1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 /* Common definitions for all Efx net driver code */ 9 10 #ifndef EFX_NET_DRIVER_H 11 #define EFX_NET_DRIVER_H 12 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/ethtool.h> 16 #include <linux/if_vlan.h> 17 #include <linux/timer.h> 18 #include <linux/mdio.h> 19 #include <linux/list.h> 20 #include <linux/pci.h> 21 #include <linux/device.h> 22 #include <linux/highmem.h> 23 #include <linux/workqueue.h> 24 #include <linux/mutex.h> 25 #include <linux/rwsem.h> 26 #include <linux/vmalloc.h> 27 #include <linux/mtd/mtd.h> 28 #include <net/busy_poll.h> 29 #include <net/xdp.h> 30 31 #include "enum.h" 32 #include "bitfield.h" 33 #include "filter.h" 34 35 /************************************************************************** 36 * 37 * Build definitions 38 * 39 **************************************************************************/ 40 41 #ifdef DEBUG 42 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x) 43 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 44 #else 45 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0) 46 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 47 #endif 48 49 /************************************************************************** 50 * 51 * Efx data structures 52 * 53 **************************************************************************/ 54 55 #define EFX_MAX_CHANNELS 32U 56 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 57 #define EFX_EXTRA_CHANNEL_IOV 0 58 #define EFX_EXTRA_CHANNEL_PTP 1 59 #define EFX_MAX_EXTRA_CHANNELS 2U 60 61 /* Checksum generation is a per-queue option in hardware, so each 62 * queue visible to the networking core is backed by two hardware TX 63 * queues. */ 64 #define EFX_MAX_TX_TC 2 65 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 66 #define EFX_TXQ_TYPE_OUTER_CSUM 1 /* Outer checksum offload */ 67 #define EFX_TXQ_TYPE_INNER_CSUM 2 /* Inner checksum offload */ 68 #define EFX_TXQ_TYPE_HIGHPRI 4 /* High-priority (for TC) */ 69 #define EFX_TXQ_TYPES 8 70 /* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */ 71 #define EFX_MAX_TXQ_PER_CHANNEL 4 72 #define EFX_MAX_TX_QUEUES (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS) 73 74 /* Maximum possible MTU the driver supports */ 75 #define EFX_MAX_MTU (9 * 1024) 76 77 /* Minimum MTU, from RFC791 (IP) */ 78 #define EFX_MIN_MTU 68 79 80 /* Maximum total header length for TSOv2 */ 81 #define EFX_TSO2_MAX_HDRLEN 208 82 83 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 84 * and should be a multiple of the cache line size. 85 */ 86 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 87 88 /* If possible, we should ensure cache line alignment at start and end 89 * of every buffer. Otherwise, we just need to ensure 4-byte 90 * alignment of the network header. 91 */ 92 #if NET_IP_ALIGN == 0 93 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 94 #else 95 #define EFX_RX_BUF_ALIGNMENT 4 96 #endif 97 98 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and 99 * still fit two standard MTU size packets into a single 4K page. 100 */ 101 #define EFX_XDP_HEADROOM 128 102 #define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) 103 104 /* Forward declare Precision Time Protocol (PTP) support structure. */ 105 struct efx_ptp_data; 106 struct hwtstamp_config; 107 108 struct efx_self_tests; 109 110 /** 111 * struct efx_buffer - A general-purpose DMA buffer 112 * @addr: host base address of the buffer 113 * @dma_addr: DMA base address of the buffer 114 * @len: Buffer length, in bytes 115 * 116 * The NIC uses these buffers for its interrupt status registers and 117 * MAC stats dumps. 118 */ 119 struct efx_buffer { 120 void *addr; 121 dma_addr_t dma_addr; 122 unsigned int len; 123 }; 124 125 /** 126 * struct efx_special_buffer - DMA buffer entered into buffer table 127 * @buf: Standard &struct efx_buffer 128 * @index: Buffer index within controller;s buffer table 129 * @entries: Number of buffer table entries 130 * 131 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 132 * Event and descriptor rings are addressed via one or more buffer 133 * table entries (and so can be physically non-contiguous, although we 134 * currently do not take advantage of that). On Falcon and Siena we 135 * have to take care of allocating and initialising the entries 136 * ourselves. On later hardware this is managed by the firmware and 137 * @index and @entries are left as 0. 138 */ 139 struct efx_special_buffer { 140 struct efx_buffer buf; 141 unsigned int index; 142 unsigned int entries; 143 }; 144 145 /** 146 * struct efx_tx_buffer - buffer state for a TX descriptor 147 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 148 * freed when descriptor completes 149 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data 150 * member is the associated buffer to drop a page reference on. 151 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option 152 * descriptor. 153 * @dma_addr: DMA address of the fragment. 154 * @flags: Flags for allocation and DMA mapping type 155 * @len: Length of this fragment. 156 * This field is zero when the queue slot is empty. 157 * @unmap_len: Length of this fragment to unmap 158 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 159 * Only valid if @unmap_len != 0. 160 */ 161 struct efx_tx_buffer { 162 union { 163 const struct sk_buff *skb; 164 struct xdp_frame *xdpf; 165 }; 166 union { 167 efx_qword_t option; /* EF10 */ 168 dma_addr_t dma_addr; 169 }; 170 unsigned short flags; 171 unsigned short len; 172 unsigned short unmap_len; 173 unsigned short dma_offset; 174 }; 175 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 176 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 177 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 178 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 179 #define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */ 180 #define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */ 181 #define EFX_TX_BUF_EFV 0x100 /* buffer was sent from representor */ 182 183 /** 184 * struct efx_tx_queue - An Efx TX queue 185 * 186 * This is a ring buffer of TX fragments. 187 * Since the TX completion path always executes on the same 188 * CPU and the xmit path can operate on different CPUs, 189 * performance is increased by ensuring that the completion 190 * path and the xmit path operate on different cache lines. 