xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.c (revision 525d9e82)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
60 
61 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63 
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
65 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
67 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
68 			   efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
74 			   (_tx_queue)->queue)
75 
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77 
78 /**************************************************************************
79  *
80  * Solarstorm hardware access
81  *
82  **************************************************************************/
83 
84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85 				     unsigned int index)
86 {
87 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88 			value, index);
89 }
90 
91 /* Read the current event from the event queue */
92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93 				     unsigned int index)
94 {
95 	return ((efx_qword_t *) (channel->eventq.addr)) +
96 		(index & channel->eventq_mask);
97 }
98 
99 /* See if an event is present
100  *
101  * We check both the high and low dword of the event for all ones.  We
102  * wrote all ones when we cleared the event, and no valid event can
103  * have all ones in either its high or low dwords.  This approach is
104  * robust against reordering.
105  *
106  * Note that using a single 64-bit comparison is incorrect; even
107  * though the CPU read will be atomic, the DMA write may not be.
108  */
109 static inline int efx_event_present(efx_qword_t *event)
110 {
111 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114 
115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116 				     const efx_oword_t *mask)
117 {
118 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121 
122 int efx_nic_test_registers(struct efx_nic *efx,
123 			   const struct efx_nic_register_test *regs,
124 			   size_t n_regs)
125 {
126 	unsigned address = 0, i, j;
127 	efx_oword_t mask, imask, original, reg, buf;
128 
129 	for (i = 0; i < n_regs; ++i) {
130 		address = regs[i].address;
131 		mask = imask = regs[i].mask;
132 		EFX_INVERT_OWORD(imask);
133 
134 		efx_reado(efx, &original, address);
135 
136 		/* bit sweep on and off */
137 		for (j = 0; j < 128; j++) {
138 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
139 				continue;
140 
141 			/* Test this testable bit can be set in isolation */
142 			EFX_AND_OWORD(reg, original, mask);
143 			EFX_SET_OWORD32(reg, j, j, 1);
144 
145 			efx_writeo(efx, &reg, address);
146 			efx_reado(efx, &buf, address);
147 
148 			if (efx_masked_compare_oword(&reg, &buf, &mask))
149 				goto fail;
150 
151 			/* Test this testable bit can be cleared in isolation */
152 			EFX_OR_OWORD(reg, original, mask);
153 			EFX_SET_OWORD32(reg, j, j, 0);
154 
155 			efx_writeo(efx, &reg, address);
156 			efx_reado(efx, &buf, address);
157 
158 			if (efx_masked_compare_oword(&reg, &buf, &mask))
159 				goto fail;
160 		}
161 
162 		efx_writeo(efx, &original, address);
163 	}
164 
165 	return 0;
166 
167 fail:
168 	netif_err(efx, hw, efx->net_dev,
169 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172 	return -EIO;
173 }
174 
175 /**************************************************************************
176  *
177  * Special buffer handling
178  * Special buffers are used for event queues and the TX and RX
179  * descriptor rings.
180  *
181  *************************************************************************/
182 
183 /*
184  * Initialise a special buffer
185  *
186  * This will define a buffer (previously allocated via
187  * efx_alloc_special_buffer()) in the buffer table, allowing
188  * it to be used for event queues, descriptor rings etc.
189  */
190 static void
191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193 	efx_qword_t buf_desc;
194 	unsigned int index;
195 	dma_addr_t dma_addr;
196 	int i;
197 
198 	EFX_BUG_ON_PARANOID(!buffer->addr);
199 
200 	/* Write buffer descriptors to NIC */
201 	for (i = 0; i < buffer->entries; i++) {
202 		index = buffer->index + i;
203 		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204 		netif_dbg(efx, probe, efx->net_dev,
205 			  "mapping special buffer %d at %llx\n",
206 			  index, (unsigned long long)dma_addr);
207 		EFX_POPULATE_QWORD_3(buf_desc,
208 				     FRF_AZ_BUF_ADR_REGION, 0,
209 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211 		efx_write_buf_tbl(efx, &buf_desc, index);
212 	}
213 }
214 
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219 	efx_oword_t buf_tbl_upd;
220 	unsigned int start = buffer->index;
221 	unsigned int end = (buffer->index + buffer->entries - 1);
222 
223 	if (!buffer->entries)
224 		return;
225 
226 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227 		  buffer->index, buffer->index + buffer->entries - 1);
228 
229 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
230 			     FRF_AZ_BUF_UPD_CMD, 0,
231 			     FRF_AZ_BUF_CLR_CMD, 1,
232 			     FRF_AZ_BUF_CLR_END_ID, end,
233 			     FRF_AZ_BUF_CLR_START_ID, start);
234 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236 
237 /*
238  * Allocate a new special buffer
239  *
240  * This allocates memory for a new buffer, clears it and allocates a
241  * new buffer ID range.  It does not write into the buffer table.
242  *
243  * This call will allocate 4KB buffers, since 8KB buffers can't be
244  * used for event queues and descriptor rings.
245  */
246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247 				    struct efx_special_buffer *buffer,
248 				    unsigned int len)
249 {
250 	len = ALIGN(len, EFX_BUF_SIZE);
251 
252 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253 					  &buffer->dma_addr, GFP_KERNEL);
254 	if (!buffer->addr)
255 		return -ENOMEM;
256 	buffer->len = len;
257 	buffer->entries = len / EFX_BUF_SIZE;
258 	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259 
260 	/* Select new buffer ID */
261 	buffer->index = efx->next_buffer_table;
262 	efx->next_buffer_table += buffer->entries;
263 #ifdef CONFIG_SFC_SRIOV
264 	BUG_ON(efx_sriov_enabled(efx) &&
265 	       efx->vf_buftbl_base < efx->next_buffer_table);
266 #endif
267 
268 	netif_dbg(efx, probe, efx->net_dev,
269 		  "allocating special buffers %d-%d at %llx+%x "
270 		  "(virt %p phys %llx)\n", buffer->index,
271 		  buffer->index + buffer->entries - 1,
272 		  (u64)buffer->dma_addr, len,
273 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
274 
275 	return 0;
276 }
277 
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281 	if (!buffer->addr)
282 		return;
283 
284 	netif_dbg(efx, hw, efx->net_dev,
285 		  "deallocating special buffers %d-%d at %llx+%x "
286 		  "(virt %p phys %llx)\n", buffer->index,
287 		  buffer->index + buffer->entries - 1,
288 		  (u64)buffer->dma_addr, buffer->len,
289 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
290 
291 	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292 			  buffer->dma_addr);
293 	buffer->addr = NULL;
294 	buffer->entries = 0;
295 }
296 
297 /**************************************************************************
298  *
299  * Generic buffer handling
300  * These buffers are used for interrupt status, MAC stats, etc.
301  *
302  **************************************************************************/
303 
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305 			 unsigned int len)
306 {
307 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
308 					  &buffer->dma_addr, GFP_ATOMIC);
309 	if (!buffer->addr)
310 		return -ENOMEM;
311 	buffer->len = len;
312 	memset(buffer->addr, 0, len);
313 	return 0;
314 }
315 
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318 	if (buffer->addr) {
319 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
320 				  buffer->addr, buffer->dma_addr);
321 		buffer->addr = NULL;
322 	}
323 }
324 
325 /**************************************************************************
326  *
327  * TX path
328  *
329  **************************************************************************/
330 
331 /* Returns a pointer to the specified transmit descriptor in the TX
332  * descriptor queue belonging to the specified channel.
333  */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337 	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339 
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343 	unsigned write_ptr;
344 	efx_dword_t reg;
345 
346 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348 	efx_writed_page(tx_queue->efx, &reg,
349 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351 
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354 				    const efx_qword_t *txd)
355 {
356 	unsigned write_ptr;
357 	efx_oword_t reg;
358 
359 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361 
362 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
365 	reg.qword[0] = *txd;
366 	efx_writeo_page(tx_queue->efx, &reg,
367 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369 
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374 
375 	if (empty_read_count == 0)
376 		return false;
377 
378 	tx_queue->empty_read_count = 0;
379 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
380 }
381 
382 /* For each entry inserted into the software descriptor ring, create a
383  * descriptor in the hardware TX descriptor ring (in host memory), and
384  * write a doorbell.
