xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.c (revision d5e8cc6c)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
60 
61 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63 
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
65 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
67 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
68 			   efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
74 			   (_tx_queue)->queue)
75 
76 /**************************************************************************
77  *
78  * Solarstorm hardware access
79  *
80  **************************************************************************/
81 
82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83 				     unsigned int index)
84 {
85 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86 			value, index);
87 }
88 
89 /* Read the current event from the event queue */
90 static inline efx_qword_t *efx_event(struct efx_channel *channel,
91 				     unsigned int index)
92 {
93 	return ((efx_qword_t *) (channel->eventq.addr)) +
94 		(index & channel->eventq_mask);
95 }
96 
97 /* See if an event is present
98  *
99  * We check both the high and low dword of the event for all ones.  We
100  * wrote all ones when we cleared the event, and no valid event can
101  * have all ones in either its high or low dwords.  This approach is
102  * robust against reordering.
103  *
104  * Note that using a single 64-bit comparison is incorrect; even
105  * though the CPU read will be atomic, the DMA write may not be.
106  */
107 static inline int efx_event_present(efx_qword_t *event)
108 {
109 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
111 }
112 
113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114 				     const efx_oword_t *mask)
115 {
116 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118 }
119 
120 int efx_nic_test_registers(struct efx_nic *efx,
121 			   const struct efx_nic_register_test *regs,
122 			   size_t n_regs)
123 {
124 	unsigned address = 0, i, j;
125 	efx_oword_t mask, imask, original, reg, buf;
126 
127 	for (i = 0; i < n_regs; ++i) {
128 		address = regs[i].address;
129 		mask = imask = regs[i].mask;
130 		EFX_INVERT_OWORD(imask);
131 
132 		efx_reado(efx, &original, address);
133 
134 		/* bit sweep on and off */
135 		for (j = 0; j < 128; j++) {
136 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
137 				continue;
138 
139 			/* Test this testable bit can be set in isolation */
140 			EFX_AND_OWORD(reg, original, mask);
141 			EFX_SET_OWORD32(reg, j, j, 1);
142 
143 			efx_writeo(efx, &reg, address);
144 			efx_reado(efx, &buf, address);
145 
146 			if (efx_masked_compare_oword(&reg, &buf, &mask))
147 				goto fail;
148 
149 			/* Test this testable bit can be cleared in isolation */
150 			EFX_OR_OWORD(reg, original, mask);
151 			EFX_SET_OWORD32(reg, j, j, 0);
152 
153 			efx_writeo(efx, &reg, address);
154 			efx_reado(efx, &buf, address);
155 
156 			if (efx_masked_compare_oword(&reg, &buf, &mask))
157 				goto fail;
158 		}
159 
160 		efx_writeo(efx, &original, address);
161 	}
162 
163 	return 0;
164 
165 fail:
166 	netif_err(efx, hw, efx->net_dev,
167 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
168 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
169 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
170 	return -EIO;
171 }
172 
173 /**************************************************************************
174  *
175  * Special buffer handling
176  * Special buffers are used for event queues and the TX and RX
177  * descriptor rings.
178  *
179  *************************************************************************/
180 
181 /*
182  * Initialise a special buffer
183  *
184  * This will define a buffer (previously allocated via
185  * efx_alloc_special_buffer()) in the buffer table, allowing
186  * it to be used for event queues, descriptor rings etc.
187  */
188 static void
189 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
190 {
191 	efx_qword_t buf_desc;
192 	unsigned int index;
193 	dma_addr_t dma_addr;
194 	int i;
195 
196 	EFX_BUG_ON_PARANOID(!buffer->addr);
197 
198 	/* Write buffer descriptors to NIC */
199 	for (i = 0; i < buffer->entries; i++) {
200 		index = buffer->index + i;
201 		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
202 		netif_dbg(efx, probe, efx->net_dev,
203 			  "mapping special buffer %d at %llx\n",
204 			  index, (unsigned long long)dma_addr);
205 		EFX_POPULATE_QWORD_3(buf_desc,
206 				     FRF_AZ_BUF_ADR_REGION, 0,
207 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
208 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
209 		efx_write_buf_tbl(efx, &buf_desc, index);
210 	}
211 }
212 
213 /* Unmaps a buffer and clears the buffer table entries */
214 static void
215 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
216 {
217 	efx_oword_t buf_tbl_upd;
218 	unsigned int start = buffer->index;
219 	unsigned int end = (buffer->index + buffer->entries - 1);
220 
221 	if (!buffer->entries)
222 		return;
223 
224 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
225 		  buffer->index, buffer->index + buffer->entries - 1);
226 
227 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
228 			     FRF_AZ_BUF_UPD_CMD, 0,
229 			     FRF_AZ_BUF_CLR_CMD, 1,
230 			     FRF_AZ_BUF_CLR_END_ID, end,
231 			     FRF_AZ_BUF_CLR_START_ID, start);
232 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
233 }
234 
235 /*
236  * Allocate a new special buffer
237  *
238  * This allocates memory for a new buffer, clears it and allocates a
239  * new buffer ID range.  It does not write into the buffer table.
240  *
241  * This call will allocate 4KB buffers, since 8KB buffers can't be
242  * used for event queues and descriptor rings.
243  */
244 static int efx_alloc_special_buffer(struct efx_nic *efx,
245 				    struct efx_special_buffer *buffer,
246 				    unsigned int len)
247 {
248 	len = ALIGN(len, EFX_BUF_SIZE);
249 
250 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
251 					  &buffer->dma_addr, GFP_KERNEL);
252 	if (!buffer->addr)
253 		return -ENOMEM;
254 	buffer->len = len;
255 	buffer->entries = len / EFX_BUF_SIZE;
256 	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
257 
258 	/* All zeros is a potentially valid event so memset to 0xff */
259 	memset(buffer->addr, 0xff, len);
260 
261 	/* Select new buffer ID */
262 	buffer->index = efx->next_buffer_table;
263 	efx->next_buffer_table += buffer->entries;
264 #ifdef CONFIG_SFC_SRIOV
265 	BUG_ON(efx_sriov_enabled(efx) &&
266 	       efx->vf_buftbl_base < efx->next_buffer_table);
267 #endif
268 
269 	netif_dbg(efx, probe, efx->net_dev,
270 		  "allocating special buffers %d-%d at %llx+%x "
271 		  "(virt %p phys %llx)\n", buffer->index,
272 		  buffer->index + buffer->entries - 1,
273 		  (u64)buffer->dma_addr, len,
274 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
275 
276 	return 0;
277 }
278 
279 static void
280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281 {
282 	if (!buffer->addr)
283 		return;
284 
285 	netif_dbg(efx, hw, efx->net_dev,
286 		  "deallocating special buffers %d-%d at %llx+%x "
287 		  "(virt %p phys %llx)\n", buffer->index,
288 		  buffer->index + buffer->entries - 1,
289 		  (u64)buffer->dma_addr, buffer->len,
290 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
291 
292 	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293 			  buffer->dma_addr);
294 	buffer->addr = NULL;
295 	buffer->entries = 0;
296 }
297 
298 /**************************************************************************
299  *
300  * Generic buffer handling
301  * These buffers are used for interrupt status, MAC stats, etc.
302  *
303  **************************************************************************/
304 
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306 			 unsigned int len)
307 {
308 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309 					  &buffer->dma_addr, GFP_ATOMIC);
310 	if (!buffer->addr)
311 		return -ENOMEM;
312 	buffer->len = len;
313 	memset(buffer->addr, 0, len);
314 	return 0;
315 }
316 
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 {
319 	if (buffer->addr) {
320 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321 				  buffer->addr, buffer->dma_addr);
322 		buffer->addr = NULL;
323 	}
324 }
325 
326 /**************************************************************************
327  *
328  * TX path
329  *
330  **************************************************************************/
331 
332 /* Returns a pointer to the specified transmit descriptor in the TX
333  * descriptor queue belonging to the specified channel.