191 * This is particularly important if the xmit path is always 192 * executing on one CPU which is different from the completion 193 * path. There is also a cache line for members which are 194 * read but not written on the fast path. 195 * 196 * @efx: The associated Efx NIC 197 * @queue: DMA queue number 198 * @label: Label for TX completion events. 199 * Is our index within @channel->tx_queue array. 200 * @type: configuration type of this TX queue. A bitmask of %EFX_TXQ_TYPE_* flags. 201 * @tso_version: Version of TSO in use for this queue. 202 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series. 203 * @channel: The associated channel 204 * @core_txq: The networking core TX queue structure 205 * @buffer: The software buffer ring 206 * @cb_page: Array of pages of copy buffers. Carved up according to 207 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks. 208 * @txd: The hardware descriptor ring 209 * @ptr_mask: The size of the ring minus 1. 210 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 211 * Size of the region is efx_piobuf_size. 212 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 213 * @initialised: Has hardware queue been initialised? 214 * @timestamping: Is timestamping enabled for this channel? 215 * @xdp_tx: Is this an XDP tx queue? 216 * @read_count: Current read pointer. 217 * This is the number of buffers that have been removed from both rings. 218 * @old_write_count: The value of @write_count when last checked. 219 * This is here for performance reasons. The xmit path will 220 * only get the up-to-date value of @write_count if this 221 * variable indicates that the queue is empty. This is to 222 * avoid cache-line ping-pong between the xmit path and the 223 * completion path. 224 * @merge_events: Number of TX merged completion events 225 * @completed_timestamp_major: Top part of the most recent tx timestamp. 226 * @completed_timestamp_minor: Low part of the most recent tx timestamp. 227 * @insert_count: Current insert pointer 228 * This is the number of buffers that have been added to the 229 * software ring. 230 * @write_count: Current write pointer 231 * This is the number of buffers that have been added to the 232 * hardware ring. 233 * @packet_write_count: Completable write pointer 234 * This is the write pointer of the last packet written. 235 * Normally this will equal @write_count, but as option descriptors 236 * don't produce completion events, they won't update this. 237 * Filled in iff @efx->type->option_descriptors; only used for PIO. 238 * Thus, this is written and used on EF10, and neither on farch. 239 * @old_read_count: The value of read_count when last checked. 240 * This is here for performance reasons. The xmit path will 241 * only get the up-to-date value of read_count if this 242 * variable indicates that the queue is full. This is to 243 * avoid cache-line ping-pong between the xmit path and the 244 * completion path. 245 * @tso_bursts: Number of times TSO xmit invoked by kernel 246 * @tso_long_headers: Number of packets with headers too long for standard 247 * blocks 248 * @tso_packets: Number of packets via the TSO xmit path 249 * @tso_fallbacks: Number of times TSO fallback used 250 * @pushes: Number of times the TX push feature has been used 251 * @pio_packets: Number of times the TX PIO feature has been used 252 * @xmit_pending: Are any packets waiting to be pushed to the NIC 253 * @cb_packets: Number of times the TX copybreak feature has been used 254 * @notify_count: Count of notified descriptors to the NIC 255 * @empty_read_count: If the completion path has seen the queue as empty 256 * and the transmission path has not yet checked this, the value of 257 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 258 */ 259 struct efx_tx_queue { 260 /* Members which don't change on the fast path */ 261 struct efx_nic *efx ____cacheline_aligned_in_smp; 262 unsigned int queue; 263 unsigned int label; 264 unsigned int type; 265 unsigned int tso_version; 266 bool tso_encap; 267 struct efx_channel *channel; 268 struct netdev_queue *core_txq; 269 struct efx_tx_buffer *buffer; 270 struct efx_buffer *cb_page; 271 struct efx_special_buffer txd; 272 unsigned int ptr_mask; 273 void __iomem *piobuf; 274 unsigned int piobuf_offset; 275 bool initialised; 276 bool timestamping; 277 bool xdp_tx; 278 279 /* Members used mainly on the completion path */ 280 unsigned int read_count ____cacheline_aligned_in_smp; 281 unsigned int old_write_count; 282 unsigned int merge_events; 283 unsigned int bytes_compl; 284 unsigned int pkts_compl; 285 u32 completed_timestamp_major; 286 u32 completed_timestamp_minor; 287 288 /* Members used only on the xmit path */ 289 unsigned int insert_count ____cacheline_aligned_in_smp; 290 unsigned int write_count; 291 unsigned int packet_write_count; 292 unsigned int old_read_count; 293 unsigned int tso_bursts; 294 unsigned int tso_long_headers; 295 unsigned int tso_packets; 296 unsigned int tso_fallbacks; 297 unsigned int pushes; 298 unsigned int pio_packets; 299 bool xmit_pending; 300 unsigned int cb_packets; 301 unsigned int notify_count; 302 /* Statistics to supplement MAC stats */ 303 unsigned long tx_packets; 304 305 /* Members shared between paths and sometimes updated */ 306 unsigned int empty_read_count ____cacheline_aligned_in_smp; 307 #define EFX_EMPTY_COUNT_VALID 0x80000000 308 atomic_t flush_outstanding; 309 }; 310 311 #define EFX_TX_CB_ORDER 7 312 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN 313 314 /** 315 * struct efx_rx_buffer - An Efx RX data buffer 316 * @dma_addr: DMA base address of the buffer 317 * @page: The associated page buffer. 318 * Will be %NULL if the buffer slot is currently free. 319 * @page_offset: If pending: offset in @page of DMA base address. 320 * If completed: offset in @page of Ethernet header. 321 * @len: If pending: length for DMA descriptor. 322 * If completed: received length, excluding hash prefix. 323 * @flags: Flags for buffer and packet state. These are only set on the 324 * first buffer of a scattered packet. 325 */ 326 struct efx_rx_buffer { 327 dma_addr_t dma_addr; 328 struct page *page; 329 u16 page_offset; 330 u16 len; 331 u16 flags; 332 }; 333 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 334 #define EFX_RX_PKT_CSUMMED 0x0002 335 #define EFX_RX_PKT_DISCARD 0x0004 336 #define EFX_RX_PKT_TCP 0x0040 337 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 338 #define EFX_RX_PKT_CSUM_LEVEL 0x0200 339 340 /** 341 * struct efx_rx_page_state - Page-based rx buffer state 342 * 343 * Inserted at the start of every page allocated for receive buffers. 