xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.c (revision 95e9fd10)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
60 
61 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63 
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
65 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
67 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
68 			   efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
74 			   (_tx_queue)->queue)
75 
76 /**************************************************************************
77  *
78  * Solarstorm hardware access
79  *
80  **************************************************************************/
81 
82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83 				     unsigned int index)
84 {
85 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86 			value, index);
87 }
88 
89 /* Read the current event from the event queue */
90 static inline efx_qword_t *efx_event(struct efx_channel *channel,
91 				     unsigned int index)
92 {
93 	return ((efx_qword_t *) (channel->eventq.addr)) +
94 		(index & channel->eventq_mask);
95 }
96 
97 /* See if an event is present
98  *
99  * We check both the high and low dword of the event for all ones.  We
100  * wrote all ones when we cleared the event, and no valid event can
101  * have all ones in either its high or low dwords.  This approach is
102  * robust against reordering.
103  *
104  * Note that using a single 64-bit comparison is incorrect; even
105  * though the CPU read will be atomic, the DMA write may not be.
106  */
107 static inline int efx_event_present(efx_qword_t *event)
108 {
109 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
111 }
112 
113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114 				     const efx_oword_t *mask)
115 {
116 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118 }
119 
120 int efx_nic_test_registers(struct efx_nic *efx,
121 			   const struct efx_nic_register_test *regs,
122 			   size_t n_regs)
123 {
124 	unsigned address = 0, i, j;
125 	efx_oword_t mask, imask, original, reg, buf;
126 
127 	for (i = 0; i < n_regs; ++i) {
128 		address = regs[i].address;
129 		mask = imask = regs[i].mask;
130 		EFX_INVERT_OWORD(imask);
131 
132 		efx_reado(efx, &original, address);
133 
134 		/* bit sweep on and off */
135 		for (j = 0; j < 128; j++) {
136 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
137 				continue;
138 
139 			/* Test this testable bit can be set in isolation */
140 			EFX_AND_OWORD(reg, original, mask);
141 			EFX_SET_OWORD32(reg, j, j, 1);
142 
143 			efx_writeo(efx, &reg, address);
144 			efx_reado(efx, &buf, address);
145 
146 			if (efx_masked_compare_oword(&reg, &buf, &mask))
147 				goto fail;
148 
149 			/* Test this testable bit can be cleared in isolation */
150 			EFX_OR_OWORD(reg, original, mask);
151 			EFX_SET_OWORD32(reg, j, j, 0);
152 
153 			efx_writeo(efx, &reg, address);
154 			efx_reado(efx, &buf, address);
155 
156 			if (efx_masked_compare_oword(&reg, &buf, &mask))
157 				goto fail;
158 		}
159 
160 		efx_writeo(efx, &original, address);
161 	}
162 
163 	return 0;
164 
165 fail:
166 	netif_err(efx, hw, efx->net_dev,
167 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
168 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
169 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
170 	return -EIO;
171 }
172 
173 /**************************************************************************
174  *
175  * Special buffer handling
176  * Special buffers are used for event queues and the TX and RX
177  * descriptor rings.
178  *
179  *************************************************************************/
180 
181 /*
182  * Initialise a special buffer
183  *
184  * This will define a buffer (previously allocated via
185  * efx_alloc_special_buffer()) in the buffer table, allowing
186  * it to be used for event queues, descriptor rings etc.
187  */
188 static void
189 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
190 {
191 	efx_qword_t buf_desc;
192 	unsigned int index;
193 	dma_addr_t dma_addr;
194 	int i;
195 
196 	EFX_BUG_ON_PARANOID(!buffer->addr);
197 
198 	/* Write buffer descriptors to NIC */
199 	for (i = 0; i < buffer->entries; i++) {
200 		index = buffer->index + i;
201 		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
202 		netif_dbg(efx, probe, efx->net_dev,
203 			  "mapping special buffer %d at %llx\n",
204 			  index, (unsigned long long)dma_addr);
205 		EFX_POPULATE_QWORD_3(buf_desc,
206 				     FRF_AZ_BUF_ADR_REGION, 0,
207 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
208 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
209 		efx_write_buf_tbl(efx, &buf_desc, index);
210 	}
211 }
212 
213 /* Unmaps a buffer and clears the buffer table entries */
214 static void
215 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
216 {
217 	efx_oword_t buf_tbl_upd;
218 	unsigned int start = buffer->index;
219 	unsigned int end = (buffer->index + buffer->entries - 1);
220 
221 	if (!buffer->entries)
222 		return;
223 
224 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
225 		  buffer->index, buffer->index + buffer->entries - 1);
226 
227 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
228 			     FRF_AZ_BUF_UPD_CMD, 0,
229 			     FRF_AZ_BUF_CLR_CMD, 1,
230 			     FRF_AZ_BUF_CLR_END_ID, end,
231 			     FRF_AZ_BUF_CLR_START_ID, start);
232 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
233 }
234 
235 /*
236  * Allocate a new special buffer
237  *
238  * This allocates memory for a new buffer, clears it and allocates a
239  * new buffer ID range.  It does not write into the buffer table.
240  *
241  * This call will allocate 4KB buffers, since 8KB buffers can't be
242  * used for event queues and descriptor rings.
243  */
244 static int efx_alloc_special_buffer(struct efx_nic *efx,
245 				    struct efx_special_buffer *buffer,
246 				    unsigned int len)
247 {
248 	len = ALIGN(len, EFX_BUF_SIZE);
249 
250 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
251 					  &buffer->dma_addr, GFP_KERNEL);
252 	if (!buffer->addr)
253 		return -ENOMEM;
254 	buffer->len = len;
255 	buffer->entries = len / EFX_BUF_SIZE;
256 	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
257 
258 	/* All zeros is a potentially valid event so memset to 0xff */
259 	memset(buffer->addr, 0xff, len);
260 
261 	/* Select new buffer ID */
262 	buffer->index = efx->next_buffer_table;
263 	efx->next_buffer_table += buffer->entries;
264 #ifdef CONFIG_SFC_SRIOV
265 	BUG_ON(efx_sriov_enabled(efx) &&
266 	       efx->vf_buftbl_base < efx->next_buffer_table);
267 #endif
268 
269 	netif_dbg(efx, probe, efx->net_dev,
270 		  "allocating special buffers %d-%d at %llx+%x "
271 		  "(virt %p phys %llx)\n", buffer->index,
272 		  buffer->index + buffer->entries - 1,
273 		  (u64)buffer->dma_addr, len,
274 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
275 
276 	return 0;
277 }
278 
279 static void
280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281 {
282 	if (!buffer->addr)
283 		return;
284 
285 	netif_dbg(efx, hw, efx->net_dev,
286 		  "deallocating special buffers %d-%d at %llx+%x "
287 		  "(virt %p phys %llx)\n", buffer->index,
288 		  buffer->index + buffer->entries - 1,
289 		  (u64)buffer->dma_addr, buffer->len,
290 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
291 
292 	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293 			  buffer->dma_addr);
294 	buffer->addr = NULL;
295 	buffer->entries = 0;
296 }
297 
298 /**************************************************************************
299  *
300  * Generic buffer handling
301  * These buffers are used for interrupt status and MAC stats
302  *
303  **************************************************************************/
304 
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306 			 unsigned int len)
307 {
308 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309 					  &buffer->dma_addr, GFP_ATOMIC);
310 	if (!buffer->addr)
311 		return -ENOMEM;
312 	buffer->len = len;
313 	memset(buffer->addr, 0, len);
314 	return 0;
315 }
316 
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 {
319 	if (buffer->addr) {
320 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321 				  buffer->addr, buffer->dma_addr);
322 		buffer->addr = NULL;
323 	}
324 }
325 
326 /**************************************************************************
327  *
328  * TX path
329  *
330  **************************************************************************/
331 
332 /* Returns a pointer to the specified transmit descriptor in the TX
333  * descriptor queue belonging to the specified channel.