385  */
386 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
387 {
388 
389 	struct efx_tx_buffer *buffer;
390 	efx_qword_t *txd;
391 	unsigned write_ptr;
392 	unsigned old_write_count = tx_queue->write_count;
393 
394 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
395 
396 	do {
397 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
398 		buffer = &tx_queue->buffer[write_ptr];
399 		txd = efx_tx_desc(tx_queue, write_ptr);
400 		++tx_queue->write_count;
401 
402 		/* Create TX descriptor ring entry */
403 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
404 		EFX_POPULATE_QWORD_4(*txd,
405 				     FSF_AZ_TX_KER_CONT,
406 				     buffer->flags & EFX_TX_BUF_CONT,
407 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
408 				     FSF_AZ_TX_KER_BUF_REGION, 0,
409 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
410 	} while (tx_queue->write_count != tx_queue->insert_count);
411 
412 	wmb(); /* Ensure descriptors are written before they are fetched */
413 
414 	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
415 		txd = efx_tx_desc(tx_queue,
416 				  old_write_count & tx_queue->ptr_mask);
417 		efx_push_tx_desc(tx_queue, txd);
418 		++tx_queue->pushes;
419 	} else {
420 		efx_notify_tx_desc(tx_queue);
421 	}
422 }
423 
424 /* Allocate hardware resources for a TX queue */
425 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
426 {
427 	struct efx_nic *efx = tx_queue->efx;
428 	unsigned entries;
429 
430 	entries = tx_queue->ptr_mask + 1;
431 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
432 					entries * sizeof(efx_qword_t));
433 }
434 
435 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
436 {
437 	struct efx_nic *efx = tx_queue->efx;
438 	efx_oword_t reg;
439 
440 	/* Pin TX descriptor ring */
441 	efx_init_special_buffer(efx, &tx_queue->txd);
442 
443 	/* Push TX descriptor ring to card */
444 	EFX_POPULATE_OWORD_10(reg,
445 			      FRF_AZ_TX_DESCQ_EN, 1,
446 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
447 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
448 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
449 			      FRF_AZ_TX_DESCQ_EVQ_ID,
450 			      tx_queue->channel->channel,
451 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
452 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
453 			      FRF_AZ_TX_DESCQ_SIZE,
454 			      __ffs(tx_queue->txd.entries),
455 			      FRF_AZ_TX_DESCQ_TYPE, 0,
456 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
457 
458 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
459 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
460 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
461 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
462 				    !csum);
463 	}
464 
465 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
466 			 tx_queue->queue);
467 
468 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
469 		/* Only 128 bits in this register */
470 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
471 
472 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
473 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
474 			__clear_bit_le(tx_queue->queue, &reg);
475 		else
476 			__set_bit_le(tx_queue->queue, &reg);
477 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
478 	}
479 
480 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
481 		EFX_POPULATE_OWORD_1(reg,
482 				     FRF_BZ_TX_PACE,
483 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
484 				     FFE_BZ_TX_PACE_OFF :
485 				     FFE_BZ_TX_PACE_RESERVED);
486 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
487 				 tx_queue->queue);
488 	}
489 }
490 
491 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
492 {
493 	struct efx_nic *efx = tx_queue->efx;
494 	efx_oword_t tx_flush_descq;
495 
496 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
497 	atomic_set(&tx_queue->flush_outstanding, 1);
498 
499 	EFX_POPULATE_OWORD_2(tx_flush_descq,
500 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
501 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
502 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
503 }
504 
505 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
506 {
507 	struct efx_nic *efx = tx_queue->efx;
508 	efx_oword_t tx_desc_ptr;
509 
510 	/* Remove TX descriptor ring from card */
511 	EFX_ZERO_OWORD(tx_desc_ptr);
512 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
513 			 tx_queue->queue);
514 
515 	/* Unpin TX descriptor ring */
516 	efx_fini_special_buffer(efx, &tx_queue->txd);
517 }
518 
519 /* Free buffers backing TX queue */
520 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
521 {
522 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
523 }
524 
525 /**************************************************************************
526  *
527  * RX path
528  *
529  **************************************************************************/
530 
531 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
532 static inline efx_qword_t *
533 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
534 {
535 	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
536 }
537 
538 /* This creates an entry in the RX descriptor queue */
539 static inline void
540 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
541 {
542 	struct efx_rx_buffer *rx_buf;
543 	efx_qword_t *rxd;
544 
545 	rxd = efx_rx_desc(rx_queue, index);
546 	rx_buf = efx_rx_buffer(rx_queue, index);
547 	EFX_POPULATE_QWORD_3(*rxd,
548 			     FSF_AZ_RX_KER_BUF_SIZE,
549 			     rx_buf->len -
550 			     rx_queue->efx->type->rx_buffer_padding,
551 			     FSF_AZ_RX_KER_BUF_REGION, 0,
552 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
553 }
554 
555 /* This writes to the RX_DESC_WPTR register for the specified receive
556  * descriptor ring.
557  */
558 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
559 {
560 	struct efx_nic *efx = rx_queue->efx;
561 	efx_dword_t reg;
562 	unsigned write_ptr;
563 
564 	while (rx_queue->notified_count != rx_queue->added_count) {
565 		efx_build_rx_desc(
566 			rx_queue,
567 			rx_queue->notified_count & rx_queue->ptr_mask);
568 		++rx_queue->notified_count;
569 	}
570 
571 	wmb();
572 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
573 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
574 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
575 			efx_rx_queue_index(rx_queue));
576 }
577 
578 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
579 {
580 	struct efx_nic *efx = rx_queue->efx;
581 	unsigned entries;
582 
583 	entries = rx_queue->ptr_mask + 1;
584 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
585 					entries * sizeof(efx_qword_t));
586 }
587 
588 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
589 {
590 	efx_oword_t rx_desc_ptr;
591 	struct efx_nic *efx = rx_queue->efx;
592 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
593 	bool iscsi_digest_en = is_b0;
594 
595 	netif_dbg(efx, hw, efx->net_dev,
596 		  "RX queue %d ring in special buffers %d-%d\n",
597 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
598 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
599 
600 	/* Pin RX descriptor ring */
601 	efx_init_special_buffer(efx, &rx_queue->rxd);
602 
603 	/* Push RX descriptor ring to card */
604 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
605 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
606 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
607 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
608 			      FRF_AZ_RX_DESCQ_EVQ_ID,
609 			      efx_rx_queue_channel(rx_queue)->channel,
610 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
611 			      FRF_AZ_RX_DESCQ_LABEL,
612 			      efx_rx_queue_index(rx_queue),
613 			      FRF_AZ_RX_DESCQ_SIZE,
614 			      __ffs(rx_queue->rxd.entries),
615 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
616 			      /* For >=B0 this is scatter so disable */
617 			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
618 			      FRF_AZ_RX_DESCQ_EN, 1);
619 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
620 			 efx_rx_queue_index(rx_queue));
621 }
622 
623 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
624 {
625 	struct efx_nic *efx = rx_queue->efx;
626 	efx_oword_t rx_flush_descq;
627 
628 	EFX_POPULATE_OWORD_2(rx_flush_descq,
629 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
630 			     FRF_AZ_RX_FLUSH_DESCQ,
631 			     efx_rx_queue_index(rx_queue));
632 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
633 }
634 
635 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
636 {
637 	efx_oword_t rx_desc_ptr;
638 	struct efx_nic *efx = rx_queue->efx;
639 
640 	/* Remove RX descriptor ring from card */
641 	EFX_ZERO_OWORD(rx_desc_ptr);
642 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
643 			 efx_rx_queue_index(rx_queue));
644 
645 	/* Unpin RX descriptor ring */
646 	efx_fini_special_buffer(efx, &rx_queue->rxd);
647 }
648 
649 /* Free buffers backing RX queue */
650 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
651 {
652 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
653 }
654 
655 /**************************************************************************
656  *
657  * Flush handling
658  *
659  **************************************************************************/
660 
661 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
662  * or more RX flushes can be kicked off.
