xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.c (revision 778cdaf6)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
60 
61 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63 
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
65 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
67 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
68 			   efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
74 			   (_tx_queue)->queue)
75 
76 /**************************************************************************
77  *
78  * Solarstorm hardware access
79  *
80  **************************************************************************/
81 
82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83 				     unsigned int index)
84 {
85 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86 			value, index);
87 }
88 
89 /* Read the current event from the event queue */
90 static inline efx_qword_t *efx_event(struct efx_channel *channel,
91 				     unsigned int index)
92 {
93 	return ((efx_qword_t *) (channel->eventq.addr)) +
94 		(index & channel->eventq_mask);
95 }
96 
97 /* See if an event is present
98  *
99  * We check both the high and low dword of the event for all ones.  We
100  * wrote all ones when we cleared the event, and no valid event can
101  * have all ones in either its high or low dwords.  This approach is
102  * robust against reordering.
103  *
104  * Note that using a single 64-bit comparison is incorrect; even
105  * though the CPU read will be atomic, the DMA write may not be.
106  */
107 static inline int efx_event_present(efx_qword_t *event)
108 {
109 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
111 }
112 
113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114 				     const efx_oword_t *mask)
115 {
116 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118 }
119 
120 int efx_nic_test_registers(struct efx_nic *efx,
121 			   const struct efx_nic_register_test *regs,
122 			   size_t n_regs)
123 {
124 	unsigned address = 0, i, j;
125 	efx_oword_t mask, imask, original, reg, buf;
126 
127 	for (i = 0; i < n_regs; ++i) {
128 		address = regs[i].address;
129 		mask = imask = regs[i].mask;
130 		EFX_INVERT_OWORD(imask);
131 
132 		efx_reado(efx, &original, address);
133 
134 		/* bit sweep on and off */
135 		for (j = 0; j < 128; j++) {
136 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
137 				continue;
138 
139 			/* Test this testable bit can be set in isolation */
140 			EFX_AND_OWORD(reg, original, mask);
141 			EFX_SET_OWORD32(reg, j, j, 1);
142 
143 			efx_writeo(efx, &reg, address);
144 			efx_reado(efx, &buf, address);
145 
146 			if (efx_masked_compare_oword(&reg, &buf, &mask))
147 				goto fail;
148 
149 			/* Test this testable bit can be cleared in isolation */
150 			EFX_OR_OWORD(reg, original, mask);
151 			EFX_SET_OWORD32(reg, j, j, 0);
152 
153 			efx_writeo(efx, &reg, address);
154 			efx_reado(efx, &buf, address);
155 
156 			if (efx_masked_compare_oword(&reg, &buf, &mask))
157 				goto fail;
158 		}
159 
160 		efx_writeo(efx, &original, address);
161 	}
162 
163 	return 0;
164 
165 fail:
166 	netif_err(efx, hw, efx->net_dev,
167 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
168 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
169 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
170 	return -EIO;
171 }
172 
173 /**************************************************************************
174  *
175  * Special buffer handling
176  * Special buffers are used for event queues and the TX and RX
177  * descriptor rings.
178  *
179  *************************************************************************/
180 
181 /*
182  * Initialise a special buffer
183  *
184  * This will define a buffer (previously allocated via
185  * efx_alloc_special_buffer()) in the buffer table, allowing
186  * it to be used for event queues, descriptor rings etc.
187  */
188 static void
189 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
190 {
191 	efx_qword_t buf_desc;
192 	unsigned int index;
193 	dma_addr_t dma_addr;
194 	int i;
195 
196 	EFX_BUG_ON_PARANOID(!buffer->addr);
197 
198 	/* Write buffer descriptors to NIC */
199 	for (i = 0; i < buffer->entries; i++) {
200 		index = buffer->index + i;
201 		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
202 		netif_dbg(efx, probe, efx->net_dev,
203 			  "mapping special buffer %d at %llx\n",
204 			  index, (unsigned long long)dma_addr);
205 		EFX_POPULATE_QWORD_3(buf_desc,
206 				     FRF_AZ_BUF_ADR_REGION, 0,
207 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
208 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
209 		efx_write_buf_tbl(efx, &buf_desc, index);
210 	}
211 }
212 
213 /* Unmaps a buffer and clears the buffer table entries */
214 static void
215 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
216 {
217 	efx_oword_t buf_tbl_upd;
218 	unsigned int start = buffer->index;
219 	unsigned int end = (buffer->index + buffer->entries - 1);
220 
221 	if (!buffer->entries)
222 		return;
223 
224 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
225 		  buffer->index, buffer->index + buffer->entries - 1);
226 
227 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
228 			     FRF_AZ_BUF_UPD_CMD, 0,
229 			     FRF_AZ_BUF_CLR_CMD, 1,
230 			     FRF_AZ_BUF_CLR_END_ID, end,
231 			     FRF_AZ_BUF_CLR_START_ID, start);
232 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
233 }
234 
235 /*
236  * Allocate a new special buffer
237  *
238  * This allocates memory for a new buffer, clears it and allocates a
239  * new buffer ID range.  It does not write into the buffer table.
240  *
241  * This call will allocate 4KB buffers, since 8KB buffers can't be
242  * used for event queues and descriptor rings.
243  */
244 static int efx_alloc_special_buffer(struct efx_nic *efx,
245 				    struct efx_special_buffer *buffer,
246 				    unsigned int len)
247 {
248 	len = ALIGN(len, EFX_BUF_SIZE);
249 
250 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
251 					  &buffer->dma_addr, GFP_KERNEL);
252 	if (!buffer->addr)
253 		return -ENOMEM;
254 	buffer->len = len;
255 	buffer->entries = len / EFX_BUF_SIZE;
256 	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
257 
258 	/* All zeros is a potentially valid event so memset to 0xff */
259 	memset(buffer->addr, 0xff, len);
260 
261 	/* Select new buffer ID */
262 	buffer->index = efx->next_buffer_table;
263 	efx->next_buffer_table += buffer->entries;
264 #ifdef CONFIG_SFC_SRIOV
265 	BUG_ON(efx_sriov_enabled(efx) &&
266 	       efx->vf_buftbl_base < efx->next_buffer_table);
267 #endif
268 
269 	netif_dbg(efx, probe, efx->net_dev,
270 		  "allocating special buffers %d-%d at %llx+%x "
271 		  "(virt %p phys %llx)\n", buffer->index,
272 		  buffer->index + buffer->entries - 1,
273 		  (u64)buffer->dma_addr, len,
274 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
275 
276 	return 0;
277 }
278 
279 static void
280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281 {
282 	if (!buffer->addr)
283 		return;
284 
285 	netif_dbg(efx, hw, efx->net_dev,
286 		  "deallocating special buffers %d-%d at %llx+%x "
287 		  "(virt %p phys %llx)\n", buffer->index,
288 		  buffer->index + buffer->entries - 1,
289 		  (u64)buffer->dma_addr, buffer->len,
290 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
291 
292 	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293 			  buffer->dma_addr);
294 	buffer->addr = NULL;
295 	buffer->entries = 0;
296 }
297 
298 /**************************************************************************
299  *
300  * Generic buffer handling
301  * These buffers are used for interrupt status, MAC stats, etc.
302  *
303  **************************************************************************/
304 
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306 			 unsigned int len)
307 {
308 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309 					  &buffer->dma_addr, GFP_ATOMIC);
310 	if (!buffer->addr)
311 		return -ENOMEM;
312 	buffer->len = len;
313 	memset(buffer->addr, 0, len);
314 	return 0;
315 }
316 
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 {
319 	if (buffer->addr) {
320 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321 				  buffer->addr, buffer->dma_addr);
322 		buffer->addr = NULL;
323 	}
324 }
325 
326 /**************************************************************************
327  *
328  * TX path
329  *
330  **************************************************************************/
331 
332 /* Returns a pointer to the specified transmit descriptor in the TX
333  * descriptor queue belonging to the specified channel.