334  */
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337 {
338 	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
339 }
340 
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343 {
344 	unsigned write_ptr;
345 	efx_dword_t reg;
346 
347 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
348 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349 	efx_writed_page(tx_queue->efx, &reg,
350 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351 }
352 
353 /* Write pointer and first descriptor for TX descriptor ring */
354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355 				    const efx_qword_t *txd)
356 {
357 	unsigned write_ptr;
358 	efx_oword_t reg;
359 
360 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
361 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
362 
363 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
366 	reg.qword[0] = *txd;
367 	efx_writeo_page(tx_queue->efx, &reg,
368 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369 }
370 
371 static inline bool
372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373 {
374 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375 
376 	if (empty_read_count == 0)
377 		return false;
378 
379 	tx_queue->empty_read_count = 0;
380 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
381 }
382 
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389 
390 	struct efx_tx_buffer *buffer;
391 	efx_qword_t *txd;
392 	unsigned write_ptr;
393 	unsigned old_write_count = tx_queue->write_count;
394 
395 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396 
397 	do {
398 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399 		buffer = &tx_queue->buffer[write_ptr];
400 		txd = efx_tx_desc(tx_queue, write_ptr);
401 		++tx_queue->write_count;
402 
403 		/* Create TX descriptor ring entry */
404 		EFX_POPULATE_QWORD_4(*txd,
405 				     FSF_AZ_TX_KER_CONT, buffer->continuation,
406 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
407 				     FSF_AZ_TX_KER_BUF_REGION, 0,
408 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
409 	} while (tx_queue->write_count != tx_queue->insert_count);
410 
411 	wmb(); /* Ensure descriptors are written before they are fetched */
412 
413 	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
414 		txd = efx_tx_desc(tx_queue,
415 				  old_write_count & tx_queue->ptr_mask);
416 		efx_push_tx_desc(tx_queue, txd);
417 		++tx_queue->pushes;
418 	} else {
419 		efx_notify_tx_desc(tx_queue);
420 	}
421 }
422 
423 /* Allocate hardware resources for a TX queue */
424 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
425 {
426 	struct efx_nic *efx = tx_queue->efx;
427 	unsigned entries;
428 
429 	entries = tx_queue->ptr_mask + 1;
430 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
431 					entries * sizeof(efx_qword_t));
432 }
433 
434 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
435 {
436 	struct efx_nic *efx = tx_queue->efx;
437 	efx_oword_t reg;
438 
439 	/* Pin TX descriptor ring */
440 	efx_init_special_buffer(efx, &tx_queue->txd);
441 
442 	/* Push TX descriptor ring to card */
443 	EFX_POPULATE_OWORD_10(reg,
444 			      FRF_AZ_TX_DESCQ_EN, 1,
445 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
446 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
447 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
448 			      FRF_AZ_TX_DESCQ_EVQ_ID,
449 			      tx_queue->channel->channel,
450 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
451 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
452 			      FRF_AZ_TX_DESCQ_SIZE,
453 			      __ffs(tx_queue->txd.entries),
454 			      FRF_AZ_TX_DESCQ_TYPE, 0,
455 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
456 
457 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
458 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
459 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
460 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
461 				    !csum);
462 	}
463 
464 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
465 			 tx_queue->queue);
466 
467 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
468 		/* Only 128 bits in this register */
469 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
470 
471 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
472 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
473 			clear_bit_le(tx_queue->queue, (void *)&reg);
474 		else
475 			set_bit_le(tx_queue->queue, (void *)&reg);
476 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
477 	}
478 
479 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
480 		EFX_POPULATE_OWORD_1(reg,
481 				     FRF_BZ_TX_PACE,
482 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
483 				     FFE_BZ_TX_PACE_OFF :
484 				     FFE_BZ_TX_PACE_RESERVED);
485 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
486 				 tx_queue->queue);
487 	}
488 }
489 
490 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
491 {
492 	struct efx_nic *efx = tx_queue->efx;
493 	efx_oword_t tx_flush_descq;
494 
495 	EFX_POPULATE_OWORD_2(tx_flush_descq,
496 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
497 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
498 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
499 }
500 
501 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
502 {
503 	struct efx_nic *efx = tx_queue->efx;
504 	efx_oword_t tx_desc_ptr;
505 
506 	/* Remove TX descriptor ring from card */
507 	EFX_ZERO_OWORD(tx_desc_ptr);
508 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
509 			 tx_queue->queue);
510 
511 	/* Unpin TX descriptor ring */
512 	efx_fini_special_buffer(efx, &tx_queue->txd);
513 }
514 
515 /* Free buffers backing TX queue */
516 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
517 {
518 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
519 }
520 
521 /**************************************************************************
522  *
523  * RX path
524  *
525  **************************************************************************/
526 
527 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
528 static inline efx_qword_t *
529 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
530 {
531 	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
532 }
533 
534 /* This creates an entry in the RX descriptor queue */
535 static inline void
536 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
537 {
538 	struct efx_rx_buffer *rx_buf;
539 	efx_qword_t *rxd;
540 
541 	rxd = efx_rx_desc(rx_queue, index);
542 	rx_buf = efx_rx_buffer(rx_queue, index);
543 	EFX_POPULATE_QWORD_3(*rxd,
544 			     FSF_AZ_RX_KER_BUF_SIZE,
545 			     rx_buf->len -
546 			     rx_queue->efx->type->rx_buffer_padding,
547 			     FSF_AZ_RX_KER_BUF_REGION, 0,
548 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
549 }
550 
551 /* This writes to the RX_DESC_WPTR register for the specified receive
552  * descriptor ring.
553  */
554 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
555 {
556 	struct efx_nic *efx = rx_queue->efx;
557 	efx_dword_t reg;
558 	unsigned write_ptr;
559 
560 	while (rx_queue->notified_count != rx_queue->added_count) {
561 		efx_build_rx_desc(
562 			rx_queue,
563 			rx_queue->notified_count & rx_queue->ptr_mask);
564 		++rx_queue->notified_count;
565 	}
566 
567 	wmb();
568 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
569 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
570 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
571 			efx_rx_queue_index(rx_queue));
572 }
573 
574 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
575 {
576 	struct efx_nic *efx = rx_queue->efx;
577 	unsigned entries;
578 
579 	entries = rx_queue->ptr_mask + 1;
580 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
581 					entries * sizeof(efx_qword_t));
582 }
583 
584 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
585 {
586 	efx_oword_t rx_desc_ptr;
587 	struct efx_nic *efx = rx_queue->efx;
588 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
589 	bool iscsi_digest_en = is_b0;
590 
591 	netif_dbg(efx, hw, efx->net_dev,
592 		  "RX queue %d ring in special buffers %d-%d\n",
593 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
594 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
595 
596 	/* Pin RX descriptor ring */
597 	efx_init_special_buffer(efx, &rx_queue->rxd);
598 
599 	/* Push RX descriptor ring to card */
600 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
601 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
602 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
603 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
604 			      FRF_AZ_RX_DESCQ_EVQ_ID,
605 			      efx_rx_queue_channel(rx_queue)->channel,
606 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
607 			      FRF_AZ_RX_DESCQ_LABEL,
608 			      efx_rx_queue_index(rx_queue),
609 			      FRF_AZ_RX_DESCQ_SIZE,
610 			      __ffs(rx_queue->rxd.entries),
611 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
612 			      /* For >=B0 this is scatter so disable */
613 			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
614 			      FRF_AZ_RX_DESCQ_EN, 1);
615 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
616 			 efx_rx_queue_index(rx_queue));
617 }
618 
619 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
620 {
621 	struct efx_nic *efx = rx_queue->efx;
622 	efx_oword_t rx_flush_descq;
623 
624 	EFX_POPULATE_OWORD_2(rx_flush_descq,
625 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
626 			     FRF_AZ_RX_FLUSH_DESCQ,
627 			     efx_rx_queue_index(rx_queue));
628 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
629 }
630 
631 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
632 {
633 	efx_oword_t rx_desc_ptr;
634 	struct efx_nic *efx = rx_queue->efx;
635 
636 	/* Remove RX descriptor ring from card */
637 	EFX_ZERO_OWORD(rx_desc_ptr);
638 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
639 			 efx_rx_queue_index(rx_queue));
640 
641 	/* Unpin RX descriptor ring */
642 	efx_fini_special_buffer(efx, &rx_queue->rxd);
643 }
644 
645 /* Free buffers backing RX queue */
646 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
647 {
648 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
649 }
650 
651 /**************************************************************************
652  *
653  * Flush handling
654  *
655  **************************************************************************/
656 
657 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
658  * or more RX flushes can be kicked off.