334  */
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337 {
338 	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
339 }
340 
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343 {
344 	unsigned write_ptr;
345 	efx_dword_t reg;
346 
347 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
348 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349 	efx_writed_page(tx_queue->efx, &reg,
350 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351 }
352 
353 /* Write pointer and first descriptor for TX descriptor ring */
354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355 				    const efx_qword_t *txd)
356 {
357 	unsigned write_ptr;
358 	efx_oword_t reg;
359 
360 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
361 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
362 
363 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
366 	reg.qword[0] = *txd;
367 	efx_writeo_page(tx_queue->efx, &reg,
368 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369 }
370 
371 static inline bool
372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373 {
374 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375 
376 	if (empty_read_count == 0)
377 		return false;
378 
379 	tx_queue->empty_read_count = 0;
380 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
381 }
382 
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389 
390 	struct efx_tx_buffer *buffer;
391 	efx_qword_t *txd;
392 	unsigned write_ptr;
393 	unsigned old_write_count = tx_queue->write_count;
394 
395 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396 
397 	do {
398 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399 		buffer = &tx_queue->buffer[write_ptr];
400 		txd = efx_tx_desc(tx_queue, write_ptr);
401 		++tx_queue->write_count;
402 
403 		/* Create TX descriptor ring entry */
404 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405 		EFX_POPULATE_QWORD_4(*txd,
406 				     FSF_AZ_TX_KER_CONT,
407 				     buffer->flags & EFX_TX_BUF_CONT,
408 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409 				     FSF_AZ_TX_KER_BUF_REGION, 0,
410 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411 	} while (tx_queue->write_count != tx_queue->insert_count);
412 
413 	wmb(); /* Ensure descriptors are written before they are fetched */
414 
415 	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416 		txd = efx_tx_desc(tx_queue,
417 				  old_write_count & tx_queue->ptr_mask);
418 		efx_push_tx_desc(tx_queue, txd);
419 		++tx_queue->pushes;
420 	} else {
421 		efx_notify_tx_desc(tx_queue);
422 	}
423 }
424 
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428 	struct efx_nic *efx = tx_queue->efx;
429 	unsigned entries;
430 
431 	entries = tx_queue->ptr_mask + 1;
432 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
433 					entries * sizeof(efx_qword_t));
434 }
435 
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438 	struct efx_nic *efx = tx_queue->efx;
439 	efx_oword_t reg;
440 
441 	/* Pin TX descriptor ring */
442 	efx_init_special_buffer(efx, &tx_queue->txd);
443 
444 	/* Push TX descriptor ring to card */
445 	EFX_POPULATE_OWORD_10(reg,
446 			      FRF_AZ_TX_DESCQ_EN, 1,
447 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450 			      FRF_AZ_TX_DESCQ_EVQ_ID,
451 			      tx_queue->channel->channel,
452 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454 			      FRF_AZ_TX_DESCQ_SIZE,
455 			      __ffs(tx_queue->txd.entries),
456 			      FRF_AZ_TX_DESCQ_TYPE, 0,
457 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458 
459 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463 				    !csum);
464 	}
465 
466 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467 			 tx_queue->queue);
468 
469 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470 		/* Only 128 bits in this register */
471 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472 
473 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475 			__clear_bit_le(tx_queue->queue, &reg);
476 		else
477 			__set_bit_le(tx_queue->queue, &reg);
478 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479 	}
480 
481 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482 		EFX_POPULATE_OWORD_1(reg,
483 				     FRF_BZ_TX_PACE,
484 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485 				     FFE_BZ_TX_PACE_OFF :
486 				     FFE_BZ_TX_PACE_RESERVED);
487 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488 				 tx_queue->queue);
489 	}
490 }
491 
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494 	struct efx_nic *efx = tx_queue->efx;
495 	efx_oword_t tx_flush_descq;
496 
497 	EFX_POPULATE_OWORD_2(tx_flush_descq,
498 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
499 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
500 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
501 }
502 
503 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
504 {
505 	struct efx_nic *efx = tx_queue->efx;
506 	efx_oword_t tx_desc_ptr;
507 
508 	/* Remove TX descriptor ring from card */
509 	EFX_ZERO_OWORD(tx_desc_ptr);
510 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
511 			 tx_queue->queue);
512 
513 	/* Unpin TX descriptor ring */
514 	efx_fini_special_buffer(efx, &tx_queue->txd);
515 }
516 
517 /* Free buffers backing TX queue */
518 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
519 {
520 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
521 }
522 
523 /**************************************************************************
524  *
525  * RX path
526  *
527  **************************************************************************/
528 
529 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
530 static inline efx_qword_t *
531 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
532 {
533 	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
534 }
535 
536 /* This creates an entry in the RX descriptor queue */
537 static inline void
538 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
539 {
540 	struct efx_rx_buffer *rx_buf;
541 	efx_qword_t *rxd;
542 
543 	rxd = efx_rx_desc(rx_queue, index);
544 	rx_buf = efx_rx_buffer(rx_queue, index);
545 	EFX_POPULATE_QWORD_3(*rxd,
546 			     FSF_AZ_RX_KER_BUF_SIZE,
547 			     rx_buf->len -
548 			     rx_queue->efx->type->rx_buffer_padding,
549 			     FSF_AZ_RX_KER_BUF_REGION, 0,
550 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
551 }
552 
553 /* This writes to the RX_DESC_WPTR register for the specified receive
554  * descriptor ring.
555  */
556 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
557 {
558 	struct efx_nic *efx = rx_queue->efx;
559 	efx_dword_t reg;
560 	unsigned write_ptr;
561 
562 	while (rx_queue->notified_count != rx_queue->added_count) {
563 		efx_build_rx_desc(
564 			rx_queue,
565 			rx_queue->notified_count & rx_queue->ptr_mask);
566 		++rx_queue->notified_count;
567 	}
568 
569 	wmb();
570 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
571 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
572 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
573 			efx_rx_queue_index(rx_queue));
574 }
575 
576 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
577 {
578 	struct efx_nic *efx = rx_queue->efx;
579 	unsigned entries;
580 
581 	entries = rx_queue->ptr_mask + 1;
582 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
583 					entries * sizeof(efx_qword_t));
584 }
585 
586 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
587 {
588 	efx_oword_t rx_desc_ptr;
589 	struct efx_nic *efx = rx_queue->efx;
590 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
591 	bool iscsi_digest_en = is_b0;
592 
593 	netif_dbg(efx, hw, efx->net_dev,
594 		  "RX queue %d ring in special buffers %d-%d\n",
595 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
596 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
597 
598 	/* Pin RX descriptor ring */
599 	efx_init_special_buffer(efx, &rx_queue->rxd);
600 
601 	/* Push RX descriptor ring to card */
602 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
603 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
604 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
605 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
606 			      FRF_AZ_RX_DESCQ_EVQ_ID,
607 			      efx_rx_queue_channel(rx_queue)->channel,
608 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
609 			      FRF_AZ_RX_DESCQ_LABEL,
610 			      efx_rx_queue_index(rx_queue),
611 			      FRF_AZ_RX_DESCQ_SIZE,
612 			      __ffs(rx_queue->rxd.entries),
613 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
614 			      /* For >=B0 this is scatter so disable */
615 			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
616 			      FRF_AZ_RX_DESCQ_EN, 1);
617 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
618 			 efx_rx_queue_index(rx_queue));
619 }
620 
621 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
622 {
623 	struct efx_nic *efx = rx_queue->efx;
624 	efx_oword_t rx_flush_descq;
625 
626 	EFX_POPULATE_OWORD_2(rx_flush_descq,
627 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
628 			     FRF_AZ_RX_FLUSH_DESCQ,
629 			     efx_rx_queue_index(rx_queue));
630 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
631 }
632 
633 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
634 {
635 	efx_oword_t rx_desc_ptr;
636 	struct efx_nic *efx = rx_queue->efx;
637 
638 	/* Remove RX descriptor ring from card */
639 	EFX_ZERO_OWORD(rx_desc_ptr);
640 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
641 			 efx_rx_queue_index(rx_queue));
642 
643 	/* Unpin RX descriptor ring */
644 	efx_fini_special_buffer(efx, &rx_queue->rxd);
645 }
646 
647 /* Free buffers backing RX queue */
648 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
649 {
650 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
651 }
652 
653 /**************************************************************************
654  *
655  * Flush handling
656  *
657  **************************************************************************/
658 
659 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
660  * or more RX flushes can be kicked off.
