	u32 step:6, rows:21;
1924 };
1925 
1926 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1927 	offset,								\
1928 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
1929 	step, rows							\
1930 }
1931 #define REGISTER_TABLE(name, min_rev, max_rev)				\
1932 	REGISTER_TABLE_DIMENSIONS(					\
1933 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1934 		min_rev, max_rev,					\
1935 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1936 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1937 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1938 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1939 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1940 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1941 #define REGISTER_TABLE_BB_CZ(name)					\
1942 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1943 				  FR_BZ_ ## name ## _STEP,		\
1944 				  FR_BB_ ## name ## _ROWS),		\
1945 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1946 				  FR_BZ_ ## name ## _STEP,		\
1947 				  FR_CZ_ ## name ## _ROWS)
1948 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1949 
1950 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1951 	/* DRIVER is not used */
1952 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1953 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
1954 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1955 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1956 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1957 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1958 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1959 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1960 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1961 	/* We can't reasonably read all of the buffer table (up to 8MB!).
1962 	 * However this driver will only use a few entries.  Reading
1963 	 * 1K entries allows for some expansion of queue count and
1964 	 * size before we need to change the version. */
1965 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1966 				  A, A, 8, 1024),
1967 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1968 				  B, Z, 8, 1024),
1969 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1970 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
1971 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1972 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1973 	/* TX_FILTER_TBL0 is huge and not used by this driver */
1974 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1975 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
1976 	/* MSIX_PBA_TABLE is not mapped */
1977 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1978 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1979 };
1980 
1981 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1982 {
1983 	const struct efx_nic_reg *reg;
1984 	const struct efx_nic_reg_table *table;
1985 	size_t len = 0;
1986 
1987 	for (reg = efx_nic_regs;
1988 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1989 	     reg++)
1990 		if (efx->type->revision >= reg->min_revision &&
1991 		    efx->type->revision <= reg->max_revision)
1992 			len += sizeof(efx_oword_t);
1993 
1994 	for (table = efx_nic_reg_tables;
1995 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1996 	     table++)
1997 		if (efx->type->revision >= table->min_revision &&
1998 		    efx->type->revision <= table->max_revision)
1999 			len += table->rows * min_t(size_t, table->step, 16);
2000 
2001 	return len;
2002 }
2003 
2004 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2005 {
2006 	const struct efx_nic_reg *reg;
2007 	const struct efx_nic_reg_table *table;
2008 
2009 	for (reg = efx_nic_regs;
2010 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2011 	     reg++) {
2012 		if (efx->type->revision >= reg->min_revision &&
2013 		    efx->type->revision <= reg->max_revision) {
2014 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2015 			buf += sizeof(efx_oword_t);
2016 		}
2017 	}
2018 
2019 	for (table = efx_nic_reg_tables;
2020 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2021 	     table++) {
2022 		size_t size, i;
2023 
2024 		if (!(efx->type->revision >= table->min_revision &&
2025 		      efx->type->revision <= table->max_revision))
2026 			continue;
2027 
2028 		size = min_t(size_t, table->step, 16);
2029 
2030 		for (i = 0; i < table->rows; i++) {
2031 			switch (table->step) {
2032 			case 4: /* 32-bit register or SRAM */
2033 				efx_readd_table(efx, buf, table->offset, i);
2034 				break;
2035 			case 8: /* 64-bit SRAM */
2036 				efx_sram_readq(efx,
2037 					       efx->membase + table->offset,
2038 					       buf, i);
2039 				break;
2040 			case 16: /* 128-bit register */
2041 				efx_reado_table(efx, buf, table->offset, i);
2042 				break;
2043 			case 32: /* 128-bit register, interleaved */
2044 				efx_reado_table(efx, buf, table->offset, 2 * i);
2045 				break;
2046 			default:
2047 				WARN_ON(1);
2048 				return;
2049 			}
2050 			buf += size;
2051 		}
2052 	}
2053 }
2054