659  */
660 static bool efx_flush_wake(struct efx_nic *efx)
661 {
662 	/* Ensure that all updates are visible to efx_nic_flush_queues() */
663 	smp_mb();
664 
665 	return (atomic_read(&efx->drain_pending) == 0 ||
666 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
667 		 && atomic_read(&efx->rxq_flush_pending) > 0));
668 }
669 
670 /* Flush all the transmit queues, and continue flushing receive queues until
671  * they're all flushed. Wait for the DRAIN events to be recieved so that there
672  * are no more RX and TX events left on any channel. */
673 int efx_nic_flush_queues(struct efx_nic *efx)
674 {
675 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
676 	struct efx_channel *channel;
677 	struct efx_rx_queue *rx_queue;
678 	struct efx_tx_queue *tx_queue;
679 	int rc = 0;
680 
681 	efx->fc_disable++;
682 	efx->type->prepare_flush(efx);
683 
684 	efx_for_each_channel(channel, efx) {
685 		efx_for_each_channel_tx_queue(tx_queue, channel) {
686 			atomic_inc(&efx->drain_pending);
687 			efx_flush_tx_queue(tx_queue);
688 		}
689 		efx_for_each_channel_rx_queue(rx_queue, channel) {
690 			atomic_inc(&efx->drain_pending);
691 			rx_queue->flush_pending = true;
692 			atomic_inc(&efx->rxq_flush_pending);
693 		}
694 	}
695 
696 	while (timeout && atomic_read(&efx->drain_pending) > 0) {
697 		/* If SRIOV is enabled, then offload receive queue flushing to
698 		 * the firmware (though we will still have to poll for
699 		 * completion). If that fails, fall back to the old scheme.
700 		 */
701 		if (efx_sriov_enabled(efx)) {
702 			rc = efx_mcdi_flush_rxqs(efx);
703 			if (!rc)
704 				goto wait;
705 		}
706 
707 		/* The hardware supports four concurrent rx flushes, each of
708 		 * which may need to be retried if there is an outstanding
709 		 * descriptor fetch
710 		 */
711 		efx_for_each_channel(channel, efx) {
712 			efx_for_each_channel_rx_queue(rx_queue, channel) {
713 				if (atomic_read(&efx->rxq_flush_outstanding) >=
714 				    EFX_RX_FLUSH_COUNT)
715 					break;
716 
717 				if (rx_queue->flush_pending) {
718 					rx_queue->flush_pending = false;
719 					atomic_dec(&efx->rxq_flush_pending);
720 					atomic_inc(&efx->rxq_flush_outstanding);
721 					efx_flush_rx_queue(rx_queue);
722 				}
723 			}
724 		}
725 
726 	wait:
727 		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
728 					     timeout);
729 	}
730 
731 	if (atomic_read(&efx->drain_pending)) {
732 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
733 			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
734 			  atomic_read(&efx->rxq_flush_outstanding),
735 			  atomic_read(&efx->rxq_flush_pending));
736 		rc = -ETIMEDOUT;
737 
738 		atomic_set(&efx->drain_pending, 0);
739 		atomic_set(&efx->rxq_flush_pending, 0);
740 		atomic_set(&efx->rxq_flush_outstanding, 0);
741 	}
742 
743 	efx->fc_disable--;
744 
745 	return rc;
746 }
747 
748 /**************************************************************************
749  *
750  * Event queue processing
751  * Event queues are processed by per-channel tasklets.
752  *
753  **************************************************************************/
754 
755 /* Update a channel's event queue's read pointer (RPTR) register
756  *
757  * This writes the EVQ_RPTR_REG register for the specified channel's
758  * event queue.
759  */
760 void efx_nic_eventq_read_ack(struct efx_channel *channel)
761 {
762 	efx_dword_t reg;
763 	struct efx_nic *efx = channel->efx;
764 
765 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
766 			     channel->eventq_read_ptr & channel->eventq_mask);
767 	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
768 			 channel->channel);
769 }
770 
771 /* Use HW to insert a SW defined event */
772 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
773 			efx_qword_t *event)
774 {
775 	efx_oword_t drv_ev_reg;
776 
777 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
778 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
779 	drv_ev_reg.u32[0] = event->u32[0];
780 	drv_ev_reg.u32[1] = event->u32[1];
781 	drv_ev_reg.u32[2] = 0;
782 	drv_ev_reg.u32[3] = 0;
783 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
784 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
785 }
786 
787 static void efx_magic_event(struct efx_channel *channel, u32 magic)
788 {
789 	efx_qword_t event;
790 
791 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
792 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
793 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
794 	efx_generate_event(channel->efx, channel->channel, &event);
795 }
796 
797 /* Handle a transmit completion event
798  *
799  * The NIC batches TX completion events; the message we receive is of
800  * the form "complete all TX events up to this index".
801  */
802 static int
803 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
804 {
805 	unsigned int tx_ev_desc_ptr;
806 	unsigned int tx_ev_q_label;
807 	struct efx_tx_queue *tx_queue;
808 	struct efx_nic *efx = channel->efx;
809 	int tx_packets = 0;
810 
811 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
812 		return 0;
813 
814 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
815 		/* Transmit completion */
816 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
817 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
818 		tx_queue = efx_channel_get_tx_queue(
819 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
820 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
821 			      tx_queue->ptr_mask);
822 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
823 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
824 		/* Rewrite the FIFO write pointer */
825 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
826 		tx_queue = efx_channel_get_tx_queue(
827 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
828 
829 		netif_tx_lock(efx->net_dev);
830 		efx_notify_tx_desc(tx_queue);
831 		netif_tx_unlock(efx->net_dev);
832 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
833 		   EFX_WORKAROUND_10727(efx)) {
834 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
835 	} else {
836 		netif_err(efx, tx_err, efx->net_dev,
837 			  "channel %d unexpected TX event "
838 			  EFX_QWORD_FMT"\n", channel->channel,
839 			  EFX_QWORD_VAL(*event));
840 	}
841 
842 	return tx_packets;
843 }
844 
845 /* Detect errors included in the rx_evt_pkt_ok bit. */
846 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
847 				const efx_qword_t *event)
848 {
849 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
850 	struct efx_nic *efx = rx_queue->efx;
851 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
852 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
853 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
854 	bool rx_ev_other_err, rx_ev_pause_frm;
855 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
856 	unsigned rx_ev_pkt_type;
857 
858 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
859 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
860 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
861 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
862 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
863 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
864 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
865 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
866 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
867 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
868 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
869 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
870 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
871 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
872 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
873 
874 	/* Every error apart from tobe_disc and pause_frm */
875 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
876 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
877 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
878 
879 	/* Count errors that are not in MAC stats.  Ignore expected
880 	 * checksum errors during self-test. */
881 	if (rx_ev_frm_trunc)
882 		++channel->n_rx_frm_trunc;
883 	else if (rx_ev_tobe_disc)
884 		++channel->n_rx_tobe_disc;
885 	else if (!efx->loopback_selftest) {
886 		if (rx_ev_ip_hdr_chksum_err)
887 			++channel->n_rx_ip_hdr_chksum_err;
888 		else if (rx_ev_tcp_udp_chksum_err)
889 			++channel->n_rx_tcp_udp_chksum_err;
890 	}
891 
892 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
893 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
894 	 * to a FIFO overflow.
