1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2006-2011 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/bitops.h> 12 #include <linux/delay.h> 13 #include <linux/interrupt.h> 14 #include <linux/pci.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include "net_driver.h" 18 #include "bitfield.h" 19 #include "efx.h" 20 #include "nic.h" 21 #include "regs.h" 22 #include "io.h" 23 #include "workarounds.h" 24 25 /************************************************************************** 26 * 27 * Configurable values 28 * 29 ************************************************************************** 30 */ 31 32 /* This is set to 16 for a good reason. In summary, if larger than 33 * 16, the descriptor cache holds more than a default socket 34 * buffer's worth of packets (for UDP we can only have at most one 35 * socket buffer's worth outstanding). This combined with the fact 36 * that we only get 1 TX event per descriptor cache means the NIC 37 * goes idle. 38 */ 39 #define TX_DC_ENTRIES 16 40 #define TX_DC_ENTRIES_ORDER 1 41 42 #define RX_DC_ENTRIES 64 43 #define RX_DC_ENTRIES_ORDER 3 44 45 /* If EFX_MAX_INT_ERRORS internal errors occur within 46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and 47 * disable it. 48 */ 49 #define EFX_INT_ERROR_EXPIRE 3600 50 #define EFX_MAX_INT_ERRORS 5 51 52 /* Depth of RX flush request fifo */ 53 #define EFX_RX_FLUSH_COUNT 4 54 55 /* Driver generated events */ 56 #define _EFX_CHANNEL_MAGIC_TEST 0x000101 57 #define _EFX_CHANNEL_MAGIC_FILL 0x000102 58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103 59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104 60 61 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data)) 62 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8) 63 64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \ 65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel) 66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \ 67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \ 68 efx_rx_queue_index(_rx_queue)) 69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \ 70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \ 71 efx_rx_queue_index(_rx_queue)) 72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \ 73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \ 74 (_tx_queue)->queue) 75 76 /************************************************************************** 77 * 78 * Solarstorm hardware access 79 * 80 **************************************************************************/ 81 82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, 83 unsigned int index) 84 { 85 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, 86 value, index); 87 } 88 89 /* Read the current event from the event queue */ 90 static inline efx_qword_t *efx_event(struct efx_channel *channel, 91 unsigned int index) 92 { 93 return ((efx_qword_t *) (channel->eventq.addr)) + 94 (index & channel->eventq_mask); 95 } 96 97 /* See if an event is present 98 * 99 * We check both the high and low dword of the event for all ones. We 100 * wrote all ones when we cleared the event, and no valid event can 101 * have all ones in either its high or low dwords. This approach is 102 * robust against reordering. 103 * 104 * Note that using a single 64-bit comparison is incorrect; even 105 * though the CPU read will be atomic, the DMA write may not be. 106 */ 107 static inline int efx_event_present(efx_qword_t *event) 108 { 109 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | 110 EFX_DWORD_IS_ALL_ONES(event->dword[1])); 111 } 112 113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, 114 const efx_oword_t *mask) 115 { 116 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || 117 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); 118 } 119 120 int efx_nic_test_registers(struct efx_nic *efx, 121 const struct efx_nic_register_test *regs, 122 size_t n_regs) 123 { 124 unsigned address = 0, i, j; 125 efx_oword_t mask, imask, original, reg, buf; 126 127 for (i = 0; i < n_regs; ++i) { 128 address = regs[i].address; 129 mask = imask = regs[i].mask; 130 EFX_INVERT_OWORD(imask); 131 132 efx_reado(efx, &original, address); 133 134 /* bit sweep on and off */ 135 for (j = 0; j < 128; j++) { 136 if (!EFX_EXTRACT_OWORD32(mask, j, j)) 137 continue; 138 139 /* Test this testable bit can be set in isolation */ 140 EFX_AND_OWORD(reg, original, mask); 141 EFX_SET_OWORD32(reg, j, j, 1); 142 143 efx_writeo(efx, ®, address); 144 efx_reado(efx, &buf, address); 145 146 if (efx_masked_compare_oword(®, &buf, &mask)) 147 goto fail; 148 149 /* Test this testable bit can be cleared in isolation */ 150 EFX_OR_OWORD(reg, original, mask); 151 EFX_SET_OWORD32(reg, j, j, 0); 152 153 efx_writeo(efx, ®, address); 154 efx_reado(efx, &buf, address); 155 156 if (efx_masked_compare_oword(®, &buf, &mask)) 157 goto fail; 158 } 159 160 efx_writeo(efx, &original, address); 161 } 162 163 return 0; 164 165 fail: 166 netif_err(efx, hw, efx->net_dev, 167 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT 168 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), 169 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); 170 return -EIO; 171 } 172 173 /************************************************************************** 174 * 175 * Special buffer handling 176 * Special buffers are used for event queues and the TX and RX 177 * descriptor rings. 178 * 179 *************************************************************************/ 180 181 /* 182 * Initialise a special buffer 183 * 184 * This will define a buffer (previously allocated via 185 * efx_alloc_special_buffer()) in the buffer table, allowing 186 * it to be used for event queues, descriptor rings etc. 187 */ 188 static void 189 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) 190 { 191 efx_qword_t buf_desc; 192 unsigned int index; 193 dma_addr_t dma_addr; 194 int i; 195 196 EFX_BUG_ON_PARANOID(!buffer->addr); 197 198 /* Write buffer descriptors to NIC */ 199 for (i = 0; i < buffer->entries; i++) { 200 index = buffer->index + i; 201 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE); 202 netif_dbg(efx, probe, efx->net_dev, 203 "mapping special buffer %d at %llx\n", 204 index, (unsigned long long)dma_addr); 205 EFX_POPULATE_QWORD_3(buf_desc, 206 FRF_AZ_BUF_ADR_REGION, 0, 207 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, 208 FRF_AZ_BUF_OWNER_ID_FBUF, 0); 209 efx_write_buf_tbl(efx, &buf_desc, index); 210 } 211 } 212 213 /* Unmaps a buffer and clears the buffer table entries */ 214 static void 215 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) 216 { 217 efx_oword_t buf_tbl_upd; 218 unsigned int start = buffer->index; 219 unsigned int end = (buffer->index + buffer->entries - 1); 220 221 if (!buffer->entries) 222 return; 223 224 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", 225 buffer->index, buffer->index + buffer->entries - 1); 226 227 EFX_POPULATE_OWORD_4(buf_tbl_upd, 228 FRF_AZ_BUF_UPD_CMD, 0, 229 FRF_AZ_BUF_CLR_CMD, 1, 230 FRF_AZ_BUF_CLR_END_ID, end, 231 FRF_AZ_BUF_CLR_START_ID, start); 232 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); 233 } 234 235 /* 236 * Allocate a new special buffer 237 * 238 * This allocates memory for a new buffer, clears it and allocates a 239 * new buffer ID range. It does not write into the buffer table. 240 * 241 * This call will allocate 4KB buffers, since 8KB buffers can't be 242 * used for event queues and descriptor rings. 