334  */
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337 {
338 	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
339 }
340 
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343 {
344 	unsigned write_ptr;
345 	efx_dword_t reg;
346 
347 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
348 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349 	efx_writed_page(tx_queue->efx, &reg,
350 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351 }
352 
353 /* Write pointer and first descriptor for TX descriptor ring */
354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355 				    const efx_qword_t *txd)
356 {
357 	unsigned write_ptr;
358 	efx_oword_t reg;
359 
360 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
361 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
362 
363 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
366 	reg.qword[0] = *txd;
367 	efx_writeo_page(tx_queue->efx, &reg,
368 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369 }
370 
371 static inline bool
372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373 {
374 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375 
376 	if (empty_read_count == 0)
377 		return false;
378 
379 	tx_queue->empty_read_count = 0;
380 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
381 }
382 
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389 
390 	struct efx_tx_buffer *buffer;
391 	efx_qword_t *txd;
392 	unsigned write_ptr;
393 	unsigned old_write_count = tx_queue->write_count;
394 
395 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396 
397 	do {
398 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399 		buffer = &tx_queue->buffer[write_ptr];
400 		txd = efx_tx_desc(tx_queue, write_ptr);
401 		++tx_queue->write_count;
402 
403 		/* Create TX descriptor ring entry */
404 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405 		EFX_POPULATE_QWORD_4(*txd,
406 				     FSF_AZ_TX_KER_CONT,
407 				     buffer->flags & EFX_TX_BUF_CONT,
408 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409 				     FSF_AZ_TX_KER_BUF_REGION, 0,
410 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411 	} while (tx_queue->write_count != tx_queue->insert_count);
412 
413 	wmb(); /* Ensure descriptors are written before they are fetched */
414 
415 	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416 		txd = efx_tx_desc(tx_queue,
417 				  old_write_count & tx_queue->ptr_mask);
418 		efx_push_tx_desc(tx_queue, txd);
419 		++tx_queue->pushes;
420 	} else {
421 		efx_notify_tx_desc(tx_queue);
422 	}
423 }
424 
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428 	struct efx_nic *efx = tx_queue->efx;
429 	unsigned entries;
430 
431 	entries = tx_queue->ptr_mask + 1;
432 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
433 					entries * sizeof(efx_qword_t));
434 }
435 
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438 	struct efx_nic *efx = tx_queue->efx;
439 	efx_oword_t reg;
440 
441 	/* Pin TX descriptor ring */
442 	efx_init_special_buffer(efx, &tx_queue->txd);
443 
444 	/* Push TX descriptor ring to card */
445 	EFX_POPULATE_OWORD_10(reg,
446 			      FRF_AZ_TX_DESCQ_EN, 1,
447 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450 			      FRF_AZ_TX_DESCQ_EVQ_ID,
451 			      tx_queue->channel->channel,
452 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454 			      FRF_AZ_TX_DESCQ_SIZE,
455 			      __ffs(tx_queue->txd.entries),
456 			      FRF_AZ_TX_DESCQ_TYPE, 0,
457 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458 
459 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463 				    !csum);
464 	}
465 
466 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467 			 tx_queue->queue);
468 
469 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470 		/* Only 128 bits in this register */
471 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472 
473 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475 			__clear_bit_le(tx_queue->queue, &reg);
476 		else
477 			__set_bit_le(tx_queue->queue, &reg);
478 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479 	}
480 
481 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482 		EFX_POPULATE_OWORD_1(reg,
483 				     FRF_BZ_TX_PACE,
484 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485 				     FFE_BZ_TX_PACE_OFF :
486 				     FFE_BZ_TX_PACE_RESERVED);
487 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488 				 tx_queue->queue);
489 	}
490 }
491 
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494 	struct efx_nic *efx = tx_queue->efx;
495 	efx_oword_t tx_flush_descq;
496 
497 	EFX_POPULATE_OWORD_2(tx_flush_descq,
498 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
499 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
500 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
501 }
502 
503 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
504 {
505 	struct efx_nic *efx = tx_queue->efx;
506 	efx_oword_t tx_desc_ptr;
507 
508 	/* Remove TX descriptor ring from card */
509 	EFX_ZERO_OWORD(tx_desc_ptr);
510 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
511 			 tx_queue->queue);
512 
513 	/* Unpin TX descriptor ring */
514 	efx_fini_special_buffer(efx, &tx_queue->txd);
515 }
516 
517 /* Free buffers backing TX queue */
518 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
519 {
520 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
521 }
522 
523 /**************************************************************************
524  *
525  * RX path
526  *
527  **************************************************************************/
528 
529 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
530 static inline efx_qword_t *
531 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
532 {
533 	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
534 }
535 
536 /* This creates an entry in the RX descriptor queue */
537 static inline void
538 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
539 {
540 	struct efx_rx_buffer *rx_buf;
541 	efx_qword_t *rxd;
542 
543 	rxd = efx_rx_desc(rx_queue, index);
544 	rx_buf = efx_rx_buffer(rx_queue, index);
545 	EFX_POPULATE_QWORD_3(*rxd,
546 			     FSF_AZ_RX_KER_BUF_SIZE,
547 			     rx_buf->len -
548 			     rx_queue->efx->type->rx_buffer_padding,
549 			     FSF_AZ_RX_KER_BUF_REGION, 0,
550 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
551 }
552 
553 /* This writes to the RX_DESC_WPTR register for the specified receive
554  * descriptor ring.
555  */
556 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
557 {
558 	struct efx_nic *efx = rx_queue->efx;
559 	efx_dword_t reg;
560 	unsigned write_ptr;
561 
562 	while (rx_queue->notified_count != rx_queue->added_count) {
563 		efx_build_rx_desc(
564 			rx_queue,
565 			rx_queue->notified_count & rx_queue->ptr_mask);
566 		++rx_queue->notified_count;
567 	}
568 
569 	wmb();
570 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
571 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
572 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
573 			efx_rx_queue_index(rx_queue));
574 }
575 
576 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
577 {
578 	struct efx_nic *efx = rx_queue->efx;
579 	unsigned entries;
580 
581 	entries = rx_queue->ptr_mask + 1;
582 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
583 					entries * sizeof(efx_qword_t));
584 }
585 
586 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
587 {
588 	efx_oword_t rx_desc_ptr;
589 	struct efx_nic *efx = rx_queue->efx;
590 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
591 	bool iscsi_digest_en = is_b0;
592 
593 	netif_dbg(efx, hw, efx->net_dev,
594 		  "RX queue %d ring in special buffers %d-%d\n",
595 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
596 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
597 
598 	/* Pin RX descriptor ring */
599 	efx_init_special_buffer(efx, &rx_queue->rxd);
600 
601 	/* Push RX descriptor ring to card */
602 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
603 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
604 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
605 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
606 			      FRF_AZ_RX_DESCQ_EVQ_ID,
607 			      efx_rx_queue_channel(rx_queue)->channel,
608 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
609 			      FRF_AZ_RX_DESCQ_LABEL,
610 			      efx_rx_queue_index(rx_queue),
611 			      FRF_AZ_RX_DESCQ_SIZE,
612 			      __ffs(rx_queue->rxd.entries),
613 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
614 			      /* For >=B0 this is scatter so disable */
615 			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
616 			      FRF_AZ_RX_DESCQ_EN, 1);
617 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
618 			 efx_rx_queue_index(rx_queue));
619 }
620 
621 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
622 {
623 	struct efx_nic *efx = rx_queue->efx;
624 	efx_oword_t rx_flush_descq;
625 
626 	EFX_POPULATE_OWORD_2(rx_flush_descq,
627 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
628 			     FRF_AZ_RX_FLUSH_DESCQ,
629 			     efx_rx_queue_index(rx_queue));
630 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
631 }
632 
633 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
634 {
635 	efx_oword_t rx_desc_ptr;
636 	struct efx_nic *efx = rx_queue->efx;
637 
638 	/* Remove RX descriptor ring from card */
639 	EFX_ZERO_OWORD(rx_desc_ptr);
640 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
641 			 efx_rx_queue_index(rx_queue));
642 
643 	/* Unpin RX descriptor ring */
644 	efx_fini_special_buffer(efx, &rx_queue->rxd);
645 }
646 
647 /* Free buffers backing RX queue */
648 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
649 {
650 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
651 }
652 
653 /**************************************************************************
654  *
655  * Flush handling
656  *
657  **************************************************************************/
658 
659 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
660  * or more RX flushes can be kicked off.