895 	 */
896 #ifdef DEBUG
897 	if (rx_ev_other_err && net_ratelimit()) {
898 		netif_dbg(efx, rx_err, efx->net_dev,
899 			  " RX queue %d unexpected RX event "
900 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
901 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
902 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
903 			  rx_ev_ip_hdr_chksum_err ?
904 			  " [IP_HDR_CHKSUM_ERR]" : "",
905 			  rx_ev_tcp_udp_chksum_err ?
906 			  " [TCP_UDP_CHKSUM_ERR]" : "",
907 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
908 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
909 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
910 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
911 			  rx_ev_pause_frm ? " [PAUSE]" : "");
912 	}
913 #endif
914 
915 	/* The frame must be discarded if any of these are true. */
916 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
917 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
918 		EFX_RX_PKT_DISCARD : 0;
919 }
920 
921 /* Handle receive events that are not in-order. */
922 static void
923 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
924 {
925 	struct efx_nic *efx = rx_queue->efx;
926 	unsigned expected, dropped;
927 
928 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
929 	dropped = (index - expected) & rx_queue->ptr_mask;
930 	netif_info(efx, rx_err, efx->net_dev,
931 		   "dropped %d events (index=%d expected=%d)\n",
932 		   dropped, index, expected);
933 
934 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
935 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
936 }
937 
938 /* Handle a packet received event
939  *
940  * The NIC gives a "discard" flag if it's a unicast packet with the
941  * wrong destination address
942  * Also "is multicast" and "matches multicast filter" flags can be used to
943  * discard non-matching multicast packets.
944  */
945 static void
946 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
947 {
948 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
949 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
950 	unsigned expected_ptr;
951 	bool rx_ev_pkt_ok;
952 	u16 flags;
953 	struct efx_rx_queue *rx_queue;
954 	struct efx_nic *efx = channel->efx;
955 
956 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
957 		return;
958 
959 	/* Basic packet information */
960 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
961 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
962 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
963 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
964 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
965 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
966 		channel->channel);
967 
968 	rx_queue = efx_channel_get_rx_queue(channel);
969 
970 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
971 	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
972 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
973 		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
974 
975 	if (likely(rx_ev_pkt_ok)) {
976 		/* If packet is marked as OK and packet type is TCP/IP or
977 		 * UDP/IP, then we can rely on the hardware checksum.
978 		 */
979 		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
980 			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
981 			EFX_RX_PKT_CSUMMED : 0;
982 	} else {
983 		flags = efx_handle_rx_not_ok(rx_queue, event);
984 	}
985 
986 	/* Detect multicast packets that didn't match the filter */
987 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
988 	if (rx_ev_mcast_pkt) {
989 		unsigned int rx_ev_mcast_hash_match =
990 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
991 
992 		if (unlikely(!rx_ev_mcast_hash_match)) {
993 			++channel->n_rx_mcast_mismatch;
994 			flags |= EFX_RX_PKT_DISCARD;
995 		}
996 	}
997 
998 	channel->irq_mod_score += 2;
999 
1000 	/* Handle received packet */
1001 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1002 }
1003 
1004 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1005  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1006  * of all transmit completions.
1007  */
1008 static void
1009 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1010 {
1011 	struct efx_tx_queue *tx_queue;
1012 	int qid;
1013 
1014 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1015 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1016 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1017 					    qid % EFX_TXQ_TYPES);
1018 
1019 		efx_magic_event(tx_queue->channel,
1020 				EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1021 	}
1022 }
1023 
1024 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1025  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1026  * the RX queue back to the mask of RX queues in need of flushing.
1027  */
1028 static void
1029 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1030 {
1031 	struct efx_channel *channel;
1032 	struct efx_rx_queue *rx_queue;
1033 	int qid;
1034 	bool failed;
1035 
1036 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1037 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1038 	if (qid >= efx->n_channels)
1039 		return;
1040 	channel = efx_get_channel(efx, qid);
1041 	if (!efx_channel_has_rx_queue(channel))
1042 		return;
1043 	rx_queue = efx_channel_get_rx_queue(channel);
1044 
1045 	if (failed) {
1046 		netif_info(efx, hw, efx->net_dev,
1047 			   "RXQ %d flush retry\n", qid);
1048 		rx_queue->flush_pending = true;
1049 		atomic_inc(&efx->rxq_flush_pending);
1050 	} else {
1051 		efx_magic_event(efx_rx_queue_channel(rx_queue),
1052 				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1053 	}
1054 	atomic_dec(&efx->rxq_flush_outstanding);
1055 	if (efx_flush_wake(efx))
1056 		wake_up(&efx->flush_wq);
1057 }
1058 
1059 static void
1060 efx_handle_drain_event(struct efx_channel *channel)
1061 {
1062 	struct efx_nic *efx = channel->efx;
1063 
1064 	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1065 	atomic_dec(&efx->drain_pending);
1066 	if (efx_flush_wake(efx))
1067 		wake_up(&efx->flush_wq);
1068 }
1069 
1070 static void
1071 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1072 {
1073 	struct efx_nic *efx = channel->efx;
1074 	struct efx_rx_queue *rx_queue =
1075 		efx_channel_has_rx_queue(channel) ?
1076 		efx_channel_get_rx_queue(channel) : NULL;
1077 	unsigned magic, code;
1078 
1079 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1080 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1081 
1082 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1083 		channel->event_test_cpu = raw_smp_processor_id();
1084 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1085 		/* The queue must be empty, so we won't receive any rx
1086 		 * events, so efx_process_channel() won't refill the
1087 		 * queue. Refill it here */
1088 		efx_fast_push_rx_descriptors(rx_queue);
1089 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1090 		rx_queue->enabled = false;
1091 		efx_handle_drain_event(channel);
1092 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1093 		efx_handle_drain_event(channel);
1094 	} else {
1095 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1096 			  "generated event "EFX_QWORD_FMT"\n",
1097 			  channel->channel, EFX_QWORD_VAL(*event));
1098 	}
1099 }
1100 
1101 static void
1102 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1103 {
1104 	struct efx_nic *efx = channel->efx;
1105 	unsigned int ev_sub_code;
1106 	unsigned int ev_sub_data;
1107 
1108 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1109 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1110 
1111 	switch (ev_sub_code) {
1112 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1113 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1114 			   channel->channel, ev_sub_data);
1115 		efx_handle_tx_flush_done(efx, event);
1116 		efx_sriov_tx_flush_done(efx, event);
1117 		break;
1118 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1119 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1120 			   channel->channel, ev_sub_data);
1121 		efx_handle_rx_flush_done(efx, event);
1122 		efx_sriov_rx_flush_done(efx, event);
1123 		break;
1124 	case FSE_AZ_EVQ_INIT_DONE_EV:
1125 		netif_dbg(efx, hw, efx->net_dev,
1126 			  "channel %d EVQ %d initialised\n",
1127 			  channel->channel, ev_sub_data);
1128 		break;
1129 	case FSE_AZ_SRM_UPD_DONE_EV:
1130 		netif_vdbg(efx, hw, efx->net_dev,
1131 			   "channel %d SRAM update done\n", channel->channel);
1132 		break;
1133 	case FSE_AZ_WAKE_UP_EV:
1134 		netif_vdbg(efx, hw, efx->net_dev,
1135 			   "channel %d RXQ %d wakeup event\n",
1136 			   channel->channel, ev_sub_data);
1137 		break;
1138 	case FSE_AZ_TIMER_EV:
1139 		netif_vdbg(efx, hw, efx->net_dev,
1140 			   "channel %d RX queue %d timer expired\n",
1141 			   channel->channel, ev_sub_data);
1142 		break;
1143 	case FSE_AA_RX_RECOVER_EV:
1144 		netif_err(efx, rx_err, efx->net_dev,
1145 			  "channel %d seen DRIVER RX_RESET event. "
1146 			"Resetting.\n", channel->channel);
1147 		atomic_inc(&efx->rx_reset);
1148 		efx_schedule_reset(efx,
1149 				   EFX_WORKAROUND_6555(efx) ?
1150 				   RESET_TYPE_RX_RECOVERY :
1151 				   RESET_TYPE_DISABLE);
1152 		break;
1153 	case FSE_BZ_RX_DSC_ERROR_EV:
1154 		if (ev_sub_data < EFX_VI_BASE) {
1155 			netif_err(efx, rx_err, efx->net_dev,
1156 				  "RX DMA Q %d reports descriptor fetch error."