663  */
664 static bool efx_flush_wake(struct efx_nic *efx)
665 {
666 	/* Ensure that all updates are visible to efx_nic_flush_queues() */
667 	smp_mb();
668 
669 	return (atomic_read(&efx->drain_pending) == 0 ||
670 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
671 		 && atomic_read(&efx->rxq_flush_pending) > 0));
672 }
673 
674 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
675 {
676 	bool i = true;
677 	efx_oword_t txd_ptr_tbl;
678 	struct efx_channel *channel;
679 	struct efx_tx_queue *tx_queue;
680 
681 	efx_for_each_channel(channel, efx) {
682 		efx_for_each_channel_tx_queue(tx_queue, channel) {
683 			efx_reado_table(efx, &txd_ptr_tbl,
684 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
685 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
686 					    FRF_AZ_TX_DESCQ_FLUSH) ||
687 			    EFX_OWORD_FIELD(txd_ptr_tbl,
688 					    FRF_AZ_TX_DESCQ_EN)) {
689 				netif_dbg(efx, hw, efx->net_dev,
690 					  "flush did not complete on TXQ %d\n",
691 					  tx_queue->queue);
692 				i = false;
693 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
694 						  1, 0)) {
695 				/* The flush is complete, but we didn't
696 				 * receive a flush completion event
697 				 */
698 				netif_dbg(efx, hw, efx->net_dev,
699 					  "flush complete on TXQ %d, so drain "
700 					  "the queue\n", tx_queue->queue);
701 				/* Don't need to increment drain_pending as it
702 				 * has already been incremented for the queues
703 				 * which did not drain
704 				 */
705 				efx_magic_event(channel,
706 						EFX_CHANNEL_MAGIC_TX_DRAIN(
707 							tx_queue));
708 			}
709 		}
710 	}
711 
712 	return i;
713 }
714 
715 /* Flush all the transmit queues, and continue flushing receive queues until
716  * they're all flushed. Wait for the DRAIN events to be recieved so that there
717  * are no more RX and TX events left on any channel. */
718 int efx_nic_flush_queues(struct efx_nic *efx)
719 {
720 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
721 	struct efx_channel *channel;
722 	struct efx_rx_queue *rx_queue;
723 	struct efx_tx_queue *tx_queue;
724 	int rc = 0;
725 
726 	efx->type->prepare_flush(efx);
727 
728 	efx_for_each_channel(channel, efx) {
729 		efx_for_each_channel_tx_queue(tx_queue, channel) {
730 			atomic_inc(&efx->drain_pending);
731 			efx_flush_tx_queue(tx_queue);
732 		}
733 		efx_for_each_channel_rx_queue(rx_queue, channel) {
734 			atomic_inc(&efx->drain_pending);
735 			rx_queue->flush_pending = true;
736 			atomic_inc(&efx->rxq_flush_pending);
737 		}
738 	}
739 
740 	while (timeout && atomic_read(&efx->drain_pending) > 0) {
741 		/* If SRIOV is enabled, then offload receive queue flushing to
742 		 * the firmware (though we will still have to poll for
743 		 * completion). If that fails, fall back to the old scheme.
744 		 */
745 		if (efx_sriov_enabled(efx)) {
746 			rc = efx_mcdi_flush_rxqs(efx);
747 			if (!rc)
748 				goto wait;
749 		}
750 
751 		/* The hardware supports four concurrent rx flushes, each of
752 		 * which may need to be retried if there is an outstanding
753 		 * descriptor fetch
754 		 */
755 		efx_for_each_channel(channel, efx) {
756 			efx_for_each_channel_rx_queue(rx_queue, channel) {
757 				if (atomic_read(&efx->rxq_flush_outstanding) >=
758 				    EFX_RX_FLUSH_COUNT)
759 					break;
760 
761 				if (rx_queue->flush_pending) {
762 					rx_queue->flush_pending = false;
763 					atomic_dec(&efx->rxq_flush_pending);
764 					atomic_inc(&efx->rxq_flush_outstanding);
765 					efx_flush_rx_queue(rx_queue);
766 				}
767 			}
768 		}
769 
770 	wait:
771 		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
772 					     timeout);
773 	}
774 
775 	if (atomic_read(&efx->drain_pending) &&
776 	    !efx_check_tx_flush_complete(efx)) {
777 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
778 			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
779 			  atomic_read(&efx->rxq_flush_outstanding),
780 			  atomic_read(&efx->rxq_flush_pending));
781 		rc = -ETIMEDOUT;
782 
783 		atomic_set(&efx->drain_pending, 0);
784 		atomic_set(&efx->rxq_flush_pending, 0);
785 		atomic_set(&efx->rxq_flush_outstanding, 0);
786 	}
787 
788 	efx->type->finish_flush(efx);
789 
790 	return rc;
791 }
792 
793 /**************************************************************************
794  *
795  * Event queue processing
796  * Event queues are processed by per-channel tasklets.
797  *
798  **************************************************************************/
799 
800 /* Update a channel's event queue's read pointer (RPTR) register
801  *
802  * This writes the EVQ_RPTR_REG register for the specified channel's
803  * event queue.
804  */
805 void efx_nic_eventq_read_ack(struct efx_channel *channel)
806 {
807 	efx_dword_t reg;
808 	struct efx_nic *efx = channel->efx;
809 
810 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
811 			     channel->eventq_read_ptr & channel->eventq_mask);
812 
813 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
814 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
815 	 */
816 	efx_writed(efx, &reg,
817 		   efx->type->evq_rptr_tbl_base +
818 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
819 }
820 
821 /* Use HW to insert a SW defined event */
822 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
823 			efx_qword_t *event)
824 {
825 	efx_oword_t drv_ev_reg;
826 
827 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
828 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
829 	drv_ev_reg.u32[0] = event->u32[0];
830 	drv_ev_reg.u32[1] = event->u32[1];
831 	drv_ev_reg.u32[2] = 0;
832 	drv_ev_reg.u32[3] = 0;
833 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
834 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
835 }
836 
837 static void efx_magic_event(struct efx_channel *channel, u32 magic)
838 {
839 	efx_qword_t event;
840 
841 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
842 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
843 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
844 	efx_generate_event(channel->efx, channel->channel, &event);
845 }
846 
847 /* Handle a transmit completion event
848  *
849  * The NIC batches TX completion events; the message we receive is of
850  * the form "complete all TX events up to this index".
851  */
852 static int
853 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
854 {
855 	unsigned int tx_ev_desc_ptr;
856 	unsigned int tx_ev_q_label;
857 	struct efx_tx_queue *tx_queue;
858 	struct efx_nic *efx = channel->efx;
859 	int tx_packets = 0;
860 
861 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
862 		return 0;
863 
864 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
865 		/* Transmit completion */
866 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
867 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
868 		tx_queue = efx_channel_get_tx_queue(
869 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
870 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
871 			      tx_queue->ptr_mask);
872 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
873 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
874 		/* Rewrite the FIFO write pointer */
875 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
876 		tx_queue = efx_channel_get_tx_queue(
877 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
878 
879 		netif_tx_lock(efx->net_dev);
880 		efx_notify_tx_desc(tx_queue);
881 		netif_tx_unlock(efx->net_dev);
882 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
883 		   EFX_WORKAROUND_10727(efx)) {
884 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
885 	} else {
886 		netif_err(efx, tx_err, efx->net_dev,
887 			  "channel %d unexpected TX event "
888 			  EFX_QWORD_FMT"\n", channel->channel,
889 			  EFX_QWORD_VAL(*event));
890 	}
891 
892 	return tx_packets;
893 }
894 
895 /* Detect errors included in the rx_evt_pkt_ok bit. */
896 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
897 				const efx_qword_t *event)
898 {
899 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
900 	struct efx_nic *efx = rx_queue->efx;
901 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
902 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
903 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
904 	bool rx_ev_other_err, rx_ev_pause_frm;
905 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
906 	unsigned rx_ev_pkt_type;
907 
908 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
909 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
910 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
911 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
912 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
913 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
914 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
915 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
916 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
917 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
918 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
919 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
920 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
921 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
922 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
923 
924 	/* Every error apart from tobe_disc and pause_frm */
925 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
926 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
927 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
928 
929 	/* Count errors that are not in MAC stats.  Ignore expected
930 	 * checksum errors during self-test. */
931 	if (rx_ev_frm_trunc)
932 		++channel->n_rx_frm_trunc;
933 	else if (rx_ev_tobe_disc)
934 		++channel->n_rx_tobe_disc;
935 	else if (!efx->loopback_selftest) {
936 		if (rx_ev_ip_hdr_chksum_err)
937 			++channel->n_rx_ip_hdr_chksum_err;
938 		else if (rx_ev_tcp_udp_chksum_err)
939 			++channel->n_rx_tcp_udp_chksum_err;
940 	}
941 
942 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
943 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
944 	 * to a FIFO overflow.