661  */
662 static bool efx_flush_wake(struct efx_nic *efx)
663 {
664 	/* Ensure that all updates are visible to efx_nic_flush_queues() */
665 	smp_mb();
666 
667 	return (atomic_read(&efx->drain_pending) == 0 ||
668 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
669 		 && atomic_read(&efx->rxq_flush_pending) > 0));
670 }
671 
672 /* Flush all the transmit queues, and continue flushing receive queues until
673  * they're all flushed. Wait for the DRAIN events to be recieved so that there
674  * are no more RX and TX events left on any channel. */
675 int efx_nic_flush_queues(struct efx_nic *efx)
676 {
677 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
678 	struct efx_channel *channel;
679 	struct efx_rx_queue *rx_queue;
680 	struct efx_tx_queue *tx_queue;
681 	int rc = 0;
682 
683 	efx->type->prepare_flush(efx);
684 
685 	efx_for_each_channel(channel, efx) {
686 		efx_for_each_channel_tx_queue(tx_queue, channel) {
687 			atomic_inc(&efx->drain_pending);
688 			efx_flush_tx_queue(tx_queue);
689 		}
690 		efx_for_each_channel_rx_queue(rx_queue, channel) {
691 			atomic_inc(&efx->drain_pending);
692 			rx_queue->flush_pending = true;
693 			atomic_inc(&efx->rxq_flush_pending);
694 		}
695 	}
696 
697 	while (timeout && atomic_read(&efx->drain_pending) > 0) {
698 		/* If SRIOV is enabled, then offload receive queue flushing to
699 		 * the firmware (though we will still have to poll for
700 		 * completion). If that fails, fall back to the old scheme.
701 		 */
702 		if (efx_sriov_enabled(efx)) {
703 			rc = efx_mcdi_flush_rxqs(efx);
704 			if (!rc)
705 				goto wait;
706 		}
707 
708 		/* The hardware supports four concurrent rx flushes, each of
709 		 * which may need to be retried if there is an outstanding
710 		 * descriptor fetch
711 		 */
712 		efx_for_each_channel(channel, efx) {
713 			efx_for_each_channel_rx_queue(rx_queue, channel) {
714 				if (atomic_read(&efx->rxq_flush_outstanding) >=
715 				    EFX_RX_FLUSH_COUNT)
716 					break;
717 
718 				if (rx_queue->flush_pending) {
719 					rx_queue->flush_pending = false;
720 					atomic_dec(&efx->rxq_flush_pending);
721 					atomic_inc(&efx->rxq_flush_outstanding);
722 					efx_flush_rx_queue(rx_queue);
723 				}
724 			}
725 		}
726 
727 	wait:
728 		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
729 					     timeout);
730 	}
731 
732 	if (atomic_read(&efx->drain_pending)) {
733 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
734 			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
735 			  atomic_read(&efx->rxq_flush_outstanding),
736 			  atomic_read(&efx->rxq_flush_pending));
737 		rc = -ETIMEDOUT;
738 
739 		atomic_set(&efx->drain_pending, 0);
740 		atomic_set(&efx->rxq_flush_pending, 0);
741 		atomic_set(&efx->rxq_flush_outstanding, 0);
742 	}
743 
744 	efx->type->finish_flush(efx);
745 
746 	return rc;
747 }
748 
749 /**************************************************************************
750  *
751  * Event queue processing
752  * Event queues are processed by per-channel tasklets.
753  *
754  **************************************************************************/
755 
756 /* Update a channel's event queue's read pointer (RPTR) register
757  *
758  * This writes the EVQ_RPTR_REG register for the specified channel's
759  * event queue.
760  */
761 void efx_nic_eventq_read_ack(struct efx_channel *channel)
762 {
763 	efx_dword_t reg;
764 	struct efx_nic *efx = channel->efx;
765 
766 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
767 			     channel->eventq_read_ptr & channel->eventq_mask);
768 
769 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
770 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
771 	 */
772 	efx_writed(efx, &reg,
773 		   efx->type->evq_rptr_tbl_base +
774 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
775 }
776 
777 /* Use HW to insert a SW defined event */
778 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
779 			efx_qword_t *event)
780 {
781 	efx_oword_t drv_ev_reg;
782 
783 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
784 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
785 	drv_ev_reg.u32[0] = event->u32[0];
786 	drv_ev_reg.u32[1] = event->u32[1];
787 	drv_ev_reg.u32[2] = 0;
788 	drv_ev_reg.u32[3] = 0;
789 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
790 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
791 }
792 
793 static void efx_magic_event(struct efx_channel *channel, u32 magic)
794 {
795 	efx_qword_t event;
796 
797 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
798 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
799 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
800 	efx_generate_event(channel->efx, channel->channel, &event);
801 }
802 
803 /* Handle a transmit completion event
804  *
805  * The NIC batches TX completion events; the message we receive is of
806  * the form "complete all TX events up to this index".
807  */
808 static int
809 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
810 {
811 	unsigned int tx_ev_desc_ptr;
812 	unsigned int tx_ev_q_label;
813 	struct efx_tx_queue *tx_queue;
814 	struct efx_nic *efx = channel->efx;
815 	int tx_packets = 0;
816 
817 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
818 		return 0;
819 
820 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
821 		/* Transmit completion */
822 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
823 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
824 		tx_queue = efx_channel_get_tx_queue(
825 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
826 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
827 			      tx_queue->ptr_mask);
828 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
829 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
830 		/* Rewrite the FIFO write pointer */
831 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
832 		tx_queue = efx_channel_get_tx_queue(
833 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
834 
835 		netif_tx_lock(efx->net_dev);
836 		efx_notify_tx_desc(tx_queue);
837 		netif_tx_unlock(efx->net_dev);
838 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
839 		   EFX_WORKAROUND_10727(efx)) {
840 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
841 	} else {
842 		netif_err(efx, tx_err, efx->net_dev,
843 			  "channel %d unexpected TX event "
844 			  EFX_QWORD_FMT"\n", channel->channel,
845 			  EFX_QWORD_VAL(*event));
846 	}
847 
848 	return tx_packets;
849 }
850 
851 /* Detect errors included in the rx_evt_pkt_ok bit. */
852 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
853 				const efx_qword_t *event)
854 {
855 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
856 	struct efx_nic *efx = rx_queue->efx;
857 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
858 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
859 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
860 	bool rx_ev_other_err, rx_ev_pause_frm;
861 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
862 	unsigned rx_ev_pkt_type;
863 
864 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
865 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
866 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
867 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
868 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
869 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
870 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
871 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
872 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
873 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
874 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
875 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
876 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
877 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
878 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
879 
880 	/* Every error apart from tobe_disc and pause_frm */
881 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
882 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
883 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
884 
885 	/* Count errors that are not in MAC stats.  Ignore expected
886 	 * checksum errors during self-test. */
887 	if (rx_ev_frm_trunc)
888 		++channel->n_rx_frm_trunc;
889 	else if (rx_ev_tobe_disc)
890 		++channel->n_rx_tobe_disc;
891 	else if (!efx->loopback_selftest) {
892 		if (rx_ev_ip_hdr_chksum_err)
893 			++channel->n_rx_ip_hdr_chksum_err;
894 		else if (rx_ev_tcp_udp_chksum_err)
895 			++channel->n_rx_tcp_udp_chksum_err;
896 	}
897 
898 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
899 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
900 	 * to a FIFO overflow.