1157 				  " RX Q %d is disabled.\n", ev_sub_data,
1158 				  ev_sub_data);
1159 			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1160 		} else
1161 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1162 		break;
1163 	case FSE_BZ_TX_DSC_ERROR_EV:
1164 		if (ev_sub_data < EFX_VI_BASE) {
1165 			netif_err(efx, tx_err, efx->net_dev,
1166 				  "TX DMA Q %d reports descriptor fetch error."
1167 				  " TX Q %d is disabled.\n", ev_sub_data,
1168 				  ev_sub_data);
1169 			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1170 		} else
1171 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1172 		break;
1173 	default:
1174 		netif_vdbg(efx, hw, efx->net_dev,
1175 			   "channel %d unknown driver event code %d "
1176 			   "data %04x\n", channel->channel, ev_sub_code,
1177 			   ev_sub_data);
1178 		break;
1179 	}
1180 }
1181 
1182 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1183 {
1184 	struct efx_nic *efx = channel->efx;
1185 	unsigned int read_ptr;
1186 	efx_qword_t event, *p_event;
1187 	int ev_code;
1188 	int tx_packets = 0;
1189 	int spent = 0;
1190 
1191 	read_ptr = channel->eventq_read_ptr;
1192 
1193 	for (;;) {
1194 		p_event = efx_event(channel, read_ptr);
1195 		event = *p_event;
1196 
1197 		if (!efx_event_present(&event))
1198 			/* End of events */
1199 			break;
1200 
1201 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1202 			   "channel %d event is "EFX_QWORD_FMT"\n",
1203 			   channel->channel, EFX_QWORD_VAL(event));
1204 
1205 		/* Clear this event by marking it all ones */
1206 		EFX_SET_QWORD(*p_event);
1207 
1208 		++read_ptr;
1209 
1210 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1211 
1212 		switch (ev_code) {
1213 		case FSE_AZ_EV_CODE_RX_EV:
1214 			efx_handle_rx_event(channel, &event);
1215 			if (++spent == budget)
1216 				goto out;
1217 			break;
1218 		case FSE_AZ_EV_CODE_TX_EV:
1219 			tx_packets += efx_handle_tx_event(channel, &event);
1220 			if (tx_packets > efx->txq_entries) {
1221 				spent = budget;
1222 				goto out;
1223 			}
1224 			break;
1225 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1226 			efx_handle_generated_event(channel, &event);
1227 			break;
1228 		case FSE_AZ_EV_CODE_DRIVER_EV:
1229 			efx_handle_driver_event(channel, &event);
1230 			break;
1231 		case FSE_CZ_EV_CODE_USER_EV:
1232 			efx_sriov_event(channel, &event);
1233 			break;
1234 		case FSE_CZ_EV_CODE_MCDI_EV:
1235 			efx_mcdi_process_event(channel, &event);
1236 			break;
1237 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1238 			if (efx->type->handle_global_event &&
1239 			    efx->type->handle_global_event(channel, &event))
1240 				break;
1241 			/* else fall through */
1242 		default:
1243 			netif_err(channel->efx, hw, channel->efx->net_dev,
1244 				  "channel %d unknown event type %d (data "
1245 				  EFX_QWORD_FMT ")\n", channel->channel,
1246 				  ev_code, EFX_QWORD_VAL(event));
1247 		}
1248 	}
1249 
1250 out:
1251 	channel->eventq_read_ptr = read_ptr;
1252 	return spent;
1253 }
1254 
1255 /* Check whether an event is present in the eventq at the current
1256  * read pointer.  Only useful for self-test.
1257  */
1258 bool efx_nic_event_present(struct efx_channel *channel)
1259 {
1260 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1261 }
1262 
1263 /* Allocate buffer table entries for event queue */
1264 int efx_nic_probe_eventq(struct efx_channel *channel)
1265 {
1266 	struct efx_nic *efx = channel->efx;
1267 	unsigned entries;
1268 
1269 	entries = channel->eventq_mask + 1;
1270 	return efx_alloc_special_buffer(efx, &channel->eventq,
1271 					entries * sizeof(efx_qword_t));
1272 }
1273 
1274 void efx_nic_init_eventq(struct efx_channel *channel)
1275 {
1276 	efx_oword_t reg;
1277 	struct efx_nic *efx = channel->efx;
1278 
1279 	netif_dbg(efx, hw, efx->net_dev,
1280 		  "channel %d event queue in special buffers %d-%d\n",
1281 		  channel->channel, channel->eventq.index,
1282 		  channel->eventq.index + channel->eventq.entries - 1);
1283 
1284 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1285 		EFX_POPULATE_OWORD_3(reg,
1286 				     FRF_CZ_TIMER_Q_EN, 1,
1287 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1288 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1289 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1290 	}
1291 
1292 	/* Pin event queue buffer */
1293 	efx_init_special_buffer(efx, &channel->eventq);
1294 
1295 	/* Fill event queue with all ones (i.e. empty events) */
1296 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1297 
1298 	/* Push event queue to card */
1299 	EFX_POPULATE_OWORD_3(reg,
1300 			     FRF_AZ_EVQ_EN, 1,
1301 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1302 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1303 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1304 			 channel->channel);
1305 
1306 	efx->type->push_irq_moderation(channel);
1307 }
1308 
1309 void efx_nic_fini_eventq(struct efx_channel *channel)
1310 {
1311 	efx_oword_t reg;
1312 	struct efx_nic *efx = channel->efx;
1313 
1314 	/* Remove event queue from card */
1315 	EFX_ZERO_OWORD(reg);
1316 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1317 			 channel->channel);
1318 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1319 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1320 
1321 	/* Unpin event queue */
1322 	efx_fini_special_buffer(efx, &channel->eventq);
1323 }
1324 
1325 /* Free buffers backing event queue */
1326 void efx_nic_remove_eventq(struct efx_channel *channel)
1327 {
1328 	efx_free_special_buffer(channel->efx, &channel->eventq);
1329 }
1330 
1331 
1332 void efx_nic_event_test_start(struct efx_channel *channel)
1333 {
1334 	channel->event_test_cpu = -1;
1335 	smp_wmb();
1336 	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1337 }
1338 
1339 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1340 {
1341 	efx_magic_event(efx_rx_queue_channel(rx_queue),
1342 			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1343 }
1344 
1345 /**************************************************************************
1346  *
1347  * Hardware interrupts
1348  * The hardware interrupt handler does very little work; all the event
1349  * queue processing is carried out by per-channel tasklets.
1350  *
1351  **************************************************************************/
1352 
1353 /* Enable/disable/generate interrupts */
1354 static inline void efx_nic_interrupts(struct efx_nic *efx,
1355 				      bool enabled, bool force)
1356 {
1357 	efx_oword_t int_en_reg_ker;
1358 
1359 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1360 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1361 			     FRF_AZ_KER_INT_KER, force,
1362 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1363 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1364 }
1365 
1366 void efx_nic_enable_interrupts(struct efx_nic *efx)
1367 {
1368 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1369 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1370 
1371 	efx_nic_interrupts(efx, true, false);
1372 }
1373 
1374 void efx_nic_disable_interrupts(struct efx_nic *efx)
1375 {
1376 	/* Disable interrupts */
1377 	efx_nic_interrupts(efx, false, false);
1378 }
1379 
1380 /* Generate a test interrupt
1381  * Interrupt must already have been enabled, otherwise nasty things
1382  * may happen.
