xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.c (revision e42c3d85)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/cpu_rmap.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25 
26 /**************************************************************************
27  *
28  * Configurable values
29  *
30  **************************************************************************
31  */
32 
33 /* This is set to 16 for a good reason.  In summary, if larger than
34  * 16, the descriptor cache holds more than a default socket
35  * buffer's worth of packets (for UDP we can only have at most one
36  * socket buffer's worth outstanding).  This combined with the fact
37  * that we only get 1 TX event per descriptor cache means the NIC
38  * goes idle.
39  */
40 #define TX_DC_ENTRIES 16
41 #define TX_DC_ENTRIES_ORDER 1
42 
43 #define RX_DC_ENTRIES 64
44 #define RX_DC_ENTRIES_ORDER 3
45 
46 /* If EFX_MAX_INT_ERRORS internal errors occur within
47  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
48  * disable it.
49  */
50 #define EFX_INT_ERROR_EXPIRE 3600
51 #define EFX_MAX_INT_ERRORS 5
52 
53 /* Depth of RX flush request fifo */
54 #define EFX_RX_FLUSH_COUNT 4
55 
56 /* Driver generated events */
57 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
58 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
59 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
60 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
61 
62 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
63 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
64 
65 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
66 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
67 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
68 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
69 			   efx_rx_queue_index(_rx_queue))
70 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
71 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
72 			   efx_rx_queue_index(_rx_queue))
73 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
74 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
75 			   (_tx_queue)->queue)
76 
77 static void efx_magic_event(struct efx_channel *channel, u32 magic);
78 
79 /**************************************************************************
80  *
81  * Solarstorm hardware access
82  *
83  **************************************************************************/
84 
85 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
86 				     unsigned int index)
87 {
88 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
89 			value, index);
90 }
91 
92 /* Read the current event from the event queue */
93 static inline efx_qword_t *efx_event(struct efx_channel *channel,
94 				     unsigned int index)
95 {
96 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
97 		(index & channel->eventq_mask);
98 }
99 
100 /* See if an event is present
101  *
102  * We check both the high and low dword of the event for all ones.  We
103  * wrote all ones when we cleared the event, and no valid event can
104  * have all ones in either its high or low dwords.  This approach is
105  * robust against reordering.
106  *
107  * Note that using a single 64-bit comparison is incorrect; even
108  * though the CPU read will be atomic, the DMA write may not be.
109  */
110 static inline int efx_event_present(efx_qword_t *event)
111 {
112 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
113 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
114 }
115 
116 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
117 				     const efx_oword_t *mask)
118 {
119 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
120 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
121 }
122 
123 int efx_nic_test_registers(struct efx_nic *efx,
124 			   const struct efx_nic_register_test *regs,
125 			   size_t n_regs)
126 {
127 	unsigned address = 0, i, j;
128 	efx_oword_t mask, imask, original, reg, buf;
129 
130 	for (i = 0; i < n_regs; ++i) {
131 		address = regs[i].address;
132 		mask = imask = regs[i].mask;
133 		EFX_INVERT_OWORD(imask);
134 
135 		efx_reado(efx, &original, address);
136 
137 		/* bit sweep on and off */
138 		for (j = 0; j < 128; j++) {
139 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
140 				continue;
141 
142 			/* Test this testable bit can be set in isolation */
143 			EFX_AND_OWORD(reg, original, mask);
144 			EFX_SET_OWORD32(reg, j, j, 1);
145 
146 			efx_writeo(efx, &reg, address);
147 			efx_reado(efx, &buf, address);
148 
149 			if (efx_masked_compare_oword(&reg, &buf, &mask))
150 				goto fail;
151 
152 			/* Test this testable bit can be cleared in isolation */
153 			EFX_OR_OWORD(reg, original, mask);
154 			EFX_SET_OWORD32(reg, j, j, 0);
155 
156 			efx_writeo(efx, &reg, address);
157 			efx_reado(efx, &buf, address);
158 
159 			if (efx_masked_compare_oword(&reg, &buf, &mask))
160 				goto fail;
161 		}
162 
163 		efx_writeo(efx, &original, address);
164 	}
165 
166 	return 0;
167 
168 fail:
169 	netif_err(efx, hw, efx->net_dev,
170 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
171 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
172 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
173 	return -EIO;
174 }
175 
176 /**************************************************************************
177  *
178  * Special buffer handling
179  * Special buffers are used for event queues and the TX and RX
180  * descriptor rings.
181  *
182  *************************************************************************/
183 
184 /*
185  * Initialise a special buffer
186  *
187  * This will define a buffer (previously allocated via
188  * efx_alloc_special_buffer()) in the buffer table, allowing
189  * it to be used for event queues, descriptor rings etc.
190  */
191 static void
192 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
193 {
194 	efx_qword_t buf_desc;
195 	unsigned int index;
196 	dma_addr_t dma_addr;
197 	int i;
198 
199 	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
200 
201 	/* Write buffer descriptors to NIC */
202 	for (i = 0; i < buffer->entries; i++) {
203 		index = buffer->index + i;
204 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
205 		netif_dbg(efx, probe, efx->net_dev,
206 			  "mapping special buffer %d at %llx\n",
207 			  index, (unsigned long long)dma_addr);
208 		EFX_POPULATE_QWORD_3(buf_desc,
209 				     FRF_AZ_BUF_ADR_REGION, 0,
210 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
211 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
212 		efx_write_buf_tbl(efx, &buf_desc, index);
213 	}
214 }
215 
216 /* Unmaps a buffer and clears the buffer table entries */
217 static void
218 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
219 {
220 	efx_oword_t buf_tbl_upd;
221 	unsigned int start = buffer->index;
222 	unsigned int end = (buffer->index + buffer->entries - 1);
223 
224 	if (!buffer->entries)
225 		return;
226 
227 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
228 		  buffer->index, buffer->index + buffer->entries - 1);
229 
230 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
231 			     FRF_AZ_BUF_UPD_CMD, 0,
232 			     FRF_AZ_BUF_CLR_CMD, 1,
233 			     FRF_AZ_BUF_CLR_END_ID, end,
234 			     FRF_AZ_BUF_CLR_START_ID, start);
235 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
236 }
237 
238 /*
239  * Allocate a new special buffer
240  *
241  * This allocates memory for a new buffer, clears it and allocates a
242  * new buffer ID range.  It does not write into the buffer table.
243  *
244  * This call will allocate 4KB buffers, since 8KB buffers can't be
245  * used for event queues and descriptor rings.
246  */
247 static int efx_alloc_special_buffer(struct efx_nic *efx,
248 				    struct efx_special_buffer *buffer,
249 				    unsigned int len)
250 {
251 	len = ALIGN(len, EFX_BUF_SIZE);
252 
253 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
254 		return -ENOMEM;
255 	buffer->entries = len / EFX_BUF_SIZE;
256 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
257 
258 	/* Select new buffer ID */
259 	buffer->index = efx->next_buffer_table;
260 	efx->next_buffer_table += buffer->entries;
261 #ifdef CONFIG_SFC_SRIOV
262 	BUG_ON(efx_sriov_enabled(efx) &&
263 	       efx->vf_buftbl_base < efx->next_buffer_table);
264 #endif
265 
266 	netif_dbg(efx, probe, efx->net_dev,
267 		  "allocating special buffers %d-%d at %llx+%x "
268 		  "(virt %p phys %llx)\n", buffer->index,
269 		  buffer->index + buffer->entries - 1,
270 		  (u64)buffer->buf.dma_addr, len,
271 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
272 
273 	return 0;
274 }
275 
276 static void
277 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
278 {
279 	if (!buffer->buf.addr)
280 		return;
281 
282 	netif_dbg(efx, hw, efx->net_dev,
283 		  "deallocating special buffers %d-%d at %llx+%x "
284 		  "(virt %p phys %llx)\n", buffer->index,
285 		  buffer->index + buffer->entries - 1,
286 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
287 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
288 
289 	efx_nic_free_buffer(efx, &buffer->buf);
290 	buffer->entries = 0;
291 }
292 
293 /**************************************************************************
294  *
295  * Generic buffer handling
296  * These buffers are used for interrupt status, MAC stats, etc.
297  *
298  **************************************************************************/
299 
300 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
301 			 unsigned int len, gfp_t gfp_flags)
302 {
303 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
304 					  &buffer->dma_addr,
305 					  gfp_flags | __GFP_ZERO);
306 	if (!buffer->addr)
307 		return -ENOMEM;
308 	buffer->len = len;
309 	return 0;
310 }
311 
312 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
313 {
314 	if (buffer->addr) {
315 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
316 				  buffer->addr, buffer->dma_addr);
317 		buffer->addr = NULL;
318 	}
319 }
320 
321 /**************************************************************************
322  *
323  * TX path
324  *
325  **************************************************************************/
326 
327 /* Returns a pointer to the specified transmit descriptor in the TX
328  * descriptor queue belonging to the specified channel.