901 	 */
902 #ifdef DEBUG
903 	if (rx_ev_other_err && net_ratelimit()) {
904 		netif_dbg(efx, rx_err, efx->net_dev,
905 			  " RX queue %d unexpected RX event "
906 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
907 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
908 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
909 			  rx_ev_ip_hdr_chksum_err ?
910 			  " [IP_HDR_CHKSUM_ERR]" : "",
911 			  rx_ev_tcp_udp_chksum_err ?
912 			  " [TCP_UDP_CHKSUM_ERR]" : "",
913 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
914 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
915 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
916 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
917 			  rx_ev_pause_frm ? " [PAUSE]" : "");
918 	}
919 #endif
920 
921 	/* The frame must be discarded if any of these are true. */
922 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
923 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
924 		EFX_RX_PKT_DISCARD : 0;
925 }
926 
927 /* Handle receive events that are not in-order. */
928 static void
929 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
930 {
931 	struct efx_nic *efx = rx_queue->efx;
932 	unsigned expected, dropped;
933 
934 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
935 	dropped = (index - expected) & rx_queue->ptr_mask;
936 	netif_info(efx, rx_err, efx->net_dev,
937 		   "dropped %d events (index=%d expected=%d)\n",
938 		   dropped, index, expected);
939 
940 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
941 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
942 }
943 
944 /* Handle a packet received event
945  *
946  * The NIC gives a "discard" flag if it's a unicast packet with the
947  * wrong destination address
948  * Also "is multicast" and "matches multicast filter" flags can be used to
949  * discard non-matching multicast packets.
950  */
951 static void
952 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
953 {
954 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
955 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
956 	unsigned expected_ptr;
957 	bool rx_ev_pkt_ok;
958 	u16 flags;
959 	struct efx_rx_queue *rx_queue;
960 	struct efx_nic *efx = channel->efx;
961 
962 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
963 		return;
964 
965 	/* Basic packet information */
966 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
967 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
968 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
969 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
970 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
971 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
972 		channel->channel);
973 
974 	rx_queue = efx_channel_get_rx_queue(channel);
975 
976 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
977 	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
978 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
979 		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
980 
981 	if (likely(rx_ev_pkt_ok)) {
982 		/* If packet is marked as OK and packet type is TCP/IP or
983 		 * UDP/IP, then we can rely on the hardware checksum.
984 		 */
985 		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
986 			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
987 			EFX_RX_PKT_CSUMMED : 0;
988 	} else {
989 		flags = efx_handle_rx_not_ok(rx_queue, event);
990 	}
991 
992 	/* Detect multicast packets that didn't match the filter */
993 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
994 	if (rx_ev_mcast_pkt) {
995 		unsigned int rx_ev_mcast_hash_match =
996 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
997 
998 		if (unlikely(!rx_ev_mcast_hash_match)) {
999 			++channel->n_rx_mcast_mismatch;
1000 			flags |= EFX_RX_PKT_DISCARD;
1001 		}
1002 	}
1003 
1004 	channel->irq_mod_score += 2;
1005 
1006 	/* Handle received packet */
1007 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1008 }
1009 
1010 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1011  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1012  * of all transmit completions.
1013  */
1014 static void
1015 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1016 {
1017 	struct efx_tx_queue *tx_queue;
1018 	int qid;
1019 
1020 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1021 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1022 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1023 					    qid % EFX_TXQ_TYPES);
1024 
1025 		efx_magic_event(tx_queue->channel,
1026 				EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1027 	}
1028 }
1029 
1030 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1031  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1032  * the RX queue back to the mask of RX queues in need of flushing.
1033  */
1034 static void
1035 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1036 {
1037 	struct efx_channel *channel;
1038 	struct efx_rx_queue *rx_queue;
1039 	int qid;
1040 	bool failed;
1041 
1042 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1043 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1044 	if (qid >= efx->n_channels)
1045 		return;
1046 	channel = efx_get_channel(efx, qid);
1047 	if (!efx_channel_has_rx_queue(channel))
1048 		return;
1049 	rx_queue = efx_channel_get_rx_queue(channel);
1050 
1051 	if (failed) {
1052 		netif_info(efx, hw, efx->net_dev,
1053 			   "RXQ %d flush retry\n", qid);
1054 		rx_queue->flush_pending = true;
1055 		atomic_inc(&efx->rxq_flush_pending);
1056 	} else {
1057 		efx_magic_event(efx_rx_queue_channel(rx_queue),
1058 				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1059 	}
1060 	atomic_dec(&efx->rxq_flush_outstanding);
1061 	if (efx_flush_wake(efx))
1062 		wake_up(&efx->flush_wq);
1063 }
1064 
1065 static void
1066 efx_handle_drain_event(struct efx_channel *channel)
1067 {
1068 	struct efx_nic *efx = channel->efx;
1069 
1070 	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1071 	atomic_dec(&efx->drain_pending);
1072 	if (efx_flush_wake(efx))
1073 		wake_up(&efx->flush_wq);
1074 }
1075 
1076 static void
1077 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1078 {
1079 	struct efx_nic *efx = channel->efx;
1080 	struct efx_rx_queue *rx_queue =
1081 		efx_channel_has_rx_queue(channel) ?
1082 		efx_channel_get_rx_queue(channel) : NULL;
1083 	unsigned magic, code;
1084 
1085 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1086 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1087 
1088 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1089 		channel->event_test_cpu = raw_smp_processor_id();
1090 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1091 		/* The queue must be empty, so we won't receive any rx
1092 		 * events, so efx_process_channel() won't refill the
1093 		 * queue. Refill it here */
1094 		efx_fast_push_rx_descriptors(rx_queue);
1095 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1096 		rx_queue->enabled = false;
1097 		efx_handle_drain_event(channel);
1098 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1099 		efx_handle_drain_event(channel);
1100 	} else {
1101 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1102 			  "generated event "EFX_QWORD_FMT"\n",
1103 			  channel->channel, EFX_QWORD_VAL(*event));
1104 	}
1105 }
1106 
1107 static void
1108 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1109 {
1110 	struct efx_nic *efx = channel->efx;
1111 	unsigned int ev_sub_code;
1112 	unsigned int ev_sub_data;
1113 
1114 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1115 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1116 
1117 	switch (ev_sub_code) {
1118 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1119 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1120 			   channel->channel, ev_sub_data);
1121 		efx_handle_tx_flush_done(efx, event);
1122 		efx_sriov_tx_flush_done(efx, event);
1123 		break;
1124 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1125 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1126 			   channel->channel, ev_sub_data);
1127 		efx_handle_rx_flush_done(efx, event);
1128 		efx_sriov_rx_flush_done(efx, event);
1129 		break;
1130 	case FSE_AZ_EVQ_INIT_DONE_EV:
1131 		netif_dbg(efx, hw, efx->net_dev,
1132 			  "channel %d EVQ %d initialised\n",
1133 			  channel->channel, ev_sub_data);
1134 		break;
1135 	case FSE_AZ_SRM_UPD_DONE_EV:
1136 		netif_vdbg(efx, hw, efx->net_dev,
1137 			   "channel %d SRAM update done\n", channel->channel);
1138 		break;
1139 	case FSE_AZ_WAKE_UP_EV:
1140 		netif_vdbg(efx, hw, efx->net_dev,
1141 			   "channel %d RXQ %d wakeup event\n",
1142 			   channel->channel, ev_sub_data);
1143 		break;
1144 	case FSE_AZ_TIMER_EV:
1145 		netif_vdbg(efx, hw, efx->net_dev,
1146 			   "channel %d RX queue %d timer expired\n",
1147 			   channel->channel, ev_sub_data);
1148 		break;
1149 	case FSE_AA_RX_RECOVER_EV:
1150 		netif_err(efx, rx_err, efx->net_dev,
1151 			  "channel %d seen DRIVER RX_RESET event. "
1152 			"Resetting.\n", channel->channel);
1153 		atomic_inc(&efx->rx_reset);
1154 		efx_schedule_reset(efx,
1155 				   EFX_WORKAROUND_6555(efx) ?
1156 				   RESET_TYPE_RX_RECOVERY :
1157 				   RESET_TYPE_DISABLE);
1158 		break;
1159 	case FSE_BZ_RX_DSC_ERROR_EV:
1160 		if (ev_sub_data < EFX_VI_BASE) {
1161 			netif_err(efx, rx_err, efx->net_dev,
1162 				  "RX DMA Q %d reports descriptor fetch error."