945 	 */
946 #ifdef DEBUG
947 	if (rx_ev_other_err && net_ratelimit()) {
948 		netif_dbg(efx, rx_err, efx->net_dev,
949 			  " RX queue %d unexpected RX event "
950 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
951 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
952 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
953 			  rx_ev_ip_hdr_chksum_err ?
954 			  " [IP_HDR_CHKSUM_ERR]" : "",
955 			  rx_ev_tcp_udp_chksum_err ?
956 			  " [TCP_UDP_CHKSUM_ERR]" : "",
957 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
958 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
959 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
960 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
961 			  rx_ev_pause_frm ? " [PAUSE]" : "");
962 	}
963 #endif
964 
965 	/* The frame must be discarded if any of these are true. */
966 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
967 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
968 		EFX_RX_PKT_DISCARD : 0;
969 }
970 
971 /* Handle receive events that are not in-order. */
972 static void
973 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
974 {
975 	struct efx_nic *efx = rx_queue->efx;
976 	unsigned expected, dropped;
977 
978 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
979 	dropped = (index - expected) & rx_queue->ptr_mask;
980 	netif_info(efx, rx_err, efx->net_dev,
981 		   "dropped %d events (index=%d expected=%d)\n",
982 		   dropped, index, expected);
983 
984 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
985 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
986 }
987 
988 /* Handle a packet received event
989  *
990  * The NIC gives a "discard" flag if it's a unicast packet with the
991  * wrong destination address
992  * Also "is multicast" and "matches multicast filter" flags can be used to
993  * discard non-matching multicast packets.
994  */
995 static void
996 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
997 {
998 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
999 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1000 	unsigned expected_ptr;
1001 	bool rx_ev_pkt_ok;
1002 	u16 flags;
1003 	struct efx_rx_queue *rx_queue;
1004 	struct efx_nic *efx = channel->efx;
1005 
1006 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1007 		return;
1008 
1009 	/* Basic packet information */
1010 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1011 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1012 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1013 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
1014 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
1015 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1016 		channel->channel);
1017 
1018 	rx_queue = efx_channel_get_rx_queue(channel);
1019 
1020 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1021 	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1022 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
1023 		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1024 
1025 	if (likely(rx_ev_pkt_ok)) {
1026 		/* If packet is marked as OK and packet type is TCP/IP or
1027 		 * UDP/IP, then we can rely on the hardware checksum.
1028 		 */
1029 		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1030 			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1031 			EFX_RX_PKT_CSUMMED : 0;
1032 	} else {
1033 		flags = efx_handle_rx_not_ok(rx_queue, event);
1034 	}
1035 
1036 	/* Detect multicast packets that didn't match the filter */
1037 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1038 	if (rx_ev_mcast_pkt) {
1039 		unsigned int rx_ev_mcast_hash_match =
1040 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1041 
1042 		if (unlikely(!rx_ev_mcast_hash_match)) {
1043 			++channel->n_rx_mcast_mismatch;
1044 			flags |= EFX_RX_PKT_DISCARD;
1045 		}
1046 	}
1047 
1048 	channel->irq_mod_score += 2;
1049 
1050 	/* Handle received packet */
1051 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1052 }
1053 
1054 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1055  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1056  * of all transmit completions.
1057  */
1058 static void
1059 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1060 {
1061 	struct efx_tx_queue *tx_queue;
1062 	int qid;
1063 
1064 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1065 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1066 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1067 					    qid % EFX_TXQ_TYPES);
1068 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1069 			efx_magic_event(tx_queue->channel,
1070 					EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1071 		}
1072 	}
1073 }
1074 
1075 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1076  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1077  * the RX queue back to the mask of RX queues in need of flushing.
1078  */
1079 static void
1080 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1081 {
1082 	struct efx_channel *channel;
1083 	struct efx_rx_queue *rx_queue;
1084 	int qid;
1085 	bool failed;
1086 
1087 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1088 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1089 	if (qid >= efx->n_channels)
1090 		return;
1091 	channel = efx_get_channel(efx, qid);
1092 	if (!efx_channel_has_rx_queue(channel))
1093 		return;
1094 	rx_queue = efx_channel_get_rx_queue(channel);
1095 
1096 	if (failed) {
1097 		netif_info(efx, hw, efx->net_dev,
1098 			   "RXQ %d flush retry\n", qid);
1099 		rx_queue->flush_pending = true;
1100 		atomic_inc(&efx->rxq_flush_pending);
1101 	} else {
1102 		efx_magic_event(efx_rx_queue_channel(rx_queue),
1103 				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1104 	}
1105 	atomic_dec(&efx->rxq_flush_outstanding);
1106 	if (efx_flush_wake(efx))
1107 		wake_up(&efx->flush_wq);
1108 }
1109 
1110 static void
1111 efx_handle_drain_event(struct efx_channel *channel)
1112 {
1113 	struct efx_nic *efx = channel->efx;
1114 
1115 	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1116 	atomic_dec(&efx->drain_pending);
1117 	if (efx_flush_wake(efx))
1118 		wake_up(&efx->flush_wq);
1119 }
1120 
1121 static void
1122 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1123 {
1124 	struct efx_nic *efx = channel->efx;
1125 	struct efx_rx_queue *rx_queue =
1126 		efx_channel_has_rx_queue(channel) ?
1127 		efx_channel_get_rx_queue(channel) : NULL;
1128 	unsigned magic, code;
1129 
1130 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1131 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1132 
1133 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1134 		channel->event_test_cpu = raw_smp_processor_id();
1135 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1136 		/* The queue must be empty, so we won't receive any rx
1137 		 * events, so efx_process_channel() won't refill the
1138 		 * queue. Refill it here */
1139 		efx_fast_push_rx_descriptors(rx_queue);
1140 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1141 		rx_queue->enabled = false;
1142 		efx_handle_drain_event(channel);
1143 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1144 		efx_handle_drain_event(channel);
1145 	} else {
1146 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1147 			  "generated event "EFX_QWORD_FMT"\n",
1148 			  channel->channel, EFX_QWORD_VAL(*event));
1149 	}
1150 }
1151 
1152 static void
1153 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1154 {
1155 	struct efx_nic *efx = channel->efx;
1156 	unsigned int ev_sub_code;
1157 	unsigned int ev_sub_data;
1158 
1159 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1160 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1161 
1162 	switch (ev_sub_code) {
1163 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1164 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1165 			   channel->channel, ev_sub_data);
1166 		efx_handle_tx_flush_done(efx, event);
1167 		efx_sriov_tx_flush_done(efx, event);
1168 		break;
1169 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1170 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1171 			   channel->channel, ev_sub_data);
1172 		efx_handle_rx_flush_done(efx, event);
1173 		efx_sriov_rx_flush_done(efx, event);
1174 		break;
1175 	case FSE_AZ_EVQ_INIT_DONE_EV:
1176 		netif_dbg(efx, hw, efx->net_dev,
1177 			  "channel %d EVQ %d initialised\n",
1178 			  channel->channel, ev_sub_data);
1179 		break;
1180 	case FSE_AZ_SRM_UPD_DONE_EV:
1181 		netif_vdbg(efx, hw, efx->net_dev,
1182 			   "channel %d SRAM update done\n", channel->channel);
1183 		break;
1184 	case FSE_AZ_WAKE_UP_EV:
1185 		netif_vdbg(efx, hw, efx->net_dev,
1186 			   "channel %d RXQ %d wakeup event\n",
1187 			   channel->channel, ev_sub_data);
1188 		break;
1189 	case FSE_AZ_TIMER_EV:
1190 		netif_vdbg(efx, hw, efx->net_dev,
1191 			   "channel %d RX queue %d timer expired\n",
1192 			   channel->channel, ev_sub_data);
1193 		break;
1194 	case FSE_AA_RX_RECOVER_EV:
1195 		netif_err(efx, rx_err, efx->net_dev,
1196 			  "channel %d seen DRIVER RX_RESET event. "
1197 			"Resetting.\n", channel->channel);
1198 		atomic_inc(&efx->rx_reset);