1383  */
1384 void efx_nic_irq_test_start(struct efx_nic *efx)
1385 {
1386 	efx->last_irq_cpu = -1;
1387 	smp_wmb();
1388 	efx_nic_interrupts(efx, true, true);
1389 }
1390 
1391 /* Process a fatal interrupt
1392  * Disable bus mastering ASAP and schedule a reset
1393  */
1394 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1395 {
1396 	struct falcon_nic_data *nic_data = efx->nic_data;
1397 	efx_oword_t *int_ker = efx->irq_status.addr;
1398 	efx_oword_t fatal_intr;
1399 	int error, mem_perr;
1400 
1401 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1402 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1403 
1404 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1405 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1406 		  EFX_OWORD_VAL(fatal_intr),
1407 		  error ? "disabling bus mastering" : "no recognised error");
1408 
1409 	/* If this is a memory parity error dump which blocks are offending */
1410 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1411 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1412 	if (mem_perr) {
1413 		efx_oword_t reg;
1414 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1415 		netif_err(efx, hw, efx->net_dev,
1416 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1417 			  EFX_OWORD_VAL(reg));
1418 	}
1419 
1420 	/* Disable both devices */
1421 	pci_clear_master(efx->pci_dev);
1422 	if (efx_nic_is_dual_func(efx))
1423 		pci_clear_master(nic_data->pci_dev2);
1424 	efx_nic_disable_interrupts(efx);
1425 
1426 	/* Count errors and reset or disable the NIC accordingly */
1427 	if (efx->int_error_count == 0 ||
1428 	    time_after(jiffies, efx->int_error_expire)) {
1429 		efx->int_error_count = 0;
1430 		efx->int_error_expire =
1431 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1432 	}
1433 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1434 		netif_err(efx, hw, efx->net_dev,
1435 			  "SYSTEM ERROR - reset scheduled\n");
1436 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1437 	} else {
1438 		netif_err(efx, hw, efx->net_dev,
1439 			  "SYSTEM ERROR - max number of errors seen."
1440 			  "NIC will be disabled\n");
1441 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1442 	}
1443 
1444 	return IRQ_HANDLED;
1445 }
1446 
1447 /* Handle a legacy interrupt
1448  * Acknowledges the interrupt and schedule event queue processing.
1449  */
1450 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1451 {
1452 	struct efx_nic *efx = dev_id;
1453 	efx_oword_t *int_ker = efx->irq_status.addr;
1454 	irqreturn_t result = IRQ_NONE;
1455 	struct efx_channel *channel;
1456 	efx_dword_t reg;
1457 	u32 queues;
1458 	int syserr;
1459 
1460 	/* Could this be ours?  If interrupts are disabled then the
1461 	 * channel state may not be valid.
1462 	 */
1463 	if (!efx->legacy_irq_enabled)
1464 		return result;
1465 
1466 	/* Read the ISR which also ACKs the interrupts */
1467 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1468 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1469 
1470 	/* Handle non-event-queue sources */
1471 	if (queues & (1U << efx->irq_level)) {
1472 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1473 		if (unlikely(syserr))
1474 			return efx_nic_fatal_interrupt(efx);
1475 		efx->last_irq_cpu = raw_smp_processor_id();
1476 	}
1477 
1478 	if (queues != 0) {
1479 		if (EFX_WORKAROUND_15783(efx))
1480 			efx->irq_zero_count = 0;
1481 
1482 		/* Schedule processing of any interrupting queues */
1483 		efx_for_each_channel(channel, efx) {
1484 			if (queues & 1)
1485 				efx_schedule_channel_irq(channel);
1486 			queues >>= 1;
1487 		}
1488 		result = IRQ_HANDLED;
1489 
1490 	} else if (EFX_WORKAROUND_15783(efx)) {
1491 		efx_qword_t *event;
1492 
1493 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1494 		 * because this might be a shared interrupt. */
1495 		if (efx->irq_zero_count++ == 0)
1496 			result = IRQ_HANDLED;
1497 
1498 		/* Ensure we schedule or rearm all event queues */
1499 		efx_for_each_channel(channel, efx) {
1500 			event = efx_event(channel, channel->eventq_read_ptr);
1501 			if (efx_event_present(event))
1502 				efx_schedule_channel_irq(channel);
1503 			else
1504 				efx_nic_eventq_read_ack(channel);
1505 		}
1506 	}
1507 
1508 	if (result == IRQ_HANDLED)
1509 		netif_vdbg(efx, intr, efx->net_dev,
1510 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1511 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1512 
1513 	return result;
1514 }
1515 
1516 /* Handle an MSI interrupt
1517  *
1518  * Handle an MSI hardware interrupt.  This routine schedules event
1519  * queue processing.  No interrupt acknowledgement cycle is necessary.
1520  * Also, we never need to check that the interrupt is for us, since
1521  * MSI interrupts cannot be shared.
1522  */
1523 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1524 {
1525 	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1526 	struct efx_nic *efx = channel->efx;
1527 	efx_oword_t *int_ker = efx->irq_status.addr;
1528 	int syserr;
1529 
1530 	netif_vdbg(efx, intr, efx->net_dev,
1531 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1532 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1533 
1534 	/* Handle non-event-queue sources */
1535 	if (channel->channel == efx->irq_level) {
1536 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1537 		if (unlikely(syserr))
1538 			return efx_nic_fatal_interrupt(efx);
1539 		efx->last_irq_cpu = raw_smp_processor_id();
1540 	}
1541 
1542 	/* Schedule processing of the channel */
1543 	efx_schedule_channel_irq(channel);
1544 
1545 	return IRQ_HANDLED;
1546 }
1547 
1548 
1549 /* Setup RSS indirection table.
1550  * This maps from the hash value of the packet to RXQ
1551  */
1552 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1553 {
1554 	size_t i = 0;
1555 	efx_dword_t dword;
1556 
1557 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1558 		return;
1559 
1560 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1561 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1562 
1563 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1564 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1565 				     efx->rx_indir_table[i]);
1566 		efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1567 	}
1568 }
1569 
1570 /* Hook interrupt handler(s)
1571  * Try MSI and then legacy interrupts.
1572  */
1573 int efx_nic_init_interrupt(struct efx_nic *efx)
1574 {
1575 	struct efx_channel *channel;
1576 	int rc;
1577 
1578 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1579 		irq_handler_t handler;
1580 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1581 			handler = efx_legacy_interrupt;
1582 		else
1583 			handler = falcon_legacy_interrupt_a1;
1584 
1585 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1586 				 efx->name, efx);
1587 		if (rc) {
1588 			netif_err(efx, drv, efx->net_dev,
1589 				  "failed to hook legacy IRQ %d\n",
1590 				  efx->pci_dev->irq);
1591 			goto fail1;
1592 		}
1593 		return 0;
1594 	}
1595 
1596 	/* Hook MSI or MSI-X interrupt */
1597 	efx_for_each_channel(channel, efx) {
1598 		rc = request_irq(channel->irq, efx_msi_interrupt,
1599 				 IRQF_PROBE_SHARED, /* Not shared */
1600 				 efx->channel_name[channel->channel],
1601 				 &efx->channel[channel->channel]);
1602 		if (rc) {
1603 			netif_err(efx, drv, efx->net_dev,
1604 				  "failed to hook IRQ %d\n", channel->irq);
1605 			goto fail2;
1606 		}
1607 	}
1608 
1609 	return 0;
1610 
1611  fail2:
1612 	efx_for_each_channel(channel, efx)
1613 		free_irq(channel->irq, &efx->channel[channel->channel]);
1614  fail1:
1615 	return rc;
1616 }
1617 
1618 void efx_nic_fini_interrupt(struct efx_nic *efx)
1619 {
1620 	struct efx_channel *channel;
1621 	efx_oword_t reg;
1622 
1623 	/* Disable MSI/MSI-X interrupts */
1624 	efx_for_each_channel(channel, efx) {
1625 		if (channel->irq)
1626 			free_irq(channel->irq, &efx->channel[channel->channel]);
1627 	}
1628 
1629 	/* ACK legacy interrupt */
1630 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1631 		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1632 	else
1633 		falcon_irq_ack_a1(efx);
1634 
1635 	/* Disable legacy interrupt */
1636 	if (efx->legacy_irq)
1637 		free_irq(efx->legacy_irq, efx);
1638 }
1639 
1640 /* Looks at available SRAM resources and works out how many queues we
1641  * can support, and where things like descriptor caches should live.