1163 				  " RX Q %d is disabled.\n", ev_sub_data,
1164 				  ev_sub_data);
1165 			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1166 		} else
1167 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1168 		break;
1169 	case FSE_BZ_TX_DSC_ERROR_EV:
1170 		if (ev_sub_data < EFX_VI_BASE) {
1171 			netif_err(efx, tx_err, efx->net_dev,
1172 				  "TX DMA Q %d reports descriptor fetch error."
1173 				  " TX Q %d is disabled.\n", ev_sub_data,
1174 				  ev_sub_data);
1175 			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1176 		} else
1177 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1178 		break;
1179 	default:
1180 		netif_vdbg(efx, hw, efx->net_dev,
1181 			   "channel %d unknown driver event code %d "
1182 			   "data %04x\n", channel->channel, ev_sub_code,
1183 			   ev_sub_data);
1184 		break;
1185 	}
1186 }
1187 
1188 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1189 {
1190 	struct efx_nic *efx = channel->efx;
1191 	unsigned int read_ptr;
1192 	efx_qword_t event, *p_event;
1193 	int ev_code;
1194 	int tx_packets = 0;
1195 	int spent = 0;
1196 
1197 	read_ptr = channel->eventq_read_ptr;
1198 
1199 	for (;;) {
1200 		p_event = efx_event(channel, read_ptr);
1201 		event = *p_event;
1202 
1203 		if (!efx_event_present(&event))
1204 			/* End of events */
1205 			break;
1206 
1207 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1208 			   "channel %d event is "EFX_QWORD_FMT"\n",
1209 			   channel->channel, EFX_QWORD_VAL(event));
1210 
1211 		/* Clear this event by marking it all ones */
1212 		EFX_SET_QWORD(*p_event);
1213 
1214 		++read_ptr;
1215 
1216 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1217 
1218 		switch (ev_code) {
1219 		case FSE_AZ_EV_CODE_RX_EV:
1220 			efx_handle_rx_event(channel, &event);
1221 			if (++spent == budget)
1222 				goto out;
1223 			break;
1224 		case FSE_AZ_EV_CODE_TX_EV:
1225 			tx_packets += efx_handle_tx_event(channel, &event);
1226 			if (tx_packets > efx->txq_entries) {
1227 				spent = budget;
1228 				goto out;
1229 			}
1230 			break;
1231 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1232 			efx_handle_generated_event(channel, &event);
1233 			break;
1234 		case FSE_AZ_EV_CODE_DRIVER_EV:
1235 			efx_handle_driver_event(channel, &event);
1236 			break;
1237 		case FSE_CZ_EV_CODE_USER_EV:
1238 			efx_sriov_event(channel, &event);
1239 			break;
1240 		case FSE_CZ_EV_CODE_MCDI_EV:
1241 			efx_mcdi_process_event(channel, &event);
1242 			break;
1243 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1244 			if (efx->type->handle_global_event &&
1245 			    efx->type->handle_global_event(channel, &event))
1246 				break;
1247 			/* else fall through */
1248 		default:
1249 			netif_err(channel->efx, hw, channel->efx->net_dev,
1250 				  "channel %d unknown event type %d (data "
1251 				  EFX_QWORD_FMT ")\n", channel->channel,
1252 				  ev_code, EFX_QWORD_VAL(event));
1253 		}
1254 	}
1255 
1256 out:
1257 	channel->eventq_read_ptr = read_ptr;
1258 	return spent;
1259 }
1260 
1261 /* Check whether an event is present in the eventq at the current
1262  * read pointer.  Only useful for self-test.
1263  */
1264 bool efx_nic_event_present(struct efx_channel *channel)
1265 {
1266 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1267 }
1268 
1269 /* Allocate buffer table entries for event queue */
1270 int efx_nic_probe_eventq(struct efx_channel *channel)
1271 {
1272 	struct efx_nic *efx = channel->efx;
1273 	unsigned entries;
1274 
1275 	entries = channel->eventq_mask + 1;
1276 	return efx_alloc_special_buffer(efx, &channel->eventq,
1277 					entries * sizeof(efx_qword_t));
1278 }
1279 
1280 void efx_nic_init_eventq(struct efx_channel *channel)
1281 {
1282 	efx_oword_t reg;
1283 	struct efx_nic *efx = channel->efx;
1284 
1285 	netif_dbg(efx, hw, efx->net_dev,
1286 		  "channel %d event queue in special buffers %d-%d\n",
1287 		  channel->channel, channel->eventq.index,
1288 		  channel->eventq.index + channel->eventq.entries - 1);
1289 
1290 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1291 		EFX_POPULATE_OWORD_3(reg,
1292 				     FRF_CZ_TIMER_Q_EN, 1,
1293 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1294 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1295 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1296 	}
1297 
1298 	/* Pin event queue buffer */
1299 	efx_init_special_buffer(efx, &channel->eventq);
1300 
1301 	/* Fill event queue with all ones (i.e. empty events) */
1302 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1303 
1304 	/* Push event queue to card */
1305 	EFX_POPULATE_OWORD_3(reg,
1306 			     FRF_AZ_EVQ_EN, 1,
1307 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1308 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1309 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1310 			 channel->channel);
1311 
1312 	efx->type->push_irq_moderation(channel);
1313 }
1314 
1315 void efx_nic_fini_eventq(struct efx_channel *channel)
1316 {
1317 	efx_oword_t reg;
1318 	struct efx_nic *efx = channel->efx;
1319 
1320 	/* Remove event queue from card */
1321 	EFX_ZERO_OWORD(reg);
1322 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1323 			 channel->channel);
1324 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1325 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1326 
1327 	/* Unpin event queue */
1328 	efx_fini_special_buffer(efx, &channel->eventq);
1329 }
1330 
1331 /* Free buffers backing event queue */
1332 void efx_nic_remove_eventq(struct efx_channel *channel)
1333 {
1334 	efx_free_special_buffer(channel->efx, &channel->eventq);
1335 }
1336 
1337 
1338 void efx_nic_event_test_start(struct efx_channel *channel)
1339 {
1340 	channel->event_test_cpu = -1;
1341 	smp_wmb();
1342 	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1343 }
1344 
1345 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1346 {
1347 	efx_magic_event(efx_rx_queue_channel(rx_queue),
1348 			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1349 }
1350 
1351 /**************************************************************************
1352  *
1353  * Hardware interrupts
1354  * The hardware interrupt handler does very little work; all the event
1355  * queue processing is carried out by per-channel tasklets.
1356  *
1357  **************************************************************************/
1358 
1359 /* Enable/disable/generate interrupts */
1360 static inline void efx_nic_interrupts(struct efx_nic *efx,
1361 				      bool enabled, bool force)
1362 {
1363 	efx_oword_t int_en_reg_ker;
1364 
1365 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1366 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1367 			     FRF_AZ_KER_INT_KER, force,
1368 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1369 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1370 }
1371 
1372 void efx_nic_enable_interrupts(struct efx_nic *efx)
1373 {
1374 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1375 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1376 
1377 	efx_nic_interrupts(efx, true, false);
1378 }
1379 
1380 void efx_nic_disable_interrupts(struct efx_nic *efx)
1381 {
1382 	/* Disable interrupts */
1383 	efx_nic_interrupts(efx, false, false);
1384 }
1385 
1386 /* Generate a test interrupt
1387  * Interrupt must already have been enabled, otherwise nasty things
1388  * may happen.