1199 		efx_schedule_reset(efx,
1200 				   EFX_WORKAROUND_6555(efx) ?
1201 				   RESET_TYPE_RX_RECOVERY :
1202 				   RESET_TYPE_DISABLE);
1203 		break;
1204 	case FSE_BZ_RX_DSC_ERROR_EV:
1205 		if (ev_sub_data < EFX_VI_BASE) {
1206 			netif_err(efx, rx_err, efx->net_dev,
1207 				  "RX DMA Q %d reports descriptor fetch error."
1208 				  " RX Q %d is disabled.\n", ev_sub_data,
1209 				  ev_sub_data);
1210 			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1211 		} else
1212 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1213 		break;
1214 	case FSE_BZ_TX_DSC_ERROR_EV:
1215 		if (ev_sub_data < EFX_VI_BASE) {
1216 			netif_err(efx, tx_err, efx->net_dev,
1217 				  "TX DMA Q %d reports descriptor fetch error."
1218 				  " TX Q %d is disabled.\n", ev_sub_data,
1219 				  ev_sub_data);
1220 			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1221 		} else
1222 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1223 		break;
1224 	default:
1225 		netif_vdbg(efx, hw, efx->net_dev,
1226 			   "channel %d unknown driver event code %d "
1227 			   "data %04x\n", channel->channel, ev_sub_code,
1228 			   ev_sub_data);
1229 		break;
1230 	}
1231 }
1232 
1233 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1234 {
1235 	struct efx_nic *efx = channel->efx;
1236 	unsigned int read_ptr;
1237 	efx_qword_t event, *p_event;
1238 	int ev_code;
1239 	int tx_packets = 0;
1240 	int spent = 0;
1241 
1242 	read_ptr = channel->eventq_read_ptr;
1243 
1244 	for (;;) {
1245 		p_event = efx_event(channel, read_ptr);
1246 		event = *p_event;
1247 
1248 		if (!efx_event_present(&event))
1249 			/* End of events */
1250 			break;
1251 
1252 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1253 			   "channel %d event is "EFX_QWORD_FMT"\n",
1254 			   channel->channel, EFX_QWORD_VAL(event));
1255 
1256 		/* Clear this event by marking it all ones */
1257 		EFX_SET_QWORD(*p_event);
1258 
1259 		++read_ptr;
1260 
1261 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1262 
1263 		switch (ev_code) {
1264 		case FSE_AZ_EV_CODE_RX_EV:
1265 			efx_handle_rx_event(channel, &event);
1266 			if (++spent == budget)
1267 				goto out;
1268 			break;
1269 		case FSE_AZ_EV_CODE_TX_EV:
1270 			tx_packets += efx_handle_tx_event(channel, &event);
1271 			if (tx_packets > efx->txq_entries) {
1272 				spent = budget;
1273 				goto out;
1274 			}
1275 			break;
1276 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1277 			efx_handle_generated_event(channel, &event);
1278 			break;
1279 		case FSE_AZ_EV_CODE_DRIVER_EV:
1280 			efx_handle_driver_event(channel, &event);
1281 			break;
1282 		case FSE_CZ_EV_CODE_USER_EV:
1283 			efx_sriov_event(channel, &event);
1284 			break;
1285 		case FSE_CZ_EV_CODE_MCDI_EV:
1286 			efx_mcdi_process_event(channel, &event);
1287 			break;
1288 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1289 			if (efx->type->handle_global_event &&
1290 			    efx->type->handle_global_event(channel, &event))
1291 				break;
1292 			/* else fall through */
1293 		default:
1294 			netif_err(channel->efx, hw, channel->efx->net_dev,
1295 				  "channel %d unknown event type %d (data "
1296 				  EFX_QWORD_FMT ")\n", channel->channel,
1297 				  ev_code, EFX_QWORD_VAL(event));
1298 		}
1299 	}
1300 
1301 out:
1302 	channel->eventq_read_ptr = read_ptr;
1303 	return spent;
1304 }
1305 
1306 /* Check whether an event is present in the eventq at the current
1307  * read pointer.  Only useful for self-test.
1308  */
1309 bool efx_nic_event_present(struct efx_channel *channel)
1310 {
1311 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1312 }
1313 
1314 /* Allocate buffer table entries for event queue */
1315 int efx_nic_probe_eventq(struct efx_channel *channel)
1316 {
1317 	struct efx_nic *efx = channel->efx;
1318 	unsigned entries;
1319 
1320 	entries = channel->eventq_mask + 1;
1321 	return efx_alloc_special_buffer(efx, &channel->eventq,
1322 					entries * sizeof(efx_qword_t));
1323 }
1324 
1325 void efx_nic_init_eventq(struct efx_channel *channel)
1326 {
1327 	efx_oword_t reg;
1328 	struct efx_nic *efx = channel->efx;
1329 
1330 	netif_dbg(efx, hw, efx->net_dev,
1331 		  "channel %d event queue in special buffers %d-%d\n",
1332 		  channel->channel, channel->eventq.index,
1333 		  channel->eventq.index + channel->eventq.entries - 1);
1334 
1335 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1336 		EFX_POPULATE_OWORD_3(reg,
1337 				     FRF_CZ_TIMER_Q_EN, 1,
1338 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1339 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1340 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1341 	}
1342 
1343 	/* Pin event queue buffer */
1344 	efx_init_special_buffer(efx, &channel->eventq);
1345 
1346 	/* Fill event queue with all ones (i.e. empty events) */
1347 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1348 
1349 	/* Push event queue to card */
1350 	EFX_POPULATE_OWORD_3(reg,
1351 			     FRF_AZ_EVQ_EN, 1,
1352 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1353 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1354 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1355 			 channel->channel);
1356 
1357 	efx->type->push_irq_moderation(channel);
1358 }
1359 
1360 void efx_nic_fini_eventq(struct efx_channel *channel)
1361 {
1362 	efx_oword_t reg;
1363 	struct efx_nic *efx = channel->efx;
1364 
1365 	/* Remove event queue from card */
1366 	EFX_ZERO_OWORD(reg);
1367 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1368 			 channel->channel);
1369 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1370 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1371 
1372 	/* Unpin event queue */
1373 	efx_fini_special_buffer(efx, &channel->eventq);
1374 }
1375 
1376 /* Free buffers backing event queue */
1377 void efx_nic_remove_eventq(struct efx_channel *channel)
1378 {
1379 	efx_free_special_buffer(channel->efx, &channel->eventq);
1380 }
1381 
1382 
1383 void efx_nic_event_test_start(struct efx_channel *channel)
1384 {
1385 	channel->event_test_cpu = -1;
1386 	smp_wmb();
1387 	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1388 }
1389 
1390 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1391 {
1392 	efx_magic_event(efx_rx_queue_channel(rx_queue),
1393 			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1394 }
1395 
1396 /**************************************************************************
1397  *
1398  * Hardware interrupts
1399  * The hardware interrupt handler does very little work; all the event
1400  * queue processing is carried out by per-channel tasklets.