329  */
330 static inline efx_qword_t *
331 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
332 {
333 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
334 }
335 
336 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
337 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
338 {
339 	unsigned write_ptr;
340 	efx_dword_t reg;
341 
342 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
343 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
344 	efx_writed_page(tx_queue->efx, &reg,
345 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
346 }
347 
348 /* Write pointer and first descriptor for TX descriptor ring */
349 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
350 				    const efx_qword_t *txd)
351 {
352 	unsigned write_ptr;
353 	efx_oword_t reg;
354 
355 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
356 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
357 
358 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
359 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
360 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
361 	reg.qword[0] = *txd;
362 	efx_writeo_page(tx_queue->efx, &reg,
363 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
364 }
365 
366 static inline bool
367 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
368 {
369 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
370 
371 	if (empty_read_count == 0)
372 		return false;
373 
374 	tx_queue->empty_read_count = 0;
375 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
376 		&& tx_queue->write_count - write_count == 1;
377 }
378 
379 /* For each entry inserted into the software descriptor ring, create a
380  * descriptor in the hardware TX descriptor ring (in host memory), and
381  * write a doorbell.
382  */
383 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
384 {
385 
386 	struct efx_tx_buffer *buffer;
387 	efx_qword_t *txd;
388 	unsigned write_ptr;
389 	unsigned old_write_count = tx_queue->write_count;
390 
391 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
392 
393 	do {
394 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
395 		buffer = &tx_queue->buffer[write_ptr];
396 		txd = efx_tx_desc(tx_queue, write_ptr);
397 		++tx_queue->write_count;
398 
399 		/* Create TX descriptor ring entry */
400 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
401 		EFX_POPULATE_QWORD_4(*txd,
402 				     FSF_AZ_TX_KER_CONT,
403 				     buffer->flags & EFX_TX_BUF_CONT,
404 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
405 				     FSF_AZ_TX_KER_BUF_REGION, 0,
406 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
407 	} while (tx_queue->write_count != tx_queue->insert_count);
408 
409 	wmb(); /* Ensure descriptors are written before they are fetched */
410 
411 	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
412 		txd = efx_tx_desc(tx_queue,
413 				  old_write_count & tx_queue->ptr_mask);
414 		efx_push_tx_desc(tx_queue, txd);
415 		++tx_queue->pushes;
416 	} else {
417 		efx_notify_tx_desc(tx_queue);
418 	}
419 }
420 
421 /* Allocate hardware resources for a TX queue */
422 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
423 {
424 	struct efx_nic *efx = tx_queue->efx;
425 	unsigned entries;
426 
427 	entries = tx_queue->ptr_mask + 1;
428 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
429 					entries * sizeof(efx_qword_t));
430 }
431 
432 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
433 {
434 	struct efx_nic *efx = tx_queue->efx;
435 	efx_oword_t reg;
436 
437 	/* Pin TX descriptor ring */
438 	efx_init_special_buffer(efx, &tx_queue->txd);
439 
440 	/* Push TX descriptor ring to card */
441 	EFX_POPULATE_OWORD_10(reg,
442 			      FRF_AZ_TX_DESCQ_EN, 1,
443 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
444 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
445 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
446 			      FRF_AZ_TX_DESCQ_EVQ_ID,
447 			      tx_queue->channel->channel,
448 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
449 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
450 			      FRF_AZ_TX_DESCQ_SIZE,
451 			      __ffs(tx_queue->txd.entries),
452 			      FRF_AZ_TX_DESCQ_TYPE, 0,
453 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
454 
455 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
456 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
457 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
458 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
459 				    !csum);
460 	}
461 
462 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
463 			 tx_queue->queue);
464 
465 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
466 		/* Only 128 bits in this register */
467 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
468 
469 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
470 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
471 			__clear_bit_le(tx_queue->queue, &reg);
472 		else
473 			__set_bit_le(tx_queue->queue, &reg);
474 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 	}
476 
477 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
478 		EFX_POPULATE_OWORD_1(reg,
479 				     FRF_BZ_TX_PACE,
480 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
481 				     FFE_BZ_TX_PACE_OFF :
482 				     FFE_BZ_TX_PACE_RESERVED);
483 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
484 				 tx_queue->queue);
485 	}
486 }
487 
488 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
489 {
490 	struct efx_nic *efx = tx_queue->efx;
491 	efx_oword_t tx_flush_descq;
492 
493 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
494 	atomic_set(&tx_queue->flush_outstanding, 1);
495 
496 	EFX_POPULATE_OWORD_2(tx_flush_descq,
497 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
498 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
499 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
500 }
501 
502 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
503 {
504 	struct efx_nic *efx = tx_queue->efx;
505 	efx_oword_t tx_desc_ptr;
506 
507 	/* Remove TX descriptor ring from card */
508 	EFX_ZERO_OWORD(tx_desc_ptr);
509 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
510 			 tx_queue->queue);
511 
512 	/* Unpin TX descriptor ring */
513 	efx_fini_special_buffer(efx, &tx_queue->txd);
514 }
515 
516 /* Free buffers backing TX queue */
517 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
518 {
519 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
520 }
521 
522 /**************************************************************************
523  *
524  * RX path
525  *
526  **************************************************************************/
527 
528 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
529 static inline efx_qword_t *
530 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
531 {
532 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
533 }
534 
535 /* This creates an entry in the RX descriptor queue */
536 static inline void
537 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
538 {
539 	struct efx_rx_buffer *rx_buf;
540 	efx_qword_t *rxd;
541 
542 	rxd = efx_rx_desc(rx_queue, index);
543 	rx_buf = efx_rx_buffer(rx_queue, index);
544 	EFX_POPULATE_QWORD_3(*rxd,
545 			     FSF_AZ_RX_KER_BUF_SIZE,
546 			     rx_buf->len -
547 			     rx_queue->efx->type->rx_buffer_padding,
548 			     FSF_AZ_RX_KER_BUF_REGION, 0,
549 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
550 }
551 
552 /* This writes to the RX_DESC_WPTR register for the specified receive
553  * descriptor ring.
554  */
555 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
556 {
557 	struct efx_nic *efx = rx_queue->efx;
558 	efx_dword_t reg;
559 	unsigned write_ptr;
560 
561 	while (rx_queue->notified_count != rx_queue->added_count) {
562 		efx_build_rx_desc(
563 			rx_queue,
564 			rx_queue->notified_count & rx_queue->ptr_mask);
565 		++rx_queue->notified_count;
566 	}
567 
568 	wmb();
569 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
570 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
571 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
572 			efx_rx_queue_index(rx_queue));
573 }
574 
575 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
576 {
577 	struct efx_nic *efx = rx_queue->efx;
578 	unsigned entries;
579 
580 	entries = rx_queue->ptr_mask + 1;
581 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
582 					entries * sizeof(efx_qword_t));
583 }
584 
585 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
586 {
587 	efx_oword_t rx_desc_ptr;
588 	struct efx_nic *efx = rx_queue->efx;
589 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
590 	bool iscsi_digest_en = is_b0;
591 	bool jumbo_en;
592 
593 	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
594 	 * DMA to continue after a PCIe page boundary (and scattering
595 	 * is not possible).  In Falcon B0 and Siena, it enables
596 	 * scatter.
597 	 */
598 	jumbo_en = !is_b0 || efx->rx_scatter;
599 
600 	netif_dbg(efx, hw, efx->net_dev,
601 		  "RX queue %d ring in special buffers %d-%d\n",
602 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
603 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
604 
605 	rx_queue->scatter_n = 0;
606 
607 	/* Pin RX descriptor ring */
608 	efx_init_special_buffer(efx, &rx_queue->rxd);
609 
610 	/* Push RX descriptor ring to card */
611 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
612 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
613 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
614 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
615 			      FRF_AZ_RX_DESCQ_EVQ_ID,
616 			      efx_rx_queue_channel(rx_queue)->channel,
617 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
618 			      FRF_AZ_RX_DESCQ_LABEL,
619 			      efx_rx_queue_index(rx_queue),
620 			      FRF_AZ_RX_DESCQ_SIZE,
621 			      __ffs(rx_queue->rxd.entries),
622 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
623 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
624 			      FRF_AZ_RX_DESCQ_EN, 1);
625 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
626 			 efx_rx_queue_index(rx_queue));
627 }
628 
629 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
630 {
631 	struct efx_nic *efx = rx_queue->efx;
632 	efx_oword_t rx_flush_descq;
633 
634 	EFX_POPULATE_OWORD_2(rx_flush_descq,
635 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
636 			     FRF_AZ_RX_FLUSH_DESCQ,
637 			     efx_rx_queue_index(rx_queue));
638 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
639 }
640 
641 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
642 {
643 	efx_oword_t rx_desc_ptr;
644 	struct efx_nic *efx = rx_queue->efx;
645 
646 	/* Remove RX descriptor ring from card */
647 	EFX_ZERO_OWORD(rx_desc_ptr);
648 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
649 			 efx_rx_queue_index(rx_queue));
650 
651 	/* Unpin RX descriptor ring */
652 	efx_fini_special_buffer(efx, &rx_queue->rxd);
653 }
654 
655 /* Free buffers backing RX queue */
656 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
657 {
658 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
659 }
660 
661 /**************************************************************************
662  *
663  * Flush handling
664  *
665  **************************************************************************/
666 
667 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
668  * or more RX flushes can be kicked off.