1389  */
1390 void efx_nic_irq_test_start(struct efx_nic *efx)
1391 {
1392 	efx->last_irq_cpu = -1;
1393 	smp_wmb();
1394 	efx_nic_interrupts(efx, true, true);
1395 }
1396 
1397 /* Process a fatal interrupt
1398  * Disable bus mastering ASAP and schedule a reset
1399  */
1400 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1401 {
1402 	struct falcon_nic_data *nic_data = efx->nic_data;
1403 	efx_oword_t *int_ker = efx->irq_status.addr;
1404 	efx_oword_t fatal_intr;
1405 	int error, mem_perr;
1406 
1407 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1408 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1409 
1410 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1411 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1412 		  EFX_OWORD_VAL(fatal_intr),
1413 		  error ? "disabling bus mastering" : "no recognised error");
1414 
1415 	/* If this is a memory parity error dump which blocks are offending */
1416 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1417 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1418 	if (mem_perr) {
1419 		efx_oword_t reg;
1420 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1421 		netif_err(efx, hw, efx->net_dev,
1422 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1423 			  EFX_OWORD_VAL(reg));
1424 	}
1425 
1426 	/* Disable both devices */
1427 	pci_clear_master(efx->pci_dev);
1428 	if (efx_nic_is_dual_func(efx))
1429 		pci_clear_master(nic_data->pci_dev2);
1430 	efx_nic_disable_interrupts(efx);
1431 
1432 	/* Count errors and reset or disable the NIC accordingly */
1433 	if (efx->int_error_count == 0 ||
1434 	    time_after(jiffies, efx->int_error_expire)) {
1435 		efx->int_error_count = 0;
1436 		efx->int_error_expire =
1437 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1438 	}
1439 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1440 		netif_err(efx, hw, efx->net_dev,
1441 			  "SYSTEM ERROR - reset scheduled\n");
1442 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1443 	} else {
1444 		netif_err(efx, hw, efx->net_dev,
1445 			  "SYSTEM ERROR - max number of errors seen."
1446 			  "NIC will be disabled\n");
1447 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1448 	}
1449 
1450 	return IRQ_HANDLED;
1451 }
1452 
1453 /* Handle a legacy interrupt
1454  * Acknowledges the interrupt and schedule event queue processing.
1455  */
1456 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1457 {
1458 	struct efx_nic *efx = dev_id;
1459 	efx_oword_t *int_ker = efx->irq_status.addr;
1460 	irqreturn_t result = IRQ_NONE;
1461 	struct efx_channel *channel;
1462 	efx_dword_t reg;
1463 	u32 queues;
1464 	int syserr;
1465 
1466 	/* Could this be ours?  If interrupts are disabled then the
1467 	 * channel state may not be valid.
1468 	 */
1469 	if (!efx->legacy_irq_enabled)
1470 		return result;
1471 
1472 	/* Read the ISR which also ACKs the interrupts */
1473 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1474 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1475 
1476 	/* Handle non-event-queue sources */
1477 	if (queues & (1U << efx->irq_level)) {
1478 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1479 		if (unlikely(syserr))
1480 			return efx_nic_fatal_interrupt(efx);
1481 		efx->last_irq_cpu = raw_smp_processor_id();
1482 	}
1483 
1484 	if (queues != 0) {
1485 		if (EFX_WORKAROUND_15783(efx))
1486 			efx->irq_zero_count = 0;
1487 
1488 		/* Schedule processing of any interrupting queues */
1489 		efx_for_each_channel(channel, efx) {
1490 			if (queues & 1)
1491 				efx_schedule_channel_irq(channel);
1492 			queues >>= 1;
1493 		}
1494 		result = IRQ_HANDLED;
1495 
1496 	} else if (EFX_WORKAROUND_15783(efx)) {
1497 		efx_qword_t *event;
1498 
1499 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1500 		 * because this might be a shared interrupt. */
1501 		if (efx->irq_zero_count++ == 0)
1502 			result = IRQ_HANDLED;
1503 
1504 		/* Ensure we schedule or rearm all event queues */
1505 		efx_for_each_channel(channel, efx) {
1506 			event = efx_event(channel, channel->eventq_read_ptr);
1507 			if (efx_event_present(event))
1508 				efx_schedule_channel_irq(channel);
1509 			else
1510 				efx_nic_eventq_read_ack(channel);
1511 		}
1512 	}
1513 
1514 	if (result == IRQ_HANDLED)
1515 		netif_vdbg(efx, intr, efx->net_dev,
1516 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1517 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1518 
1519 	return result;
1520 }
1521 
1522 /* Handle an MSI interrupt
1523  *
1524  * Handle an MSI hardware interrupt.  This routine schedules event
1525  * queue processing.  No interrupt acknowledgement cycle is necessary.
1526  * Also, we never need to check that the interrupt is for us, since
1527  * MSI interrupts cannot be shared.
1528  */
1529 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1530 {
1531 	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1532 	struct efx_nic *efx = channel->efx;
1533 	efx_oword_t *int_ker = efx->irq_status.addr;
1534 	int syserr;
1535 
1536 	netif_vdbg(efx, intr, efx->net_dev,
1537 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1538 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1539 
1540 	/* Handle non-event-queue sources */
1541 	if (channel->channel == efx->irq_level) {
1542 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1543 		if (unlikely(syserr))
1544 			return efx_nic_fatal_interrupt(efx);
1545 		efx->last_irq_cpu = raw_smp_processor_id();
1546 	}
1547 
1548 	/* Schedule processing of the channel */
1549 	efx_schedule_channel_irq(channel);
1550 
1551 	return IRQ_HANDLED;
1552 }
1553 
1554 
1555 /* Setup RSS indirection table.
1556  * This maps from the hash value of the packet to RXQ
1557  */
1558 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1559 {
1560 	size_t i = 0;
1561 	efx_dword_t dword;
1562 
1563 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1564 		return;
1565 
1566 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1567 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1568 
1569 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1570 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1571 				     efx->rx_indir_table[i]);
1572 		efx_writed(efx, &dword,
1573 			   FR_BZ_RX_INDIRECTION_TBL +
1574 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1575 	}
1576 }
1577 
1578 /* Hook interrupt handler(s)
1579  * Try MSI and then legacy interrupts.
1580  */
1581 int efx_nic_init_interrupt(struct efx_nic *efx)
1582 {
1583 	struct efx_channel *channel;
1584 	int rc;
1585 
1586 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1587 		irq_handler_t handler;
1588 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1589 			handler = efx_legacy_interrupt;
1590 		else
1591 			handler = falcon_legacy_interrupt_a1;
1592 
1593 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1594 				 efx->name, efx);
1595 		if (rc) {
1596 			netif_err(efx, drv, efx->net_dev,
1597 				  "failed to hook legacy IRQ %d\n",
1598 				  efx->pci_dev->irq);
1599 			goto fail1;
1600 		}
1601 		return 0;
1602 	}
1603 
1604 	/* Hook MSI or MSI-X interrupt */
1605 	efx_for_each_channel(channel, efx) {
1606 		rc = request_irq(channel->irq, efx_msi_interrupt,
1607 				 IRQF_PROBE_SHARED, /* Not shared */
1608 				 efx->channel_name[channel->channel],
1609 				 &efx->channel[channel->channel]);
1610 		if (rc) {
1611 			netif_err(efx, drv, efx->net_dev,
1612 				  "failed to hook IRQ %d\n", channel->irq);
1613 			goto fail2;
1614 		}
1615 	}
1616 
1617 	return 0;
1618 
1619  fail2:
1620 	efx_for_each_channel(channel, efx)
1621 		free_irq(channel->irq, &efx->channel[channel->channel]);
1622  fail1:
1623 	return rc;
1624 }
1625 
1626 void efx_nic_fini_interrupt(struct efx_nic *efx)
1627 {
1628 	struct efx_channel *channel;
1629 	efx_oword_t reg;
1630 
1631 	/* Disable MSI/MSI-X interrupts */
1632 	efx_for_each_channel(channel, efx) {
1633 		if (channel->irq)
1634 			free_irq(channel->irq, &efx->channel[channel->channel]);
1635 	}
1636 
1637 	/* ACK legacy interrupt */
1638 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1639 		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1640 	else
1641 		falcon_irq_ack_a1(efx);
1642 
1643 	/* Disable legacy interrupt */
1644 	if (efx->legacy_irq)
1645 		free_irq(efx->legacy_irq, efx);
1646 }
1647 
1648 /* Looks at available SRAM resources and works out how many queues we
1649  * can support, and where things like descriptor caches should live.