661  */
662 static bool efx_flush_wake(struct efx_nic *efx)
663 {
664 	/* Ensure that all updates are visible to efx_nic_flush_queues() */
665 	smp_mb();
666 
667 	return (atomic_read(&efx->drain_pending) == 0 ||
668 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
669 		 && atomic_read(&efx->rxq_flush_pending) > 0));
670 }
671 
672 /* Flush all the transmit queues, and continue flushing receive queues until
673  * they're all flushed. Wait for the DRAIN events to be recieved so that there
674  * are no more RX and TX events left on any channel. */
675 int efx_nic_flush_queues(struct efx_nic *efx)
676 {
677 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
678 	struct efx_channel *channel;
679 	struct efx_rx_queue *rx_queue;
680 	struct efx_tx_queue *tx_queue;
681 	int rc = 0;
682 
683 	efx->type->prepare_flush(efx);
684 
685 	efx_for_each_channel(channel, efx) {
686 		efx_for_each_channel_tx_queue(tx_queue, channel) {
687 			atomic_inc(&efx->drain_pending);
688 			efx_flush_tx_queue(tx_queue);
689 		}
690 		efx_for_each_channel_rx_queue(rx_queue, channel) {
691 			atomic_inc(&efx->drain_pending);
692 			rx_queue->flush_pending = true;
693 			atomic_inc(&efx->rxq_flush_pending);
694 		}
695 	}
696 
697 	while (timeout && atomic_read(&efx->drain_pending) > 0) {
698 		/* If SRIOV is enabled, then offload receive queue flushing to
699 		 * the firmware (though we will still have to poll for
700 		 * completion). If that fails, fall back to the old scheme.
701 		 */
702 		if (efx_sriov_enabled(efx)) {
703 			rc = efx_mcdi_flush_rxqs(efx);
704 			if (!rc)
705 				goto wait;
706 		}
707 
708 		/* The hardware supports four concurrent rx flushes, each of
709 		 * which may need to be retried if there is an outstanding
710 		 * descriptor fetch
711 		 */
712 		efx_for_each_channel(channel, efx) {
713 			efx_for_each_channel_rx_queue(rx_queue, channel) {
714 				if (atomic_read(&efx->rxq_flush_outstanding) >=
715 				    EFX_RX_FLUSH_COUNT)
716 					break;
717 
718 				if (rx_queue->flush_pending) {
719 					rx_queue->flush_pending = false;
720 					atomic_dec(&efx->rxq_flush_pending);
721 					atomic_inc(&efx->rxq_flush_outstanding);
722 					efx_flush_rx_queue(rx_queue);
723 				}
724 			}
725 		}
726 
727 	wait:
728 		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
729 					     timeout);
730 	}
731 
732 	if (atomic_read(&efx->drain_pending)) {
733 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
734 			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
735 			  atomic_read(&efx->rxq_flush_outstanding),
736 			  atomic_read(&efx->rxq_flush_pending));
737 		rc = -ETIMEDOUT;
738 
739 		atomic_set(&efx->drain_pending, 0);
740 		atomic_set(&efx->rxq_flush_pending, 0);
741 		atomic_set(&efx->rxq_flush_outstanding, 0);
742 	}
743 
744 	efx->type->finish_flush(efx);
745 
746 	return rc;
747 }
748 
749 /**************************************************************************
750  *
751  * Event queue processing
752  * Event queues are processed by per-channel tasklets.
753  *
754  **************************************************************************/
755 
756 /* Update a channel's event queue's read pointer (RPTR) register
757  *
758  * This writes the EVQ_RPTR_REG register for the specified channel's
759  * event queue.
760  */
761 void efx_nic_eventq_read_ack(struct efx_channel *channel)
762 {
763 	efx_dword_t reg;
764 	struct efx_nic *efx = channel->efx;
765 
766 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
767 			     channel->eventq_read_ptr & channel->eventq_mask);
768 	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
769 			 channel->channel);
770 }
771 
772 /* Use HW to insert a SW defined event */
773 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
774 			efx_qword_t *event)
775 {
776 	efx_oword_t drv_ev_reg;
777 
778 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
779 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
780 	drv_ev_reg.u32[0] = event->u32[0];
781 	drv_ev_reg.u32[1] = event->u32[1];
782 	drv_ev_reg.u32[2] = 0;
783 	drv_ev_reg.u32[3] = 0;
784 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
785 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
786 }
787 
788 static void efx_magic_event(struct efx_channel *channel, u32 magic)
789 {
790 	efx_qword_t event;
791 
792 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
793 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
794 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
795 	efx_generate_event(channel->efx, channel->channel, &event);
796 }
797 
798 /* Handle a transmit completion event
799  *
800  * The NIC batches TX completion events; the message we receive is of
801  * the form "complete all TX events up to this index".
802  */
803 static int
804 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
805 {
806 	unsigned int tx_ev_desc_ptr;
807 	unsigned int tx_ev_q_label;
808 	struct efx_tx_queue *tx_queue;
809 	struct efx_nic *efx = channel->efx;
810 	int tx_packets = 0;
811 
812 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
813 		return 0;
814 
815 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
816 		/* Transmit completion */
817 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
818 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
819 		tx_queue = efx_channel_get_tx_queue(
820 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
821 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
822 			      tx_queue->ptr_mask);
823 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
824 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
825 		/* Rewrite the FIFO write pointer */
826 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
827 		tx_queue = efx_channel_get_tx_queue(
828 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
829 
830 		netif_tx_lock(efx->net_dev);
831 		efx_notify_tx_desc(tx_queue);
832 		netif_tx_unlock(efx->net_dev);
833 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
834 		   EFX_WORKAROUND_10727(efx)) {
835 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
836 	} else {
837 		netif_err(efx, tx_err, efx->net_dev,
838 			  "channel %d unexpected TX event "
839 			  EFX_QWORD_FMT"\n", channel->channel,
840 			  EFX_QWORD_VAL(*event));
841 	}
842 
843 	return tx_packets;
844 }
845 
846 /* Detect errors included in the rx_evt_pkt_ok bit. */
847 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
848 				const efx_qword_t *event)
849 {
850 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
851 	struct efx_nic *efx = rx_queue->efx;
852 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
853 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
854 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
855 	bool rx_ev_other_err, rx_ev_pause_frm;
856 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
857 	unsigned rx_ev_pkt_type;
858 
859 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
860 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
861 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
862 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
863 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
864 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
865 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
866 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
867 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
868 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
869 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
870 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
871 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
872 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
873 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
874 
875 	/* Every error apart from tobe_disc and pause_frm */
876 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
877 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
878 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
879 
880 	/* Count errors that are not in MAC stats.  Ignore expected
881 	 * checksum errors during self-test. */
882 	if (rx_ev_frm_trunc)
883 		++channel->n_rx_frm_trunc;
884 	else if (rx_ev_tobe_disc)
885 		++channel->n_rx_tobe_disc;
886 	else if (!efx->loopback_selftest) {
887 		if (rx_ev_ip_hdr_chksum_err)
888 			++channel->n_rx_ip_hdr_chksum_err;
889 		else if (rx_ev_tcp_udp_chksum_err)
890 			++channel->n_rx_tcp_udp_chksum_err;
891 	}
892 
893 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
894 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
895 	 * to a FIFO overflow.
