1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2006-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/delay.h> 10 #include <linux/interrupt.h> 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/seq_file.h> 14 #include <linux/cpu_rmap.h> 15 #include "net_driver.h" 16 #include "bitfield.h" 17 #include "efx.h" 18 #include "nic.h" 19 #include "ef10_regs.h" 20 #include "farch_regs.h" 21 #include "io.h" 22 #include "workarounds.h" 23 #include "mcdi_pcol.h" 24 25 /************************************************************************** 26 * 27 * Generic buffer handling 28 * These buffers are used for interrupt status, MAC stats, etc. 29 * 30 **************************************************************************/ 31 32 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, 33 unsigned int len, gfp_t gfp_flags) 34 { 35 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, 36 &buffer->dma_addr, gfp_flags); 37 if (!buffer->addr) 38 return -ENOMEM; 39 buffer->len = len; 40 return 0; 41 } 42 43 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) 44 { 45 if (buffer->addr) { 46 dma_free_coherent(&efx->pci_dev->dev, buffer->len, 47 buffer->addr, buffer->dma_addr); 48 buffer->addr = NULL; 49 } 50 } 51 52 /* Check whether an event is present in the eventq at the current 53 * read pointer. Only useful for self-test. 54 */ 55 bool efx_nic_event_present(struct efx_channel *channel) 56 { 57 return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); 58 } 59 60 void efx_nic_event_test_start(struct efx_channel *channel) 61 { 62 channel->event_test_cpu = -1; 63 smp_wmb(); 64 channel->efx->type->ev_test_generate(channel); 65 } 66 67 int efx_nic_irq_test_start(struct efx_nic *efx) 68 { 69 efx->last_irq_cpu = -1; 70 smp_wmb(); 71 return efx->type->irq_test_generate(efx); 72 } 73 74 /* Hook interrupt handler(s) 75 * Try MSI and then legacy interrupts. 76 */ 77 int efx_nic_init_interrupt(struct efx_nic *efx) 78 { 79 struct efx_channel *channel; 80 unsigned int n_irqs; 81 int rc; 82 83 if (!EFX_INT_MODE_USE_MSI(efx)) { 84 rc = request_irq(efx->legacy_irq, 85 efx->type->irq_handle_legacy, IRQF_SHARED, 86 efx->name, efx); 87 if (rc) { 88 netif_err(efx, drv, efx->net_dev, 89 "failed to hook legacy IRQ %d\n", 90 efx->pci_dev->irq); 91 goto fail1; 92 } 93 efx->irqs_hooked = true; 94 return 0; 95 } 96 97 #ifdef CONFIG_RFS_ACCEL 98 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 99 efx->net_dev->rx_cpu_rmap = 100 alloc_irq_cpu_rmap(efx->n_rx_channels); 101 if (!efx->net_dev->rx_cpu_rmap) { 102 rc = -ENOMEM; 103 goto fail1; 104 } 105 } 106 #endif 107 108 /* Hook MSI or MSI-X interrupt */ 109 n_irqs = 0; 110 efx_for_each_channel(channel, efx) { 111 rc = request_irq(channel->irq, efx->type->irq_handle_msi, 112 IRQF_PROBE_SHARED, /* Not shared */ 113 efx->msi_context[channel->channel].name, 114 &efx->msi_context[channel->channel]); 115 if (rc) { 116 netif_err(efx, drv, efx->net_dev, 117 "failed to hook IRQ %d\n", channel->irq); 118 goto fail2; 119 } 120 ++n_irqs; 121 122 #ifdef CONFIG_RFS_ACCEL 123 if (efx->interrupt_mode == EFX_INT_MODE_MSIX && 124 channel->channel < efx->n_rx_channels) { 125 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, 126 channel->irq); 127 if (rc) 128 goto fail2; 129 } 130 #endif 131 } 132 133 efx->irqs_hooked = true; 134 return 0; 135 136 fail2: 137 #ifdef CONFIG_RFS_ACCEL 138 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); 139 efx->net_dev->rx_cpu_rmap = NULL; 140 #endif 141 efx_for_each_channel(channel, efx) { 142 if (n_irqs-- == 0) 143 break; 144 free_irq(channel->irq, &efx->msi_context[channel->channel]); 145 } 146 fail1: 147 return rc; 148 } 149 150 void efx_nic_fini_interrupt(struct efx_nic *efx) 151 { 152 struct efx_channel *channel; 153 154 #ifdef CONFIG_RFS_ACCEL 155 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); 156 efx->net_dev->rx_cpu_rmap = NULL; 157 #endif 158 159 if (!efx->irqs_hooked) 160 return; 161 if (EFX_INT_MODE_USE_MSI(efx)) { 162 /* Disable MSI/MSI-X interrupts */ 163 efx_for_each_channel(channel, efx) 164 free_irq(channel->irq, 165 &efx->msi_context[channel->channel]); 166 } else { 167 /* Disable legacy interrupt */ 168 free_irq(efx->legacy_irq, efx); 169 } 170 efx->irqs_hooked = false; 171 } 172 173 /* Register dump */ 174 175 #define REGISTER_REVISION_FA 1 176 #define REGISTER_REVISION_FB 2 177 #define REGISTER_REVISION_FC 3 178 #define REGISTER_REVISION_FZ 3 /* last Falcon arch revision */ 179 #define REGISTER_REVISION_ED 4 180 #define REGISTER_REVISION_EZ 4 /* latest EF10 revision */ 181 182 struct efx_nic_reg { 183 u32 offset:24; 184 u32 min_revision:3, max_revision:3; 185 }; 186 187 #define REGISTER(name, arch, min_rev, max_rev) { \ 188 arch ## R_ ## min_rev ## max_rev ## _ ## name, \ 189 REGISTER_REVISION_ ## arch ## min_rev, \ 190 REGISTER_REVISION_ ## arch ## max_rev \ 191 } 192 #define REGISTER_AA(name) REGISTER(name, F, A, A) 193 #define REGISTER_AB(name) REGISTER(name, F, A, B) 194 #define REGISTER_AZ(name) REGISTER(name, F, A, Z) 195 #define REGISTER_BB(name) REGISTER(name, F, B, B) 196 #define REGISTER_BZ(name) REGISTER(name, F, B, Z) 197 #define REGISTER_CZ(name) REGISTER(name, F, C, Z) 198 #define REGISTER_DZ(name) REGISTER(name, E, D, Z) 199 200 static const struct efx_nic_reg efx_nic_regs[] = { 201 REGISTER_AZ(ADR_REGION), 202 REGISTER_AZ(INT_EN_KER), 203 REGISTER_BZ(INT_EN_CHAR), 204 REGISTER_AZ(INT_ADR_KER), 205 REGISTER_BZ(INT_ADR_CHAR), 206 /* INT_ACK_KER is WO */ 207 /* INT_ISR0 is RC */ 208 REGISTER_AZ(HW_INIT), 209 REGISTER_CZ(USR_EV_CFG), 210 REGISTER_AB(EE_SPI_HCMD), 211 REGISTER_AB(EE_SPI_HADR), 212 REGISTER_AB(EE_SPI_HDATA), 213 REGISTER_AB(EE_BASE_PAGE), 214 REGISTER_AB(EE_VPD_CFG0), 215 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */ 216 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */ 217 /* PCIE_CORE_INDIRECT is indirect */ 218 REGISTER_AB(NIC_STAT), 219 REGISTER_AB(GPIO_CTL), 220 REGISTER_AB(GLB_CTL), 221 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */ 222 REGISTER_BZ(DP_CTRL), 223 REGISTER_AZ(MEM_STAT), 224 REGISTER_AZ(CS_DEBUG), 225 REGISTER_AZ(ALTERA_BUILD), 226 REGISTER_AZ(CSR_SPARE), 227 REGISTER_AB(PCIE_SD_CTL0123), 228 REGISTER_AB(PCIE_SD_CTL45), 229 REGISTER_AB(PCIE_PCS_CTL_STAT), 230 /* DEBUG_DATA_OUT is not used */ 231 /* DRV_EV is WO */ 232 REGISTER_AZ(EVQ_CTL), 233 REGISTER_AZ(EVQ_CNT1), 234 REGISTER_AZ(EVQ_CNT2), 235 REGISTER_AZ(BUF_TBL_CFG), 236 REGISTER_AZ(SRM_RX_DC_CFG), 237 REGISTER_AZ(SRM_TX_DC_CFG), 238 REGISTER_AZ(SRM_CFG), 239 /* BUF_TBL_UPD is WO */ 240 REGISTER_AZ(SRM_UPD_EVQ), 241 REGISTER_AZ(SRAM_PARITY), 242 REGISTER_AZ(RX_CFG), 243 REGISTER_BZ(RX_FILTER_CTL), 244 /* RX_FLUSH_DESCQ is WO */ 245 REGISTER_AZ(RX_DC_CFG), 246 REGISTER_AZ(RX_DC_PF_WM), 247 REGISTER_BZ(RX_RSS_TKEY), 248 /* RX_NODESC_DROP is RC */ 249 REGISTER_AA(RX_SELF_RST), 250 /* RX_DEBUG, RX_PUSH_DROP are not used */ 251 REGISTER_CZ(RX_RSS_IPV6_REG1), 252 REGISTER_CZ(RX_RSS_IPV6_REG2), 253 REGISTER_CZ(RX_RSS_IPV6_REG3), 254 /* TX_FLUSH_DESCQ is WO */ 255 REGISTER_AZ(TX_DC_CFG), 256 