1650  *
1651  * SRAM is split up as follows:
1652  * 0                          buftbl entries for channels
1653  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1654  * efx->rx_dc_base            RX descriptor caches
1655  * efx->tx_dc_base            TX descriptor caches
1656  */
1657 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1658 {
1659 	unsigned vi_count, buftbl_min;
1660 
1661 	/* Account for the buffer table entries backing the datapath channels
1662 	 * and the descriptor caches for those channels.
1663 	 */
1664 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1665 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1666 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1667 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1668 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1669 
1670 #ifdef CONFIG_SFC_SRIOV
1671 	if (efx_sriov_wanted(efx)) {
1672 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1673 
1674 		efx->vf_buftbl_base = buftbl_min;
1675 
1676 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1677 		vi_count = max(vi_count, EFX_VI_BASE);
1678 		buftbl_free = (sram_lim_qw - buftbl_min -
1679 			       vi_count * vi_dc_entries);
1680 
1681 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1682 				  efx_vf_size(efx));
1683 		vf_limit = min(buftbl_free / entries_per_vf,
1684 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1685 
1686 		if (efx->vf_count > vf_limit) {
1687 			netif_err(efx, probe, efx->net_dev,
1688 				  "Reducing VF count from from %d to %d\n",
1689 				  efx->vf_count, vf_limit);
1690 			efx->vf_count = vf_limit;
1691 		}
1692 		vi_count += efx->vf_count * efx_vf_size(efx);
1693 	}
1694 #endif
1695 
1696 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1697 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1698 }
1699 
1700 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1701 {
1702 	efx_oword_t altera_build;
1703 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1704 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1705 }
1706 
1707 void efx_nic_init_common(struct efx_nic *efx)
1708 {
1709 	efx_oword_t temp;
1710 
1711 	/* Set positions of descriptor caches in SRAM. */
1712 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1713 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1714 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1715 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1716 
1717 	/* Set TX descriptor cache size. */
1718 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1719 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1720 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1721 
1722 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1723 	 * this allows most efficient prefetching.
1724 	 */
1725 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1726 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1727 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1728 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1729 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1730 
1731 	/* Program INT_KER address */
1732 	EFX_POPULATE_OWORD_2(temp,
1733 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1734 			     EFX_INT_MODE_USE_MSI(efx),
1735 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1736 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1737 
1738 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1739 		/* Use an interrupt level unused by event queues */
1740 		efx->irq_level = 0x1f;
1741 	else
1742 		/* Use a valid MSI-X vector */
1743 		efx->irq_level = 0;
1744 
1745 	/* Enable all the genuinely fatal interrupts.  (They are still
1746 	 * masked by the overall interrupt mask, controlled by
1747 	 * falcon_interrupts()).
1748 	 *
1749 	 * Note: All other fatal interrupts are enabled
1750 	 */
1751 	EFX_POPULATE_OWORD_3(temp,
1752 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1753 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1754 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1755 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1756 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1757 	EFX_INVERT_OWORD(temp);
1758 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1759 
1760 	efx_nic_push_rx_indir_table(efx);
1761 
1762 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1763 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1764 	 */
1765 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1766 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1767 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1768 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1769 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1770 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1771 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1772 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1773 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1774 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1775 	/* Disable hardware watchdog which can misfire */
1776 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1777 	/* Squash TX of packets of 16 bytes or less */
1778 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1779 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1780 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1781 
1782 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1783 		EFX_POPULATE_OWORD_4(temp,
1784 				     /* Default values */
1785 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1786 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1787 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1788 				     /* Allow large pace values in the
1789 				      * fast bin. */
1790 				     FRF_BZ_TX_PACE_BIN_TH,
1791 				     FFE_BZ_TX_PACE_RESERVED);
1792 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1793 	}
1794 }
1795 
1796 /* Register dump */
1797 
1798 #define REGISTER_REVISION_A	1
1799 #define REGISTER_REVISION_B	2
1800 #define REGISTER_REVISION_C	3
1801 #define REGISTER_REVISION_Z	3	/* latest revision */
1802 
1803 struct efx_nic_reg {
1804 	u32 offset:24;
1805 	u32 min_revision:2, max_revision:2;
1806 };
1807 
1808 #define REGISTER(name, min_rev, max_rev) {				\
1809 	FR_ ## min_rev ## max_rev ## _ ## name,				\
1810 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1811 }
1812 #define REGISTER_AA(name) REGISTER(name, A, A)
1813 #define REGISTER_AB(name) REGISTER(name, A, B)
1814 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1815 #define REGISTER_BB(name) REGISTER(name, B, B)
1816 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1817 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1818 
1819 static const struct efx_nic_reg efx_nic_regs[] = {
1820 	REGISTER_AZ(ADR_REGION),
1821 	REGISTER_AZ(INT_EN_KER),
1822 	REGISTER_BZ(INT_EN_CHAR),
1823 	REGISTER_AZ(INT_ADR_KER),
1824 	REGISTER_BZ(INT_ADR_CHAR),
1825 	/* INT_ACK_KER is WO */
1826 	/* INT_ISR0 is RC */
1827 	REGISTER_AZ(HW_INIT),
1828 	REGISTER_CZ(USR_EV_CFG),
1829 	REGISTER_AB(EE_SPI_HCMD),
1830 	REGISTER_AB(EE_SPI_HADR),
1831 	REGISTER_AB(EE_SPI_HDATA),
1832 	REGISTER_AB(EE_BASE_PAGE),
1833 	REGISTER_AB(EE_VPD_CFG0),
1834 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1835 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1836 	/* PCIE_CORE_INDIRECT is indirect */
1837 	REGISTER_AB(NIC_STAT),
1838 	REGISTER_AB(GPIO_CTL),
1839 	REGISTER_AB(GLB_CTL),
1840 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1841 	REGISTER_BZ(DP_CTRL),
1842 	REGISTER_AZ(MEM_STAT),
1843 	REGISTER_AZ(CS_DEBUG),
1844 	REGISTER_AZ(ALTERA_BUILD),
1845 	REGISTER_AZ(CSR_SPARE),