669  */
670 static bool efx_flush_wake(struct efx_nic *efx)
671 {
672 	/* Ensure that all updates are visible to efx_nic_flush_queues() */
673 	smp_mb();
674 
675 	return (atomic_read(&efx->drain_pending) == 0 ||
676 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
677 		 && atomic_read(&efx->rxq_flush_pending) > 0));
678 }
679 
680 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
681 {
682 	bool i = true;
683 	efx_oword_t txd_ptr_tbl;
684 	struct efx_channel *channel;
685 	struct efx_tx_queue *tx_queue;
686 
687 	efx_for_each_channel(channel, efx) {
688 		efx_for_each_channel_tx_queue(tx_queue, channel) {
689 			efx_reado_table(efx, &txd_ptr_tbl,
690 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
691 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
692 					    FRF_AZ_TX_DESCQ_FLUSH) ||
693 			    EFX_OWORD_FIELD(txd_ptr_tbl,
694 					    FRF_AZ_TX_DESCQ_EN)) {
695 				netif_dbg(efx, hw, efx->net_dev,
696 					  "flush did not complete on TXQ %d\n",
697 					  tx_queue->queue);
698 				i = false;
699 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
700 						  1, 0)) {
701 				/* The flush is complete, but we didn't
702 				 * receive a flush completion event
703 				 */
704 				netif_dbg(efx, hw, efx->net_dev,
705 					  "flush complete on TXQ %d, so drain "
706 					  "the queue\n", tx_queue->queue);
707 				/* Don't need to increment drain_pending as it
708 				 * has already been incremented for the queues
709 				 * which did not drain
710 				 */
711 				efx_magic_event(channel,
712 						EFX_CHANNEL_MAGIC_TX_DRAIN(
713 							tx_queue));
714 			}
715 		}
716 	}
717 
718 	return i;
719 }
720 
721 /* Flush all the transmit queues, and continue flushing receive queues until
722  * they're all flushed. Wait for the DRAIN events to be recieved so that there
723  * are no more RX and TX events left on any channel. */
724 static int efx_farch_do_flush(struct efx_nic *efx)
725 {
726 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
727 	struct efx_channel *channel;
728 	struct efx_rx_queue *rx_queue;
729 	struct efx_tx_queue *tx_queue;
730 	int rc = 0;
731 
732 	efx_for_each_channel(channel, efx) {
733 		efx_for_each_channel_tx_queue(tx_queue, channel) {
734 			atomic_inc(&efx->drain_pending);
735 			efx_flush_tx_queue(tx_queue);
736 		}
737 		efx_for_each_channel_rx_queue(rx_queue, channel) {
738 			atomic_inc(&efx->drain_pending);
739 			rx_queue->flush_pending = true;
740 			atomic_inc(&efx->rxq_flush_pending);
741 		}
742 	}
743 
744 	while (timeout && atomic_read(&efx->drain_pending) > 0) {
745 		/* If SRIOV is enabled, then offload receive queue flushing to
746 		 * the firmware (though we will still have to poll for
747 		 * completion). If that fails, fall back to the old scheme.
748 		 */
749 		if (efx_sriov_enabled(efx)) {
750 			rc = efx_mcdi_flush_rxqs(efx);
751 			if (!rc)
752 				goto wait;
753 		}
754 
755 		/* The hardware supports four concurrent rx flushes, each of
756 		 * which may need to be retried if there is an outstanding
757 		 * descriptor fetch
758 		 */
759 		efx_for_each_channel(channel, efx) {
760 			efx_for_each_channel_rx_queue(rx_queue, channel) {
761 				if (atomic_read(&efx->rxq_flush_outstanding) >=
762 				    EFX_RX_FLUSH_COUNT)
763 					break;
764 
765 				if (rx_queue->flush_pending) {
766 					rx_queue->flush_pending = false;
767 					atomic_dec(&efx->rxq_flush_pending);
768 					atomic_inc(&efx->rxq_flush_outstanding);
769 					efx_flush_rx_queue(rx_queue);
770 				}
771 			}
772 		}
773 
774 	wait:
775 		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
776 					     timeout);
777 	}
778 
779 	if (atomic_read(&efx->drain_pending) &&
780 	    !efx_check_tx_flush_complete(efx)) {
781 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
782 			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
783 			  atomic_read(&efx->rxq_flush_outstanding),
784 			  atomic_read(&efx->rxq_flush_pending));
785 		rc = -ETIMEDOUT;
786 
787 		atomic_set(&efx->drain_pending, 0);
788 		atomic_set(&efx->rxq_flush_pending, 0);
789 		atomic_set(&efx->rxq_flush_outstanding, 0);
790 	}
791 
792 	return rc;
793 }
794 
795 int efx_farch_fini_dmaq(struct efx_nic *efx)
796 {
797 	struct efx_channel *channel;
798 	struct efx_tx_queue *tx_queue;
799 	struct efx_rx_queue *rx_queue;
800 	int rc = 0;
801 
802 	/* Do not attempt to write to the NIC during EEH recovery */
803 	if (efx->state != STATE_RECOVERY) {
804 		/* Only perform flush if DMA is enabled */
805 		if (efx->pci_dev->is_busmaster) {
806 			efx->type->prepare_flush(efx);
807 			rc = efx_farch_do_flush(efx);
808 			efx->type->finish_flush(efx);
809 		}
810 
811 		efx_for_each_channel(channel, efx) {
812 			efx_for_each_channel_rx_queue(rx_queue, channel)
813 				efx_nic_fini_rx(rx_queue);
814 			efx_for_each_channel_tx_queue(tx_queue, channel)
815 				efx_nic_fini_tx(tx_queue);
816 		}
817 	}
818 
819 	return rc;
820 }
821 
822 /**************************************************************************
823  *
824  * Event queue processing
825  * Event queues are processed by per-channel tasklets.
826  *
827  **************************************************************************/
828 
829 /* Update a channel's event queue's read pointer (RPTR) register
830  *
831  * This writes the EVQ_RPTR_REG register for the specified channel's
832  * event queue.
833  */
834 void efx_nic_eventq_read_ack(struct efx_channel *channel)
835 {
836 	efx_dword_t reg;
837 	struct efx_nic *efx = channel->efx;
838 
839 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
840 			     channel->eventq_read_ptr & channel->eventq_mask);
841 
842 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
843 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
844 	 */
845 	efx_writed(efx, &reg,
846 		   efx->type->evq_rptr_tbl_base +
847 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
848 }
849 
850 /* Use HW to insert a SW defined event */
851 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
852 			efx_qword_t *event)
853 {
854 	efx_oword_t drv_ev_reg;
855 
856 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
857 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
858 	drv_ev_reg.u32[0] = event->u32[0];
859 	drv_ev_reg.u32[1] = event->u32[1];
860 	drv_ev_reg.u32[2] = 0;
861 	drv_ev_reg.u32[3] = 0;
862 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
863 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
864 }
865 
866 static void efx_magic_event(struct efx_channel *channel, u32 magic)
867 {
868 	efx_qword_t event;
869 
870 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
871 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
872 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
873 	efx_generate_event(channel->efx, channel->channel, &event);
874 }
875 
876 /* Handle a transmit completion event
877  *
878  * The NIC batches TX completion events; the message we receive is of
879  * the form "complete all TX events up to this index".