344 * Used to facilitate sharing dma mappings between recycled rx buffers 345 * and those passed up to the kernel. 346 * 347 * @dma_addr: The dma address of this page. 348 */ 349 struct efx_rx_page_state { 350 dma_addr_t dma_addr; 351 352 unsigned int __pad[] ____cacheline_aligned; 353 }; 354 355 /** 356 * struct efx_rx_queue - An Efx RX queue 357 * @efx: The associated Efx NIC 358 * @core_index: Index of network core RX queue. Will be >= 0 iff this 359 * is associated with a real RX queue. 360 * @buffer: The software buffer ring 361 * @rxd: The hardware descriptor ring 362 * @ptr_mask: The size of the ring minus 1. 363 * @refill_enabled: Enable refill whenever fill level is low 364 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 365 * @rxq_flush_pending. 366 * @added_count: Number of buffers added to the receive queue. 367 * @notified_count: Number of buffers given to NIC (<= @added_count). 368 * @removed_count: Number of buffers removed from the receive queue. 369 * @scatter_n: Used by NIC specific receive code. 370 * @scatter_len: Used by NIC specific receive code. 371 * @page_ring: The ring to store DMA mapped pages for reuse. 372 * @page_add: Counter to calculate the write pointer for the recycle ring. 373 * @page_remove: Counter to calculate the read pointer for the recycle ring. 374 * @page_recycle_count: The number of pages that have been recycled. 375 * @page_recycle_failed: The number of pages that couldn't be recycled because 376 * the kernel still held a reference to them. 377 * @page_recycle_full: The number of pages that were released because the 378 * recycle ring was full. 379 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 380 * @max_fill: RX descriptor maximum fill level (<= ring size) 381 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 382 * (<= @max_fill) 383 * @min_fill: RX descriptor minimum non-zero fill level. 384 * This records the minimum fill level observed when a ring 385 * refill was triggered. 386 * @recycle_count: RX buffer recycle counter. 387 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 388 * @xdp_rxq_info: XDP specific RX queue information. 389 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?. 390 */ 391 struct efx_rx_queue { 392 struct efx_nic *efx; 393 int core_index; 394 struct efx_rx_buffer *buffer; 395 struct efx_special_buffer rxd; 396 unsigned int ptr_mask; 397 bool refill_enabled; 398 bool flush_pending; 399 400 unsigned int added_count; 401 unsigned int notified_count; 402 unsigned int removed_count; 403 unsigned int scatter_n; 404 unsigned int scatter_len; 405 struct page **page_ring; 406 unsigned int page_add; 407 unsigned int page_remove; 408 unsigned int page_recycle_count; 409 unsigned int page_recycle_failed; 410 unsigned int page_recycle_full; 411 unsigned int page_ptr_mask; 412 unsigned int max_fill; 413 unsigned int fast_fill_trigger; 414 unsigned int min_fill; 415 unsigned int min_overfill; 416 unsigned int recycle_count; 417 struct timer_list slow_fill; 418 unsigned int slow_fill_count; 419 /* Statistics to supplement MAC stats */ 420 unsigned long rx_packets; 421 struct xdp_rxq_info xdp_rxq_info; 422 bool xdp_rxq_info_valid; 423 }; 424 425 enum efx_sync_events_state { 426 SYNC_EVENTS_DISABLED = 0, 427 SYNC_EVENTS_QUIESCENT, 428 SYNC_EVENTS_REQUESTED, 429 SYNC_EVENTS_VALID, 430 }; 431 432 /** 433 * struct efx_channel - An Efx channel 434 * 435 * A channel comprises an event queue, at least one TX queue, at least 436 * one RX queue, and an associated tasklet for processing the event 437 * queue. 438 * 439 * @efx: Associated Efx NIC 440 * @channel: Channel instance number 441 * @type: Channel type definition 442 * @eventq_init: Event queue initialised flag 443 * @enabled: Channel enabled indicator 444 * @irq: IRQ number (MSI and MSI-X only) 445 * @irq_moderation_us: IRQ moderation value (in microseconds) 446 * @napi_dev: Net device used with NAPI 447 * @napi_str: NAPI control structure 448 * @state: state for NAPI vs busy polling 449 * @state_lock: lock protecting @state 450 * @eventq: Event queue buffer 451 * @eventq_mask: Event queue pointer mask 452 * @eventq_read_ptr: Event queue read pointer 453 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 454 * @irq_count: Number of IRQs since last adaptive moderation decision 455 * @irq_mod_score: IRQ moderation score 456 * @rfs_filter_count: number of accelerated RFS filters currently in place; 457 * equals the count of @rps_flow_id slots filled 458 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters 459 * were checked for expiry 460 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry 461 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions 462 * @n_rfs_failed: number of failed accelerated RFS filter insertions 463 * @filter_work: Work item for efx_filter_rfs_expire() 464 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 465 * indexed by filter ID 466 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 467 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 468 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 469 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 470 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 471 * @n_rx_overlength: Count of RX_OVERLENGTH errors 472 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 473 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 474 * lack of descriptors 475 * @n_rx_merge_events: Number of RX merged completion events 476 * @n_rx_merge_packets: Number of RX packets completed by merged events 477 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP 478 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors 479 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP 480 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP 481 * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was 482 * not recognised 483 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 484 * __efx_rx_packet(), or zero if there is none 485 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 486 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 487 * @rx_list: list of SKBs from current RX, awaiting processing 488 * @rx_queue: RX queue for this channel 489 * @tx_queue: TX queues for this channel 490 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type 491 * @sync_events_state: Current state of sync events on this channel 492 * @sync_timestamp_major: Major part of the last ptp sync event 493 * @sync_timestamp_minor: Minor part of the last ptp sync event 494 */ 495 struct efx_channel { 496 struct efx_nic *efx; 497 int channel; 498 const struct efx_channel_type *type; 499 bool eventq_init; 500 bool enabled; 501 int irq; 502 unsigned int irq_moderation_us; 503 struct net_device *napi_dev; 504 struct napi_struct napi_str; 505 #ifdef CONFIG_NET_RX_BUSY_POLL 506 unsigned long busy_poll_state; 507 #endif 508 struct efx_special_buffer eventq; 509 unsigned int eventq_mask; 510 unsigned int eventq_read_ptr; 511 int event_test_cpu; 512 513 unsigned int irq_count; 514 unsigned int irq_mod_score; 515 #ifdef CONFIG_RFS_ACCEL 516 unsigned int rfs_filter_count; 517 unsigned int rfs_last_expiry; 518 unsigned int rfs_expire_index; 519 unsigned int n_rfs_succeeded; 520 unsigned int n_rfs_failed; 521 struct delayed_work filter_work; 522 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF 523 u32 *rps_flow_id; 524 #endif 525 526 unsigned int n_rx_tobe_disc; 527 unsigned int n_rx_ip_hdr_chksum_err; 528 unsigned int n_rx_tcp_udp_chksum_err; 529 unsigned int n_rx_outer_ip_hdr_chksum_err; 530 unsigned int n_rx_outer_tcp_udp_chksum_err; 531 unsigned int n_rx_inner_ip_hdr_chksum_err; 532 unsigned int n_rx_inner_tcp_udp_chksum_err; 533 unsigned int n_rx_eth_crc_err; 534 unsigned int n_rx_mcast_mismatch; 535 unsigned int n_rx_frm_trunc; 536 unsigned int n_rx_overlength; 537 unsigned int n_skbuff_leaks; 538 unsigned int n_rx_nodesc_trunc; 539 unsigned int n_rx_merge_events; 540 unsigned int n_rx_merge_packets; 541 unsigned int n_rx_xdp_drops; 542 unsigned int n_rx_xdp_bad_drops; 543 unsigned int n_rx_xdp_tx; 544 unsigned int n_rx_xdp_redirect; 545 unsigned int n_rx_mport_bad; 546 547 unsigned int rx_pkt_n_frags; 548 unsigned int rx_pkt_index; 549 550 struct list_head *rx_list; 551 552 struct efx_rx_queue rx_queue; 553 struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL]; 554 struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES]; 555 556 enum efx_sync_events_state sync_events_state; 557 u32 sync_timestamp_major; 558 u32 sync_timestamp_minor; 559 }; 560 561 /** 562 * struct efx_msi_context - Context for each MSI 563 * @efx: The associated NIC 564 * @index: Index of the channel/IRQ 565 * @name: Name of the channel/IRQ 566 * 567 * Unlike &struct efx_channel, this is never reallocated and is always 568 * safe for the IRQ handler to access. 569 */ 570 struct efx_msi_context { 571 struct efx_nic *efx; 572 unsigned int index; 573 char name[IFNAMSIZ + 6]; 574 }; 575 576 /** 577 * struct efx_channel_type - distinguishes traffic and extra channels 578 * @handle_no_channel: Handle failure to allocate an extra channel 579 * @pre_probe: Set up extra state prior to initialisation 580 * @post_remove: Tear down extra state after finalisation, if allocated. 581 * May be called on channels that have not been probed. 582 * @get_name: Generate the channel's name (used for its IRQ handler) 583 * @copy: Copy the channel state prior to reallocation. May be %NULL if 584 * reallocation is not supported. 585 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 586 * @want_txqs: Determine whether this channel should have TX queues 587 * created. If %NULL, TX queues are not created. 588 * @keep_eventq: Flag for whether event queue should be kept initialised 589 * while the device is stopped 590 * @want_pio: Flag for whether PIO buffers should be linked to this 591 * channel's TX queues. 592 */ 593 struct efx_channel_type { 594 void (*handle_no_channel)(struct efx_nic *); 595 int (*pre_probe)(struct efx_channel *); 596 void (*post_remove)(struct efx_channel *); 597 void (*get_name)(struct efx_channel *, char *buf, size_t len); 598 struct efx_channel *(*copy)(const struct efx_channel *); 599 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 600 bool (*want_txqs)(struct efx_channel *); 601 bool keep_eventq; 602 bool want_pio; 603 }; 604 605 enum efx_led_mode { 606 EFX_LED_OFF = 0, 607 EFX_LED_ON = 1, 608 EFX_LED_DEFAULT = 2 609 }; 610 611 #define STRING_TABLE_LOOKUP(val, member) \ 612 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 613 614 extern const char *const efx_loopback_mode_names[]; 615 extern const unsigned int efx_loopback_mode_max; 616 #define LOOPBACK_MODE(efx) \ 617 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 618 619 enum efx_int_mode { 620 /* Be careful if altering to correct macro below */ 621 EFX_INT_MODE_MSIX = 0, 622 EFX_INT_MODE_MSI = 1, 623 EFX_INT_MODE_LEGACY = 2, 624 EFX_INT_MODE_MAX /* Insert any new items before this */ 625 }; 626 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 627 628 enum nic_state { 629 STATE_UNINIT = 0, /* device being probed/removed */ 630 STATE_PROBED, /* hardware probed */ 631 STATE_NET_DOWN, /* netdev registered */ 632 STATE_NET_UP, /* ready for traffic */ 633 STATE_DISABLED, /* device disabled due to hardware errors */ 634 635 STATE_RECOVERY = 0x100,/* recovering from PCI error */ 636 STATE_FROZEN = 0x200, /* frozen by power management */ 637 }; 638 639 static inline bool efx_net_active(enum nic_state state) 640 { 641 return state == STATE_NET_DOWN || state == STATE_NET_UP; 642 } 643 644 static inline bool efx_frozen(enum nic_state state) 645 { 646 return state & STATE_FROZEN; 647 } 648 649 static inline bool efx_recovering(enum nic_state state) 650 { 651 return state & STATE_RECOVERY; 652 } 653 654 static inline enum nic_state efx_freeze(enum nic_state state) 655 { 656 WARN_ON(!efx_net_active(state)); 657 return state | STATE_FROZEN; 658 } 659 660 static inline enum nic_state efx_thaw(enum nic_state state) 661 { 662 WARN_ON(!efx_frozen(state)); 663 return state & ~STATE_FROZEN; 664 } 665 666 static inline enum nic_state efx_recover(enum nic_state state) 667 { 668 WARN_ON(!efx_net_active(state)); 669 return state | STATE_RECOVERY; 670 } 671 672 static inline enum nic_state efx_recovered(enum nic_state state) 673 { 674 WARN_ON(!efx_recovering(state)); 675 return state & ~STATE_RECOVERY; 676 } 677 678 /* Forward declaration */ 679 struct efx_nic; 680 681 /* Pseudo bit-mask flow control field */ 682 #define EFX_FC_RX FLOW_CTRL_RX 683 #define