REGISTER_AA(TX_CHKSM_CFG), 257 REGISTER_AZ(TX_CFG), 258 /* TX_PUSH_DROP is not used */ 259 REGISTER_AZ(TX_RESERVED), 260 REGISTER_BZ(TX_PACE), 261 /* TX_PACE_DROP_QID is RC */ 262 REGISTER_BB(TX_VLAN), 263 REGISTER_BZ(TX_IPFIL_PORTEN), 264 REGISTER_AB(MD_TXD), 265 REGISTER_AB(MD_RXD), 266 REGISTER_AB(MD_CS), 267 REGISTER_AB(MD_PHY_ADR), 268 REGISTER_AB(MD_ID), 269 /* MD_STAT is RC */ 270 REGISTER_AB(MAC_STAT_DMA), 271 REGISTER_AB(MAC_CTRL), 272 REGISTER_BB(GEN_MODE), 273 REGISTER_AB(MAC_MC_HASH_REG0), 274 REGISTER_AB(MAC_MC_HASH_REG1), 275 REGISTER_AB(GM_CFG1), 276 REGISTER_AB(GM_CFG2), 277 /* GM_IPG and GM_HD are not used */ 278 REGISTER_AB(GM_MAX_FLEN), 279 /* GM_TEST is not used */ 280 REGISTER_AB(GM_ADR1), 281 REGISTER_AB(GM_ADR2), 282 REGISTER_AB(GMF_CFG0), 283 REGISTER_AB(GMF_CFG1), 284 REGISTER_AB(GMF_CFG2), 285 REGISTER_AB(GMF_CFG3), 286 REGISTER_AB(GMF_CFG4), 287 REGISTER_AB(GMF_CFG5), 288 REGISTER_BB(TX_SRC_MAC_CTL), 289 REGISTER_AB(XM_ADR_LO), 290 REGISTER_AB(XM_ADR_HI), 291 REGISTER_AB(XM_GLB_CFG), 292 REGISTER_AB(XM_TX_CFG), 293 REGISTER_AB(XM_RX_CFG), 294 REGISTER_AB(XM_MGT_INT_MASK), 295 REGISTER_AB(XM_FC), 296 REGISTER_AB(XM_PAUSE_TIME), 297 REGISTER_AB(XM_TX_PARAM), 298 REGISTER_AB(XM_RX_PARAM), 299 /* XM_MGT_INT_MSK (note no 'A') is RC */ 300 REGISTER_AB(XX_PWR_RST), 301 REGISTER_AB(XX_SD_CTL), 302 REGISTER_AB(XX_TXDRV_CTL), 303 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ 304 /* XX_CORE_STAT is partly RC */ 305 REGISTER_DZ(BIU_HW_REV_ID), 306 REGISTER_DZ(MC_DB_LWRD), 307 REGISTER_DZ(MC_DB_HWRD), 308 }; 309 310 struct efx_nic_reg_table { 311 u32 offset:24; 312 u32 min_revision:3, max_revision:3; 313 u32 step:6, rows:21; 314 }; 315 316 #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \ 317 offset, \ 318 REGISTER_REVISION_ ## arch ## min_rev, \ 319 REGISTER_REVISION_ ## arch ## max_rev, \ 320 step, rows \ 321 } 322 #define REGISTER_TABLE(name, arch, min_rev, max_rev) \ 323 REGISTER_TABLE_DIMENSIONS( \ 324 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \ 325 arch, min_rev, max_rev, \ 326 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ 327 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS) 328 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A) 329 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z) 330 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B) 331 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z) 332 #define REGISTER_TABLE_BB_CZ(name) \ 333 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B, \ 334 FR_BZ_ ## name ## _STEP, \ 335 FR_BB_ ## name ## _ROWS), \ 336 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z, \ 337 FR_BZ_ ## name ## _STEP, \ 338 FR_CZ_ ## name ## _ROWS) 339 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z) 340 #define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z) 341 342 static const struct efx_nic_reg_table efx_nic_reg_tables[] = { 343 /* DRIVER is not used */ 344 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */ 345 REGISTER_TABLE_BB(TX_IPFIL_TBL), 346 REGISTER_TABLE_BB(TX_SRC_MAC_TBL), 347 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER), 348 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL), 349 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER), 350 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL), 351 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER), 352 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL), 353 /* We can't reasonably read all of the buffer table (up to 8MB!). 