880  */
881 static int
882 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
883 {
884 	unsigned int tx_ev_desc_ptr;
885 	unsigned int tx_ev_q_label;
886 	struct efx_tx_queue *tx_queue;
887 	struct efx_nic *efx = channel->efx;
888 	int tx_packets = 0;
889 
890 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
891 		return 0;
892 
893 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
894 		/* Transmit completion */
895 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
896 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
897 		tx_queue = efx_channel_get_tx_queue(
898 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
899 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
900 			      tx_queue->ptr_mask);
901 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
902 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
903 		/* Rewrite the FIFO write pointer */
904 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
905 		tx_queue = efx_channel_get_tx_queue(
906 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
907 
908 		netif_tx_lock(efx->net_dev);
909 		efx_notify_tx_desc(tx_queue);
910 		netif_tx_unlock(efx->net_dev);
911 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
912 		   EFX_WORKAROUND_10727(efx)) {
913 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
914 	} else {
915 		netif_err(efx, tx_err, efx->net_dev,
916 			  "channel %d unexpected TX event "
917 			  EFX_QWORD_FMT"\n", channel->channel,
918 			  EFX_QWORD_VAL(*event));
919 	}
920 
921 	return tx_packets;
922 }
923 
924 /* Detect errors included in the rx_evt_pkt_ok bit. */
925 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
926 				const efx_qword_t *event)
927 {
928 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
929 	struct efx_nic *efx = rx_queue->efx;
930 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
931 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
932 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
933 	bool rx_ev_other_err, rx_ev_pause_frm;
934 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
935 	unsigned rx_ev_pkt_type;
936 
937 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
938 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
939 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
940 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
941 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
942 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
943 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
944 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
945 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
946 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
947 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
948 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
949 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
950 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
951 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
952 
953 	/* Every error apart from tobe_disc and pause_frm */
954 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
955 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
956 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
957 
958 	/* Count errors that are not in MAC stats.  Ignore expected
959 	 * checksum errors during self-test. */
960 	if (rx_ev_frm_trunc)
961 		++channel->n_rx_frm_trunc;
962 	else if (rx_ev_tobe_disc)
963 		++channel->n_rx_tobe_disc;
964 	else if (!efx->loopback_selftest) {
965 		if (rx_ev_ip_hdr_chksum_err)
966 			++channel->n_rx_ip_hdr_chksum_err;
967 		else if (rx_ev_tcp_udp_chksum_err)
968 			++channel->n_rx_tcp_udp_chksum_err;
969 	}
970 
971 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
972 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
973 	 * to a FIFO overflow.
974 	 */
975 #ifdef DEBUG
976 	if (rx_ev_other_err && net_ratelimit()) {
977 		netif_dbg(efx, rx_err, efx->net_dev,
978 			  " RX queue %d unexpected RX event "
979 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
980 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
981 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
982 			  rx_ev_ip_hdr_chksum_err ?
983 			  " [IP_HDR_CHKSUM_ERR]" : "",
984 			  rx_ev_tcp_udp_chksum_err ?
985 			  " [TCP_UDP_CHKSUM_ERR]" : "",
986 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
987 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
988 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
989 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
990 			  rx_ev_pause_frm ? " [PAUSE]" : "");
991 	}
992 #endif
993 
994 	/* The frame must be discarded if any of these are true. */
995 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
996 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
997 		EFX_RX_PKT_DISCARD : 0;
998 }
999 
1000 /* Handle receive events that are not in-order. Return true if this
1001  * can be handled as a partial packet discard, false if it's more
1002  * serious.
1003  */
1004 static bool
1005 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
1006 {
1007 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1008 	struct efx_nic *efx = rx_queue->efx;
1009 	unsigned expected, dropped;
1010 
1011 	if (rx_queue->scatter_n &&
1012 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
1013 		      rx_queue->ptr_mask)) {
1014 		++channel->n_rx_nodesc_trunc;
1015 		return true;
1016 	}
1017 
1018 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
1019 	dropped = (index - expected) & rx_queue->ptr_mask;
1020 	netif_info(efx, rx_err, efx->net_dev,
1021 		   "dropped %d events (index=%d expected=%d)\n",
1022 		   dropped, index, expected);
1023 
1024 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1025 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1026 	return false;
1027 }
1028 
1029 /* Handle a packet received event
1030  *
1031  * The NIC gives a "discard" flag if it's a unicast packet with the
1032  * wrong destination address
1033  * Also "is multicast" and "matches multicast filter" flags can be used to
1034  * discard non-matching multicast packets.
1035  */
1036 static void
1037 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
1038 {
1039 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1040 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1041 	unsigned expected_ptr;
1042 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
1043 	u16 flags;
1044 	struct efx_rx_queue *rx_queue;
1045 	struct efx_nic *efx = channel->efx;
1046 
1047 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1048 		return;
1049 
1050 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1051 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1052 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1053 		channel->channel);
1054 
1055 	rx_queue = efx_channel_get_rx_queue(channel);
1056 
1057 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1058 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1059 			rx_queue->ptr_mask);
1060 
1061 	/* Check for partial drops and other errors */
1062 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1063 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1064 		if (rx_ev_desc_ptr != expected_ptr &&
1065 		    !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1066 			return;
1067 
1068 		/* Discard all pending fragments */
1069 		if (rx_queue->scatter_n) {
1070 			efx_rx_packet(
1071 				rx_queue,
1072 				rx_queue->removed_count & rx_queue->ptr_mask,
1073 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1074 			rx_queue->removed_count += rx_queue->scatter_n;
1075 			rx_queue->scatter_n = 0;
1076 		}
1077 
1078 		/* Return if there is no new fragment */
1079 		if (rx_ev_desc_ptr != expected_ptr)
1080 			return;
1081 
1082 		/* Discard new fragment if not SOP */
1083 		if (!rx_ev_sop) {
1084 			efx_rx_packet(
1085 				rx_queue,
1086 				rx_queue->removed_count & rx_queue->ptr_mask,
1087 				1, 0, EFX_RX_PKT_DISCARD);
1088 			++rx_queue->removed_count;
1089 			return;
1090 		}
1091 	}
1092 
1093 	++rx_queue->scatter_n;
1094 	if (rx_ev_cont)
1095 		return;
1096 
1097 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1098 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1099 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1100 
1101 	if (likely(rx_ev_pkt_ok)) {
1102 		/* If packet is marked as OK then we can rely on the
1103 		 * hardware checksum and classification.
1104 		 */
1105 		flags = 0;
1106 		switch (rx_ev_hdr_type) {
1107 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1108 			flags |= EFX_RX_PKT_TCP;
1109 			/* fall through */
1110 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1111 			flags |= EFX_RX_PKT_CSUMMED;
1112 			/* fall through */
1113 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1114 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1115 			break;
1116 		}
1117 	} else {
1118 		flags = efx_handle_rx_not_ok(rx_queue, event);
1119 	}
1120 
1121 	/* Detect multicast packets that didn't match the filter */
1122 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1123 	if (rx_ev_mcast_pkt) {
1124 		unsigned int rx_ev_mcast_hash_match =
1125 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1126 
1127 		if (unlikely(!rx_ev_mcast_hash_match)) {
1128 			++channel->n_rx_mcast_mismatch;
1129 			flags |= EFX_RX_PKT_DISCARD;
1130 		}
1131 	}
1132 
1133 	channel->irq_mod_score += 2;
1134 
1135 	/* Handle received packet */
1136 	efx_rx_packet(rx_queue,
1137 		      rx_queue->removed_count & rx_queue->ptr_mask,
1138 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1139 	rx_queue->removed_count += rx_queue->scatter_n;
1140 	rx_queue->scatter_n = 0;
1141 }
1142 
1143 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1144  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1145  * of all transmit completions.
1146  */
1147 static void
1148 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1149 {
1150 	struct efx_tx_queue *tx_queue;
1151 	int qid;
1152 
1153 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1154 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1155 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1156 					    qid % EFX_TXQ_TYPES);
1157 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1158 			efx_magic_event(tx_queue->channel,
1159 					EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1160 		}
1161 	}
1162 }
1163 
1164 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1165  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1166  * the RX queue back to the mask of RX queues in need of flushing.
1167  */
1168 static void
1169 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1170 {
1171 	struct efx_channel *channel;
1172 	struct efx_rx_queue *rx_queue;
1173 	int qid;
1174 	bool failed;
1175 
1176 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1177 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1178 	if (qid >= efx->n_channels)
1179 		return;
1180 	channel = efx_get_channel(efx, qid);
1181 	if (!efx_channel_has_rx_queue(channel))
1182 		return;
1183 	rx_queue = efx_channel_get_rx_queue(channel);
1184 
1185 	if (failed) {
1186 		netif_info(efx, hw, efx->net_dev,
1187 			   "RXQ %d flush retry\n", qid);
1188 		rx_queue->flush_pending = true;
1189 		atomic_inc(&efx->rxq_flush_pending);
1190 	} else {
1191 		efx_magic_event(efx_rx_queue_channel(rx_queue),
1192 				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1193 	}
1194 	atomic_dec(&efx->rxq_flush_outstanding);
1195 	if (efx_flush_wake(efx))
1196 		wake_up(&efx->flush_wq);
1197 }
1198 
1199 static void
1200 efx_handle_drain_event(struct efx_channel *channel)
1201 {
1202 	struct efx_nic *efx = channel->efx;
1203 
1204 	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1205 	atomic_dec(&efx->drain_pending);
1206 	if (efx_flush_wake(efx))
1207 		wake_up(&efx->flush_wq);
1208 }
1209 
1210 static void
1211 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1212 {
1213 	struct efx_nic *efx = channel->efx;
1214 	struct efx_rx_queue *rx_queue =
1215 		efx_channel_has_rx_queue(channel) ?