1642  *
1643  * SRAM is split up as follows:
1644  * 0                          buftbl entries for channels
1645  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1646  * efx->rx_dc_base            RX descriptor caches
1647  * efx->tx_dc_base            TX descriptor caches
1648  */
1649 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1650 {
1651 	unsigned vi_count, buftbl_min;
1652 
1653 	/* Account for the buffer table entries backing the datapath channels
1654 	 * and the descriptor caches for those channels.
1655 	 */
1656 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1657 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1658 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1659 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1660 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1661 
1662 #ifdef CONFIG_SFC_SRIOV
1663 	if (efx_sriov_wanted(efx)) {
1664 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1665 
1666 		efx->vf_buftbl_base = buftbl_min;
1667 
1668 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1669 		vi_count = max(vi_count, EFX_VI_BASE);
1670 		buftbl_free = (sram_lim_qw - buftbl_min -
1671 			       vi_count * vi_dc_entries);
1672 
1673 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1674 				  efx_vf_size(efx));
1675 		vf_limit = min(buftbl_free / entries_per_vf,
1676 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1677 
1678 		if (efx->vf_count > vf_limit) {
1679 			netif_err(efx, probe, efx->net_dev,
1680 				  "Reducing VF count from from %d to %d\n",
1681 				  efx->vf_count, vf_limit);
1682 			efx->vf_count = vf_limit;
1683 		}
1684 		vi_count += efx->vf_count * efx_vf_size(efx);
1685 	}
1686 #endif
1687 
1688 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1689 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1690 }
1691 
1692 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1693 {
1694 	efx_oword_t altera_build;
1695 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1696 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1697 }
1698 
1699 void efx_nic_init_common(struct efx_nic *efx)
1700 {
1701 	efx_oword_t temp;
1702 
1703 	/* Set positions of descriptor caches in SRAM. */
1704 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1705 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1706 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1707 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1708 
1709 	/* Set TX descriptor cache size. */
1710 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1711 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1712 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1713 
1714 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1715 	 * this allows most efficient prefetching.
1716 	 */
1717 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1718 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1719 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1720 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1721 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1722 
1723 	/* Program INT_KER address */
1724 	EFX_POPULATE_OWORD_2(temp,
1725 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1726 			     EFX_INT_MODE_USE_MSI(efx),
1727 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1728 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1729 
1730 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1731 		/* Use an interrupt level unused by event queues */
1732 		efx->irq_level = 0x1f;
1733 	else
1734 		/* Use a valid MSI-X vector */
1735 		efx->irq_level = 0;
1736 
1737 	/* Enable all the genuinely fatal interrupts.  (They are still
1738 	 * masked by the overall interrupt mask, controlled by
1739 	 * falcon_interrupts()).
1740 	 *
1741 	 * Note: All other fatal interrupts are enabled
1742 	 */
1743 	EFX_POPULATE_OWORD_3(temp,
1744 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1745 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1746 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1747 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1748 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1749 	EFX_INVERT_OWORD(temp);
1750 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1751 
1752 	efx_nic_push_rx_indir_table(efx);
1753 
1754 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1755 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1756 	 */
1757 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1758 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1759 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1760 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1761 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1762 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1763 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1764 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1765 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1766 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1767 	/* Disable hardware watchdog which can misfire */
1768 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1769 	/* Squash TX of packets of 16 bytes or less */
1770 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1771 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1772 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1773 
1774 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1775 		EFX_POPULATE_OWORD_4(temp,
1776 				     /* Default values */
1777 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1778 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1779 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1780 				     /* Allow large pace values in the
1781 				      * fast bin. */
1782 				     FRF_BZ_TX_PACE_BIN_TH,
1783 				     FFE_BZ_TX_PACE_RESERVED);
1784 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1785 	}
1786 }
1787 
1788 /* Register dump */
1789 
1790 #define REGISTER_REVISION_A	1
1791 #define REGISTER_REVISION_B	2
1792 #define REGISTER_REVISION_C	3
1793 #define REGISTER_REVISION_Z	3	/* latest revision */
1794 
1795 struct efx_nic_reg {
1796 	u32 offset:24;
1797 	u32 min_revision:2, max_revision:2;
1798 };
1799 
1800 #define REGISTER(name, min_rev, max_rev) {				\
1801 	FR_ ## min_rev ## max_rev ## _ ## name,				\
1802 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1803 }
1804 #define REGISTER_AA(name) REGISTER(name, A, A)
1805 #define REGISTER_AB(name) REGISTER(name, A, B)
1806 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1807 #define REGISTER_BB(name) REGISTER(name, B, B)
1808 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1809 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1810 
1811 static const struct efx_nic_reg efx_nic_regs[] = {
1812 	REGISTER_AZ(ADR_REGION),
1813 	REGISTER_AZ(INT_EN_KER),
1814 	REGISTER_BZ(INT_EN_CHAR),
1815 	REGISTER_AZ(INT_ADR_KER),
1816 	REGISTER_BZ(INT_ADR_CHAR),
1817 	/* INT_ACK_KER is WO */
1818 	/* INT_ISR0 is RC */
1819 	REGISTER_AZ(HW_INIT),
1820 	REGISTER_CZ(USR_EV_CFG),
1821 	REGISTER_AB(EE_SPI_HCMD),
1822 	REGISTER_AB(EE_SPI_HADR),
1823 	REGISTER_AB(EE_SPI_HDATA),
1824 	REGISTER_AB(EE_BASE_PAGE),
1825 	REGISTER_AB(EE_VPD_CFG0),
1826 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1827 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1828 	/* PCIE_CORE_INDIRECT is indirect */
1829 	REGISTER_AB(NIC_STAT),
1830 	REGISTER_AB(GPIO_CTL),
1831 	REGISTER_AB(GLB_CTL),
1832 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1833 	REGISTER_BZ(DP_CTRL),
1834 	REGISTER_AZ(MEM_STAT),
1835 	REGISTER_AZ(CS_DEBUG),
1836 	REGISTER_AZ(ALTERA_BUILD),
1837 	REGISTER_AZ(CSR_SPARE),