896 	 */
897 #ifdef DEBUG
898 	if (rx_ev_other_err && net_ratelimit()) {
899 		netif_dbg(efx, rx_err, efx->net_dev,
900 			  " RX queue %d unexpected RX event "
901 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
902 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
903 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
904 			  rx_ev_ip_hdr_chksum_err ?
905 			  " [IP_HDR_CHKSUM_ERR]" : "",
906 			  rx_ev_tcp_udp_chksum_err ?
907 			  " [TCP_UDP_CHKSUM_ERR]" : "",
908 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
909 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
910 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
911 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
912 			  rx_ev_pause_frm ? " [PAUSE]" : "");
913 	}
914 #endif
915 
916 	/* The frame must be discarded if any of these are true. */
917 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
918 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
919 		EFX_RX_PKT_DISCARD : 0;
920 }
921 
922 /* Handle receive events that are not in-order. */
923 static void
924 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
925 {
926 	struct efx_nic *efx = rx_queue->efx;
927 	unsigned expected, dropped;
928 
929 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
930 	dropped = (index - expected) & rx_queue->ptr_mask;
931 	netif_info(efx, rx_err, efx->net_dev,
932 		   "dropped %d events (index=%d expected=%d)\n",
933 		   dropped, index, expected);
934 
935 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
936 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
937 }
938 
939 /* Handle a packet received event
940  *
941  * The NIC gives a "discard" flag if it's a unicast packet with the
942  * wrong destination address
943  * Also "is multicast" and "matches multicast filter" flags can be used to
944  * discard non-matching multicast packets.
945  */
946 static void
947 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
948 {
949 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
950 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
951 	unsigned expected_ptr;
952 	bool rx_ev_pkt_ok;
953 	u16 flags;
954 	struct efx_rx_queue *rx_queue;
955 	struct efx_nic *efx = channel->efx;
956 
957 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
958 		return;
959 
960 	/* Basic packet information */
961 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
962 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
963 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
964 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
965 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
966 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
967 		channel->channel);
968 
969 	rx_queue = efx_channel_get_rx_queue(channel);
970 
971 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
972 	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
973 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
974 		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
975 
976 	if (likely(rx_ev_pkt_ok)) {
977 		/* If packet is marked as OK and packet type is TCP/IP or
978 		 * UDP/IP, then we can rely on the hardware checksum.
979 		 */
980 		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
981 			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
982 			EFX_RX_PKT_CSUMMED : 0;
983 	} else {
984 		flags = efx_handle_rx_not_ok(rx_queue, event);
985 	}
986 
987 	/* Detect multicast packets that didn't match the filter */
988 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
989 	if (rx_ev_mcast_pkt) {
990 		unsigned int rx_ev_mcast_hash_match =
991 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
992 
993 		if (unlikely(!rx_ev_mcast_hash_match)) {
994 			++channel->n_rx_mcast_mismatch;
995 			flags |= EFX_RX_PKT_DISCARD;
996 		}
997 	}
998 
999 	channel->irq_mod_score += 2;
1000 
1001 	/* Handle received packet */
1002 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1003 }
1004 
1005 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1006  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1007  * of all transmit completions.
1008  */
1009 static void
1010 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1011 {
1012 	struct efx_tx_queue *tx_queue;
1013 	int qid;
1014 
1015 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1016 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1017 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1018 					    qid % EFX_TXQ_TYPES);
1019 
1020 		efx_magic_event(tx_queue->channel,
1021 				EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1022 	}
1023 }
1024 
1025 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1026  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1027  * the RX queue back to the mask of RX queues in need of flushing.
1028  */
1029 static void
1030 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1031 {
1032 	struct efx_channel *channel;
1033 	struct efx_rx_queue *rx_queue;
1034 	int qid;
1035 	bool failed;
1036 
1037 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1038 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1039 	if (qid >= efx->n_channels)
1040 		return;
1041 	channel = efx_get_channel(efx, qid);
1042 	if (!efx_channel_has_rx_queue(channel))
1043 		return;
1044 	rx_queue = efx_channel_get_rx_queue(channel);
1045 
1046 	if (failed) {
1047 		netif_info(efx, hw, efx->net_dev,
1048 			   "RXQ %d flush retry\n", qid);
1049 		rx_queue->flush_pending = true;
1050 		atomic_inc(&efx->rxq_flush_pending);
1051 	} else {
1052 		efx_magic_event(efx_rx_queue_channel(rx_queue),
1053 				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1054 	}
1055 	atomic_dec(&efx->rxq_flush_outstanding);
1056 	if (efx_flush_wake(efx))
1057 		wake_up(&efx->flush_wq);
1058 }
1059 
1060 static void
1061 efx_handle_drain_event(struct efx_channel *channel)
1062 {
1063 	struct efx_nic *efx = channel->efx;
1064 
1065 	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1066 	atomic_dec(&efx->drain_pending);
1067 	if (efx_flush_wake(efx))
1068 		wake_up(&efx->flush_wq);
1069 }
1070 
1071 static void
1072 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1073 {
1074 	struct efx_nic *efx = channel->efx;
1075 	struct efx_rx_queue *rx_queue =
1076 		efx_channel_has_rx_queue(channel) ?
1077 		efx_channel_get_rx_queue(channel) : NULL;
1078 	unsigned magic, code;
1079 
1080 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1081 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1082 
1083 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1084 		channel->event_test_cpu = raw_smp_processor_id();
1085 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1086 		/* The queue must be empty, so we won't receive any rx
1087 		 * events, so efx_process_channel() won't refill the
1088 		 * queue. Refill it here */
1089 		efx_fast_push_rx_descriptors(rx_queue);
1090 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1091 		rx_queue->enabled = false;
1092 		efx_handle_drain_event(channel);
1093 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1094 		efx_handle_drain_event(channel);
1095 	} else {
1096 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1097 			  "generated event "EFX_QWORD_FMT"\n",
1098 			  channel->channel, EFX_QWORD_VAL(*event));
1099 	}
1100 }
1101 
1102 static void
1103 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1104 {
1105 	struct efx_nic *efx = channel->efx;
1106 	unsigned int ev_sub_code;
1107 	unsigned int ev_sub_data;
1108 
1109 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1110 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1111 
1112 	switch (ev_sub_code) {
1113 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1114 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1115 			   channel->channel, ev_sub_data);
1116 		efx_handle_tx_flush_done(efx, event);
1117 		efx_sriov_tx_flush_done(efx, event);
1118 		break;
1119 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1120 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1121 			   channel->channel, ev_sub_data);
1122 		efx_handle_rx_flush_done(efx, event);
1123 		efx_sriov_rx_flush_done(efx, event);
1124 		break;
1125 	case FSE_AZ_EVQ_INIT_DONE_EV:
1126 		netif_dbg(efx, hw, efx->net_dev,
1127 			  "channel %d EVQ %d initialised\n",
1128 			  channel->channel, ev_sub_data);
1129 		break;
1130 	case FSE_AZ_SRM_UPD_DONE_EV:
1131 		netif_vdbg(efx, hw, efx->net_dev,
1132 			   "channel %d SRAM update done\n", channel->channel);
1133 		break;
1134 	case FSE_AZ_WAKE_UP_EV:
1135 		netif_vdbg(efx, hw, efx->net_dev,
1136 			   "channel %d RXQ %d wakeup event\n",
1137 			   channel->channel, ev_sub_data);
1138 		break;
1139 	case FSE_AZ_TIMER_EV:
1140 		netif_vdbg(efx, hw, efx->net_dev,
1141 			   "channel %d RX queue %d timer expired\n",
1142 			   channel->channel, ev_sub_data);
1143 		break;
1144 	case FSE_AA_RX_RECOVER_EV:
1145 		netif_err(efx, rx_err, efx->net_dev,
1146 			  "channel %d seen DRIVER RX_RESET event. "
1147 			"Resetting.\n", channel->channel);
1148 		atomic_inc(&efx->rx_reset);
1149 		efx_schedule_reset(efx,
1150 				   EFX_WORKAROUND_6555(efx) ?
1151 				   RESET_TYPE_RX_RECOVERY :
1152 				   RESET_TYPE_DISABLE);
1153 		break;
1154 	case FSE_BZ_RX_DSC_ERROR_EV:
1155 		if (ev_sub_data < EFX_VI_BASE) {
1156 			netif_err(efx, rx_err, efx->net_dev,
1157 				  "RX DMA Q %d reports descriptor fetch error."