1216 		efx_channel_get_rx_queue(channel) : NULL;
1217 	unsigned magic, code;
1218 
1219 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1220 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1221 
1222 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1223 		channel->event_test_cpu = raw_smp_processor_id();
1224 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1225 		/* The queue must be empty, so we won't receive any rx
1226 		 * events, so efx_process_channel() won't refill the
1227 		 * queue. Refill it here */
1228 		efx_fast_push_rx_descriptors(rx_queue);
1229 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1230 		efx_handle_drain_event(channel);
1231 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1232 		efx_handle_drain_event(channel);
1233 	} else {
1234 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1235 			  "generated event "EFX_QWORD_FMT"\n",
1236 			  channel->channel, EFX_QWORD_VAL(*event));
1237 	}
1238 }
1239 
1240 static void
1241 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1242 {
1243 	struct efx_nic *efx = channel->efx;
1244 	unsigned int ev_sub_code;
1245 	unsigned int ev_sub_data;
1246 
1247 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1248 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1249 
1250 	switch (ev_sub_code) {
1251 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1252 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1253 			   channel->channel, ev_sub_data);
1254 		efx_handle_tx_flush_done(efx, event);
1255 		efx_sriov_tx_flush_done(efx, event);
1256 		break;
1257 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1258 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1259 			   channel->channel, ev_sub_data);
1260 		efx_handle_rx_flush_done(efx, event);
1261 		efx_sriov_rx_flush_done(efx, event);
1262 		break;
1263 	case FSE_AZ_EVQ_INIT_DONE_EV:
1264 		netif_dbg(efx, hw, efx->net_dev,
1265 			  "channel %d EVQ %d initialised\n",
1266 			  channel->channel, ev_sub_data);
1267 		break;
1268 	case FSE_AZ_SRM_UPD_DONE_EV:
1269 		netif_vdbg(efx, hw, efx->net_dev,
1270 			   "channel %d SRAM update done\n", channel->channel);
1271 		break;
1272 	case FSE_AZ_WAKE_UP_EV:
1273 		netif_vdbg(efx, hw, efx->net_dev,
1274 			   "channel %d RXQ %d wakeup event\n",
1275 			   channel->channel, ev_sub_data);
1276 		break;
1277 	case FSE_AZ_TIMER_EV:
1278 		netif_vdbg(efx, hw, efx->net_dev,
1279 			   "channel %d RX queue %d timer expired\n",
1280 			   channel->channel, ev_sub_data);
1281 		break;
1282 	case FSE_AA_RX_RECOVER_EV:
1283 		netif_err(efx, rx_err, efx->net_dev,
1284 			  "channel %d seen DRIVER RX_RESET event. "
1285 			"Resetting.\n", channel->channel);
1286 		atomic_inc(&efx->rx_reset);
1287 		efx_schedule_reset(efx,
1288 				   EFX_WORKAROUND_6555(efx) ?
1289 				   RESET_TYPE_RX_RECOVERY :
1290 				   RESET_TYPE_DISABLE);
1291 		break;
1292 	case FSE_BZ_RX_DSC_ERROR_EV:
1293 		if (ev_sub_data < EFX_VI_BASE) {
1294 			netif_err(efx, rx_err, efx->net_dev,
1295 				  "RX DMA Q %d reports descriptor fetch error."
1296 				  " RX Q %d is disabled.\n", ev_sub_data,
1297 				  ev_sub_data);
1298 			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1299 		} else
1300 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1301 		break;
1302 	case FSE_BZ_TX_DSC_ERROR_EV:
1303 		if (ev_sub_data < EFX_VI_BASE) {
1304 			netif_err(efx, tx_err, efx->net_dev,
1305 				  "TX DMA Q %d reports descriptor fetch error."
1306 				  " TX Q %d is disabled.\n", ev_sub_data,
1307 				  ev_sub_data);
1308 			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1309 		} else
1310 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1311 		break;
1312 	default:
1313 		netif_vdbg(efx, hw, efx->net_dev,
1314 			   "channel %d unknown driver event code %d "
1315 			   "data %04x\n", channel->channel, ev_sub_code,
1316 			   ev_sub_data);
1317 		break;
1318 	}
1319 }
1320 
1321 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1322 {
1323 	struct efx_nic *efx = channel->efx;
1324 	unsigned int read_ptr;
1325 	efx_qword_t event, *p_event;
1326 	int ev_code;
1327 	int tx_packets = 0;
1328 	int spent = 0;
1329 
1330 	read_ptr = channel->eventq_read_ptr;
1331 
1332 	for (;;) {
1333 		p_event = efx_event(channel, read_ptr);
1334 		event = *p_event;
1335 
1336 		if (!efx_event_present(&event))
1337 			/* End of events */
1338 			break;
1339 
1340 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1341 			   "channel %d event is "EFX_QWORD_FMT"\n",
1342 			   channel->channel, EFX_QWORD_VAL(event));
1343 
1344 		/* Clear this event by marking it all ones */
1345 		EFX_SET_QWORD(*p_event);
1346 
1347 		++read_ptr;
1348 
1349 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1350 
1351 		switch (ev_code) {
1352 		case FSE_AZ_EV_CODE_RX_EV:
1353 			efx_handle_rx_event(channel, &event);
1354 			if (++spent == budget)
1355 				goto out;
1356 			break;
1357 		case FSE_AZ_EV_CODE_TX_EV:
1358 			tx_packets += efx_handle_tx_event(channel, &event);
1359 			if (tx_packets > efx->txq_entries) {
1360 				spent = budget;
1361 				goto out;
1362 			}
1363 			break;
1364 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1365 			efx_handle_generated_event(channel, &event);
1366 			break;
1367 		case FSE_AZ_EV_CODE_DRIVER_EV:
1368 			efx_handle_driver_event(channel, &event);
1369 			break;
1370 		case FSE_CZ_EV_CODE_USER_EV:
1371 			efx_sriov_event(channel, &event);
1372 			break;
1373 		case FSE_CZ_EV_CODE_MCDI_EV:
1374 			efx_mcdi_process_event(channel, &event);
1375 			break;
1376 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1377 			if (efx->type->handle_global_event &&
1378 			    efx->type->handle_global_event(channel, &event))
1379 				break;
1380 			/* else fall through */
1381 		default:
1382 			netif_err(channel->efx, hw, channel->efx->net_dev,
1383 				  "channel %d unknown event type %d (data "
1384 				  EFX_QWORD_FMT ")\n", channel->channel,
1385 				  ev_code, EFX_QWORD_VAL(event));
1386 		}
1387 	}
1388 
1389 out:
1390 	channel->eventq_read_ptr = read_ptr;
1391 	return spent;
1392 }
1393 
1394 /* Check whether an event is present in the eventq at the current
1395  * read pointer.  Only useful for self-test.
1396  */
1397 bool efx_nic_event_present(struct efx_channel *channel)
1398 {
1399 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1400 }
1401 
1402 /* Allocate buffer table entries for event queue */
1403 int efx_nic_probe_eventq(struct efx_channel *channel)
1404 {
1405 	struct efx_nic *efx = channel->efx;
1406 	unsigned entries;
1407 
1408 	entries = channel->eventq_mask + 1;
1409 	return efx_alloc_special_buffer(efx, &channel->eventq,
1410 					entries * sizeof(efx_qword_t));
1411 }
1412 
1413 void efx_nic_init_eventq(struct efx_channel *channel)
1414 {
1415 	efx_oword_t reg;
1416 	struct efx_nic *efx = channel->efx;
1417 
1418 	netif_dbg(efx, hw, efx->net_dev,
1419 		  "channel %d event queue in special buffers %d-%d\n",
1420 		  channel->channel, channel->eventq.index,
1421 		  channel->eventq.index + channel->eventq.entries - 1);
1422 
1423 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1424 		EFX_POPULATE_OWORD_3(reg,
1425 				     FRF_CZ_TIMER_Q_EN, 1,
1426 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1427 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1428 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1429 	}
1430 
1431 	/* Pin event queue buffer */
1432 	efx_init_special_buffer(efx, &channel->eventq);
1433 
1434 	/* Fill event queue with all ones (i.e. empty events) */
1435 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1436 
1437 	/* Push event queue to card */
1438 	EFX_POPULATE_OWORD_3(reg,
1439 			     FRF_AZ_EVQ_EN, 1,
1440 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1441 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1442 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1443 			 channel->channel);
1444 
1445 	efx->type->push_irq_moderation(channel);
1446 }
1447 
1448 void efx_nic_fini_eventq(struct efx_channel *channel)
1449 {
1450 	efx_oword_t reg;
1451 	struct efx_nic *efx = channel->efx;
1452 
1453 	/* Remove event queue from card */
1454 	EFX_ZERO_OWORD(reg);
1455 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1456 			 channel->channel);
1457 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1458 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1459 
1460 	/* Unpin event queue */
1461 	efx_fini_special_buffer(efx, &channel->eventq);
1462 }
1463 
1464 /* Free buffers backing event queue */
1465 void efx_nic_remove_eventq(struct efx_channel *channel)
1466 {
1467 	efx_free_special_buffer(channel->efx, &channel->eventq);
1468 }
1469 
1470 
1471 void efx_nic_event_test_start(struct efx_channel *channel)
1472 {
1473 	channel->event_test_cpu = -1;
1474 	smp_wmb();
1475 	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1476 }
1477 
1478 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1479 {
1480 	efx_magic_event(efx_rx_queue_channel(rx_queue),
1481 			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1482 }
1483 
1484 /**************************************************************************
1485  *
1486  * Hardware interrupts
1487  * The hardware interrupt handler does very little work; all the event
1488  * queue processing is carried out by per-channel tasklets.