354 * However this driver will only use a few entries. Reading 355 * 1K entries allows for some expansion of queue count and 356 * size before we need to change the version. */ 357 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER, 358 F, A, A, 8, 1024), 359 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL, 360 F, B, Z, 8, 1024), 361 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0), 362 REGISTER_TABLE_BB_CZ(TIMER_TBL), 363 REGISTER_TABLE_BB_CZ(TX_PACE_TBL), 364 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL), 365 /* TX_FILTER_TBL0 is huge and not used by this driver */ 366 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0), 367 REGISTER_TABLE_CZ(MC_TREG_SMEM), 368 /* MSIX_PBA_TABLE is not mapped */ 369 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */ 370 REGISTER_TABLE_BZ(RX_FILTER_TBL0), 371 REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS), 372 }; 373 374 size_t efx_nic_get_regs_len(struct efx_nic *efx) 375 { 376 const struct efx_nic_reg *reg; 377 const struct efx_nic_reg_table *table; 378 size_t len = 0; 379 380 for (reg = efx_nic_regs; 381 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); 382 reg++) 383 if (efx->type->revision >= reg->min_revision && 384 efx->type->revision <= reg->max_revision) 385 len += sizeof(efx_oword_t); 386 387 for (table = efx_nic_reg_tables; 388 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); 389 table++) 390 if (efx->type->revision >= table->min_revision && 391 efx->type->revision <= table->max_revision) 392 len += table->rows * min_t(size_t, table->step, 16); 393 394 return len; 395 } 396 397 void efx_nic_get_regs(struct efx_nic *efx, void *buf) 398 { 399 const struct efx_nic_reg *reg; 400 const struct efx_nic_reg_table *table; 401 402 for (reg = efx_nic_regs; 403 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); 404 reg++) { 405 if (efx->type->revision >= reg->min_revision && 406 efx->type->revision <= reg->max_revision) { 407 efx_reado(efx, (efx_oword_t *)buf, reg->offset); 408 buf += sizeof(efx_oword_t); 409 } 410 } 411 412 for (table = efx_nic_reg_tables; 413 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); 414 table++) { 415 size_t size, i; 416 417 if (!(efx->type->revision >= table->min_revision && 418 efx->type->revision <= table->max_revision)) 419 continue; 420 421 size = min_t(size_t, table->step, 16); 422 423 for (i = 0; i < table->rows; i++) { 424 switch (table->step) { 425 case 4: /* 32-bit SRAM */ 426 efx_readd(efx, buf, table->offset + 4 * i); 427 break; 428 case 8: /* 64-bit SRAM */ 429 efx_sram_readq(efx, 430 efx->membase + table->offset, 431 buf, i); 432 break; 433 case 16: /* 128-bit-readable register */ 434 efx_reado_table(efx, buf, table->offset, i); 435 break; 436 case 32: /* 128-bit register, interleaved */ 437 efx_reado_table(efx, buf, table->offset, 2 * i); 438 break; 439 default: 440 WARN_ON(1); 441 return; 442 } 443 buf += size; 444 } 445 } 446 } 447 448 /** 449 * efx_nic_describe_stats - Describe supported statistics for ethtool 450 * @desc: Array of &struct efx_hw_stat_desc describing the statistics 451 * @count: Length of the @desc array 452 * @mask: Bitmask of which elements of @desc are enabled 453 * @names: Buffer to copy names to, or %NULL. The names are copied 454 * starting at intervals of %ETH_GSTRING_LEN bytes. 455 * 456 * Returns the number of visible statistics, i.e. the number of set 457 * bits in the first @count bits of @mask for which a name is defined. 