243 */ 244 static int efx_alloc_special_buffer(struct efx_nic *efx, 245 struct efx_special_buffer *buffer, 246 unsigned int len) 247 { 248 len = ALIGN(len, EFX_BUF_SIZE); 249 250 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, 251 &buffer->dma_addr, GFP_KERNEL); 252 if (!buffer->addr) 253 return -ENOMEM; 254 buffer->len = len; 255 buffer->entries = len / EFX_BUF_SIZE; 256 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1)); 257 258 /* All zeros is a potentially valid event so memset to 0xff */ 259 memset(buffer->addr, 0xff, len); 260 261 /* Select new buffer ID */ 262 buffer->index = efx->next_buffer_table; 263 efx->next_buffer_table += buffer->entries; 264 #ifdef CONFIG_SFC_SRIOV 265 BUG_ON(efx_sriov_enabled(efx) && 266 efx->vf_buftbl_base < efx->next_buffer_table); 267 #endif 268 269 netif_dbg(efx, probe, efx->net_dev, 270 "allocating special buffers %d-%d at %llx+%x " 271 "(virt %p phys %llx)\n", buffer->index, 272 buffer->index + buffer->entries - 1, 273 (u64)buffer->dma_addr, len, 274 buffer->addr, (u64)virt_to_phys(buffer->addr)); 275 276 return 0; 277 } 278 279 static void 280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) 281 { 282 if (!buffer->addr) 283 return; 284 285 netif_dbg(efx, hw, efx->net_dev, 286 "deallocating special buffers %d-%d at %llx+%x " 287 "(virt %p phys %llx)\n", buffer->index, 288 buffer->index + buffer->entries - 1, 289 (u64)buffer->dma_addr, buffer->len, 290 buffer->addr, (u64)virt_to_phys(buffer->addr)); 291 292 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, 293 buffer->dma_addr); 294 buffer->addr = NULL; 295 buffer->entries = 0; 296 } 297 298 /************************************************************************** 299 * 300 * Generic buffer handling 301 * These buffers are used for interrupt status, MAC stats, etc. 302 * 303 **************************************************************************/ 304 305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, 306 unsigned int len) 307 { 308 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, 309 &buffer->dma_addr, GFP_ATOMIC); 310 if (!buffer->addr) 311 return -ENOMEM; 312 buffer->len = len; 313 memset(buffer->addr, 0, len); 314 return 0; 315 } 316 317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) 318 { 319 if (buffer->addr) { 320 dma_free_coherent(&efx->pci_dev->dev, buffer->len, 321 buffer->addr, buffer->dma_addr); 322 buffer->addr = NULL; 323 } 324 } 325 326 /************************************************************************** 327 * 328 * TX path 329 * 330 **************************************************************************/ 331 332 /* Returns a pointer to the specified transmit descriptor in the TX 333 * descriptor queue belonging to the specified channel. 334 */ 335 static inline efx_qword_t * 336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) 337 { 338 return ((efx_qword_t *) (tx_queue->txd.addr)) + index; 339 } 340 341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ 342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue) 343 { 344 unsigned write_ptr; 345 efx_dword_t reg; 346 347 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 348 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); 349 efx_writed_page(tx_queue->efx, ®, 350 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); 351 } 352 353 /* Write pointer and first descriptor for TX descriptor ring */ 354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue, 355 const efx_qword_t *txd) 356 { 357 unsigned write_ptr; 358 efx_oword_t reg; 359 360 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); 361 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); 362 363 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 364 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, 365 FRF_AZ_TX_DESC_WPTR, write_ptr); 366 reg.qword[0] = *txd; 367 efx_writeo_page(tx_queue->efx, ®, 368 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); 369 } 370 371 static inline bool 372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) 373 { 374 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count); 375 376 if (empty_read_count == 0) 377 return false; 378 379 tx_queue->empty_read_count = 0; 380 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; 381 } 382 383 /* For each entry inserted into the software descriptor ring, create a 384 * descriptor in the hardware TX descriptor ring (in host memory), and 385 * write a doorbell. 386 */ 387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) 388 { 389 390 struct efx_tx_buffer *buffer; 391 efx_qword_t *txd; 392 unsigned write_ptr; 393 unsigned old_write_count = tx_queue->write_count; 394 395 BUG_ON(tx_queue->write_count == tx_queue->insert_count); 396 397 do { 398 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 399 buffer = &tx_queue->buffer[write_ptr]; 400 txd = efx_tx_desc(tx_queue, write_ptr); 401 ++tx_queue->write_count; 402 403 /* Create TX descriptor ring entry */ 404 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); 405 EFX_POPULATE_QWORD_4(*txd, 406 FSF_AZ_TX_KER_CONT, 407 buffer->flags & EFX_TX_BUF_CONT, 408 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, 409 FSF_AZ_TX_KER_BUF_REGION, 0, 410 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); 411 } while (tx_queue->write_count != tx_queue->insert_count); 412 413 wmb(); /* Ensure descriptors are written before they are fetched */ 414 415 if (efx_may_push_tx_desc(tx_queue, old_write_count)) { 416 txd = efx_tx_desc(tx_queue, 417 old_write_count & tx_queue->ptr_mask); 418 efx_push_tx_desc(tx_queue, txd); 419 ++tx_queue->pushes; 420 } else { 421 efx_notify_tx_desc(tx_queue); 422 } 423 } 424 425 /* Allocate hardware resources for a TX queue */ 426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) 427 { 428 struct efx_nic *efx = tx_queue->efx; 429 unsigned entries; 430 431 entries = tx_queue->ptr_mask + 1; 432 return efx_alloc_special_buffer(efx, &tx_queue->txd, 433 entries * sizeof(efx_qword_t)); 434 } 435 436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue) 437 { 438 struct efx_nic *efx = tx_queue->efx; 439 efx_oword_t reg; 440 441 /* Pin TX descriptor ring */ 442 efx_init_special_buffer(efx, &tx_queue->txd); 443 444 /* Push TX descriptor ring to card */ 445 EFX_POPULATE_OWORD_10(reg, 446 FRF_AZ_TX_DESCQ_EN, 1, 447 FRF_AZ_TX_ISCSI_DDIG_EN, 0, 448 FRF_AZ_TX_ISCSI_HDIG_EN, 0, 449 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, 450 FRF_AZ_TX_DESCQ_EVQ_ID, 451 tx_queue->channel->channel, 452 FRF_AZ_TX_DESCQ_OWNER_ID, 0, 453 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, 454 FRF_AZ_TX_DESCQ_SIZE, 455 __ffs(tx_queue->txd.entries), 456 FRF_AZ_TX_DESCQ_TYPE, 0, 457 FRF_BZ_TX_NON_IP_DROP_DIS, 1); 458 459 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { 460 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; 461 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); 462 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, 463 !csum); 464 } 465 466 efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, 467 tx_queue->queue); 468 469 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { 470 /* Only 128 bits in this register */ 471 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); 472 473 efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); 474 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) 475 __clear_bit_le(tx_queue->queue, ®); 476 else 477 __set_bit_le(tx_queue->queue, ®); 478 efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); 479 } 480 481 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { 482 EFX_POPULATE_OWORD_1(reg, 483 FRF_BZ_TX_PACE, 484 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? 485 FFE_BZ_TX_PACE_OFF : 486 FFE_BZ_TX_PACE_RESERVED); 487 efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, 488 tx_queue->queue); 489 } 490 } 491 492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue) 493 { 494 struct efx_nic *efx = tx_queue->efx; 495 efx_oword_t tx_flush_descq; 496 497 EFX_POPULATE_OWORD_2(tx_flush_descq, 498 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, 499 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); 500 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); 501 } 502 503 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue) 504 { 505 struct efx_nic *efx = tx_queue->efx; 506 efx_oword_t tx_desc_ptr; 507 508 /* Remove TX descriptor ring from card */ 509 EFX_ZERO_OWORD(tx_desc_ptr); 510 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, 511 tx_queue->queue); 512 513 /* Unpin TX descriptor ring */ 514 efx_fini_special_buffer(efx, &tx_queue->txd); 515 } 516 517 /* Free buffers backing TX queue */ 518 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) 519 { 520 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); 521 } 522 523 /************************************************************************** 524 * 525 * RX path 526 * 527 **************************************************************************/ 528 529 /* Returns a pointer to the specified descriptor in the RX descriptor queue */ 530 static inline efx_qword_t * 531 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) 532 { 533 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index; 534 } 535 536 /* This creates an entry in the RX descriptor queue */ 537 static inline void 538 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) 539 { 540 struct efx_rx_buffer *rx_buf; 541 efx_qword_t *rxd; 542 543 rxd = efx_rx_desc(rx_queue, index); 