1158 				  " RX Q %d is disabled.\n", ev_sub_data,
1159 				  ev_sub_data);
1160 			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1161 		} else
1162 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1163 		break;
1164 	case FSE_BZ_TX_DSC_ERROR_EV:
1165 		if (ev_sub_data < EFX_VI_BASE) {
1166 			netif_err(efx, tx_err, efx->net_dev,
1167 				  "TX DMA Q %d reports descriptor fetch error."
1168 				  " TX Q %d is disabled.\n", ev_sub_data,
1169 				  ev_sub_data);
1170 			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1171 		} else
1172 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1173 		break;
1174 	default:
1175 		netif_vdbg(efx, hw, efx->net_dev,
1176 			   "channel %d unknown driver event code %d "
1177 			   "data %04x\n", channel->channel, ev_sub_code,
1178 			   ev_sub_data);
1179 		break;
1180 	}
1181 }
1182 
1183 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1184 {
1185 	struct efx_nic *efx = channel->efx;
1186 	unsigned int read_ptr;
1187 	efx_qword_t event, *p_event;
1188 	int ev_code;
1189 	int tx_packets = 0;
1190 	int spent = 0;
1191 
1192 	read_ptr = channel->eventq_read_ptr;
1193 
1194 	for (;;) {
1195 		p_event = efx_event(channel, read_ptr);
1196 		event = *p_event;
1197 
1198 		if (!efx_event_present(&event))
1199 			/* End of events */
1200 			break;
1201 
1202 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1203 			   "channel %d event is "EFX_QWORD_FMT"\n",
1204 			   channel->channel, EFX_QWORD_VAL(event));
1205 
1206 		/* Clear this event by marking it all ones */
1207 		EFX_SET_QWORD(*p_event);
1208 
1209 		++read_ptr;
1210 
1211 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1212 
1213 		switch (ev_code) {
1214 		case FSE_AZ_EV_CODE_RX_EV:
1215 			efx_handle_rx_event(channel, &event);
1216 			if (++spent == budget)
1217 				goto out;
1218 			break;
1219 		case FSE_AZ_EV_CODE_TX_EV:
1220 			tx_packets += efx_handle_tx_event(channel, &event);
1221 			if (tx_packets > efx->txq_entries) {
1222 				spent = budget;
1223 				goto out;
1224 			}
1225 			break;
1226 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1227 			efx_handle_generated_event(channel, &event);
1228 			break;
1229 		case FSE_AZ_EV_CODE_DRIVER_EV:
1230 			efx_handle_driver_event(channel, &event);
1231 			break;
1232 		case FSE_CZ_EV_CODE_USER_EV:
1233 			efx_sriov_event(channel, &event);
1234 			break;
1235 		case FSE_CZ_EV_CODE_MCDI_EV:
1236 			efx_mcdi_process_event(channel, &event);
1237 			break;
1238 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1239 			if (efx->type->handle_global_event &&
1240 			    efx->type->handle_global_event(channel, &event))
1241 				break;
1242 			/* else fall through */
1243 		default:
1244 			netif_err(channel->efx, hw, channel->efx->net_dev,
1245 				  "channel %d unknown event type %d (data "
1246 				  EFX_QWORD_FMT ")\n", channel->channel,
1247 				  ev_code, EFX_QWORD_VAL(event));
1248 		}
1249 	}
1250 
1251 out:
1252 	channel->eventq_read_ptr = read_ptr;
1253 	return spent;
1254 }
1255 
1256 /* Check whether an event is present in the eventq at the current
1257  * read pointer.  Only useful for self-test.
1258  */
1259 bool efx_nic_event_present(struct efx_channel *channel)
1260 {
1261 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1262 }
1263 
1264 /* Allocate buffer table entries for event queue */
1265 int efx_nic_probe_eventq(struct efx_channel *channel)
1266 {
1267 	struct efx_nic *efx = channel->efx;
1268 	unsigned entries;
1269 
1270 	entries = channel->eventq_mask + 1;
1271 	return efx_alloc_special_buffer(efx, &channel->eventq,
1272 					entries * sizeof(efx_qword_t));
1273 }
1274 
1275 void efx_nic_init_eventq(struct efx_channel *channel)
1276 {
1277 	efx_oword_t reg;
1278 	struct efx_nic *efx = channel->efx;
1279 
1280 	netif_dbg(efx, hw, efx->net_dev,
1281 		  "channel %d event queue in special buffers %d-%d\n",
1282 		  channel->channel, channel->eventq.index,
1283 		  channel->eventq.index + channel->eventq.entries - 1);
1284 
1285 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1286 		EFX_POPULATE_OWORD_3(reg,
1287 				     FRF_CZ_TIMER_Q_EN, 1,
1288 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1289 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1290 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1291 	}
1292 
1293 	/* Pin event queue buffer */
1294 	efx_init_special_buffer(efx, &channel->eventq);
1295 
1296 	/* Fill event queue with all ones (i.e. empty events) */
1297 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1298 
1299 	/* Push event queue to card */
1300 	EFX_POPULATE_OWORD_3(reg,
1301 			     FRF_AZ_EVQ_EN, 1,
1302 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1303 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1304 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1305 			 channel->channel);
1306 
1307 	efx->type->push_irq_moderation(channel);
1308 }
1309 
1310 void efx_nic_fini_eventq(struct efx_channel *channel)
1311 {
1312 	efx_oword_t reg;
1313 	struct efx_nic *efx = channel->efx;
1314 
1315 	/* Remove event queue from card */
1316 	EFX_ZERO_OWORD(reg);
1317 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1318 			 channel->channel);
1319 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1320 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1321 
1322 	/* Unpin event queue */
1323 	efx_fini_special_buffer(efx, &channel->eventq);
1324 }
1325 
1326 /* Free buffers backing event queue */
1327 void efx_nic_remove_eventq(struct efx_channel *channel)
1328 {
1329 	efx_free_special_buffer(channel->efx, &channel->eventq);
1330 }
1331 
1332 
1333 void efx_nic_event_test_start(struct efx_channel *channel)
1334 {
1335 	channel->event_test_cpu = -1;
1336 	smp_wmb();
1337 	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1338 }
1339 
1340 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1341 {
1342 	efx_magic_event(efx_rx_queue_channel(rx_queue),
1343 			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1344 }
1345 
1346 /**************************************************************************
1347  *
1348  * Hardware interrupts
1349  * The hardware interrupt handler does very little work; all the event
1350  * queue processing is carried out by per-channel tasklets.
1351  *
1352  **************************************************************************/
1353 
1354 /* Enable/disable/generate interrupts */
1355 static inline void efx_nic_interrupts(struct efx_nic *efx,
1356 				      bool enabled, bool force)
1357 {
1358 	efx_oword_t int_en_reg_ker;
1359 
1360 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1361 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1362 			     FRF_AZ_KER_INT_KER, force,
1363 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1364 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1365 }
1366 
1367 void efx_nic_enable_interrupts(struct efx_nic *efx)
1368 {
1369 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1370 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1371 
1372 	efx_nic_interrupts(efx, true, false);
1373 }
1374 
1375 void efx_nic_disable_interrupts(struct efx_nic *efx)
1376 {
1377 	/* Disable interrupts */
1378 	efx_nic_interrupts(efx, false, false);
1379 }
1380 
1381 /* Generate a test interrupt
1382  * Interrupt must already have been enabled, otherwise nasty things
1383  * may happen.