1489  *
1490  **************************************************************************/
1491 
1492 /* Enable/disable/generate interrupts */
1493 static inline void efx_nic_interrupts(struct efx_nic *efx,
1494 				      bool enabled, bool force)
1495 {
1496 	efx_oword_t int_en_reg_ker;
1497 
1498 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1499 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1500 			     FRF_AZ_KER_INT_KER, force,
1501 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1502 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1503 }
1504 
1505 void efx_nic_enable_interrupts(struct efx_nic *efx)
1506 {
1507 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1508 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1509 
1510 	efx_nic_interrupts(efx, true, false);
1511 }
1512 
1513 void efx_nic_disable_interrupts(struct efx_nic *efx)
1514 {
1515 	/* Disable interrupts */
1516 	efx_nic_interrupts(efx, false, false);
1517 }
1518 
1519 /* Generate a test interrupt
1520  * Interrupt must already have been enabled, otherwise nasty things
1521  * may happen.
1522  */
1523 void efx_nic_irq_test_start(struct efx_nic *efx)
1524 {
1525 	efx->last_irq_cpu = -1;
1526 	smp_wmb();
1527 	efx_nic_interrupts(efx, true, true);
1528 }
1529 
1530 /* Process a fatal interrupt
1531  * Disable bus mastering ASAP and schedule a reset
1532  */
1533 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1534 {
1535 	struct falcon_nic_data *nic_data = efx->nic_data;
1536 	efx_oword_t *int_ker = efx->irq_status.addr;
1537 	efx_oword_t fatal_intr;
1538 	int error, mem_perr;
1539 
1540 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1541 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1542 
1543 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1544 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1545 		  EFX_OWORD_VAL(fatal_intr),
1546 		  error ? "disabling bus mastering" : "no recognised error");
1547 
1548 	/* If this is a memory parity error dump which blocks are offending */
1549 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1550 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1551 	if (mem_perr) {
1552 		efx_oword_t reg;
1553 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1554 		netif_err(efx, hw, efx->net_dev,
1555 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1556 			  EFX_OWORD_VAL(reg));
1557 	}
1558 
1559 	/* Disable both devices */
1560 	pci_clear_master(efx->pci_dev);
1561 	if (efx_nic_is_dual_func(efx))
1562 		pci_clear_master(nic_data->pci_dev2);
1563 	efx_nic_disable_interrupts(efx);
1564 
1565 	/* Count errors and reset or disable the NIC accordingly */
1566 	if (efx->int_error_count == 0 ||
1567 	    time_after(jiffies, efx->int_error_expire)) {
1568 		efx->int_error_count = 0;
1569 		efx->int_error_expire =
1570 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1571 	}
1572 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1573 		netif_err(efx, hw, efx->net_dev,
1574 			  "SYSTEM ERROR - reset scheduled\n");
1575 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1576 	} else {
1577 		netif_err(efx, hw, efx->net_dev,
1578 			  "SYSTEM ERROR - max number of errors seen."
1579 			  "NIC will be disabled\n");
1580 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1581 	}
1582 
1583 	return IRQ_HANDLED;
1584 }
1585 
1586 /* Handle a legacy interrupt
1587  * Acknowledges the interrupt and schedule event queue processing.
1588  */
1589 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1590 {
1591 	struct efx_nic *efx = dev_id;
1592 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1593 	efx_oword_t *int_ker = efx->irq_status.addr;
1594 	irqreturn_t result = IRQ_NONE;
1595 	struct efx_channel *channel;
1596 	efx_dword_t reg;
1597 	u32 queues;
1598 	int syserr;
1599 
1600 	/* Read the ISR which also ACKs the interrupts */
1601 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1602 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1603 
1604 	/* Legacy interrupts are disabled too late by the EEH kernel
1605 	 * code. Disable them earlier.
1606 	 * If an EEH error occurred, the read will have returned all ones.
1607 	 */
1608 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1609 	    !efx->eeh_disabled_legacy_irq) {
1610 		disable_irq_nosync(efx->legacy_irq);
1611 		efx->eeh_disabled_legacy_irq = true;
1612 	}
1613 
1614 	/* Handle non-event-queue sources */
1615 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1616 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1617 		if (unlikely(syserr))
1618 			return efx_nic_fatal_interrupt(efx);
1619 		efx->last_irq_cpu = raw_smp_processor_id();
1620 	}
1621 
1622 	if (queues != 0) {
1623 		if (EFX_WORKAROUND_15783(efx))
1624 			efx->irq_zero_count = 0;
1625 
1626 		/* Schedule processing of any interrupting queues */
1627 		if (likely(soft_enabled)) {
1628 			efx_for_each_channel(channel, efx) {
1629 				if (queues & 1)
1630 					efx_schedule_channel_irq(channel);
1631 				queues >>= 1;
1632 			}
1633 		}
1634 		result = IRQ_HANDLED;
1635 
1636 	} else if (EFX_WORKAROUND_15783(efx)) {
1637 		efx_qword_t *event;
1638 
1639 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1640 		 * because this might be a shared interrupt. */
1641 		if (efx->irq_zero_count++ == 0)
1642 			result = IRQ_HANDLED;
1643 
1644 		/* Ensure we schedule or rearm all event queues */
1645 		if (likely(soft_enabled)) {
1646 			efx_for_each_channel(channel, efx) {
1647 				event = efx_event(channel,
1648 						  channel->eventq_read_ptr);
1649 				if (efx_event_present(event))
1650 					efx_schedule_channel_irq(channel);
1651 				else
1652 					efx_nic_eventq_read_ack(channel);
1653 			}
1654 		}
1655 	}
1656 
1657 	if (result == IRQ_HANDLED)
1658 		netif_vdbg(efx, intr, efx->net_dev,
1659 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1660 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1661 
1662 	return result;
1663 }
1664 
1665 /* Handle an MSI interrupt
1666  *
1667  * Handle an MSI hardware interrupt.  This routine schedules event
1668  * queue processing.  No interrupt acknowledgement cycle is necessary.
1669  * Also, we never need to check that the interrupt is for us, since
1670  * MSI interrupts cannot be shared.
1671  */
1672 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1673 {
1674 	struct efx_msi_context *context = dev_id;
1675 	struct efx_nic *efx = context->efx;
1676 	efx_oword_t *int_ker = efx->irq_status.addr;
1677 	int syserr;
1678 
1679 	netif_vdbg(efx, intr, efx->net_dev,
1680 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1681 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1682 
1683 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1684 		return IRQ_HANDLED;
1685 
1686 	/* Handle non-event-queue sources */
1687 	if (context->index == efx->irq_level) {
1688 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1689 		if (unlikely(syserr))
1690 			return efx_nic_fatal_interrupt(efx);
1691 		efx->last_irq_cpu = raw_smp_processor_id();
1692 	}
1693 
1694 	/* Schedule processing of the channel */
1695 	efx_schedule_channel_irq(efx->channel[context->index]);
1696 
1697 	return IRQ_HANDLED;
1698 }
1699 
1700 
1701 /* Setup RSS indirection table.
1702  * This maps from the hash value of the packet to RXQ
1703  */
1704 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1705 {
1706 	size_t i = 0;
1707 	efx_dword_t dword;
1708 
1709 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1710 		return;
1711 
1712 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1713 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1714 
1715 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1716 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1717 				     efx->rx_indir_table[i]);
1718 		efx_writed(efx, &dword,
1719 			   FR_BZ_RX_INDIRECTION_TBL +
1720 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1721 	}
1722 }
1723 
1724 /* Hook interrupt handler(s)
1725  * Try MSI and then legacy interrupts.