544 rx_buf = efx_rx_buffer(rx_queue, index); 545 EFX_POPULATE_QWORD_3(*rxd, 546 FSF_AZ_RX_KER_BUF_SIZE, 547 rx_buf->len - 548 rx_queue->efx->type->rx_buffer_padding, 549 FSF_AZ_RX_KER_BUF_REGION, 0, 550 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); 551 } 552 553 /* This writes to the RX_DESC_WPTR register for the specified receive 554 * descriptor ring. 555 */ 556 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) 557 { 558 struct efx_nic *efx = rx_queue->efx; 559 efx_dword_t reg; 560 unsigned write_ptr; 561 562 while (rx_queue->notified_count != rx_queue->added_count) { 563 efx_build_rx_desc( 564 rx_queue, 565 rx_queue->notified_count & rx_queue->ptr_mask); 566 ++rx_queue->notified_count; 567 } 568 569 wmb(); 570 write_ptr = rx_queue->added_count & rx_queue->ptr_mask; 571 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); 572 efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, 573 efx_rx_queue_index(rx_queue)); 574 } 575 576 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) 577 { 578 struct efx_nic *efx = rx_queue->efx; 579 unsigned entries; 580 581 entries = rx_queue->ptr_mask + 1; 582 return efx_alloc_special_buffer(efx, &rx_queue->rxd, 583 entries * sizeof(efx_qword_t)); 584 } 585 586 void efx_nic_init_rx(struct efx_rx_queue *rx_queue) 587 { 588 efx_oword_t rx_desc_ptr; 589 struct efx_nic *efx = rx_queue->efx; 590 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; 591 bool iscsi_digest_en = is_b0; 592 593 netif_dbg(efx, hw, efx->net_dev, 594 "RX queue %d ring in special buffers %d-%d\n", 595 efx_rx_queue_index(rx_queue), rx_queue->rxd.index, 596 rx_queue->rxd.index + rx_queue->rxd.entries - 1); 597 598 /* Pin RX descriptor ring */ 599 efx_init_special_buffer(efx, &rx_queue->rxd); 600 601 /* Push RX descriptor ring to card */ 602 EFX_POPULATE_OWORD_10(rx_desc_ptr, 603 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, 604 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, 605 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, 606 FRF_AZ_RX_DESCQ_EVQ_ID, 607 efx_rx_queue_channel(rx_queue)->channel, 608 FRF_AZ_RX_DESCQ_OWNER_ID, 0, 609 FRF_AZ_RX_DESCQ_LABEL, 610 efx_rx_queue_index(rx_queue), 611 FRF_AZ_RX_DESCQ_SIZE, 612 __ffs(rx_queue->rxd.entries), 613 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , 614 /* For >=B0 this is scatter so disable */ 615 FRF_AZ_RX_DESCQ_JUMBO, !is_b0, 616 FRF_AZ_RX_DESCQ_EN, 1); 617 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, 618 efx_rx_queue_index(rx_queue)); 619 } 620 621 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue) 622 { 623 struct efx_nic *efx = rx_queue->efx; 624 efx_oword_t rx_flush_descq; 625 626 EFX_POPULATE_OWORD_2(rx_flush_descq, 627 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, 628 FRF_AZ_RX_FLUSH_DESCQ, 629 efx_rx_queue_index(rx_queue)); 630 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); 631 } 632 633 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue) 634 { 635 efx_oword_t rx_desc_ptr; 636 struct efx_nic *efx = rx_queue->efx; 637 638 /* Remove RX descriptor ring from card */ 639 EFX_ZERO_OWORD(rx_desc_ptr); 640 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, 641 efx_rx_queue_index(rx_queue)); 642 643 /* Unpin RX descriptor ring */ 644 efx_fini_special_buffer(efx, &rx_queue->rxd); 645 } 646 647 /* Free buffers backing RX queue */ 648 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) 649 { 650 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); 651 } 652 653 /************************************************************************** 654 * 655 * Flush handling 656 * 657 **************************************************************************/ 658 659 /* efx_nic_flush_queues() must be woken up when all flushes are completed, 660 * or more RX flushes can be kicked off. 661 */ 662 static bool efx_flush_wake(struct efx_nic *efx) 663 { 664 /* Ensure that all updates are visible to efx_nic_flush_queues() */ 665 smp_mb(); 666 667 return (atomic_read(&efx->drain_pending) == 0 || 668 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT 669 && atomic_read(&efx->rxq_flush_pending) > 0)); 670 } 671 672 /* Flush all the transmit queues, and continue flushing receive queues until 673 * they're all flushed. Wait for the DRAIN events to be recieved so that there 674 * are no more RX and TX events left on any channel. */ 675 int efx_nic_flush_queues(struct efx_nic *efx) 676 { 677 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ 678 struct efx_channel *channel; 679 struct efx_rx_queue *rx_queue; 680 struct efx_tx_queue *tx_queue; 681 int rc = 0; 682 683 efx->fc_disable++; 684 efx->type->prepare_flush(efx); 685 686 efx_for_each_channel(channel, efx) { 687 efx_for_each_channel_tx_queue(tx_queue, channel) { 688 atomic_inc(&efx->drain_pending); 689 efx_flush_tx_queue(tx_queue); 690 } 691 efx_for_each_channel_rx_queue(rx_queue, channel) { 692 atomic_inc(&efx->drain_pending); 693 rx_queue->flush_pending = true; 694 atomic_inc(&efx->rxq_flush_pending); 695 } 696 } 697 698 while (timeout && atomic_read(&efx->drain_pending) > 0) { 699 /* If SRIOV is enabled, then offload receive queue flushing to 700 * the firmware (though we will still have to poll for 701 * completion). If that fails, fall back to the old scheme. 702 */ 703 if (efx_sriov_enabled(efx)) { 704 rc = efx_mcdi_flush_rxqs(efx); 705 if (!rc) 706 goto wait; 707 } 708 709 /* The hardware supports four concurrent rx flushes, each of 710 * which may need to be retried if there is an outstanding 711 * descriptor fetch 712 */ 713 efx_for_each_channel(channel, efx) { 714 efx_for_each_channel_rx_queue(rx_queue, channel) { 715 if (atomic_read(&efx->rxq_flush_outstanding) >= 716 EFX_RX_FLUSH_COUNT) 717 break; 718 719 if (rx_queue->flush_pending) { 720 rx_queue->flush_pending = false; 721 atomic_dec(&efx->rxq_flush_pending); 722 atomic_inc(&efx->rxq_flush_outstanding); 723 efx_flush_rx_queue(rx_queue); 724 } 725 } 726 } 727 728 wait: 729 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx), 730 timeout); 731 } 732 733 if (atomic_read(&efx->drain_pending)) { 734 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " 735 "(rx %d+%d)\n", atomic_read(&efx->drain_pending), 736 atomic_read(&efx->rxq_flush_outstanding), 737 atomic_read(&efx->rxq_flush_pending)); 738 rc = -ETIMEDOUT; 739 740 atomic_set(&efx->drain_pending, 0); 741 atomic_set(&efx->rxq_flush_pending, 0); 742 atomic_set(&efx->rxq_flush_outstanding, 0); 743 } 744 745 efx->fc_disable--; 746 747 return rc; 748 } 749 750 /************************************************************************** 751 * 752 * Event queue processing 753 * Event queues are processed by per-channel tasklets. 754 * 755 **************************************************************************/ 756 757 /* Update a channel's event queue's read pointer (RPTR) register 758 * 759 * This writes the EVQ_RPTR_REG register for the specified channel's 760 * event queue. 761 */ 762 void efx_nic_eventq_read_ack(struct efx_channel *channel) 763 { 764 efx_dword_t reg; 765 struct efx_nic *efx = channel->efx; 766 767 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, 768 channel->eventq_read_ptr & channel->eventq_mask); 769 efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base, 770 channel->channel); 771 } 772 773 /* Use HW to insert a SW defined event */ 774 void efx_generate_event(struct efx_nic *efx, unsigned int evq, 775 efx_qword_t *event) 776 { 777 efx_oword_t drv_ev_reg; 778 779 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || 780 FRF_AZ_DRV_EV_DATA_WIDTH != 64); 781 drv_ev_reg.u32[0] = event->u32[0]; 782 drv_ev_reg.u32[1] = event->u32[1]; 783 drv_ev_reg.u32[2] = 0; 784 drv_ev_reg.u32[3] = 0; 785 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); 786 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); 787 } 788 789 static void efx_magic_event(struct efx_channel *channel, u32 magic) 790 { 791 efx_qword_t event; 792 793 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, 794 FSE_AZ_EV_CODE_DRV_GEN_EV, 795 FSF_AZ_DRV_GEN_EV_MAGIC, magic); 796 efx_generate_event(channel->efx, channel->channel, &event); 797 } 798 799 /* Handle a transmit completion event 800 * 801 * The NIC batches TX completion events; the message we receive is of 802 * the form "complete all TX events up to this index". 