1384  */
1385 void efx_nic_irq_test_start(struct efx_nic *efx)
1386 {
1387 	efx->last_irq_cpu = -1;
1388 	smp_wmb();
1389 	efx_nic_interrupts(efx, true, true);
1390 }
1391 
1392 /* Process a fatal interrupt
1393  * Disable bus mastering ASAP and schedule a reset
1394  */
1395 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1396 {
1397 	struct falcon_nic_data *nic_data = efx->nic_data;
1398 	efx_oword_t *int_ker = efx->irq_status.addr;
1399 	efx_oword_t fatal_intr;
1400 	int error, mem_perr;
1401 
1402 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1403 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1404 
1405 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1406 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1407 		  EFX_OWORD_VAL(fatal_intr),
1408 		  error ? "disabling bus mastering" : "no recognised error");
1409 
1410 	/* If this is a memory parity error dump which blocks are offending */
1411 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1412 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1413 	if (mem_perr) {
1414 		efx_oword_t reg;
1415 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1416 		netif_err(efx, hw, efx->net_dev,
1417 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1418 			  EFX_OWORD_VAL(reg));
1419 	}
1420 
1421 	/* Disable both devices */
1422 	pci_clear_master(efx->pci_dev);
1423 	if (efx_nic_is_dual_func(efx))
1424 		pci_clear_master(nic_data->pci_dev2);
1425 	efx_nic_disable_interrupts(efx);
1426 
1427 	/* Count errors and reset or disable the NIC accordingly */
1428 	if (efx->int_error_count == 0 ||
1429 	    time_after(jiffies, efx->int_error_expire)) {
1430 		efx->int_error_count = 0;
1431 		efx->int_error_expire =
1432 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1433 	}
1434 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1435 		netif_err(efx, hw, efx->net_dev,
1436 			  "SYSTEM ERROR - reset scheduled\n");
1437 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1438 	} else {
1439 		netif_err(efx, hw, efx->net_dev,
1440 			  "SYSTEM ERROR - max number of errors seen."
1441 			  "NIC will be disabled\n");
1442 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1443 	}
1444 
1445 	return IRQ_HANDLED;
1446 }
1447 
1448 /* Handle a legacy interrupt
1449  * Acknowledges the interrupt and schedule event queue processing.
1450  */
1451 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1452 {
1453 	struct efx_nic *efx = dev_id;
1454 	efx_oword_t *int_ker = efx->irq_status.addr;
1455 	irqreturn_t result = IRQ_NONE;
1456 	struct efx_channel *channel;
1457 	efx_dword_t reg;
1458 	u32 queues;
1459 	int syserr;
1460 
1461 	/* Could this be ours?  If interrupts are disabled then the
1462 	 * channel state may not be valid.
1463 	 */
1464 	if (!efx->legacy_irq_enabled)
1465 		return result;
1466 
1467 	/* Read the ISR which also ACKs the interrupts */
1468 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1469 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1470 
1471 	/* Handle non-event-queue sources */
1472 	if (queues & (1U << efx->irq_level)) {
1473 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1474 		if (unlikely(syserr))
1475 			return efx_nic_fatal_interrupt(efx);
1476 		efx->last_irq_cpu = raw_smp_processor_id();
1477 	}
1478 
1479 	if (queues != 0) {
1480 		if (EFX_WORKAROUND_15783(efx))
1481 			efx->irq_zero_count = 0;
1482 
1483 		/* Schedule processing of any interrupting queues */
1484 		efx_for_each_channel(channel, efx) {
1485 			if (queues & 1)
1486 				efx_schedule_channel_irq(channel);
1487 			queues >>= 1;
1488 		}
1489 		result = IRQ_HANDLED;
1490 
1491 	} else if (EFX_WORKAROUND_15783(efx)) {
1492 		efx_qword_t *event;
1493 
1494 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1495 		 * because this might be a shared interrupt. */
1496 		if (efx->irq_zero_count++ == 0)
1497 			result = IRQ_HANDLED;
1498 
1499 		/* Ensure we schedule or rearm all event queues */
1500 		efx_for_each_channel(channel, efx) {
1501 			event = efx_event(channel, channel->eventq_read_ptr);
1502 			if (efx_event_present(event))
1503 				efx_schedule_channel_irq(channel);
1504 			else
1505 				efx_nic_eventq_read_ack(channel);
1506 		}
1507 	}
1508 
1509 	if (result == IRQ_HANDLED)
1510 		netif_vdbg(efx, intr, efx->net_dev,
1511 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1512 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1513 
1514 	return result;
1515 }
1516 
1517 /* Handle an MSI interrupt
1518  *
1519  * Handle an MSI hardware interrupt.  This routine schedules event
1520  * queue processing.  No interrupt acknowledgement cycle is necessary.
1521  * Also, we never need to check that the interrupt is for us, since
1522  * MSI interrupts cannot be shared.
1523  */
1524 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1525 {
1526 	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1527 	struct efx_nic *efx = channel->efx;
1528 	efx_oword_t *int_ker = efx->irq_status.addr;
1529 	int syserr;
1530 
1531 	netif_vdbg(efx, intr, efx->net_dev,
1532 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1533 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1534 
1535 	/* Handle non-event-queue sources */
1536 	if (channel->channel == efx->irq_level) {
1537 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1538 		if (unlikely(syserr))
1539 			return efx_nic_fatal_interrupt(efx);
1540 		efx->last_irq_cpu = raw_smp_processor_id();
1541 	}
1542 
1543 	/* Schedule processing of the channel */
1544 	efx_schedule_channel_irq(channel);
1545 
1546 	return IRQ_HANDLED;
1547 }
1548 
1549 
1550 /* Setup RSS indirection table.
1551  * This maps from the hash value of the packet to RXQ
1552  */
1553 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1554 {
1555 	size_t i = 0;
1556 	efx_dword_t dword;
1557 
1558 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1559 		return;
1560 
1561 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1562 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1563 
1564 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1565 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1566 				     efx->rx_indir_table[i]);
1567 		efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1568 	}
1569 }
1570 
1571 /* Hook interrupt handler(s)
1572  * Try MSI and then legacy interrupts.
1573  */
1574 int efx_nic_init_interrupt(struct efx_nic *efx)
1575 {
1576 	struct efx_channel *channel;
1577 	int rc;
1578 
1579 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1580 		irq_handler_t handler;
1581 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1582 			handler = efx_legacy_interrupt;
1583 		else
1584 			handler = falcon_legacy_interrupt_a1;
1585 
1586 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1587 				 efx->name, efx);
1588 		if (rc) {
1589 			netif_err(efx, drv, efx->net_dev,
1590 				  "failed to hook legacy IRQ %d\n",
1591 				  efx->pci_dev->irq);
1592 			goto fail1;
1593 		}
1594 		return 0;
1595 	}
1596 
1597 	/* Hook MSI or MSI-X interrupt */
1598 	efx_for_each_channel(channel, efx) {
1599 		rc = request_irq(channel->irq, efx_msi_interrupt,
1600 				 IRQF_PROBE_SHARED, /* Not shared */
1601 				 efx->channel_name[channel->channel],
1602 				 &efx->channel[channel->channel]);
1603 		if (rc) {
1604 			netif_err(efx, drv, efx->net_dev,
1605 				  "failed to hook IRQ %d\n", channel->irq);
1606 			goto fail2;
1607 		}
1608 	}
1609 
1610 	return 0;
1611 
1612  fail2:
1613 	efx_for_each_channel(channel, efx)
1614 		free_irq(channel->irq, &efx->channel[channel->channel]);
1615  fail1:
1616 	return rc;
1617 }
1618 
1619 void efx_nic_fini_interrupt(struct efx_nic *efx)
1620 {
1621 	struct efx_channel *channel;
1622 	efx_oword_t reg;
1623 
1624 	/* Disable MSI/MSI-X interrupts */
1625 	efx_for_each_channel(channel, efx) {
1626 		if (channel->irq)
1627 			free_irq(channel->irq, &efx->channel[channel->channel]);
1628 	}
1629 
1630 	/* ACK legacy interrupt */
1631 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1632 		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1633 	else
1634 		falcon_irq_ack_a1(efx);
1635 
1636 	/* Disable legacy interrupt */
1637 	if (efx->legacy_irq)
1638 		free_irq(efx->legacy_irq, efx);
1639 }
1640 
1641 /* Looks at available SRAM resources and works out how many queues we
1642  * can support, and where things like descriptor caches should live.