1401  *
1402  **************************************************************************/
1403 
1404 /* Enable/disable/generate interrupts */
1405 static inline void efx_nic_interrupts(struct efx_nic *efx,
1406 				      bool enabled, bool force)
1407 {
1408 	efx_oword_t int_en_reg_ker;
1409 
1410 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1411 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1412 			     FRF_AZ_KER_INT_KER, force,
1413 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1414 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1415 }
1416 
1417 void efx_nic_enable_interrupts(struct efx_nic *efx)
1418 {
1419 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1420 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1421 
1422 	efx_nic_interrupts(efx, true, false);
1423 }
1424 
1425 void efx_nic_disable_interrupts(struct efx_nic *efx)
1426 {
1427 	/* Disable interrupts */
1428 	efx_nic_interrupts(efx, false, false);
1429 }
1430 
1431 /* Generate a test interrupt
1432  * Interrupt must already have been enabled, otherwise nasty things
1433  * may happen.
1434  */
1435 void efx_nic_irq_test_start(struct efx_nic *efx)
1436 {
1437 	efx->last_irq_cpu = -1;
1438 	smp_wmb();
1439 	efx_nic_interrupts(efx, true, true);
1440 }
1441 
1442 /* Process a fatal interrupt
1443  * Disable bus mastering ASAP and schedule a reset
1444  */
1445 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1446 {
1447 	struct falcon_nic_data *nic_data = efx->nic_data;
1448 	efx_oword_t *int_ker = efx->irq_status.addr;
1449 	efx_oword_t fatal_intr;
1450 	int error, mem_perr;
1451 
1452 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1453 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1454 
1455 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1456 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1457 		  EFX_OWORD_VAL(fatal_intr),
1458 		  error ? "disabling bus mastering" : "no recognised error");
1459 
1460 	/* If this is a memory parity error dump which blocks are offending */
1461 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1462 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1463 	if (mem_perr) {
1464 		efx_oword_t reg;
1465 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1466 		netif_err(efx, hw, efx->net_dev,
1467 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1468 			  EFX_OWORD_VAL(reg));
1469 	}
1470 
1471 	/* Disable both devices */
1472 	pci_clear_master(efx->pci_dev);
1473 	if (efx_nic_is_dual_func(efx))
1474 		pci_clear_master(nic_data->pci_dev2);
1475 	efx_nic_disable_interrupts(efx);
1476 
1477 	/* Count errors and reset or disable the NIC accordingly */
1478 	if (efx->int_error_count == 0 ||
1479 	    time_after(jiffies, efx->int_error_expire)) {
1480 		efx->int_error_count = 0;
1481 		efx->int_error_expire =
1482 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1483 	}
1484 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1485 		netif_err(efx, hw, efx->net_dev,
1486 			  "SYSTEM ERROR - reset scheduled\n");
1487 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1488 	} else {
1489 		netif_err(efx, hw, efx->net_dev,
1490 			  "SYSTEM ERROR - max number of errors seen."
1491 			  "NIC will be disabled\n");
1492 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1493 	}
1494 
1495 	return IRQ_HANDLED;
1496 }
1497 
1498 /* Handle a legacy interrupt
1499  * Acknowledges the interrupt and schedule event queue processing.
1500  */
1501 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1502 {
1503 	struct efx_nic *efx = dev_id;
1504 	efx_oword_t *int_ker = efx->irq_status.addr;
1505 	irqreturn_t result = IRQ_NONE;
1506 	struct efx_channel *channel;
1507 	efx_dword_t reg;
1508 	u32 queues;
1509 	int syserr;
1510 
1511 	/* Could this be ours?  If interrupts are disabled then the
1512 	 * channel state may not be valid.
1513 	 */
1514 	if (!efx->legacy_irq_enabled)
1515 		return result;
1516 
1517 	/* Read the ISR which also ACKs the interrupts */
1518 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1519 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1520 
1521 	/* Handle non-event-queue sources */
1522 	if (queues & (1U << efx->irq_level)) {
1523 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1524 		if (unlikely(syserr))
1525 			return efx_nic_fatal_interrupt(efx);
1526 		efx->last_irq_cpu = raw_smp_processor_id();
1527 	}
1528 
1529 	if (queues != 0) {
1530 		if (EFX_WORKAROUND_15783(efx))
1531 			efx->irq_zero_count = 0;
1532 
1533 		/* Schedule processing of any interrupting queues */
1534 		efx_for_each_channel(channel, efx) {
1535 			if (queues & 1)
1536 				efx_schedule_channel_irq(channel);
1537 			queues >>= 1;
1538 		}
1539 		result = IRQ_HANDLED;
1540 
1541 	} else if (EFX_WORKAROUND_15783(efx)) {
1542 		efx_qword_t *event;
1543 
1544 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1545 		 * because this might be a shared interrupt. */
1546 		if (efx->irq_zero_count++ == 0)
1547 			result = IRQ_HANDLED;
1548 
1549 		/* Ensure we schedule or rearm all event queues */
1550 		efx_for_each_channel(channel, efx) {
1551 			event = efx_event(channel, channel->eventq_read_ptr);
1552 			if (efx_event_present(event))
1553 				efx_schedule_channel_irq(channel);
1554 			else
1555 				efx_nic_eventq_read_ack(channel);
1556 		}
1557 	}
1558 
1559 	if (result == IRQ_HANDLED)
1560 		netif_vdbg(efx, intr, efx->net_dev,
1561 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1562 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1563 
1564 	return result;
1565 }
1566 
1567 /* Handle an MSI interrupt
1568  *
1569  * Handle an MSI hardware interrupt.  This routine schedules event
1570  * queue processing.  No interrupt acknowledgement cycle is necessary.
1571  * Also, we never need to check that the interrupt is for us, since
1572  * MSI interrupts cannot be shared.
1573  */
1574 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1575 {
1576 	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1577 	struct efx_nic *efx = channel->efx;
1578 	efx_oword_t *int_ker = efx->irq_status.addr;
1579 	int syserr;
1580 
1581 	netif_vdbg(efx, intr, efx->net_dev,
1582 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1583 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1584 
1585 	/* Handle non-event-queue sources */
1586 	if (channel->channel == efx->irq_level) {
1587 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1588 		if (unlikely(syserr))
1589 			return efx_nic_fatal_interrupt(efx);
1590 		efx->last_irq_cpu = raw_smp_processor_id();
1591 	}
1592 
1593 	/* Schedule processing of the channel */
1594 	efx_schedule_channel_irq(channel);
1595 
1596 	return IRQ_HANDLED;
1597 }
1598 
1599 
1600 /* Setup RSS indirection table.
1601  * This maps from the hash value of the packet to RXQ
1602  */
1603 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1604 {
1605 	size_t i = 0;
1606 	efx_dword_t dword;
1607 
1608 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1609 		return;
1610 
1611 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1612 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1613 
1614 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1615 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1616 				     efx->rx_indir_table[i]);
1617 		efx_writed(efx, &dword,
1618 			   FR_BZ_RX_INDIRECTION_TBL +
1619 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1620 	}
1621 }
1622 
1623 /* Hook interrupt handler(s)
1624  * Try MSI and then legacy interrupts.