1726  */
1727 int efx_nic_init_interrupt(struct efx_nic *efx)
1728 {
1729 	struct efx_channel *channel;
1730 	unsigned int n_irqs;
1731 	int rc;
1732 
1733 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1734 		irq_handler_t handler;
1735 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1736 			handler = efx_legacy_interrupt;
1737 		else
1738 			handler = falcon_legacy_interrupt_a1;
1739 
1740 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1741 				 efx->name, efx);
1742 		if (rc) {
1743 			netif_err(efx, drv, efx->net_dev,
1744 				  "failed to hook legacy IRQ %d\n",
1745 				  efx->pci_dev->irq);
1746 			goto fail1;
1747 		}
1748 		return 0;
1749 	}
1750 
1751 #ifdef CONFIG_RFS_ACCEL
1752 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1753 		efx->net_dev->rx_cpu_rmap =
1754 			alloc_irq_cpu_rmap(efx->n_rx_channels);
1755 		if (!efx->net_dev->rx_cpu_rmap) {
1756 			rc = -ENOMEM;
1757 			goto fail1;
1758 		}
1759 	}
1760 #endif
1761 
1762 	/* Hook MSI or MSI-X interrupt */
1763 	n_irqs = 0;
1764 	efx_for_each_channel(channel, efx) {
1765 		rc = request_irq(channel->irq, efx_msi_interrupt,
1766 				 IRQF_PROBE_SHARED, /* Not shared */
1767 				 efx->msi_context[channel->channel].name,
1768 				 &efx->msi_context[channel->channel]);
1769 		if (rc) {
1770 			netif_err(efx, drv, efx->net_dev,
1771 				  "failed to hook IRQ %d\n", channel->irq);
1772 			goto fail2;
1773 		}
1774 		++n_irqs;
1775 
1776 #ifdef CONFIG_RFS_ACCEL
1777 		if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
1778 		    channel->channel < efx->n_rx_channels) {
1779 			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1780 					      channel->irq);
1781 			if (rc)
1782 				goto fail2;
1783 		}
1784 #endif
1785 	}
1786 
1787 	return 0;
1788 
1789  fail2:
1790 #ifdef CONFIG_RFS_ACCEL
1791 	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1792 	efx->net_dev->rx_cpu_rmap = NULL;
1793 #endif
1794 	efx_for_each_channel(channel, efx) {
1795 		if (n_irqs-- == 0)
1796 			break;
1797 		free_irq(channel->irq, &efx->msi_context[channel->channel]);
1798 	}
1799  fail1:
1800 	return rc;
1801 }
1802 
1803 void efx_nic_fini_interrupt(struct efx_nic *efx)
1804 {
1805 	struct efx_channel *channel;
1806 
1807 #ifdef CONFIG_RFS_ACCEL
1808 	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1809 	efx->net_dev->rx_cpu_rmap = NULL;
1810 #endif
1811 
1812 	/* Disable MSI/MSI-X interrupts */
1813 	efx_for_each_channel(channel, efx)
1814 		free_irq(channel->irq, &efx->msi_context[channel->channel]);
1815 
1816 	/* Disable legacy interrupt */
1817 	if (efx->legacy_irq)
1818 		free_irq(efx->legacy_irq, efx);
1819 }
1820 
1821 /* Looks at available SRAM resources and works out how many queues we
1822  * can support, and where things like descriptor caches should live.
1823  *
1824  * SRAM is split up as follows:
1825  * 0                          buftbl entries for channels
1826  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1827  * efx->rx_dc_base            RX descriptor caches
1828  * efx->tx_dc_base            TX descriptor caches
1829  */
1830 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1831 {
1832 	unsigned vi_count, buftbl_min;
1833 
1834 	/* Account for the buffer table entries backing the datapath channels
1835 	 * and the descriptor caches for those channels.
1836 	 */
1837 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1838 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1839 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1840 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1841 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1842 
1843 #ifdef CONFIG_SFC_SRIOV
1844 	if (efx_sriov_wanted(efx)) {
1845 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1846 
1847 		efx->vf_buftbl_base = buftbl_min;
1848 
1849 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1850 		vi_count = max(vi_count, EFX_VI_BASE);
1851 		buftbl_free = (sram_lim_qw - buftbl_min -
1852 			       vi_count * vi_dc_entries);
1853 
1854 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1855 				  efx_vf_size(efx));
1856 		vf_limit = min(buftbl_free / entries_per_vf,
1857 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1858 
1859 		if (efx->vf_count > vf_limit) {
1860 			netif_err(efx, probe, efx->net_dev,
1861 				  "Reducing VF count from from %d to %d\n",
1862 				  efx->vf_count, vf_limit);
1863 			efx->vf_count = vf_limit;
1864 		}
1865 		vi_count += efx->vf_count * efx_vf_size(efx);
1866 	}
1867 #endif
1868 
1869 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1870 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1871 }
1872 
1873 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1874 {
1875 	efx_oword_t altera_build;
1876 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1877 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1878 }
1879 
1880 void efx_nic_init_common(struct efx_nic *efx)
1881 {
1882 	efx_oword_t temp;
1883 
1884 	/* Set positions of descriptor caches in SRAM. */
1885 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1886 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1887 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1888 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1889 
1890 	/* Set TX descriptor cache size. */
1891 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1892 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1893 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1894 
1895 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1896 	 * this allows most efficient prefetching.
1897 	 */
1898 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1899 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1900 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1901 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1902 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1903 
1904 	/* Program INT_KER address */
1905 	EFX_POPULATE_OWORD_2(temp,
1906 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1907 			     EFX_INT_MODE_USE_MSI(efx),
1908 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1909 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1910 
1911 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1912 		/* Use an interrupt level unused by event queues */
1913 		efx->irq_level = 0x1f;
1914 	else
1915 		/* Use a valid MSI-X vector */
1916 		efx->irq_level = 0;
1917 
1918 	/* Enable all the genuinely fatal interrupts.  (They are still
1919 	 * masked by the overall interrupt mask, controlled by
1920 	 * falcon_interrupts()).
1921 	 *
1922 	 * Note: All other fatal interrupts are enabled
1923 	 */
1924 	EFX_POPULATE_OWORD_3(temp,
1925 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1926 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1927 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1928 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1929 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1930 	EFX_INVERT_OWORD(temp);
1931 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1932 
1933 	efx_nic_push_rx_indir_table(efx);
1934 
1935 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1936 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1937 	 */
1938 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1939 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1940 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1941 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1942 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1943 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1944 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1945 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1946 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1947 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1948 	/* Disable hardware watchdog which can misfire */
1949 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1950 	/* Squash TX of packets of 16 bytes or less */
1951 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1952 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1953 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1954 
1955 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1956 		EFX_POPULATE_OWORD_4(temp,
1957 				     /* Default values */
1958 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1959 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1960 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1961 				     /* Allow large pace values in the
1962 				      * fast bin. */
1963 				     FRF_BZ_TX_PACE_BIN_TH,
1964 				     FFE_BZ_TX_PACE_RESERVED);
1965 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1966 	}
1967 }
1968 
1969 /* Register dump */
1970 
1971 #define REGISTER_REVISION_A	1
1972 #define REGISTER_REVISION_B	2
1973 #define REGISTER_REVISION_C	3
1974 #define REGISTER_REVISION_Z	3	/* latest revision */
1975 
1976 struct efx_nic_reg {
1977 	u32 offset:24;
1978 	u32 min_revision:2, max_revision:2;
1979 };
1980 
1981 #define REGISTER(name, min_rev, max_rev) {				\