EFX_FC_TX FLOW_CTRL_TX 684 #define EFX_FC_AUTO 4 685 686 /** 687 * struct efx_link_state - Current state of the link 688 * @up: Link is up 689 * @fd: Link is full-duplex 690 * @fc: Actual flow control flags 691 * @speed: Link speed (Mbps) 692 */ 693 struct efx_link_state { 694 bool up; 695 bool fd; 696 u8 fc; 697 unsigned int speed; 698 }; 699 700 static inline bool efx_link_state_equal(const struct efx_link_state *left, 701 const struct efx_link_state *right) 702 { 703 return left->up == right->up && left->fd == right->fd && 704 left->fc == right->fc && left->speed == right->speed; 705 } 706 707 /** 708 * enum efx_phy_mode - PHY operating mode flags 709 * @PHY_MODE_NORMAL: on and should pass traffic 710 * @PHY_MODE_TX_DISABLED: on with TX disabled 711 * @PHY_MODE_LOW_POWER: set to low power through MDIO 712 * @PHY_MODE_OFF: switched off through external control 713 * @PHY_MODE_SPECIAL: on but will not pass traffic 714 */ 715 enum efx_phy_mode { 716 PHY_MODE_NORMAL = 0, 717 PHY_MODE_TX_DISABLED = 1, 718 PHY_MODE_LOW_POWER = 2, 719 PHY_MODE_OFF = 4, 720 PHY_MODE_SPECIAL = 8, 721 }; 722 723 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 724 { 725 return !!(mode & ~PHY_MODE_TX_DISABLED); 726 } 727 728 /** 729 * struct efx_hw_stat_desc - Description of a hardware statistic 730 * @name: Name of the statistic as visible through ethtool, or %NULL if 731 * it should not be exposed 732 * @dma_width: Width in bits (0 for non-DMA statistics) 733 * @offset: Offset within stats (ignored for non-DMA statistics) 734 */ 735 struct efx_hw_stat_desc { 736 const char *name; 737 u16 dma_width; 738 u16 offset; 739 }; 740 741 /* Number of bits used in a multicast filter hash address */ 742 #define EFX_MCAST_HASH_BITS 8 743 744 /* Number of (single-bit) entries in a multicast filter hash */ 745 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 746 747 /* An Efx multicast filter hash */ 748 union efx_multicast_hash { 749 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 750 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 751 }; 752 753 struct vfdi_status; 754 755 /* The reserved RSS context value */ 756 #define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff 757 /** 758 * struct efx_rss_context - A user-defined RSS context for filtering 759 * @list: node of linked list on which this struct is stored 760 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or 761 * %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC. 762 * For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID. 763 * @user_id: the rss_context ID exposed to userspace over ethtool. 764 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled 765 * @rx_hash_key: Toeplitz hash key for this RSS context 766 * @indir_table: Indirection table for this RSS context 767 */ 768 struct efx_rss_context { 769 struct list_head list; 770 u32 context_id; 771 u32 user_id; 772 bool rx_hash_udp_4tuple; 773 u8 rx_hash_key[40]; 774 u32 rx_indir_table[128]; 775 }; 776 777 #ifdef CONFIG_RFS_ACCEL 778 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING 779 * is used to test if filter does or will exist. 780 */ 781 #define EFX_ARFS_FILTER_ID_PENDING -1 782 #define EFX_ARFS_FILTER_ID_ERROR -2 783 #define EFX_ARFS_FILTER_ID_REMOVING -3 784 /** 785 * struct efx_arfs_rule - record of an ARFS filter and its IDs 786 * @node: linkage into hash table 787 * @spec: details of the filter (used as key for hash table). Use efx->type to 788 * determine which member to use. 789 * @rxq_index: channel to which the filter will steer traffic. 790 * @arfs_id: filter ID which was returned to ARFS 791 * @filter_id: index in software filter table. May be 792 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet, 793 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or 794 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter. 795 */ 796 struct efx_arfs_rule { 797 struct hlist_node node; 798 struct efx_filter_spec spec; 799 u16 rxq_index; 800 u16 arfs_id; 801 s32 filter_id; 802 }; 803 804 /* Size chosen so that the table is one page (4kB) */ 805 #define EFX_ARFS_HASH_TABLE_SIZE 512 806 807 /** 808 * struct efx_async_filter_insertion - Request to asynchronously insert a filter 809 * @net_dev: Reference to the netdevice 810 * @spec: The filter to insert 811 * @work: Workitem for this request 812 * @rxq_index: Identifies the channel for which this request was made 813 * @flow_id: Identifies the kernel-side flow for which this request was made 814 */ 815 struct efx_async_filter_insertion { 816 struct net_device *net_dev; 817 struct efx_filter_spec spec; 818 struct work_struct work; 819 u16 rxq_index; 820 u32 flow_id; 821 }; 822 823 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */ 824 #define EFX_RPS_MAX_IN_FLIGHT 8 825 #endif /* CONFIG_RFS_ACCEL */ 826 827 enum efx_xdp_tx_queues_mode { 828 EFX_XDP_TX_QUEUES_DEDICATED, /* one queue per core, locking not needed */ 829 EFX_XDP_TX_QUEUES_SHARED, /* each queue used by more than 1 core */ 830 EFX_XDP_TX_QUEUES_BORROWED /* queues borrowed from net stack */ 831 }; 832 833 /** 834 * struct efx_nic - an Efx NIC 835 * @name: Device name (net device name or bus id before net device registered) 836 * @pci_dev: The PCI device 837 * @node: List node for maintaning primary/secondary function lists 838 * @primary: &struct efx_nic instance for the primary function of this 839 * controller. May be the same structure, and may be %NULL if no 840 * primary function is bound. Serialised by rtnl_lock. 841 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 842 * functions of the controller, if this is for the primary function. 843 * Serialised by rtnl_lock. 844 * @type: Controller type attributes 845 * @legacy_irq: IRQ number 846 * @workqueue: Workqueue for port reconfigures and the HW monitor. 