458 */ 459 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count, 460 const unsigned long *mask, u8 *names) 461 { 462 size_t visible = 0; 463 size_t index; 464 465 for_each_set_bit(index, mask, count) { 466 if (desc[index].name) { 467 if (names) { 468 strlcpy(names, desc[index].name, 469 ETH_GSTRING_LEN); 470 names += ETH_GSTRING_LEN; 471 } 472 ++visible; 473 } 474 } 475 476 return visible; 477 } 478 479 /** 480 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an 481 * intermediate buffer. This is used to get a consistent 482 * set of stats while the DMA buffer can be written at any time 483 * by the NIC. 484 * @efx: The associated NIC. 485 * @dest: Destination buffer. Must be the same size as the DMA buffer. 486 */ 487 int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest) 488 { 489 __le64 *dma_stats = efx->stats_buffer.addr; 490 __le64 generation_start, generation_end; 491 int rc = 0, retry; 492 493 if (!dest) 494 return 0; 495 496 if (!dma_stats) 497 goto return_zeroes; 498 499 /* If we're unlucky enough to read statistics during the DMA, wait 500 * up to 10ms for it to finish (typically takes <500us) 501 */ 502 for (retry = 0; retry < 100; ++retry) { 503 generation_end = dma_stats[efx->num_mac_stats - 1]; 504 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) 505 goto return_zeroes; 506 rmb(); 507 memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64)); 508 rmb(); 509 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; 510 if (generation_end == generation_start) 511 return 0; /* return good data */ 512 udelay(100); 513 } 514 515 rc = -EIO; 516 517 return_zeroes: 518 memset(dest, 0, efx->num_mac_stats * sizeof(u64)); 519 return rc; 520 } 521 522 /** 523 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64 524 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer 525 * layout. DMA widths of 0, 16, 32 and 64 are supported; where 526 * the width is specified as 0 the corresponding element of 527 * @stats is not updated. 528 * @count: Length of the @desc array 529 * @mask: Bitmask of which elements of @desc are enabled 530 * @stats: Buffer to update with the converted statistics. The length 531 * of this array must be at least @count. 532 * @dma_buf: DMA buffer containing hardware statistics 533 * @accumulate: If set, the converted values will be added rather than 534 * directly stored to the corresponding elements of @stats 535 */ 536 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count, 537 const unsigned long *mask, 538 u64 *stats, const void *dma_buf, bool accumulate) 539 { 540 size_t index; 541 542 for_each_set_bit(index, mask, count) { 543 if (desc[index].dma_width) { 544 const void *addr = dma_buf + desc[index].offset; 545 u64 val; 546 547 switch (desc[index].dma_width) { 548 case 16: 549 val = le16_to_cpup((__le16 *)addr); 550 break; 551 case 32: 552 val = le32_to_cpup((__le32 *)addr); 553 break; 554 case 64: 555 val = le64_to_cpup((__le64 *)addr); 556 break; 557 default: 558 WARN_ON(1); 559 val = 0; 560 break; 561 } 562 563 if (accumulate) 564 stats[index] += val; 565 else 566 stats[index] = val; 567 } 568 } 569 } 570 571 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops) 572 { 573 /* if down, or this is the first update after coming up */ 574 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state) 575 efx->rx_nodesc_drops_while_down += 576 *rx_nodesc_drops - efx->rx_nodesc_drops_total; 577 efx->rx_nodesc_drops_total = *rx_nodesc_drops; 578 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP); 579 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down; 580 } 581