1846 	REGISTER_AB(PCIE_SD_CTL0123),
1847 	REGISTER_AB(PCIE_SD_CTL45),
1848 	REGISTER_AB(PCIE_PCS_CTL_STAT),
1849 	/* DEBUG_DATA_OUT is not used */
1850 	/* DRV_EV is WO */
1851 	REGISTER_AZ(EVQ_CTL),
1852 	REGISTER_AZ(EVQ_CNT1),
1853 	REGISTER_AZ(EVQ_CNT2),
1854 	REGISTER_AZ(BUF_TBL_CFG),
1855 	REGISTER_AZ(SRM_RX_DC_CFG),
1856 	REGISTER_AZ(SRM_TX_DC_CFG),
1857 	REGISTER_AZ(SRM_CFG),
1858 	/* BUF_TBL_UPD is WO */
1859 	REGISTER_AZ(SRM_UPD_EVQ),
1860 	REGISTER_AZ(SRAM_PARITY),
1861 	REGISTER_AZ(RX_CFG),
1862 	REGISTER_BZ(RX_FILTER_CTL),
1863 	/* RX_FLUSH_DESCQ is WO */
1864 	REGISTER_AZ(RX_DC_CFG),
1865 	REGISTER_AZ(RX_DC_PF_WM),
1866 	REGISTER_BZ(RX_RSS_TKEY),
1867 	/* RX_NODESC_DROP is RC */
1868 	REGISTER_AA(RX_SELF_RST),
1869 	/* RX_DEBUG, RX_PUSH_DROP are not used */
1870 	REGISTER_CZ(RX_RSS_IPV6_REG1),
1871 	REGISTER_CZ(RX_RSS_IPV6_REG2),
1872 	REGISTER_CZ(RX_RSS_IPV6_REG3),
1873 	/* TX_FLUSH_DESCQ is WO */
1874 	REGISTER_AZ(TX_DC_CFG),
1875 	REGISTER_AA(TX_CHKSM_CFG),
1876 	REGISTER_AZ(TX_CFG),
1877 	/* TX_PUSH_DROP is not used */
1878 	REGISTER_AZ(TX_RESERVED),
1879 	REGISTER_BZ(TX_PACE),
1880 	/* TX_PACE_DROP_QID is RC */
1881 	REGISTER_BB(TX_VLAN),
1882 	REGISTER_BZ(TX_IPFIL_PORTEN),
1883 	REGISTER_AB(MD_TXD),
1884 	REGISTER_AB(MD_RXD),
1885 	REGISTER_AB(MD_CS),
1886 	REGISTER_AB(MD_PHY_ADR),
1887 	REGISTER_AB(MD_ID),
1888 	/* MD_STAT is RC */
1889 	REGISTER_AB(MAC_STAT_DMA),
1890 	REGISTER_AB(MAC_CTRL),
1891 	REGISTER_BB(GEN_MODE),
1892 	REGISTER_AB(MAC_MC_HASH_REG0),
1893 	REGISTER_AB(MAC_MC_HASH_REG1),
1894 	REGISTER_AB(GM_CFG1),
1895 	REGISTER_AB(GM_CFG2),
1896 	/* GM_IPG and GM_HD are not used */
1897 	REGISTER_AB(GM_MAX_FLEN),
1898 	/* GM_TEST is not used */
1899 	REGISTER_AB(GM_ADR1),
1900 	REGISTER_AB(GM_ADR2),
1901 	REGISTER_AB(GMF_CFG0),
1902 	REGISTER_AB(GMF_CFG1),
1903 	REGISTER_AB(GMF_CFG2),
1904 	REGISTER_AB(GMF_CFG3),
1905 	REGISTER_AB(GMF_CFG4),
1906 	REGISTER_AB(GMF_CFG5),
1907 	REGISTER_BB(TX_SRC_MAC_CTL),
1908 	REGISTER_AB(XM_ADR_LO),
1909 	REGISTER_AB(XM_ADR_HI),
1910 	REGISTER_AB(XM_GLB_CFG),
1911 	REGISTER_AB(XM_TX_CFG),
1912 	REGISTER_AB(XM_RX_CFG),
1913 	REGISTER_AB(XM_MGT_INT_MASK),
1914 	REGISTER_AB(XM_FC),
1915 	REGISTER_AB(XM_PAUSE_TIME),
1916 	REGISTER_AB(XM_TX_PARAM),
1917 	REGISTER_AB(XM_RX_PARAM),
1918 	/* XM_MGT_INT_MSK (note no 'A') is RC */
1919 	REGISTER_AB(XX_PWR_RST),
1920 	REGISTER_AB(XX_SD_CTL),
1921 	REGISTER_AB(XX_TXDRV_CTL),
1922 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1923 	/* XX_CORE_STAT is partly RC */
1924 };
1925 
1926 struct efx_nic_reg_table {
1927 	u32 offset:24;
1928 	u32 min_revision:2, max_revision:2;
1929 	u32 step:6, rows:21;
1930 };
1931 
1932 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1933 	offset,								\
1934 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
1935 	step, rows							\
1936 }
1937 #define REGISTER_TABLE(name, min_rev, max_rev)				\
1938 	REGISTER_TABLE_DIMENSIONS(					\
1939 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1940 		min_rev, max_rev,					\
1941 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1942 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1943 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1944 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1945 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1946 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1947 #define REGISTER_TABLE_BB_CZ(name)					\
1948 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1949 				  FR_BZ_ ## name ## _STEP,		\
1950 				  FR_BB_ ## name ## _ROWS),		\
1951 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1952 				  FR_BZ_ ## name ## _STEP,		\
1953 				  FR_CZ_ ## name ## _ROWS)
1954 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1955 
1956 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1957 	/* DRIVER is not used */
1958 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1959 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
1960 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1961 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1962 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1963 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1964 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1965 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1966 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1967 	/* We can't reasonably read all of the buffer table (up to 8MB!).
1968 	 * However this driver will only use a few entries.  Reading
1969 	 * 1K entries allows for some expansion of queue count and
1970 	 * size before we need to change the version. */
1971 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1972 				  A, A, 8, 1024),
1973 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1974 				  B, Z, 8, 1024),
1975 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1976 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
1977 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1978 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1979 	/* TX_FILTER_TBL0 is huge and not used by this driver */
1980 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1981 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
1982 	/* MSIX_PBA_TABLE is not mapped */
1983 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1984 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1985 };
1986 
1987 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1988 {
1989 	const struct efx_nic_reg *reg;
1990 	const struct efx_nic_reg_table *table;
1991 	size_t len = 0;
1992 
1993 	for (reg = efx_nic_regs;
1994 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1995 	     reg++)
1996 		if (efx->type->revision >= reg->min_revision &&
1997 		    efx->type->revision <= reg->max_revision)
1998 			len += sizeof(efx_oword_t);
1999 
2000 	for (table = efx_nic_reg_tables;
2001 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2002 	     table++)
2003 		if (efx->type->revision >= table->min_revision &&
2004 		    efx->type->revision <= table->max_revision)
2005 			len += table->rows * min_t(size_t, table->step, 16);
2006 
2007 	return len;
2008 }
2009 
2010 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2011 {
2012 	const struct efx_nic_reg *reg;
2013 	const struct efx_nic_reg_table *table;
2014 
2015 	for (reg = efx_nic_regs;
2016 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2017 	     reg++) {
2018 		if (efx->type->revision >= reg->min_revision &&
2019 		    efx->type->revision <= reg->max_revision) {
2020 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2021 			buf += sizeof(efx_oword_t);
2022 		}
2023 	}
2024 
2025 	for (table = efx_nic_reg_tables;
2026 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2027 	     table++) {
2028 		size_t size, i;
2029 
2030 		if (!(efx->type->revision >= table->min_revision &&
2031 		      efx->type->revision <= table->max_revision))
2032 			continue;
2033 
2034 		size = min_t(size_t, table->step, 16);
2035 
2036 		for (i = 0; i < table->rows; i++) {
2037 			switch (table->step) {
2038 			case 4: /* 32-bit SRAM */
2039 				efx_readd(efx, buf, table->offset + 4 * i);
2040 				break;
2041 			case 8: /* 64-bit SRAM */
2042 				efx_sram_readq(efx,
2043 					       efx->membase + table->offset,
2044 					       buf, i);
2045 				break;
2046 			case 16: /* 128-bit-readable register */
2047 				efx_reado_table(efx, buf, table->offset, i);
2048 				break;
2049 			case 32: /* 128-bit register, interleaved */
2050 				efx_reado_table(efx, buf, table->offset, 2 * i);
2051 				break;
2052 			default:
2053 				WARN_ON(1);
2054 				return;
2055 			}
2056 			buf += size;
2057 		}
2058 	}
2059 }
2060