847 * Work items do not hold and must not acquire RTNL. 848 * @workqueue_name: Name of workqueue 849 * @reset_work: Scheduled reset workitem 850 * @membase_phys: Memory BAR value as physical address 851 * @membase: Memory BAR value 852 * @vi_stride: step between per-VI registers / memory regions 853 * @interrupt_mode: Interrupt mode 854 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 855 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds 856 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 857 * @irqs_hooked: Channel interrupts are hooked 858 * @log_tc_errs: Error logging for TC filter insertion is enabled 859 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues 860 * @irq_rx_moderation_us: IRQ moderation time for RX event queues 861 * @msg_enable: Log message enable flags 862 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 863 * @reset_pending: Bitmask for pending resets 864 * @tx_queue: TX DMA queues 865 * @rx_queue: RX DMA queues 866 * @channel: Channels 867 * @msi_context: Context for each MSI 868 * @extra_channel_types: Types of extra (non-traffic) channels that 869 * should be allocated for this NIC 870 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues. 871 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit. 872 * @xdp_txq_queues_mode: XDP TX queues sharing strategy. 873 * @rxq_entries: Size of receive queues requested by user. 874 * @txq_entries: Size of transmit queues requested by user. 875 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 876 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 877 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 878 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 879 * @sram_lim_qw: Qword address limit of SRAM 880 * @next_buffer_table: First available buffer table id 881 * @n_channels: Number of channels in use 882 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 883 * @n_tx_channels: Number of channels used for TX 884 * @n_extra_tx_channels: Number of extra channels with TX queues 885 * @tx_queues_per_channel: number of TX queues probed on each channel 886 * @n_xdp_channels: Number of channels used for XDP TX 887 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX. 888 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel. 889 * @rx_ip_align: RX DMA address offset to have IP header aligned in 890 * in accordance with NET_IP_ALIGN 891 * @rx_dma_len: Current maximum RX DMA length 892 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 893 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 894 * for use in sk_buff::truesize 895 * @rx_prefix_size: Size of RX prefix before packet data 896 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 897 * (valid only if @rx_prefix_size != 0; always negative) 898 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 899 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 900 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 901 * (valid only if channel->sync_timestamps_enabled; always negative) 902 * @rx_scatter: Scatter mode enabled for receives 903 * @rss_context: Main RSS context. Its @list member is the head of the list of 904 * RSS contexts created by user requests 905 * @rss_lock: Protects custom RSS context software state in @rss_context.list 906 * @vport_id: The function's vport ID, only relevant for PFs 907 * @int_error_count: Number of internal errors seen recently 908 * @int_error_expire: Time at which error count will be expired 909 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot 910 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 911 * acknowledge but do nothing else. 912 * @irq_status: Interrupt status buffer 913 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 914 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 915 * @selftest_work: Work item for asynchronous self-test 916 * @mtd_list: List of MTDs attached to the NIC 917 * @nic_data: Hardware dependent state 918 * @mcdi: Management-Controller-to-Driver Interface state 919 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 920 * efx_monitor() and efx_reconfigure_port() 921 * @port_enabled: Port enabled indicator. 922 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 923 * efx_mac_work() with kernel interfaces. Safe to read under any 924 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 925 * be held to modify it. 926 * @port_initialized: Port initialized? 927 * @net_dev: Operating system network device. Consider holding the rtnl lock 928 * @fixed_features: Features which cannot be turned off 929 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS 930 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS) 931 * @stats_buffer: DMA buffer for statistics 932 * @phy_type: PHY type 933 * @phy_data: PHY private data (including PHY-specific stats) 934 * @mdio: PHY MDIO interface 935 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 936 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 937 * @link_advertising: Autonegotiation advertising flags 938 * @fec_config: Forward Error Correction configuration flags. For bit positions 939 * see &enum ethtool_fec_config_bits. 940 * @link_state: Current state of the link 941 * @n_link_state_changes: Number of times the link has changed state 942 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 943 * Protected by @mac_lock. 944 * @multicast_hash: Multicast hash table for Falcon-arch. 945 * Protected by @mac_lock. 946 * @wanted_fc: Wanted flow control flags 947 * @fc_disable: When non-zero flow control is disabled. Typically used to 948 * ensure that network back pressure doesn't delay dma queue flushes. 949 * Serialised by the rtnl lock. 950 * @mac_work: Work item for changing MAC promiscuity and multicast hash 951 * @loopback_mode: Loopback status 952 * @loopback_modes: Supported loopback mode bitmask 953 * @loopback_selftest: Offline self-test private state 954 * @xdp_prog: Current XDP programme for this interface 955 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state 956 * @filter_state: Architecture-dependent filter table state 957 * @rps_mutex: Protects RPS state of all channels 958 * @rps_slot_map: bitmap of in-flight entries in @rps_slot 959 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work() 960 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and 961 * @rps_next_id). 962 * @rps_hash_table: Mapping between ARFS filters and their various IDs 963 * @rps_next_id: next arfs_id for an ARFS filter 964 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 965 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 966 * Decremented when the efx_flush_rx_queue() is called. 967 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 968 * completed (either success or failure). Not used when MCDI is used to 969 * flush receive queues. 970 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 971 * @vf_count: Number of VFs intended to be enabled. 972 * @vf_init_count: Number of VFs that have been fully initialised. 