1625  */
1626 int efx_nic_init_interrupt(struct efx_nic *efx)
1627 {
1628 	struct efx_channel *channel;
1629 	int rc;
1630 
1631 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1632 		irq_handler_t handler;
1633 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1634 			handler = efx_legacy_interrupt;
1635 		else
1636 			handler = falcon_legacy_interrupt_a1;
1637 
1638 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1639 				 efx->name, efx);
1640 		if (rc) {
1641 			netif_err(efx, drv, efx->net_dev,
1642 				  "failed to hook legacy IRQ %d\n",
1643 				  efx->pci_dev->irq);
1644 			goto fail1;
1645 		}
1646 		return 0;
1647 	}
1648 
1649 	/* Hook MSI or MSI-X interrupt */
1650 	efx_for_each_channel(channel, efx) {
1651 		rc = request_irq(channel->irq, efx_msi_interrupt,
1652 				 IRQF_PROBE_SHARED, /* Not shared */
1653 				 efx->channel_name[channel->channel],
1654 				 &efx->channel[channel->channel]);
1655 		if (rc) {
1656 			netif_err(efx, drv, efx->net_dev,
1657 				  "failed to hook IRQ %d\n", channel->irq);
1658 			goto fail2;
1659 		}
1660 	}
1661 
1662 	return 0;
1663 
1664  fail2:
1665 	efx_for_each_channel(channel, efx)
1666 		free_irq(channel->irq, &efx->channel[channel->channel]);
1667  fail1:
1668 	return rc;
1669 }
1670 
1671 void efx_nic_fini_interrupt(struct efx_nic *efx)
1672 {
1673 	struct efx_channel *channel;
1674 	efx_oword_t reg;
1675 
1676 	/* Disable MSI/MSI-X interrupts */
1677 	efx_for_each_channel(channel, efx) {
1678 		if (channel->irq)
1679 			free_irq(channel->irq, &efx->channel[channel->channel]);
1680 	}
1681 
1682 	/* ACK legacy interrupt */
1683 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1684 		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1685 	else
1686 		falcon_irq_ack_a1(efx);
1687 
1688 	/* Disable legacy interrupt */
1689 	if (efx->legacy_irq)
1690 		free_irq(efx->legacy_irq, efx);
1691 }
1692 
1693 /* Looks at available SRAM resources and works out how many queues we
1694  * can support, and where things like descriptor caches should live.
1695  *
1696  * SRAM is split up as follows:
1697  * 0                          buftbl entries for channels
1698  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1699  * efx->rx_dc_base            RX descriptor caches
1700  * efx->tx_dc_base            TX descriptor caches
1701  */
1702 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1703 {
1704 	unsigned vi_count, buftbl_min;
1705 
1706 	/* Account for the buffer table entries backing the datapath channels
1707 	 * and the descriptor caches for those channels.
1708 	 */
1709 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1710 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1711 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1712 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1713 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1714 
1715 #ifdef CONFIG_SFC_SRIOV
1716 	if (efx_sriov_wanted(efx)) {
1717 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1718 
1719 		efx->vf_buftbl_base = buftbl_min;
1720 
1721 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1722 		vi_count = max(vi_count, EFX_VI_BASE);
1723 		buftbl_free = (sram_lim_qw - buftbl_min -
1724 			       vi_count * vi_dc_entries);
1725 
1726 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1727 				  efx_vf_size(efx));
1728 		vf_limit = min(buftbl_free / entries_per_vf,
1729 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1730 
1731 		if (efx->vf_count > vf_limit) {
1732 			netif_err(efx, probe, efx->net_dev,
1733 				  "Reducing VF count from from %d to %d\n",
1734 				  efx->vf_count, vf_limit);
1735 			efx->vf_count = vf_limit;
1736 		}
1737 		vi_count += efx->vf_count * efx_vf_size(efx);
1738 	}
1739 #endif
1740 
1741 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1742 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1743 }
1744 
1745 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1746 {
1747 	efx_oword_t altera_build;
1748 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1749 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1750 }
1751 
1752 void efx_nic_init_common(struct efx_nic *efx)
1753 {
1754 	efx_oword_t temp;
1755 
1756 	/* Set positions of descriptor caches in SRAM. */
1757 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1758 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1759 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1760 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1761 
1762 	/* Set TX descriptor cache size. */
1763 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1764 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1765 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1766 
1767 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1768 	 * this allows most efficient prefetching.
1769 	 */
1770 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1771 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1772 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1773 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1774 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1775 
1776 	/* Program INT_KER address */
1777 	EFX_POPULATE_OWORD_2(temp,
1778 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1779 			     EFX_INT_MODE_USE_MSI(efx),
1780 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1781 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1782 
1783 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1784 		/* Use an interrupt level unused by event queues */
1785 		efx->irq_level = 0x1f;
1786 	else
1787 		/* Use a valid MSI-X vector */
1788 		efx->irq_level = 0;
1789 
1790 	/* Enable all the genuinely fatal interrupts.  (They are still
1791 	 * masked by the overall interrupt mask, controlled by
1792 	 * falcon_interrupts()).
1793 	 *
1794 	 * Note: All other fatal interrupts are enabled
1795 	 */
1796 	EFX_POPULATE_OWORD_3(temp,
1797 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1798 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1799 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1800 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1801 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1802 	EFX_INVERT_OWORD(temp);
1803 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1804 
1805 	efx_nic_push_rx_indir_table(efx);
1806 
1807 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1808 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1809 	 */
1810 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1811 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1812 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1813 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1814 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1815 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1816 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1817 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1818 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1819 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1820 	/* Disable hardware watchdog which can misfire */
1821 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1822 	/* Squash TX of packets of 16 bytes or less */
1823 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1824 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1825 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1826 
1827 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1828 		EFX_POPULATE_OWORD_4(temp,
1829 				     /* Default values */
1830 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1831 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1832 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1833 				     /* Allow large pace values in the
1834 				      * fast bin. */
1835 				     FRF_BZ_TX_PACE_BIN_TH,
1836 				     FFE_BZ_TX_PACE_RESERVED);
1837 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1838 	}
1839 }
1840 
1841 /* Register dump */
1842 
1843 #define REGISTER_REVISION_A	1
1844 #define REGISTER_REVISION_B	2
1845 #define REGISTER_REVISION_C	3
1846 #define REGISTER_REVISION_Z	3	/* latest revision */
1847 
1848 struct efx_nic_reg {
1849 	u32 offset:24;
1850 	u32 min_revision:2, max_revision:2;
1851 };
1852 
1853 #define REGISTER(name, min_rev, max_rev) {				\
1854 	FR_ ## min_rev ## max_rev ## _ ## name,				\
1855 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1856 }
1857 #define REGISTER_AA(name) REGISTER(name, A, A)
1858 #define REGISTER_AB(name) REGISTER(name, A, B)
1859 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1860 #define REGISTER_BB(name) REGISTER(name, B, B)