803 */ 804 static int 805 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) 806 { 807 unsigned int tx_ev_desc_ptr; 808 unsigned int tx_ev_q_label; 809 struct efx_tx_queue *tx_queue; 810 struct efx_nic *efx = channel->efx; 811 int tx_packets = 0; 812 813 if (unlikely(ACCESS_ONCE(efx->reset_pending))) 814 return 0; 815 816 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { 817 /* Transmit completion */ 818 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); 819 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); 820 tx_queue = efx_channel_get_tx_queue( 821 channel, tx_ev_q_label % EFX_TXQ_TYPES); 822 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & 823 tx_queue->ptr_mask); 824 efx_xmit_done(tx_queue, tx_ev_desc_ptr); 825 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { 826 /* Rewrite the FIFO write pointer */ 827 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); 828 tx_queue = efx_channel_get_tx_queue( 829 channel, tx_ev_q_label % EFX_TXQ_TYPES); 830 831 netif_tx_lock(efx->net_dev); 832 efx_notify_tx_desc(tx_queue); 833 netif_tx_unlock(efx->net_dev); 834 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && 835 EFX_WORKAROUND_10727(efx)) { 836 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); 837 } else { 838 netif_err(efx, tx_err, efx->net_dev, 839 "channel %d unexpected TX event " 840 EFX_QWORD_FMT"\n", channel->channel, 841 EFX_QWORD_VAL(*event)); 842 } 843 844 return tx_packets; 845 } 846 847 /* Detect errors included in the rx_evt_pkt_ok bit. */ 848 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, 849 const efx_qword_t *event) 850 { 851 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 852 struct efx_nic *efx = rx_queue->efx; 853 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; 854 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; 855 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; 856 bool rx_ev_other_err, rx_ev_pause_frm; 857 bool rx_ev_hdr_type, rx_ev_mcast_pkt; 858 unsigned rx_ev_pkt_type; 859 860 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); 861 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); 862 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); 863 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); 864 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, 865 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); 866 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, 867 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); 868 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, 869 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); 870 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); 871 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); 872 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? 873 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); 874 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); 875 876 /* Every error apart from tobe_disc and pause_frm */ 877 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | 878 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | 879 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); 880 881 /* Count errors that are not in MAC stats. Ignore expected 882 * checksum errors during self-test. */ 883 if (rx_ev_frm_trunc) 884 ++channel->n_rx_frm_trunc; 885 else if (rx_ev_tobe_disc) 886 ++channel->n_rx_tobe_disc; 887 else if (!efx->loopback_selftest) { 888 if (rx_ev_ip_hdr_chksum_err) 889 ++channel->n_rx_ip_hdr_chksum_err; 890 else if (rx_ev_tcp_udp_chksum_err) 891 ++channel->n_rx_tcp_udp_chksum_err; 892 } 893 894 /* TOBE_DISC is expected on unicast mismatches; don't print out an 895 * error message. FRM_TRUNC indicates RXDP dropped the packet due 896 * to a FIFO overflow. 897 */ 898 #ifdef DEBUG 899 if (rx_ev_other_err && net_ratelimit()) { 900 netif_dbg(efx, rx_err, efx->net_dev, 901 " RX queue %d unexpected RX event " 902 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", 903 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), 904 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", 905 rx_ev_ip_hdr_chksum_err ? 906 " [IP_HDR_CHKSUM_ERR]" : "", 907 rx_ev_tcp_udp_chksum_err ? 908 " [TCP_UDP_CHKSUM_ERR]" : "", 909 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", 910 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", 911 rx_ev_drib_nib ? " [DRIB_NIB]" : "", 912 rx_ev_tobe_disc ? " [TOBE_DISC]" : "", 913 rx_ev_pause_frm ? " [PAUSE]" : ""); 914 } 915 #endif 916 917 /* The frame must be discarded if any of these are true. */ 918 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | 919 rx_ev_tobe_disc | rx_ev_pause_frm) ? 920 EFX_RX_PKT_DISCARD : 0; 921 } 922 923 /* Handle receive events that are not in-order. */ 924 static void 925 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) 926 { 927 struct efx_nic *efx = rx_queue->efx; 928 unsigned expected, dropped; 929 930 expected = rx_queue->removed_count & rx_queue->ptr_mask; 931 dropped = (index - expected) & rx_queue->ptr_mask; 932 netif_info(efx, rx_err, efx->net_dev, 933 "dropped %d events (index=%d expected=%d)\n", 934 dropped, index, expected); 935 936 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? 937 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); 938 } 939 940 /* Handle a packet received event 941 * 942 * The NIC gives a "discard" flag if it's a unicast packet with the 943 * wrong destination address 944 * Also "is multicast" and "matches multicast filter" flags can be used to 945 * discard non-matching multicast packets. 946 */ 947 static void 948 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) 949 { 950 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; 951 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; 952 unsigned expected_ptr; 953 bool rx_ev_pkt_ok; 954 u16 flags; 955 struct efx_rx_queue *rx_queue; 956 struct efx_nic *efx = channel->efx; 957 958 if (unlikely(ACCESS_ONCE(efx->reset_pending))) 959 return; 960 961 /* Basic packet information */ 962 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); 963 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); 964 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); 965 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT)); 966 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1); 967 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != 968 channel->channel); 969 970 rx_queue = efx_channel_get_rx_queue(channel); 971 972 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); 973 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask; 974 if (unlikely(rx_ev_desc_ptr != expected_ptr)) 975 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); 976 977 if (likely(rx_ev_pkt_ok)) { 978 /* If packet is marked as OK and packet type is TCP/IP or 979 * UDP/IP, then we can rely on the hardware checksum. 980 */ 981 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || 982 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ? 983 EFX_RX_PKT_CSUMMED : 0; 984 } else { 985 flags = efx_handle_rx_not_ok(rx_queue, event); 986 } 987 988 /* Detect multicast packets that didn't match the filter */ 989 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); 990 if (rx_ev_mcast_pkt) { 991 unsigned int rx_ev_mcast_hash_match = 992 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); 993 994 if (unlikely(!rx_ev_mcast_hash_match)) { 995 ++channel->n_rx_mcast_mismatch; 996 flags |= EFX_RX_PKT_DISCARD; 997 } 998 } 999 1000 channel->irq_mod_score += 2; 1001 1002 /* Handle received packet */ 1003 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags); 1004 } 1005 1006 /* If this flush done event corresponds to a &struct efx_tx_queue, then 1007 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue 1008 * of all transmit completions. 1009 */ 1010 static void 1011 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) 1012 { 1013 struct efx_tx_queue *tx_queue; 1014 int qid; 1015 1016 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); 1017 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) { 1018 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES, 1019 qid % EFX_TXQ_TYPES); 1020 1021 efx_magic_event(tx_queue->channel, 1022 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); 1023 } 1024 } 1025 1026 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush 1027 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add 1028 * the RX queue back to the mask of RX queues in need of flushing. 