973 * @vi_scale: log2 number of vnics per VF. 974 * @vf_reps_lock: Protects vf_reps list 975 * @vf_reps: local VF reps 976 * @ptp_data: PTP state data 977 * @ptp_warned: has this NIC seen and warned about unexpected PTP events? 978 * @vpd_sn: Serial number read from VPD 979 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their 980 * xdp_rxq_info structures? 981 * @netdev_notifier: Netdevice notifier. 982 * @tc: state for TC offload (EF100). 983 * @mem_bar: The BAR that is mapped into membase. 984 * @reg_base: Offset from the start of the bar to the function control window. 985 * @monitor_work: Hardware monitor workitem 986 * @biu_lock: BIU (bus interface unit) lock 987 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 988 * field is used by efx_test_interrupts() to verify that an 989 * interrupt has occurred. 990 * @stats_lock: Statistics update lock. Must be held when calling 991 * efx_nic_type::{update,start,stop}_stats. 992 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb 993 * 994 * This is stored in the private area of the &struct net_device. 995 */ 996 struct efx_nic { 997 /* The following fields should be written very rarely */ 998 999 char name[IFNAMSIZ]; 1000 struct list_head node; 1001 struct efx_nic *primary; 1002 struct list_head secondary_list; 1003 struct pci_dev *pci_dev; 1004 unsigned int port_num; 1005 const struct efx_nic_type *type; 1006 int legacy_irq; 1007 bool eeh_disabled_legacy_irq; 1008 struct workqueue_struct *workqueue; 1009 char workqueue_name[16]; 1010 struct work_struct reset_work; 1011 resource_size_t membase_phys; 1012 void __iomem *membase; 1013 1014 unsigned int vi_stride; 1015 1016 enum efx_int_mode interrupt_mode; 1017 unsigned int timer_quantum_ns; 1018 unsigned int timer_max_ns; 1019 bool irq_rx_adaptive; 1020 bool irqs_hooked; 1021 bool log_tc_errs; 1022 unsigned int irq_mod_step_us; 1023 unsigned int irq_rx_moderation_us; 1024 u32 msg_enable; 1025 1026 enum nic_state state; 1027 unsigned long reset_pending; 1028 1029 struct efx_channel *channel[EFX_MAX_CHANNELS]; 1030 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 1031 const struct efx_channel_type * 1032 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 1033 1034 unsigned int xdp_tx_queue_count; 1035 struct efx_tx_queue **xdp_tx_queues; 1036 enum efx_xdp_tx_queues_mode xdp_txq_queues_mode; 1037 1038 unsigned rxq_entries; 1039 unsigned txq_entries; 1040 unsigned int txq_stop_thresh; 1041 unsigned int txq_wake_thresh; 1042 1043 unsigned tx_dc_base; 1044 unsigned rx_dc_base; 1045 unsigned sram_lim_qw; 1046 unsigned next_buffer_table; 1047 1048 unsigned int max_channels; 1049 unsigned int max_vis; 1050 unsigned int max_tx_channels; 1051 unsigned n_channels; 1052 unsigned n_rx_channels; 1053 unsigned rss_spread; 1054 unsigned tx_channel_offset; 1055 unsigned n_tx_channels; 1056 unsigned n_extra_tx_channels; 1057 unsigned int tx_queues_per_channel; 1058 unsigned int n_xdp_channels; 1059 unsigned int xdp_channel_offset; 1060 unsigned int xdp_tx_per_channel; 1061 unsigned int rx_ip_align; 1062 unsigned int rx_dma_len; 1063 unsigned int rx_buffer_order; 1064 unsigned int rx_buffer_truesize; 1065 unsigned int rx_page_buf_step; 1066 unsigned int rx_bufs_per_page; 1067 unsigned int rx_pages_per_batch; 1068 unsigned int rx_prefix_size; 1069 int rx_packet_hash_offset; 1070 int rx_packet_len_offset; 1071 int rx_packet_ts_offset; 1072 bool rx_scatter; 1073 struct efx_rss_context rss_context; 1074 struct mutex rss_lock; 1075 u32 vport_id; 1076 1077 unsigned int_error_count; 1078 unsigned long int_error_expire; 1079 1080 bool must_realloc_vis; 1081 bool irq_soft_enabled; 1082 struct efx_buffer irq_status; 1083 unsigned irq_zero_count; 1084 unsigned irq_level; 1085 struct delayed_work selftest_work; 1086 1087 #ifdef CONFIG_SFC_MTD 1088 struct list_head mtd_list; 1089 #endif 1090 1091 void *nic_data; 1092 struct efx_mcdi_data *mcdi; 1093 1094 struct mutex mac_lock; 1095 struct work_struct mac_work; 1096 bool port_enabled; 1097 1098 bool mc_bist_for_other_fn; 1099 bool port_initialized; 1100 struct net_device *net_dev; 1101 1102 netdev_features_t fixed_features; 1103 1104 u16 num_mac_stats; 1105 struct efx_buffer stats_buffer; 1106 u64 rx_nodesc_drops_total; 1107 u64 rx_nodesc_drops_while_down; 1108 bool rx_nodesc_drops_prev_state; 1109 1110 unsigned int phy_type; 1111 void *phy_data; 1112 struct mdio_if_info mdio; 1113 unsigned int mdio_bus; 1114 enum efx_phy_mode phy_mode; 1115 1116 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising); 1117 u32 fec_config; 1118 struct efx_link_state link_state; 1119 unsigned int n_link_state_changes; 1120 1121 bool unicast_filter; 1122 union efx_multicast_hash multicast_hash; 1123 u8 wanted_fc; 1124 unsigned fc_disable; 1125 1126 atomic_t rx_reset; 1127 enum efx_loopback_mode loopback_mode; 1128 u64 loopback_modes; 1129 1130 void *loopback_selftest; 1131 /* We access loopback_selftest immediately before running XDP, 1132 * so we want them next to each other. 1133 */ 1134 struct bpf_prog __rcu *xdp_prog; 1135 1136 struct rw_semaphore filter_sem; 1137 void *filter_state; 1138 #ifdef CONFIG_RFS_ACCEL 1139 struct mutex rps_mutex; 1140 unsigned long rps_slot_map; 1141 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT]; 1142 spinlock_t rps_hash_lock; 1143 struct hlist_head *rps_hash_table; 1144 u32 rps_next_id; 1145 #endif 1146 1147 atomic_t active_queues; 1148 atomic_t rxq_flush_pending; 1149 atomic_t rxq_flush_outstanding; 1150 wait_queue_head_t flush_wq; 1151 1152 #ifdef CONFIG_SFC_SRIOV 1153 unsigned vf_count; 1154 unsigned vf_init_count; 1155 unsigned vi_scale; 1156 #endif 1157 spinlock_t vf_reps_lock; 1158 struct list_head vf_reps; 1159 1160 struct efx_ptp_data *ptp_data; 1161 bool ptp_warned; 1162 1163 char *vpd_sn; 1164 bool xdp_rxq_info_failed; 1165 1166 struct notifier_block netdev_notifier; 1167 struct efx_tc_state *tc; 1168 1169 unsigned int mem_bar; 1170 u32 reg_base; 1171 1172 /* The following fields may be written more often */ 1173 1174 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 1175 spinlock_t biu_lock; 1176 int last_irq_cpu; 1177 spinlock_t stats_lock; 1178 atomic_t n_rx_noskb_drops; 1179 }; 1180 1181 /** 1182 * struct efx_probe_data - State after hardware probe 1183 * @pci_dev: The PCI device 1184 * @efx: Efx NIC details 1185 */ 1186 struct efx_probe_data { 1187 struct pci_dev *pci_dev; 1188 struct efx_nic