1861 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1862 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1863 
1864 static const struct efx_nic_reg efx_nic_regs[] = {
1865 	REGISTER_AZ(ADR_REGION),
1866 	REGISTER_AZ(INT_EN_KER),
1867 	REGISTER_BZ(INT_EN_CHAR),
1868 	REGISTER_AZ(INT_ADR_KER),
1869 	REGISTER_BZ(INT_ADR_CHAR),
1870 	/* INT_ACK_KER is WO */
1871 	/* INT_ISR0 is RC */
1872 	REGISTER_AZ(HW_INIT),
1873 	REGISTER_CZ(USR_EV_CFG),
1874 	REGISTER_AB(EE_SPI_HCMD),
1875 	REGISTER_AB(EE_SPI_HADR),
1876 	REGISTER_AB(EE_SPI_HDATA),
1877 	REGISTER_AB(EE_BASE_PAGE),
1878 	REGISTER_AB(EE_VPD_CFG0),
1879 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1880 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1881 	/* PCIE_CORE_INDIRECT is indirect */
1882 	REGISTER_AB(NIC_STAT),
1883 	REGISTER_AB(GPIO_CTL),
1884 	REGISTER_AB(GLB_CTL),
1885 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1886 	REGISTER_BZ(DP_CTRL),
1887 	REGISTER_AZ(MEM_STAT),
1888 	REGISTER_AZ(CS_DEBUG),
1889 	REGISTER_AZ(ALTERA_BUILD),
1890 	REGISTER_AZ(CSR_SPARE),
1891 	REGISTER_AB(PCIE_SD_CTL0123),
1892 	REGISTER_AB(PCIE_SD_CTL45),
1893 	REGISTER_AB(PCIE_PCS_CTL_STAT),
1894 	/* DEBUG_DATA_OUT is not used */
1895 	/* DRV_EV is WO */
1896 	REGISTER_AZ(EVQ_CTL),
1897 	REGISTER_AZ(EVQ_CNT1),
1898 	REGISTER_AZ(EVQ_CNT2),
1899 	REGISTER_AZ(BUF_TBL_CFG),
1900 	REGISTER_AZ(SRM_RX_DC_CFG),
1901 	REGISTER_AZ(SRM_TX_DC_CFG),
1902 	REGISTER_AZ(SRM_CFG),
1903 	/* BUF_TBL_UPD is WO */
1904 	REGISTER_AZ(SRM_UPD_EVQ),
1905 	REGISTER_AZ(SRAM_PARITY),
1906 	REGISTER_AZ(RX_CFG),
1907 	REGISTER_BZ(RX_FILTER_CTL),
1908 	/* RX_FLUSH_DESCQ is WO */
1909 	REGISTER_AZ(RX_DC_CFG),
1910 	REGISTER_AZ(RX_DC_PF_WM),
1911 	REGISTER_BZ(RX_RSS_TKEY),
1912 	/* RX_NODESC_DROP is RC */
1913 	REGISTER_AA(RX_SELF_RST),
1914 	/* RX_DEBUG, RX_PUSH_DROP are not used */
1915 	REGISTER_CZ(RX_RSS_IPV6_REG1),
1916 	REGISTER_CZ(RX_RSS_IPV6_REG2),
1917 	REGISTER_CZ(RX_RSS_IPV6_REG3),
1918 	/* TX_FLUSH_DESCQ is WO */
1919 	REGISTER_AZ(TX_DC_CFG),
1920 	REGISTER_AA(TX_CHKSM_CFG),
1921 	REGISTER_AZ(TX_CFG),
1922 	/* TX_PUSH_DROP is not used */
1923 	REGISTER_AZ(TX_RESERVED),
1924 	REGISTER_BZ(TX_PACE),
1925 	/* TX_PACE_DROP_QID is RC */
1926 	REGISTER_BB(TX_VLAN),
1927 	REGISTER_BZ(TX_IPFIL_PORTEN),
1928 	REGISTER_AB(MD_TXD),
1929 	REGISTER_AB(MD_RXD),
1930 	REGISTER_AB(MD_CS),
1931 	REGISTER_AB(MD_PHY_ADR),
1932 	REGISTER_AB(MD_ID),
1933 	/* MD_STAT is RC */
1934 	REGISTER_AB(MAC_STAT_DMA),
1935 	REGISTER_AB(MAC_CTRL),
1936 	REGISTER_BB(GEN_MODE),
1937 	REGISTER_AB(MAC_MC_HASH_REG0),
1938 	REGISTER_AB(MAC_MC_HASH_REG1),
1939 	REGISTER_AB(GM_CFG1),
1940 	REGISTER_AB(GM_CFG2),
1941 	/* GM_IPG and GM_HD are not used */
1942 	REGISTER_AB(GM_MAX_FLEN),
1943 	/* GM_TEST is not used */
1944 	REGISTER_AB(GM_ADR1),
1945 	REGISTER_AB(GM_ADR2),
1946 	REGISTER_AB(GMF_CFG0),
1947 	REGISTER_AB(GMF_CFG1),
1948 	REGISTER_AB(GMF_CFG2),
1949 	REGISTER_AB(GMF_CFG3),
1950 	REGISTER_AB(GMF_CFG4),
1951 	REGISTER_AB(GMF_CFG5),
1952 	REGISTER_BB(TX_SRC_MAC_CTL),
1953 	REGISTER_AB(XM_ADR_LO),
1954 	REGISTER_AB(XM_ADR_HI),
1955 	REGISTER_AB(XM_GLB_CFG),
1956 	REGISTER_AB(XM_TX_CFG),
1957 	REGISTER_AB(XM_RX_CFG),
1958 	REGISTER_AB(XM_MGT_INT_MASK),
1959 	REGISTER_AB(XM_FC),
1960 	REGISTER_AB(XM_PAUSE_TIME),
1961 	REGISTER_AB(XM_TX_PARAM),
1962 	REGISTER_AB(XM_RX_PARAM),
1963 	/* XM_MGT_INT_MSK (note no 'A') is RC */
1964 	REGISTER_AB(XX_PWR_RST),
1965 	REGISTER_AB(XX_SD_CTL),
1966 	REGISTER_AB(XX_TXDRV_CTL),
1967 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1968 	/* XX_CORE_STAT is partly RC */
1969 };
1970 
1971 struct efx_nic_reg_table {
1972 	u32 offset:24;
1973 	u32 min_revision:2, max_revision:2;
1974 	u32 step:6, rows:21;
1975 };
1976 
1977 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1978 	offset,								\
1979 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
1980 	step, rows							\
1981 }
1982 #define REGISTER_TABLE(name, min_rev, max_rev)				\
1983 	REGISTER_TABLE_DIMENSIONS(					\
1984 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1985 		min_rev, max_rev,					\
1986 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1987 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1988 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1989 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1990 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1991 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1992 #define REGISTER_TABLE_BB_CZ(name)					\
1993 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1994 				  FR_BZ_ ## name ## _STEP,		\
1995 				  FR_BB_ ## name ## _ROWS),		\
1996 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1997 				  FR_BZ_ ## name ## _STEP,		\
1998 				  FR_CZ_ ## name ## _ROWS)
1999 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2000 
2001 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2002 	/* DRIVER is not used */
2003 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2004 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
2005 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2006 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2007 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2008 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2009 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2010 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2011 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2012 	/* We can't reasonably read all of the buffer table (up to 8MB!).
2013 	 * However this driver will only use a few entries.  Reading
2014 	 * 1K entries allows for some expansion of queue count and
2015 	 * size before we need to change the version. */
2016 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2017 				  A, A, 8, 1024),
2018 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2019 				  B, Z, 8, 1024),
2020 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2021 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
2022 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2023 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2024 	/* TX_FILTER_TBL0 is huge and not used by this driver */
2025 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2026 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
2027 	/* MSIX_PBA_TABLE is not mapped */
2028 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2029 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2030 };
2031 
2032 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2033 {
2034 	const struct efx_nic_reg *reg;
2035 	const struct efx_nic_reg_table *table;
2036 	size_t len = 0;
2037 
2038 	for (reg = efx_nic_regs;
2039 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2040 	     reg++)
2041 		if (efx->type->revision >= reg->min_revision &&
2042 		    efx->type->revision <= reg->max_revision)
2043 			len += sizeof(efx_oword_t);
2044 
2045 	for (table = efx_nic_reg_tables;
2046 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2047 	     table++)
2048 		if (efx->type->revision >= table->min_revision &&
2049 		    efx->type->revision <= table->max_revision)
2050 			len += table->rows * min_t(size_t, table->step, 16);
2051 
2052 	return len;
2053 }
2054 
2055 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2056 {
2057 	const struct efx_nic_reg *reg;
2058 	const struct efx_nic_reg_table *table;
2059 
2060 	for (reg = efx_nic_regs;
2061 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2062 	     reg++) {
2063 		if (efx->type->revision >= reg->min_revision &&
2064 		    efx->type->revision <= reg->max_revision) {
2065 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2066 			buf += sizeof(efx_oword_t);
2067 		}
2068 	}
2069 
2070 	for (table = efx_nic_reg_tables;
2071 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2072 	     table++) {
2073 		size_t size, i;
2074 
2075 		if (!(efx->type->revision >= table->min_revision &&
2076 		      efx->type->revision <= table->max_revision))
2077 			continue;
2078 
2079 		size = min_t(size_t, table->step, 16);
2080 
2081 		for (i = 0; i < table->rows; i++) {
2082 			switch (table->step) {
2083 			case 4: /* 32-bit SRAM */
2084 				efx_readd(efx, buf, table->offset + 4 * i);
2085 				break;
2086 			case 8: /* 64-bit SRAM */
2087 				efx_sram_readq(efx,
2088 					       efx->membase + table->offset,
2089 					       buf, i);
2090 				break;
2091 			case 16: /* 128-bit-readable register */
2092 				efx_reado_table(efx, buf, table->offset, i);
2093 				break;
2094 			case 32: /* 128-bit register, interleaved */
2095 				efx_reado_table(efx, buf, table->offset, 2 * i);
2096 				break;
2097 			default:
2098 				WARN_ON(1);
2099 				return;
2100 			}
2101 			buf += size;
2102 		}
2103 	}
2104 }
2105