1029 */ 1030 static void 1031 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) 1032 { 1033 struct efx_channel *channel; 1034 struct efx_rx_queue *rx_queue; 1035 int qid; 1036 bool failed; 1037 1038 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); 1039 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); 1040 if (qid >= efx->n_channels) 1041 return; 1042 channel = efx_get_channel(efx, qid); 1043 if (!efx_channel_has_rx_queue(channel)) 1044 return; 1045 rx_queue = efx_channel_get_rx_queue(channel); 1046 1047 if (failed) { 1048 netif_info(efx, hw, efx->net_dev, 1049 "RXQ %d flush retry\n", qid); 1050 rx_queue->flush_pending = true; 1051 atomic_inc(&efx->rxq_flush_pending); 1052 } else { 1053 efx_magic_event(efx_rx_queue_channel(rx_queue), 1054 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); 1055 } 1056 atomic_dec(&efx->rxq_flush_outstanding); 1057 if (efx_flush_wake(efx)) 1058 wake_up(&efx->flush_wq); 1059 } 1060 1061 static void 1062 efx_handle_drain_event(struct efx_channel *channel) 1063 { 1064 struct efx_nic *efx = channel->efx; 1065 1066 WARN_ON(atomic_read(&efx->drain_pending) == 0); 1067 atomic_dec(&efx->drain_pending); 1068 if (efx_flush_wake(efx)) 1069 wake_up(&efx->flush_wq); 1070 } 1071 1072 static void 1073 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event) 1074 { 1075 struct efx_nic *efx = channel->efx; 1076 struct efx_rx_queue *rx_queue = 1077 efx_channel_has_rx_queue(channel) ? 1078 efx_channel_get_rx_queue(channel) : NULL; 1079 unsigned magic, code; 1080 1081 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); 1082 code = _EFX_CHANNEL_MAGIC_CODE(magic); 1083 1084 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) { 1085 channel->event_test_cpu = raw_smp_processor_id(); 1086 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) { 1087 /* The queue must be empty, so we won't receive any rx 1088 * events, so efx_process_channel() won't refill the 1089 * queue. Refill it here */ 1090 efx_fast_push_rx_descriptors(rx_queue); 1091 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { 1092 rx_queue->enabled = false; 1093 efx_handle_drain_event(channel); 1094 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) { 1095 efx_handle_drain_event(channel); 1096 } else { 1097 netif_dbg(efx, hw, efx->net_dev, "channel %d received " 1098 "generated event "EFX_QWORD_FMT"\n", 1099 channel->channel, EFX_QWORD_VAL(*event)); 1100 } 1101 } 1102 1103 static void 1104 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) 1105 { 1106 struct efx_nic *efx = channel->efx; 1107 unsigned int ev_sub_code; 1108 unsigned int ev_sub_data; 1109 1110 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); 1111 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); 1112 1113 switch (ev_sub_code) { 1114 case FSE_AZ_TX_DESCQ_FLS_DONE_EV: 1115 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", 1116 channel->channel, ev_sub_data); 1117 efx_handle_tx_flush_done(efx, event); 1118 efx_sriov_tx_flush_done(efx, event); 1119 break; 1120 case FSE_AZ_RX_DESCQ_FLS_DONE_EV: 1121 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", 1122 channel->channel, ev_sub_data); 1123 efx_handle_rx_flush_done(efx, event); 1124 efx_sriov_rx_flush_done(efx, event); 1125 break; 1126 case FSE_AZ_EVQ_INIT_DONE_EV: 1127 netif_dbg(efx, hw, efx->net_dev, 1128 "channel %d EVQ %d initialised\n", 1129 channel->channel, ev_sub_data); 1130 break; 1131 case FSE_AZ_SRM_UPD_DONE_EV: 1132 netif_vdbg(efx, hw, efx->net_dev, 1133 "channel %d SRAM update done\n", channel->channel); 1134 break; 1135 case FSE_AZ_WAKE_UP_EV: 1136 netif_vdbg(efx, hw, efx->net_dev, 1137 "channel %d RXQ %d wakeup event\n", 1138 channel->channel, ev_sub_data); 1139 break; 1140 case FSE_AZ_TIMER_EV: 1141 netif_vdbg(efx, hw, efx->net_dev, 1142 "channel %d RX queue %d timer expired\n", 1143 channel->channel, ev_sub_data); 1144 break; 1145 case FSE_AA_RX_RECOVER_EV: 1146 netif_err(efx, rx_err, efx->net_dev, 1147 "channel %d seen DRIVER RX_RESET event. " 1148 "Resetting.\n", channel->channel); 1149 atomic_inc(&efx->rx_reset); 1150 efx_schedule_reset(efx, 1151 EFX_WORKAROUND_6555(efx) ? 1152 RESET_TYPE_RX_RECOVERY : 1153 RESET_TYPE_DISABLE); 1154 break; 1155 case FSE_BZ_RX_DSC_ERROR_EV: 1156 if (ev_sub_data < EFX_VI_BASE) { 1157 netif_err(efx, rx_err, efx->net_dev, 1158 "RX DMA Q %d reports descriptor fetch error." 1159 " RX Q %d is disabled.\n", ev_sub_data, 1160 ev_sub_data); 1161 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); 1162 } else 1163 efx_sriov_desc_fetch_err(efx, ev_sub_data); 1164 break; 1165 case FSE_BZ_TX_DSC_ERROR_EV: 1166 if (ev_sub_data < EFX_VI_BASE) { 1167 netif_err(efx, tx_err, efx->net_dev, 1168 "TX DMA Q %d reports descriptor fetch error." 1169 " TX Q %d is disabled.\n", ev_sub_data, 1170 ev_sub_data); 1171 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); 1172 } else 1173 efx_sriov_desc_fetch_err(efx, ev_sub_data); 1174 break; 1175 default: 1176 netif_vdbg(efx, hw, efx->net_dev, 1177 "channel %d unknown driver event code %d " 1178 "data %04x\n", channel->channel, ev_sub_code, 1179 ev_sub_data); 1180 break; 1181 } 1182 } 1183 1184 int efx_nic_process_eventq(struct efx_channel *channel, int budget) 1185 { 1186 struct efx_nic *efx = channel->efx; 1187 unsigned int read_ptr; 1188 efx_qword_t event, *p_event; 1189 int ev_code; 1190 int tx_packets = 0; 1191 int spent = 0; 1192 1193 read_ptr = channel->eventq_read_ptr; 1194 1195 for (;;) { 1196 p_event = efx_event(channel, read_ptr); 1197 event = *p_event; 1198 1199 if (!efx_event_present(&event)) 1200 /* End of events */ 1201 break; 1202 1203 netif_vdbg(channel->efx, intr, channel->efx->net_dev, 1204 "channel %d event is "EFX_QWORD_FMT"\n", 1205 channel->channel, EFX_QWORD_VAL(event)); 1206 1207 /* Clear this event by marking it all ones */ 1208 EFX_SET_QWORD(*p_event); 1209 1210 ++read_ptr; 1211 1212 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); 1213 1214 switch (ev_code) { 1215 case FSE_AZ_EV_CODE_RX_EV: 1216 efx_handle_rx_event(channel, &event); 1217 if (++spent == budget) 1218 goto out; 1219 break; 1220 case FSE_AZ_EV_CODE_TX_EV: 1221 tx_packets += efx_handle_tx_event(channel, &event); 1222 if (tx_packets > efx->txq_entries) { 1223 spent = budget; 1224 goto out; 1225 } 1226 break; 1227 case FSE_AZ_EV_CODE_DRV_GEN_EV: 1228 efx_handle_generated_event(channel, &event); 1229 break; 1230 case FSE_AZ_EV_CODE_DRIVER_EV: 1231 efx_handle_driver_event(channel, &event); 1232 break; 1233 case FSE_CZ_EV_CODE_USER_EV: 1234 efx_sriov_event(channel, &event); 1235 break; 1236 case FSE_CZ_EV_CODE_MCDI_EV: 1237 efx_mcdi_process_event(channel, &event); 1238 break; 1239 case FSE_AZ_EV_CODE_GLOBAL_EV: 1240 if (efx->type->handle_global_event && 1241 efx->type->handle_global_event(channel, &event)) 1242 break; 1243 /* else fall through */ 1244 default: 1245 netif_err(channel->efx, hw, channel->efx->net_dev, 1246 "channel %d unknown event type %d (data " 1247 EFX_QWORD_FMT ")\n", channel->channel, 1248 ev_code, EFX_QWORD_VAL(event)); 1249 } 1250 } 1251 1252 out: 1253 channel->eventq_read_ptr = read_ptr; 1254 return spent; 1255 } 1256 1257 /* Check whether an event is present in the eventq at the current 1258 * read pointer. Only useful for self-test. 1259 */ 1260 bool efx_nic_event_present(struct efx_channel *channel) 1261 { 1262 return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); 1263 } 1264 1265 /* Allocate buffer table entries for event queue */ 1266 int efx_nic_probe_eventq(struct efx_channel *channel) 1267 { 1268 struct efx_nic *efx = channel->efx; 1269 unsigned entries; 1270 1271 entries = channel->eventq_mask + 1; 1272 return efx_alloc_special_buffer(efx, &channel->eventq, 1273 entries * sizeof(efx_qword_t)); 1274 } 1275 1276 void efx_nic_init_eventq(struct efx_channel *channel) 1277 { 1278 efx_oword_t reg; 1279 struct efx_nic *efx = channel->efx; 1280 1281 netif_dbg(efx, hw, efx->net_dev, 1282 "channel %d event queue in special buffers %d-%d\n", 1283 channel->channel, channel->eventq.index, 1284 channel->eventq.index + channel->eventq.entries - 1); 1285 1286 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { 1287 EFX_POPULATE_OWORD_3(reg, 1288 FRF_CZ_TIMER_Q_EN, 1, 1289 FRF_CZ_HOST_NOTIFY_MODE, 0, 1290 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); 1291 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); 1292 } 1293 1294 /* Pin event queue buffer */ 1295 efx_init_special_buffer(efx, &channel->eventq); 1296 1297 /* Fill event queue with all ones (i.e. empty events) */ 1298 memset(channel->eventq.addr, 0xff, channel->eventq.len); 1299 1300 /* Push event queue to card */ 1301 EFX_POPULATE_OWORD_3(reg, 1302 FRF_AZ_EVQ_EN, 1, 1303 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), 1304 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); 1305 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, 1306 channel->channel); 1307 1308 efx->type->push_irq_moderation(channel); 1309 } 1310 1311 void efx_nic_fini_eventq(struct efx_channel *channel) 1312 { 1313 efx_oword_t reg; 1314 struct efx_nic *efx = channel->efx; 1315 1316 /* Remove event queue from card */ 1317 EFX_ZERO_OWORD(reg); 1318 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, 1319 channel->channel); 1320 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) 1321 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); 1322 1323 /* Unpin event queue */ 1324 efx_fini_special_buffer(efx, &channel->eventq); 1325 } 1326 1327 /* Free buffers backing event queue */ 1328 void efx_nic_remove_eventq(struct efx_channel *channel) 1329 { 1330 efx_free_special_buffer(channel->efx, &channel->eventq); 1331 } 1332 1333 1334 void efx_nic_event_test_start(struct efx_channel *channel) 1335 { 1336 channel->event_test_cpu = -1; 1337 smp_wmb(); 1338 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); 1339 } 1340 1341 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue) 1342 { 1343 efx_magic_event(efx_rx_queue_channel(rx_queue), 1344 EFX_CHANNEL_MAGIC_FILL(rx_queue)); 1345 } 1346 1347 /************************************************************************** 1348 * 1349 * Hardware interrupts 1350 * The hardware interrupt handler does very little work; all the event 1351 * queue processing is carried out by per-channel tasklets. 1352 * 1353 **************************************************************************/ 1354 1355 /* Enable/disable/generate interrupts */ 1356 static inline void efx_nic_interrupts(struct efx_nic *efx, 1357 bool enabled, bool force) 1358 { 1359 efx_oword_t int_en_reg_ker; 1360 1361 EFX_POPULATE_OWORD_3(int_en_reg_ker, 1362 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, 1363 FRF_AZ_KER_INT_KER, force, 1364 FRF_AZ_DRV_INT_EN_KER, enabled); 1365 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); 1366 } 1367 1368 void efx_nic_enable_interrupts(struct efx_nic *efx) 1369 { 1370 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); 1371 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ 1372 1373 efx_nic_interrupts(efx, true, false); 1374 } 1375 1376 void efx_nic_disable_interrupts(struct efx_nic *efx) 1377 { 1378 /* Disable interrupts */ 1379 efx_nic_interrupts(efx, false, false); 1380 } 1381 1382 /* Generate a test interrupt 1383 * Interrupt must already have been enabled, otherwise nasty things 1384 * may happen. 1385 */ 1386 void efx_nic_irq_test_start(struct efx_nic *efx) 1387 { 1388 efx->last_irq_cpu = -1; 1389 smp_wmb(); 1390 efx_nic_interrupts(efx, true, true); 1391 } 1392 1393 /* Process a fatal interrupt 1394 * Disable bus mastering ASAP and schedule a reset 1395 */ 1396 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx) 1397 { 1398 struct falcon_nic_data *nic_data = efx->nic_data; 1399 efx_oword_t *int_ker = efx->irq_status.addr; 1400 efx_oword_t fatal_intr; 1401 int error, mem_perr; 1402 1403 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); 1404 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); 1405 1406 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " 1407 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), 1408 EFX_OWORD_VAL(fatal_intr), 1409 error ? "disabling bus mastering" : "no recognised error"); 1410 1411 /* If this is a memory parity error dump which blocks are offending */ 1412 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || 1413 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); 1414 if (mem_perr) { 1415 efx_oword_t reg; 1416 efx_reado(efx, ®, FR_AZ_MEM_STAT); 1417 netif_err(efx, hw, efx->net_dev, 1418 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", 1419 EFX_OWORD_VAL(reg)); 1420 } 1421 1422 /* Disable both devices */ 1423 pci_clear_master(efx->pci_dev); 1424 if (efx_nic_is_dual_func(efx)) 1425 pci_clear_master(nic_data->pci_dev2); 1426 efx_nic_disable_interrupts(efx); 1427 1428 /* Count errors and reset or disable the NIC accordingly */ 1429 if (efx->int_error_count == 0 || 1430 time_after(jiffies, efx->int_error_expire)) { 1431 efx->int_error_count = 0; 1432 efx->int_error_expire = 1433 jiffies + EFX_INT_ERROR_EXPIRE * HZ; 1434 } 1435 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { 1436 netif_err(efx, hw, efx->net_dev, 1437 "SYSTEM ERROR - reset scheduled\n"); 1438 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); 1439 } else { 1440 netif_err(efx, hw, efx->net_dev, 1441 "SYSTEM ERROR - max number of errors seen." 1442 "NIC will be disabled\n"); 1443 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 1444 } 1445 1446 return IRQ_HANDLED; 1447 } 1448 1449 /* Handle a legacy interrupt 1450 * Acknowledges the interrupt and schedule event queue processing. 1451 */ 1452 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id) 1453 { 1454 struct efx_nic *efx = dev_id; 1455 efx_oword_t *int_ker = efx->irq_status.addr; 1456 irqreturn_t result = IRQ_NONE; 1457 struct efx_channel *channel; 1458 efx_dword_t reg; 1459 u32 queues; 1460 int syserr; 1461 1462 /* Could this be ours? If interrupts are disabled then the 1463 * channel state may not be valid. 1464 */ 1465 if (!efx->legacy_irq_enabled) 1466 return result; 1467 1468 /* Read the ISR which also ACKs the interrupts */ 1469 efx_readd(efx, ®, FR_BZ_INT_ISR0); 1470 queues = EFX_EXTRACT_DWORD(reg, 0, 31); 1471 1472 /* Handle non-event-queue sources */ 1473 if (queues & (1U << efx->irq_level)) { 1474 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); 1475 if (unlikely(syserr)) 1476 return efx_nic_fatal_interrupt(efx); 1477 efx->last_irq_cpu = raw_smp_processor_id(); 1478 } 1479 1480 if (queues != 0) { 1481 if (EFX_WORKAROUND_15783(efx)) 1482 efx->irq_zero_count = 0; 1483 1484 /* Schedule processing of any interrupting queues */ 1485 efx_for_each_channel(channel, efx) { 1486 if (queues & 1) 1487 efx_schedule_channel_irq(channel); 1488 queues >>= 1; 1489 } 1490 result = IRQ_HANDLED; 1491 1492 } else if (EFX_WORKAROUND_15783(efx)) { 1493 efx_qword_t *event; 1494 1495 /* We can't return IRQ_HANDLED more than once on seeing ISR=0 1496 * because this might be a shared interrupt. */ 1497 if (efx->irq_zero_count++ == 0) 1498 result = IRQ_HANDLED; 1499 1500 /* Ensure we schedule or rearm all event queues */ 1501 efx_for_each_channel(channel, efx) { 1502 event = efx_event(channel, channel->eventq_read_ptr); 1503 if (efx_event_present(event)) 1504 efx_schedule_channel_irq(channel); 1505 else 1506 efx_nic_eventq_read_ack(channel); 1507 } 1508 } 1509 1510 if (result == IRQ_HANDLED) 1511 netif_vdbg(efx, intr, efx->net_dev, 1512 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", 1513 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); 1514 1515 return result; 1516 } 1517 1518 /* Handle an MSI interrupt 1519 * 1520 * Handle an MSI hardware interrupt. This routine schedules event 1521 * queue processing. No interrupt acknowledgement cycle is necessary. 1522 * Also, we never need to check that the interrupt is for us, since 1523 * MSI interrupts cannot be shared. 1524 */ 1525 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id) 1526 { 1527 struct efx_channel *channel = *(struct efx_channel **)dev_id; 1528 struct efx_nic *efx = channel->efx; 1529 efx_oword_t *int_ker = efx->irq_status.addr; 1530 int syserr; 1531 1532 netif_vdbg(efx, intr, efx->net_dev, 1533 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", 1534 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); 1535 1536 /* Handle non-event-queue sources */ 1537 if (channel->channel == efx->irq_level) { 1538 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); 1539 if (unlikely(syserr)) 1540 return efx_nic_fatal_interrupt(efx); 1541 efx->last_irq_cpu = raw_smp_processor_id(); 1542 } 1543 1544 /* Schedule processing of the channel */ 1545 efx_schedule_channel_irq(channel); 1546 1547 return IRQ_HANDLED; 1548 } 1549 1550 1551 /* Setup RSS indirection table. 1552 * This maps from the hash value of the packet to RXQ 1553 */ 1554 void efx_nic_push_rx_indir_table(struct efx_nic *efx) 1555 { 1556 size_t i = 0; 1557 efx_dword_t dword; 1558 1559 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) 1560 return; 1561 1562 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != 1563 FR_BZ_RX_INDIRECTION_TBL_ROWS); 1564 1565 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { 1566 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, 1567 efx->rx_indir_table[i]); 1568 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i); 1569 } 1570 } 1571 1572 /* Hook interrupt handler(s) 1573 * Try MSI and then legacy interrupts. 1574 */ 1575 int efx_nic_init_interrupt(struct efx_nic *efx) 1576 { 1577 struct efx_channel *channel; 1578 int rc; 1579 1580 if (!EFX_INT_MODE_USE_MSI(efx)) { 1581 irq_handler_t handler; 1582 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) 1583 handler = efx_legacy_interrupt; 1584 else 1585 handler = falcon_legacy_interrupt_a1; 1586 1587 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, 1588 efx->name, efx); 1589 if (rc) { 1590 netif_err(efx, drv, efx->net_dev, 1591 "failed to hook legacy IRQ %d\n", 1592 efx->pci_dev->irq); 1593 goto fail1; 1594 } 1595 return 0; 1596 } 1597 1598 /* Hook MSI or MSI-X interrupt */ 1599 efx_for_each_channel(channel, efx) { 1600 rc = request_irq(channel->irq, efx_msi_interrupt, 1601 IRQF_PROBE_SHARED, /* Not shared */ 1602 efx->channel_name[channel->channel], 1603 &efx->channel[channel->channel]); 1604 if (rc) { 1605 netif_err(efx, drv, efx->net_dev, 1606 "failed to hook IRQ %d\n", channel->irq); 1607 goto fail2; 1608 } 1609 } 1610 1611 return 0; 1612 1613 fail2: 1614 efx_for_each_channel(channel, efx) 1615 free_irq(channel->irq, &efx->channel[channel->channel]); 1616 fail1: 1617 return rc; 1618 } 1619 1620 void efx_nic_fini_interrupt(struct efx_nic *efx) 1621 { 1622 struct efx_channel *channel; 1623 efx_oword_t reg; 1624 1625 /* Disable MSI/MSI-X interrupts */ 1626 efx_for_each_channel(channel, efx) { 1627 if (channel->irq) 1628 free_irq(channel->irq, &efx->channel[channel->channel]); 1629 } 1630 1631 /* ACK legacy interrupt */ 1632 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) 1633 efx_reado(efx, ®, FR_BZ_INT_ISR0); 1634 else 1635 falcon_irq_ack_a1(efx); 1636 1637 /* Disable legacy interrupt */ 1638 if (efx->legacy_irq) 1639 free_irq(efx->legacy_irq, efx); 1640 } 1641 1642 /* Looks at available SRAM resources and works out how many queues we 1643 * can support, and where things like descriptor caches should live. 1644 * 1645 * SRAM is split up as follows: 1646 * 0 buftbl entries for channels 1647 * efx->vf_buftbl_base buftbl entries for SR-IOV 1648 * efx->rx_dc_base RX descriptor caches 1649 * efx->tx_dc_base TX descriptor caches 1650 */ 1651 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw) 1652 { 1653 unsigned vi_count, buftbl_min; 1654 1655 /* Account for the buffer table entries backing the datapath channels 1656 * and the descriptor caches for those channels. 1657 */ 1658 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE + 1659 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE + 1660 efx->n_channels * EFX_MAX_EVQ_SIZE) 1661 * sizeof(efx_qword_t) / EFX_BUF_SIZE); 1662 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES); 1663 1664 #ifdef CONFIG_SFC_SRIOV 1665 if (efx_sriov_wanted(efx)) { 1666 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit; 1667 1668 efx->vf_buftbl_base = buftbl_min; 1669 1670 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES; 1671 vi_count = max(vi_count, EFX_VI_BASE); 1672 buftbl_free = (sram_lim_qw - buftbl_min - 1673 vi_count * vi_dc_entries); 1674 1675 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) * 1676 efx_vf_size(efx)); 1677 vf_limit = min(buftbl_free / entries_per_vf, 1678 (1024U - EFX_VI_BASE) >> efx->vi_scale); 1679 1680 if (efx->vf_count > vf_limit) { 1681 netif_err(efx, probe, efx->net_dev, 1682 "Reducing VF count from from %d to %d\n", 1683 efx->vf_count, vf_limit); 1684 efx->vf_count = vf_limit; 1685 } 1686 vi_count += efx->vf_count * efx_vf_size(efx); 1687 } 1688 #endif 1689 1690 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES; 1691 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES; 1692 } 1693 1694 u32 efx_nic_fpga_ver(struct efx_nic *efx) 1695 { 1696 efx_oword_t altera_build; 1697 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); 1698 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); 1699 } 1700 1701 void efx_nic_init_common(struct efx_nic *efx) 1702 { 1703 efx_oword_t temp; 1704 1705 /* Set positions of descriptor caches in SRAM. */ 1706 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); 1707 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); 1708 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); 1709 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); 1710 1711 /* Set TX descriptor cache size. */ 1712 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); 1713 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); 1714 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); 1715 1716 /* Set RX descriptor cache size. Set low watermark to size-8, as 1717 * this allows most efficient prefetching. 1718 */ 1719 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); 1720 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); 1721 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); 1722 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); 1723 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); 1724 1725 /* Program INT_KER address */ 1726 EFX_POPULATE_OWORD_2(temp, 1727 FRF_AZ_NORM_INT_VEC_DIS_KER, 1728 EFX_INT_MODE_USE_MSI(efx), 1729 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); 1730 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); 1731 1732 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) 1733 /* Use an interrupt level unused by event queues */ 1734 efx->irq_level = 0x1f; 1735 else 1736 /* Use a valid MSI-X vector */ 1737 efx->irq_level = 0; 1738 1739 /* Enable all the genuinely fatal interrupts. (They are still 1740 * masked by the overall interrupt mask, controlled by 1741 * falcon_interrupts()). 1742 * 1743 * Note: All other fatal interrupts are enabled 1744 */ 1745 EFX_POPULATE_OWORD_3(temp, 1746 FRF_AZ_ILL_ADR_INT_KER_EN, 1, 1747 FRF_AZ_RBUF_OWN_INT_KER_EN, 1, 1748 FRF_AZ_TBUF_OWN_INT_KER_EN, 1); 1749 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) 1750 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); 1751 EFX_INVERT_OWORD(temp); 1752 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); 1753 1754 efx_nic_push_rx_indir_table(efx); 1755 1756 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be 1757 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. 1758 */ 1759 efx_reado(efx, &temp, FR_AZ_TX_RESERVED); 1760 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); 1761 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); 1762 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); 1763 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); 1764 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); 1765 /* Enable SW_EV to inherit in char driver - assume harmless here */ 1766 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); 1767 /* Prefetch threshold 2 => fetch when descriptor cache half empty */ 1768 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); 1769 /* Disable hardware watchdog which can misfire */ 1770 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); 1771 /* Squash TX of packets of 16 bytes or less */ 1772 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) 1773 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); 1774 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); 1775 1776 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { 1777 EFX_POPULATE_OWORD_4(temp, 1778 /* Default values */ 1779 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, 1780 FRF_BZ_TX_PACE_SB_AF, 0xb, 1781 FRF_BZ_TX_PACE_FB_BASE, 0, 1782 /* Allow large pace values in the 1783 * fast bin. */ 1784 FRF_BZ_TX_PACE_BIN_TH, 1785 FFE_BZ_TX_PACE_RESERVED); 1786 efx_writeo(efx, &temp, FR_BZ_TX_PACE); 1787 } 1788 } 1789 1790 /* Register dump */ 1791 1792 #define REGISTER_REVISION_A 1 1793 #define REGISTER_REVISION_B 2 1794 #define REGISTER_REVISION_C 3 1795 #define REGISTER_REVISION_Z 3 /* latest revision */ 1796 1797 struct efx_nic_reg { 1798 u32 offset:24; 1799 u32 min_revision:2, max_revision:2; 1800 }; 1801 1802 #define REGISTER(name, min_rev, max_rev) { \ 1803 FR_ ## min_rev ## max_rev ## _ ## name, \ 1804 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \ 1805 } 1806 #define REGISTER_AA(name) REGISTER(name, A, A) 1807 #define REGISTER_AB(name) REGISTER(name, A, B) 