1982 	FR_ ## min_rev ## max_rev ## _ ## name,				\
1983 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1984 }
1985 #define REGISTER_AA(name) REGISTER(name, A, A)
1986 #define REGISTER_AB(name) REGISTER(name, A, B)
1987 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1988 #define REGISTER_BB(name) REGISTER(name, B, B)
1989 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1990 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1991 
1992 static const struct efx_nic_reg efx_nic_regs[] = {
1993 	REGISTER_AZ(ADR_REGION),
1994 	REGISTER_AZ(INT_EN_KER),
1995 	REGISTER_BZ(INT_EN_CHAR),
1996 	REGISTER_AZ(INT_ADR_KER),
1997 	REGISTER_BZ(INT_ADR_CHAR),
1998 	/* INT_ACK_KER is WO */
1999 	/* INT_ISR0 is RC */
2000 	REGISTER_AZ(HW_INIT),
2001 	REGISTER_CZ(USR_EV_CFG),
2002 	REGISTER_AB(EE_SPI_HCMD),
2003 	REGISTER_AB(EE_SPI_HADR),
2004 	REGISTER_AB(EE_SPI_HDATA),
2005 	REGISTER_AB(EE_BASE_PAGE),
2006 	REGISTER_AB(EE_VPD_CFG0),
2007 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
2008 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
2009 	/* PCIE_CORE_INDIRECT is indirect */
2010 	REGISTER_AB(NIC_STAT),
2011 	REGISTER_AB(GPIO_CTL),
2012 	REGISTER_AB(GLB_CTL),
2013 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
2014 	REGISTER_BZ(DP_CTRL),
2015 	REGISTER_AZ(MEM_STAT),
2016 	REGISTER_AZ(CS_DEBUG),
2017 	REGISTER_AZ(ALTERA_BUILD),
2018 	REGISTER_AZ(CSR_SPARE),
2019 	REGISTER_AB(PCIE_SD_CTL0123),
2020 	REGISTER_AB(PCIE_SD_CTL45),
2021 	REGISTER_AB(PCIE_PCS_CTL_STAT),
2022 	/* DEBUG_DATA_OUT is not used */
2023 	/* DRV_EV is WO */
2024 	REGISTER_AZ(EVQ_CTL),
2025 	REGISTER_AZ(EVQ_CNT1),
2026 	REGISTER_AZ(EVQ_CNT2),
2027 	REGISTER_AZ(BUF_TBL_CFG),
2028 	REGISTER_AZ(SRM_RX_DC_CFG),
2029 	REGISTER_AZ(SRM_TX_DC_CFG),
2030 	REGISTER_AZ(SRM_CFG),
2031 	/* BUF_TBL_UPD is WO */
2032 	REGISTER_AZ(SRM_UPD_EVQ),
2033 	REGISTER_AZ(SRAM_PARITY),
2034 	REGISTER_AZ(RX_CFG),
2035 	REGISTER_BZ(RX_FILTER_CTL),
2036 	/* RX_FLUSH_DESCQ is WO */
2037 	REGISTER_AZ(RX_DC_CFG),
2038 	REGISTER_AZ(RX_DC_PF_WM),
2039 	REGISTER_BZ(RX_RSS_TKEY),
2040 	/* RX_NODESC_DROP is RC */
2041 	REGISTER_AA(RX_SELF_RST),
2042 	/* RX_DEBUG, RX_PUSH_DROP are not used */
2043 	REGISTER_CZ(RX_RSS_IPV6_REG1),
2044 	REGISTER_CZ(RX_RSS_IPV6_REG2),
2045 	REGISTER_CZ(RX_RSS_IPV6_REG3),
2046 	/* TX_FLUSH_DESCQ is WO */
2047 	REGISTER_AZ(TX_DC_CFG),
2048 	REGISTER_AA(TX_CHKSM_CFG),
2049 	REGISTER_AZ(TX_CFG),
2050 	/* TX_PUSH_DROP is not used */
2051 	REGISTER_AZ(TX_RESERVED),
2052 	REGISTER_BZ(TX_PACE),
2053 	/* TX_PACE_DROP_QID is RC */
2054 	REGISTER_BB(TX_VLAN),
2055 	REGISTER_BZ(TX_IPFIL_PORTEN),
2056 	REGISTER_AB(MD_TXD),
2057 	REGISTER_AB(MD_RXD),
2058 	REGISTER_AB(MD_CS),
2059 	REGISTER_AB(MD_PHY_ADR),
2060 	REGISTER_AB(MD_ID),
2061 	/* MD_STAT is RC */
2062 	REGISTER_AB(MAC_STAT_DMA),
2063 	REGISTER_AB(MAC_CTRL),
2064 	REGISTER_BB(GEN_MODE),
2065 	REGISTER_AB(MAC_MC_HASH_REG0),
2066 	REGISTER_AB(MAC_MC_HASH_REG1),
2067 	REGISTER_AB(GM_CFG1),
2068 	REGISTER_AB(GM_CFG2),
2069 	/* GM_IPG and GM_HD are not used */
2070 	REGISTER_AB(GM_MAX_FLEN),
2071 	/* GM_TEST is not used */
2072 	REGISTER_AB(GM_ADR1),
2073 	REGISTER_AB(GM_ADR2),
2074 	REGISTER_AB(GMF_CFG0),
2075 	REGISTER_AB(GMF_CFG1),
2076 	REGISTER_AB(GMF_CFG2),
2077 	REGISTER_AB(GMF_CFG3),
2078 	REGISTER_AB(GMF_CFG4),
2079 	REGISTER_AB(GMF_CFG5),
2080 	REGISTER_BB(TX_SRC_MAC_CTL),
2081 	REGISTER_AB(XM_ADR_LO),
2082 	REGISTER_AB(XM_ADR_HI),
2083 	REGISTER_AB(XM_GLB_CFG),
2084 	REGISTER_AB(XM_TX_CFG),
2085 	REGISTER_AB(XM_RX_CFG),
2086 	REGISTER_AB(XM_MGT_INT_MASK),
2087 	REGISTER_AB(XM_FC),
2088 	REGISTER_AB(XM_PAUSE_TIME),
2089 	REGISTER_AB(XM_TX_PARAM),
2090 	REGISTER_AB(XM_RX_PARAM),
2091 	/* XM_MGT_INT_MSK (note no 'A') is RC */
2092 	REGISTER_AB(XX_PWR_RST),
2093 	REGISTER_AB(XX_SD_CTL),
2094 	REGISTER_AB(XX_TXDRV_CTL),
2095 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
2096 	/* XX_CORE_STAT is partly RC */
2097 };
2098 
2099 struct efx_nic_reg_table {
2100 	u32 offset:24;
2101 	u32 min_revision:2, max_revision:2;
2102 	u32 step:6, rows:21;
2103 };
2104 
2105 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
2106 	offset,								\
2107 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
2108 	step, rows							\
2109 }
2110 #define REGISTER_TABLE(name, min_rev, max_rev)				\
2111 	REGISTER_TABLE_DIMENSIONS(					\
2112 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
2113 		min_rev, max_rev,					\
2114 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
2115 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
2116 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
2117 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
2118 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
2119 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
2120 #define REGISTER_TABLE_BB_CZ(name)					\
2121 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
2122 				  FR_BZ_ ## name ## _STEP,		\
2123 				  FR_BB_ ## name ## _ROWS),		\
2124 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
2125 				  FR_BZ_ ## name ## _STEP,		\
2126 				  FR_CZ_ ## name ## _ROWS)
2127 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2128 
2129 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2130 	/* DRIVER is not used */
2131 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2132 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
2133 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2134 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2135 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2136 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2137 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2138 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2139 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2140 	/* We can't reasonably read all of the buffer table (up to 8MB!).
2141 	 * However this driver will only use a few entries.  Reading
2142 	 * 1K entries allows for some expansion of queue count and
2143 	 * size before we need to change the version. */
2144 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2145 				  A, A, 8, 1024),
2146 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2147 				  B, Z, 8, 1024),
2148 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2149 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
2150 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2151 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2152 	/* TX_FILTER_TBL0 is huge and not used by this driver */
2153 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2154 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
2155 	/* MSIX_PBA_TABLE is not mapped */
2156 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2157 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2158 };
2159 
2160 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2161 {
2162 	const struct efx_nic_reg *reg;
2163 	const struct efx_nic_reg_table *table;
2164 	size_t len = 0;
2165 
2166 	for (reg = efx_nic_regs;
2167 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2168 	     reg++)
2169 		if (efx->type->revision >= reg->min_revision &&
2170 		    efx->type->revision <= reg->max_revision)
2171 			len += sizeof(efx_oword_t);
2172 
2173 	for (table = efx_nic_reg_tables;
2174 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2175 	     table++)
2176 		if (efx->type->revision >= table->min_revision &&
2177 		    efx->type->revision <= table->max_revision)
2178 			len += table->rows * min_t(size_t, table->step, 16);
2179 
2180 	return len;
2181 }
2182 
2183 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2184 {
2185 	const struct efx_nic_reg *reg;
2186 	const struct efx_nic_reg_table *table;
2187 
2188 	for (reg = efx_nic_regs;
2189 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2190 	     reg++) {
2191 		if (efx->type->revision >= reg->min_revision &&
2192 		    efx->type->revision <= reg->max_revision) {
2193 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2194 			buf += sizeof(efx_oword_t);
2195 		}
2196 	}
2197 
2198 	for (table = efx_nic_reg_tables;
2199 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2200 	     table++) {
2201 		size_t size, i;
2202 
2203 		if (!(efx->type->revision >= table->min_revision &&
2204 		      efx->type->revision <= table->max_revision))
2205 			continue;
2206 
2207 		size = min_t(size_t, table->step, 16);
2208 
2209 		for (i = 0; i < table->rows; i++) {
2210 			switch (table->step) {
2211 			case 4: /* 32-bit SRAM */
2212 				efx_readd(efx, buf, table->offset + 4 * i);
2213 				break;
2214 			case 8: /* 64-bit SRAM */
2215 				efx_sram_readq(efx,
2216 					       efx->membase + table->offset,
2217 					       buf, i);
2218 				break;
2219 			case 16: /* 128-bit-readable register */
2220 				efx_reado_table(efx, buf, table->offset, i);
2221 				break;
2222 			case 32: /* 128-bit register, interleaved */
2223 				efx_reado_table(efx, buf, table->offset, 2 * i);
2224 				break;
2225 			default:
2226 				WARN_ON(1);
2227 				return;
2228 			}
2229 			buf += size;
2230 		}
2231 	}
2232 }
2233