1643  *
1644  * SRAM is split up as follows:
1645  * 0                          buftbl entries for channels
1646  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1647  * efx->rx_dc_base            RX descriptor caches
1648  * efx->tx_dc_base            TX descriptor caches
1649  */
1650 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1651 {
1652 	unsigned vi_count, buftbl_min;
1653 
1654 	/* Account for the buffer table entries backing the datapath channels
1655 	 * and the descriptor caches for those channels.
1656 	 */
1657 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1658 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1659 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1660 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1661 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1662 
1663 #ifdef CONFIG_SFC_SRIOV
1664 	if (efx_sriov_wanted(efx)) {
1665 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1666 
1667 		efx->vf_buftbl_base = buftbl_min;
1668 
1669 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1670 		vi_count = max(vi_count, EFX_VI_BASE);
1671 		buftbl_free = (sram_lim_qw - buftbl_min -
1672 			       vi_count * vi_dc_entries);
1673 
1674 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1675 				  efx_vf_size(efx));
1676 		vf_limit = min(buftbl_free / entries_per_vf,
1677 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1678 
1679 		if (efx->vf_count > vf_limit) {
1680 			netif_err(efx, probe, efx->net_dev,
1681 				  "Reducing VF count from from %d to %d\n",
1682 				  efx->vf_count, vf_limit);
1683 			efx->vf_count = vf_limit;
1684 		}
1685 		vi_count += efx->vf_count * efx_vf_size(efx);
1686 	}
1687 #endif
1688 
1689 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1690 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1691 }
1692 
1693 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1694 {
1695 	efx_oword_t altera_build;
1696 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1697 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1698 }
1699 
1700 void efx_nic_init_common(struct efx_nic *efx)
1701 {
1702 	efx_oword_t temp;
1703 
1704 	/* Set positions of descriptor caches in SRAM. */
1705 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1706 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1707 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1708 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1709 
1710 	/* Set TX descriptor cache size. */
1711 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1712 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1713 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1714 
1715 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1716 	 * this allows most efficient prefetching.
1717 	 */
1718 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1719 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1720 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1721 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1722 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1723 
1724 	/* Program INT_KER address */
1725 	EFX_POPULATE_OWORD_2(temp,
1726 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1727 			     EFX_INT_MODE_USE_MSI(efx),
1728 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1729 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1730 
1731 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1732 		/* Use an interrupt level unused by event queues */
1733 		efx->irq_level = 0x1f;
1734 	else
1735 		/* Use a valid MSI-X vector */
1736 		efx->irq_level = 0;
1737 
1738 	/* Enable all the genuinely fatal interrupts.  (They are still
1739 	 * masked by the overall interrupt mask, controlled by
1740 	 * falcon_interrupts()).
1741 	 *
1742 	 * Note: All other fatal interrupts are enabled
1743 	 */
1744 	EFX_POPULATE_OWORD_3(temp,
1745 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1746 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1747 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1748 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1749 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1750 	EFX_INVERT_OWORD(temp);
1751 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1752 
1753 	efx_nic_push_rx_indir_table(efx);
1754 
1755 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1756 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1757 	 */
1758 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1759 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1760 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1761 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1762 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1763 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1764 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1765 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1766 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1767 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1768 	/* Disable hardware watchdog which can misfire */
1769 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1770 	/* Squash TX of packets of 16 bytes or less */
1771 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1772 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1773 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1774 
1775 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1776 		EFX_POPULATE_OWORD_4(temp,
1777 				     /* Default values */
1778 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1779 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1780 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1781 				     /* Allow large pace values in the
1782 				      * fast bin. */
1783 				     FRF_BZ_TX_PACE_BIN_TH,
1784 				     FFE_BZ_TX_PACE_RESERVED);
1785 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1786 	}
1787 }
1788 
1789 /* Register dump */
1790 
1791 #define REGISTER_REVISION_A	1
1792 #define REGISTER_REVISION_B	2
1793 #define REGISTER_REVISION_C	3
1794 #define REGISTER_REVISION_Z	3	/* latest revision */
1795 
1796 struct efx_nic_reg {
1797 	u32 offset:24;
1798 	u32 min_revision:2, max_revision:2;
1799 };
1800 
1801 #define REGISTER(name, min_rev, max_rev) {				\
1802 	FR_ ## min_rev ## max_rev ## _ ## name,				\
1803 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1804 }
1805 #define REGISTER_AA(name) REGISTER(name, A, A)
1806 #define REGISTER_AB(name) REGISTER(name, A, B)
1807 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1808 #define REGISTER_BB(name) REGISTER(name, B, B)
1809 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1810 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1811 
1812 static const struct efx_nic_reg efx_nic_regs[] = {
1813 	REGISTER_AZ(ADR_REGION),
1814 	REGISTER_AZ(INT_EN_KER),
1815 	REGISTER_BZ(INT_EN_CHAR),
1816 	REGISTER_AZ(INT_ADR_KER),
1817 	REGISTER_BZ(INT_ADR_CHAR),
1818 	/* INT_ACK_KER is WO */
1819 	/* INT_ISR0 is RC */
1820 	REGISTER_AZ(HW_INIT),
1821 	REGISTER_CZ(USR_EV_CFG),
1822 	REGISTER_AB(EE_SPI_HCMD),
1823 	REGISTER_AB(EE_SPI_HADR),
1824 	REGISTER_AB(EE_SPI_HDATA),
1825 	REGISTER_AB(EE_BASE_PAGE),
1826 	REGISTER_AB(EE_VPD_CFG0),
1827 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1828 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1829 	/* PCIE_CORE_INDIRECT is indirect */
1830 	REGISTER_AB(NIC_STAT),
1831 	REGISTER_AB(GPIO_CTL),
1832 	REGISTER_AB(GLB_CTL),
1833 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1834 	REGISTER_BZ(DP_CTRL),
1835 	REGISTER_AZ(MEM_STAT),
1836 	REGISTER_AZ(CS_DEBUG),
1837 	REGISTER_AZ(ALTERA_BUILD),
1838 	REGISTER_AZ(CSR_SPARE),