1838 	REGISTER_AB(PCIE_SD_CTL0123),
1839 	REGISTER_AB(PCIE_SD_CTL45),
1840 	REGISTER_AB(PCIE_PCS_CTL_STAT),
1841 	/* DEBUG_DATA_OUT is not used */
1842 	/* DRV_EV is WO */
1843 	REGISTER_AZ(EVQ_CTL),
1844 	REGISTER_AZ(EVQ_CNT1),
1845 	REGISTER_AZ(EVQ_CNT2),
1846 	REGISTER_AZ(BUF_TBL_CFG),
1847 	REGISTER_AZ(SRM_RX_DC_CFG),
1848 	REGISTER_AZ(SRM_TX_DC_CFG),
1849 	REGISTER_AZ(SRM_CFG),
1850 	/* BUF_TBL_UPD is WO */
1851 	REGISTER_AZ(SRM_UPD_EVQ),
1852 	REGISTER_AZ(SRAM_PARITY),
1853 	REGISTER_AZ(RX_CFG),
1854 	REGISTER_BZ(RX_FILTER_CTL),
1855 	/* RX_FLUSH_DESCQ is WO */
1856 	REGISTER_AZ(RX_DC_CFG),
1857 	REGISTER_AZ(RX_DC_PF_WM),
1858 	REGISTER_BZ(RX_RSS_TKEY),
1859 	/* RX_NODESC_DROP is RC */
1860 	REGISTER_AA(RX_SELF_RST),
1861 	/* RX_DEBUG, RX_PUSH_DROP are not used */
1862 	REGISTER_CZ(RX_RSS_IPV6_REG1),
1863 	REGISTER_CZ(RX_RSS_IPV6_REG2),
1864 	REGISTER_CZ(RX_RSS_IPV6_REG3),
1865 	/* TX_FLUSH_DESCQ is WO */
1866 	REGISTER_AZ(TX_DC_CFG),
1867 	REGISTER_AA(TX_CHKSM_CFG),
1868 	REGISTER_AZ(TX_CFG),
1869 	/* TX_PUSH_DROP is not used */
1870 	REGISTER_AZ(TX_RESERVED),
1871 	REGISTER_BZ(TX_PACE),
1872 	/* TX_PACE_DROP_QID is RC */
1873 	REGISTER_BB(TX_VLAN),
1874 	REGISTER_BZ(TX_IPFIL_PORTEN),
1875 	REGISTER_AB(MD_TXD),
1876 	REGISTER_AB(MD_RXD),
1877 	REGISTER_AB(MD_CS),
1878 	REGISTER_AB(MD_PHY_ADR),
1879 	REGISTER_AB(MD_ID),
1880 	/* MD_STAT is RC */
1881 	REGISTER_AB(MAC_STAT_DMA),
1882 	REGISTER_AB(MAC_CTRL),
1883 	REGISTER_BB(GEN_MODE),
1884 	REGISTER_AB(MAC_MC_HASH_REG0),
1885 	REGISTER_AB(MAC_MC_HASH_REG1),
1886 	REGISTER_AB(GM_CFG1),
1887 	REGISTER_AB(GM_CFG2),
1888 	/* GM_IPG and GM_HD are not used */
1889 	REGISTER_AB(GM_MAX_FLEN),
1890 	/* GM_TEST is not used */
1891 	REGISTER_AB(GM_ADR1),
1892 	REGISTER_AB(GM_ADR2),
1893 	REGISTER_AB(GMF_CFG0),
1894 	REGISTER_AB(GMF_CFG1),
1895 	REGISTER_AB(GMF_CFG2),
1896 	REGISTER_AB(GMF_CFG3),
1897 	REGISTER_AB(GMF_CFG4),
1898 	REGISTER_AB(GMF_CFG5),
1899 	REGISTER_BB(TX_SRC_MAC_CTL),
1900 	REGISTER_AB(XM_ADR_LO),
1901 	REGISTER_AB(XM_ADR_HI),
1902 	REGISTER_AB(XM_GLB_CFG),
1903 	REGISTER_AB(XM_TX_CFG),
1904 	REGISTER_AB(XM_RX_CFG),
1905 	REGISTER_AB(XM_MGT_INT_MASK),
1906 	REGISTER_AB(XM_FC),
1907 	REGISTER_AB(XM_PAUSE_TIME),
1908 	REGISTER_AB(XM_TX_PARAM),
1909 	REGISTER_AB(XM_RX_PARAM),
1910 	/* XM_MGT_INT_MSK (note no 'A') is RC */
1911 	REGISTER_AB(XX_PWR_RST),
1912 	REGISTER_AB(XX_SD_CTL),
1913 	REGISTER_AB(XX_TXDRV_CTL),
1914 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1915 	/* XX_CORE_STAT is partly RC */
1916 };
1917 
1918 struct efx_nic_reg_table {
1919 	u32 offset:24;
1920 	u32 min_revision:2, max_revision:2;
1921 	u32 step:6, rows:21;
1922 };
1923 
1924 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1925 	offset,								\
1926 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
1927 	step, rows							\
1928 }
1929 #define REGISTER_TABLE(name, min_rev, max_rev)				\
1930 	REGISTER_TABLE_DIMENSIONS(					\
1931 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1932 		min_rev, max_rev,					\
1933 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1934 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1935 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1936 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1937 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1938 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1939 #define REGISTER_TABLE_BB_CZ(name)					\
1940 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1941 				  FR_BZ_ ## name ## _STEP,		\
1942 				  FR_BB_ ## name ## _ROWS),		\
1943 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1944 				  FR_BZ_ ## name ## _STEP,		\
1945 				  FR_CZ_ ## name ## _ROWS)
1946 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1947 
1948 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1949 	/* DRIVER is not used */
1950 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1951 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
1952 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1953 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1954 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1955 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1956 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1957 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1958 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1959 	/* We can't reasonably read all of the buffer table (up to 8MB!).
1960 	 * However this driver will only use a few entries.  Reading
1961 	 * 1K entries allows for some expansion of queue count and
1962 	 * size before we need to change the version. */
1963 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1964 				  A, A, 8, 1024),
1965 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1966 				  B, Z, 8, 1024),
1967 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1968 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
1969 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1970 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1971 	/* TX_FILTER_TBL0 is huge and not used by this driver */
1972 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1973 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
1974 	/* MSIX_PBA_TABLE is not mapped */
1975 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1976 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1977 };
1978 
1979 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1980 {
1981 	const struct efx_nic_reg *reg;
1982 	const struct efx_nic_reg_table *table;
1983 	size_t len = 0;
1984 
1985 	for (reg = efx_nic_regs;
1986 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1987 	     reg++)
1988 		if (efx->type->revision >= reg->min_revision &&
1989 		    efx->type->revision <= reg->max_revision)
1990 			len += sizeof(efx_oword_t);
1991 
1992 	for (table = efx_nic_reg_tables;
1993 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1994 	     table++)
1995 		if (efx->type->revision >= table->min_revision &&
1996 		    efx->type->revision <= table->max_revision)
1997 			len += table->rows * min_t(size_t, table->step, 16);
1998 
1999 	return len;
2000 }
2001 
2002 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2003 {
2004 	const struct efx_nic_reg *reg;
2005 	const struct efx_nic_reg_table *table;
2006 
2007 	for (reg = efx_nic_regs;
2008 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2009 	     reg++) {
2010 		if (efx->type->revision >= reg->min_revision &&
2011 		    efx->type->revision <= reg->max_revision) {
2012 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2013 			buf += sizeof(efx_oword_t);
2014 		}
2015 	}
2016 
2017 	for (table = efx_nic_reg_tables;
2018 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2019 	     table++) {
2020 		size_t size, i;
2021 
2022 		if (!(efx->type->revision >= table->min_revision &&
2023 		      efx->type->revision <= table->max_revision))
2024 			continue;
2025 
2026 		size = min_t(size_t, table->step, 16);
2027 
2028 		for (i = 0; i < table->rows; i++) {
2029 			switch (table->step) {
2030 			case 4: /* 32-bit register or SRAM */
2031 				efx_readd_table(efx, buf, table->offset, i);
2032 				break;
2033 			case 8: /* 64-bit SRAM */
2034 				efx_sram_readq(efx,
2035 					       efx->membase + table->offset,
2036 					       buf, i);
2037 				break;
2038 			case 16: /* 128-bit register */
2039 				efx_reado_table(efx, buf, table->offset, i);
2040 				break;
2041 			case 32: /* 128-bit register, interleaved */
2042 				efx_reado_table(efx, buf, table->offset, 2 * i);
2043 				break;
2044 			default:
2045 				WARN_ON(1);
2046 				return;
2047 			}
2048 			buf += size;
2049 		}
2050 	}
2051 }
2052