1808 #define REGISTER_AZ(name) REGISTER(name, A, Z) 1809 #define REGISTER_BB(name) REGISTER(name, B, B) 1810 #define REGISTER_BZ(name) REGISTER(name, B, Z) 1811 #define REGISTER_CZ(name) REGISTER(name, C, Z) 1812 1813 static const struct efx_nic_reg efx_nic_regs[] = { 1814 REGISTER_AZ(ADR_REGION), 1815 REGISTER_AZ(INT_EN_KER), 1816 REGISTER_BZ(INT_EN_CHAR), 1817 REGISTER_AZ(INT_ADR_KER), 1818 REGISTER_BZ(INT_ADR_CHAR), 1819 /* INT_ACK_KER is WO */ 1820 /* INT_ISR0 is RC */ 1821 REGISTER_AZ(HW_INIT), 1822 REGISTER_CZ(USR_EV_CFG), 1823 REGISTER_AB(EE_SPI_HCMD), 1824 REGISTER_AB(EE_SPI_HADR), 1825 REGISTER_AB(EE_SPI_HDATA), 1826 REGISTER_AB(EE_BASE_PAGE), 1827 REGISTER_AB(EE_VPD_CFG0), 1828 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */ 1829 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */ 1830 /* PCIE_CORE_INDIRECT is indirect */ 1831 REGISTER_AB(NIC_STAT), 1832 REGISTER_AB(GPIO_CTL), 1833 REGISTER_AB(GLB_CTL), 1834 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */ 1835 REGISTER_BZ(DP_CTRL), 1836 REGISTER_AZ(MEM_STAT), 1837 REGISTER_AZ(CS_DEBUG), 1838 REGISTER_AZ(ALTERA_BUILD), 1839 REGISTER_AZ(CSR_SPARE), 1840 REGISTER_AB(PCIE_SD_CTL0123), 1841 REGISTER_AB(PCIE_SD_CTL45), 1842 REGISTER_AB(PCIE_PCS_CTL_STAT), 1843 /* DEBUG_DATA_OUT is not used */ 1844 /* DRV_EV is WO */ 1845 REGISTER_AZ(EVQ_CTL), 1846 REGISTER_AZ(EVQ_CNT1), 1847 REGISTER_AZ(EVQ_CNT2), 1848 REGISTER_AZ(BUF_TBL_CFG), 1849 REGISTER_AZ(SRM_RX_DC_CFG), 1850 REGISTER_AZ(SRM_TX_DC_CFG), 1851 REGISTER_AZ(SRM_CFG), 1852 /* BUF_TBL_UPD is WO */ 1853 REGISTER_AZ(SRM_UPD_EVQ), 1854 REGISTER_AZ(SRAM_PARITY), 1855 REGISTER_AZ(RX_CFG), 1856 REGISTER_BZ(RX_FILTER_CTL), 1857 /* RX_FLUSH_DESCQ is WO */ 1858 REGISTER_AZ(RX_DC_CFG), 1859 REGISTER_AZ(RX_DC_PF_WM), 1860 REGISTER_BZ(RX_RSS_TKEY), 1861 /* RX_NODESC_DROP is RC */ 1862 REGISTER_AA(RX_SELF_RST), 1863 /* RX_DEBUG, RX_PUSH_DROP are not used */ 1864 REGISTER_CZ(RX_RSS_IPV6_REG1), 1865 REGISTER_CZ(RX_RSS_IPV6_REG2), 1866 REGISTER_CZ(RX_RSS_IPV6_REG3), 1867 /* TX_FLUSH_DESCQ is WO */ 1868 REGISTER_AZ(TX_DC_CFG), 1869 REGISTER_AA(TX_CHKSM_CFG), 1870 REGISTER_AZ(TX_CFG), 1871 /* TX_PUSH_DROP is not used */ 1872 REGISTER_AZ(TX_RESERVED), 1873 REGISTER_BZ(TX_PACE), 1874 /* TX_PACE_DROP_QID is RC */ 1875 REGISTER_BB(TX_VLAN), 1876 REGISTER_BZ(TX_IPFIL_PORTEN), 1877 REGISTER_AB(MD_TXD), 1878 REGISTER_AB(MD_RXD), 1879 REGISTER_AB(MD_CS), 1880 REGISTER_AB(MD_PHY_ADR), 1881 REGISTER_AB(MD_ID), 1882 /* MD_STAT is RC */ 1883 REGISTER_AB(MAC_STAT_DMA), 1884 REGISTER_AB(MAC_CTRL), 1885 REGISTER_BB(GEN_MODE), 1886 REGISTER_AB(MAC_MC_HASH_REG0), 1887 REGISTER_AB(MAC_MC_HASH_REG1), 1888 REGISTER_AB(GM_CFG1), 1889 REGISTER_AB(GM_CFG2), 1890 /* GM_IPG and GM_HD are not used */ 1891 REGISTER_AB(GM_MAX_FLEN), 1892 /* GM_TEST is not used */ 1893 REGISTER_AB(GM_ADR1), 1894 REGISTER_AB(GM_ADR2), 1895 REGISTER_AB(GMF_CFG0), 1896 REGISTER_AB(GMF_CFG1), 1897 REGISTER_AB(GMF_CFG2), 1898 REGISTER_AB(GMF_CFG3), 1899 REGISTER_AB(GMF_CFG4), 1900 REGISTER_AB(GMF_CFG5), 1901 REGISTER_BB(TX_SRC_MAC_CTL), 1902 REGISTER_AB(XM_ADR_LO), 1903 REGISTER_AB(XM_ADR_HI), 1904 REGISTER_AB(XM_GLB_CFG), 1905 REGISTER_AB(XM_TX_CFG), 1906 REGISTER_AB(XM_RX_CFG), 1907 REGISTER_AB(XM_MGT_INT_MASK), 1908 REGISTER_AB(XM_FC), 1909 REGISTER_AB(XM_PAUSE_TIME), 1910 REGISTER_AB(XM_TX_PARAM), 1911 REGISTER_AB(XM_RX_PARAM), 1912 /* XM_MGT_INT_MSK (note no 'A') is RC */ 1913 REGISTER_AB(XX_PWR_RST), 1914 REGISTER_AB(XX_SD_CTL), 1915 REGISTER_AB(XX_TXDRV_CTL), 1916 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ 1917 /* XX_CORE_STAT is partly RC */ 1918 }; 1919 1920 struct efx_nic_reg_table { 1921 u32 offset:24; 1922 u32 min_revision:2, max_revision:2; 1923 u32 step:6, rows:21; 1924 }; 1925 1926 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \ 1927 offset, \ 1928 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \ 1929 step, rows \ 1930 } 1931 #define REGISTER_TABLE(name, min_rev, max_rev) \ 1932 REGISTER_TABLE_DIMENSIONS( \ 1933 name, FR_ ## min_rev ## max_rev ## _ ## name, \ 1934 min_rev, max_rev, \ 1935 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ 1936 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS) 1937 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A) 1938 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z) 1939 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B) 1940 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z) 1941 #define REGISTER_TABLE_BB_CZ(name) \ 1942 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \ 1943 FR_BZ_ ## name ## _STEP, \ 1944 FR_BB_ ## name ## _ROWS), \ 1945 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \ 1946 FR_BZ_ ## name ## _STEP, \ 1947 FR_CZ_ ## name ## _ROWS) 1948 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z) 1949 1950 static const struct efx_nic_reg_table efx_nic_reg_tables[] = { 1951 /* DRIVER is not used */ 1952 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */ 1953 REGISTER_TABLE_BB(TX_IPFIL_TBL), 1954 REGISTER_TABLE_BB(TX_SRC_MAC_TBL), 1955 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER), 1956 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL), 1957 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER), 1958 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL), 1959 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER), 1960 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL), 1961 /* We can't reasonably read all of the buffer table (up to 8MB!). 1962 * However this driver will only use a few entries. Reading 1963 * 1K entries allows for some expansion of queue count and 1964 * size before we need to change the version. */ 1965 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER, 1966 A, A, 8, 1024), 1967 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL, 1968 B, Z, 8, 1024), 1969 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0), 1970 REGISTER_TABLE_BB_CZ(TIMER_TBL), 1971 REGISTER_TABLE_BB_CZ(TX_PACE_TBL), 1972 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL), 1973 /* TX_FILTER_TBL0 is huge and not used by this driver */ 1974 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0), 1975 REGISTER_TABLE_CZ(MC_TREG_SMEM), 1976 /* MSIX_PBA_TABLE is not mapped */ 1977 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */ 1978 REGISTER_TABLE_BZ(RX_FILTER_TBL0), 1979 }; 1980 1981 size_t efx_nic_get_regs_len(struct efx_nic *efx) 1982 { 1983 const struct efx_nic_reg *reg; 1984 const struct efx_nic_reg_table *table; 1985 size_t len = 0; 1986 1987 for (reg = efx_nic_regs; 1988 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); 1989 reg++) 1990 if (efx->type->revision >= reg->min_revision && 1991 efx->type->revision <= reg->max_revision) 1992 len += sizeof(efx_oword_t); 1993 1994 for (table = efx_nic_reg_tables; 1995 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); 1996 table++) 1997 if (efx->type->revision >= table->min_revision && 1998 efx->type->revision <= table->max_revision) 1999 len += table->rows * min_t(size_t, table->step, 16); 2000 2001 return len; 2002 } 2003 2004 void efx_nic_get_regs(struct efx_nic *efx, void *buf) 2005 { 2006 const struct efx_nic_reg *reg; 2007 const struct efx_nic_reg_table *table; 2008 2009 for (reg = efx_nic_regs; 2010 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); 2011 reg++) { 2012 if (efx->type->revision >= reg->min_revision && 2013 efx->type->revision <= reg->max_revision) { 2014 efx_reado(efx, (efx_oword_t *)buf, reg->offset); 2015 buf += sizeof(efx_oword_t); 2016 } 2017 } 2018 2019 for (table = efx_nic_reg_tables; 2020 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); 2021 table++) { 2022 size_t size, i; 2023 2024 if (!(efx->type->revision >= table->min_revision && 2025 efx->type->revision <= table->max_revision)) 2026 continue; 2027 2028 size = min_t(size_t, table->step, 16); 2029 2030 for (i = 0; i < table->rows; i++) { 2031 switch (table->step) { 2032 case 4: /* 32-bit register or SRAM */ 2033 efx_readd_table(efx, buf, table->offset, i); 2034 break; 2035 case 8: /* 64-bit SRAM */ 2036 efx_sram_readq(efx, 2037 efx->membase + table->offset, 2038 buf, i); 2039 break; 2040 case 16: /* 128-bit register */ 2041 efx_reado_table(efx, buf, table->offset, i); 2042 break; 2043 case 32: /* 128-bit register, interleaved */ 2044 efx_reado_table(efx, buf, table->offset, 2 * i); 2045 break; 2046 default: 2047 WARN_ON(1); 2048 return; 2049 } 2050 buf += size; 2051 } 2052 } 2053 } 2054