1839 	REGISTER_AB(PCIE_SD_CTL0123),
1840 	REGISTER_AB(PCIE_SD_CTL45),
1841 	REGISTER_AB(PCIE_PCS_CTL_STAT),
1842 	/* DEBUG_DATA_OUT is not used */
1843 	/* DRV_EV is WO */
1844 	REGISTER_AZ(EVQ_CTL),
1845 	REGISTER_AZ(EVQ_CNT1),
1846 	REGISTER_AZ(EVQ_CNT2),
1847 	REGISTER_AZ(BUF_TBL_CFG),
1848 	REGISTER_AZ(SRM_RX_DC_CFG),
1849 	REGISTER_AZ(SRM_TX_DC_CFG),
1850 	REGISTER_AZ(SRM_CFG),
1851 	/* BUF_TBL_UPD is WO */
1852 	REGISTER_AZ(SRM_UPD_EVQ),
1853 	REGISTER_AZ(SRAM_PARITY),
1854 	REGISTER_AZ(RX_CFG),
1855 	REGISTER_BZ(RX_FILTER_CTL),
1856 	/* RX_FLUSH_DESCQ is WO */
1857 	REGISTER_AZ(RX_DC_CFG),
1858 	REGISTER_AZ(RX_DC_PF_WM),
1859 	REGISTER_BZ(RX_RSS_TKEY),
1860 	/* RX_NODESC_DROP is RC */
1861 	REGISTER_AA(RX_SELF_RST),
1862 	/* RX_DEBUG, RX_PUSH_DROP are not used */
1863 	REGISTER_CZ(RX_RSS_IPV6_REG1),
1864 	REGISTER_CZ(RX_RSS_IPV6_REG2),
1865 	REGISTER_CZ(RX_RSS_IPV6_REG3),
1866 	/* TX_FLUSH_DESCQ is WO */
1867 	REGISTER_AZ(TX_DC_CFG),
1868 	REGISTER_AA(TX_CHKSM_CFG),
1869 	REGISTER_AZ(TX_CFG),
1870 	/* TX_PUSH_DROP is not used */
1871 	REGISTER_AZ(TX_RESERVED),
1872 	REGISTER_BZ(TX_PACE),
1873 	/* TX_PACE_DROP_QID is RC */
1874 	REGISTER_BB(TX_VLAN),
1875 	REGISTER_BZ(TX_IPFIL_PORTEN),
1876 	REGISTER_AB(MD_TXD),
1877 	REGISTER_AB(MD_RXD),
1878 	REGISTER_AB(MD_CS),
1879 	REGISTER_AB(MD_PHY_ADR),
1880 	REGISTER_AB(MD_ID),
1881 	/* MD_STAT is RC */
1882 	REGISTER_AB(MAC_STAT_DMA),
1883 	REGISTER_AB(MAC_CTRL),
1884 	REGISTER_BB(GEN_MODE),
1885 	REGISTER_AB(MAC_MC_HASH_REG0),
1886 	REGISTER_AB(MAC_MC_HASH_REG1),
1887 	REGISTER_AB(GM_CFG1),
1888 	REGISTER_AB(GM_CFG2),
1889 	/* GM_IPG and GM_HD are not used */
1890 	REGISTER_AB(GM_MAX_FLEN),
1891 	/* GM_TEST is not used */
1892 	REGISTER_AB(GM_ADR1),
1893 	REGISTER_AB(GM_ADR2),
1894 	REGISTER_AB(GMF_CFG0),
1895 	REGISTER_AB(GMF_CFG1),
1896 	REGISTER_AB(GMF_CFG2),
1897 	REGISTER_AB(GMF_CFG3),
1898 	REGISTER_AB(GMF_CFG4),
1899 	REGISTER_AB(GMF_CFG5),
1900 	REGISTER_BB(TX_SRC_MAC_CTL),
1901 	REGISTER_AB(XM_ADR_LO),
1902 	REGISTER_AB(XM_ADR_HI),
1903 	REGISTER_AB(XM_GLB_CFG),
1904 	REGISTER_AB(XM_TX_CFG),
1905 	REGISTER_AB(XM_RX_CFG),
1906 	REGISTER_AB(XM_MGT_INT_MASK),
1907 	REGISTER_AB(XM_FC),
1908 	REGISTER_AB(XM_PAUSE_TIME),
1909 	REGISTER_AB(XM_TX_PARAM),
1910 	REGISTER_AB(XM_RX_PARAM),
1911 	/* XM_MGT_INT_MSK (note no 'A') is RC */
1912 	REGISTER_AB(XX_PWR_RST),
1913 	REGISTER_AB(XX_SD_CTL),
1914 	REGISTER_AB(XX_TXDRV_CTL),
1915 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1916 	/* XX_CORE_STAT is partly RC */
1917 };
1918 
1919 struct efx_nic_reg_table {
1920 	u32 offset:24;
1921 	u32 min_revision:2, max_revision:2;
1922 	u32 step:6, rows:21;
1923 };
1924 
1925 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1926 	offset,								\
1927 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
1928 	step, rows							\
1929 }
1930 #define REGISTER_TABLE(name, min_rev, max_rev)				\
1931 	REGISTER_TABLE_DIMENSIONS(					\
1932 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1933 		min_rev, max_rev,					\
1934 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1935 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1936 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1937 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1938 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1939 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1940 #define REGISTER_TABLE_BB_CZ(name)					\
1941 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1942 				  FR_BZ_ ## name ## _STEP,		\
1943 				  FR_BB_ ## name ## _ROWS),		\
1944 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1945 				  FR_BZ_ ## name ## _STEP,		\
1946 				  FR_CZ_ ## name ## _ROWS)
1947 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1948 
1949 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1950 	/* DRIVER is not used */
1951 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1952 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
1953 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1954 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1955 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1956 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1957 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1958 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1959 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1960 	/* We can't reasonably read all of the buffer table (up to 8MB!).
1961 	 * However this driver will only use a few entries.  Reading
1962 	 * 1K entries allows for some expansion of queue count and
1963 	 * size before we need to change the version. */
1964 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1965 				  A, A, 8, 1024),
1966 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1967 				  B, Z, 8, 1024),
1968 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1969 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
1970 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1971 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1972 	/* TX_FILTER_TBL0 is huge and not used by this driver */
1973 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1974 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
1975 	/* MSIX_PBA_TABLE is not mapped */
1976 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1977 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1978 };
1979 
1980 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1981 {
1982 	const struct efx_nic_reg *reg;
1983 	const struct efx_nic_reg_table *table;
1984 	size_t len = 0;
1985 
1986 	for (reg = efx_nic_regs;
1987 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1988 	     reg++)
1989 		if (efx->type->revision >= reg->min_revision &&
1990 		    efx->type->revision <= reg->max_revision)
1991 			len += sizeof(efx_oword_t);
1992 
1993 	for (table = efx_nic_reg_tables;
1994 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1995 	     table++)
1996 		if (efx->type->revision >= table->min_revision &&
1997 		    efx->type->revision <= table->max_revision)
1998 			len += table->rows * min_t(size_t, table->step, 16);
1999 
2000 	return len;
2001 }
2002 
2003 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2004 {
2005 	const struct efx_nic_reg *reg;
2006 	const struct efx_nic_reg_table *table;
2007 
2008 	for (reg = efx_nic_regs;
2009 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2010 	     reg++) {
2011 		if (efx->type->revision >= reg->min_revision &&
2012 		    efx->type->revision <= reg->max_revision) {
2013 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2014 			buf += sizeof(efx_oword_t);
2015 		}
2016 	}
2017 
2018 	for (table = efx_nic_reg_tables;
2019 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2020 	     table++) {
2021 		size_t size, i;
2022 
2023 		if (!(efx->type->revision >= table->min_revision &&
2024 		      efx->type->revision <= table->max_revision))
2025 			continue;
2026 
2027 		size = min_t(size_t, table->step, 16);
2028 
2029 		for (i = 0; i < table->rows; i++) {
2030 			switch (table->step) {
2031 			case 4: /* 32-bit register or SRAM */
2032 				efx_readd_table(efx, buf, table->offset, i);
2033 				break;
2034 			case 8: /* 64-bit SRAM */
2035 				efx_sram_readq(efx,
2036 					       efx->membase + table->offset,
2037 					       buf, i);
2038 				break;
2039 			case 16: /* 128-bit register */
2040 				efx_reado_table(efx, buf, table->offset, i);
2041 				break;
2042 			case 32: /* 128-bit register, interleaved */
2043 				efx_reado_table(efx, buf, table->offset, 2 * i);
2044 				break;
2045 			default:
2046 				WARN_ON(1);
2047 				return;
2048 			}
2049 			buf += size;
2050 		}
2051 	}
2052 }
2053