efx; 1189 }; 1190 1191 static inline struct efx_nic *efx_netdev_priv(struct net_device *dev) 1192 { 1193 struct efx_probe_data **probe_ptr = netdev_priv(dev); 1194 struct efx_probe_data *probe_data = *probe_ptr; 1195 1196 return &probe_data->efx; 1197 } 1198 1199 static inline int efx_dev_registered(struct efx_nic *efx) 1200 { 1201 return efx->net_dev->reg_state == NETREG_REGISTERED; 1202 } 1203 1204 static inline unsigned int efx_port_num(struct efx_nic *efx) 1205 { 1206 return efx->port_num; 1207 } 1208 1209 struct efx_mtd_partition { 1210 struct list_head node; 1211 struct mtd_info mtd; 1212 const char *dev_type_name; 1213 const char *type_name; 1214 char name[IFNAMSIZ + 20]; 1215 }; 1216 1217 struct efx_udp_tunnel { 1218 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff 1219 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */ 1220 __be16 port; 1221 }; 1222 1223 /** 1224 * struct efx_nic_type - Efx device type definition 1225 * @mem_bar: Get the memory BAR 1226 * @mem_map_size: Get memory BAR mapped size 1227 * @probe: Probe the controller 1228 * @remove: Free resources allocated by probe() 1229 * @init: Initialise the controller 1230 * @dimension_resources: Dimension controller resources (buffer table, 1231 * and VIs once the available interrupt resources are clear) 1232 * @fini: Shut down the controller 1233 * @monitor: Periodic function for polling link state and hardware monitor 1234 * @map_reset_reason: Map ethtool reset reason to a reset method 1235 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 1236 * @reset: Reset the controller hardware and possibly the PHY. This will 1237 * be called while the controller is uninitialised. 1238 * @probe_port: Probe the MAC and PHY 1239 * @remove_port: Free resources allocated by probe_port() 1240 * @handle_global_event: Handle a "global" event (may be %NULL) 1241 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 1242 * @prepare_flush: Prepare the hardware for flushing the DMA queues 1243 * (for Falcon architecture) 1244 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 1245 * architecture) 1246 * @prepare_flr: Prepare for an FLR 1247 * @finish_flr: Clean up after an FLR 1248 * @describe_stats: Describe statistics for ethtool 1249 * @update_stats: Update statistics not provided by event handling. 1250 * Either argument may be %NULL. 1251 * @update_stats_atomic: Update statistics while in atomic context, if that 1252 * is more limiting than @update_stats. Otherwise, leave %NULL and 1253 * driver core will call @update_stats. 1254 * @start_stats: Start the regular fetching of statistics 1255 * @pull_stats: Pull stats from the NIC and wait until they arrive. 1256 * @stop_stats: Stop the regular fetching of statistics 1257 * @push_irq_moderation: Apply interrupt moderation value 1258 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 1259 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 1260 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 1261 * to the hardware. Serialised by the mac_lock. 1262 * @check_mac_fault: Check MAC fault state. True if fault present. 1263 * @get_wol: Get WoL configuration from driver state 1264 * @set_wol: Push WoL configuration to the NIC 1265 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1266 * @get_fec_stats: Get standard FEC statistics. 1267 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 1268 * expected to reset the NIC. 1269 * @test_nvram: Test validity of NVRAM contents 1270 * @mcdi_request: Send an MCDI request with the given header and SDU. 1271 * The SDU length may be any value from 0 up to the protocol- 1272 * defined maximum, but its buffer will be padded to a multiple 1273 * of 4 bytes. 1274 * @mcdi_poll_response: Test whether an MCDI response is available. 1275 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1276 * be a multiple of 4. The length may not be, but the buffer 1277 * will be padded so it is safe to round up. 1278 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1279 * return an appropriate error code for aborting any current 1280 * request; otherwise return 0. 1281 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1282 * be separately enabled after this. 1283 * @irq_test_generate: Generate a test IRQ 1284 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1285 * queue must be separately disabled before this. 1286 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1287 * a pointer to the &struct efx_msi_context for the channel. 1288 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1289 * is a pointer to the &struct efx_nic. 1290 * @tx_probe: Allocate resources for TX queue (and select TXQ type) 1291 * @tx_init: Initialise TX queue on the NIC 1292 * @tx_remove: Free resources for TX queue 1293 * @tx_write: Write TX descriptors and doorbell 1294 * @tx_enqueue: Add an SKB to TX queue 1295 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC 1296 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC 1297 * @rx_push_rss_context_config: Write RSS hash key and indirection table for 1298 * user RSS context to the NIC 1299 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user 1300 * RSS context back from the NIC 1301 * @rx_probe: Allocate resources for RX queue 1302 * @rx_init: Initialise RX queue on the NIC 1303 * @rx_remove: Free resources for RX queue 1304 * @rx_write: Write RX descriptors and doorbell 1305 * @rx_defer_refill: Generate a refill reminder event 1306 * @rx_packet: Receive the queued RX buffer on a channel 1307 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash 1308 * @ev_probe: Allocate resources for event queue 1309 * @ev_init: Initialise event queue on the NIC 1310 * @ev_fini: Deinitialise event queue on the NIC 1311 * @ev_remove: Free resources for event queue 1312 * @ev_process: Process events for a queue, up to the given NAPI quota 1313 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1314 * @ev_test_generate: Generate a test event 1315 * @filter_table_probe: Probe filter capabilities and set up filter software state 1316 * @filter_table_restore: Restore filters removed from hardware 1317 * @filter_table_remove: Remove filters from hardware and tear down software state 1318 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1319 * @filter_insert: add or replace a filter 1320 * @filter_remove_safe: remove a filter by ID, carefully 1321 * @filter_get_safe: retrieve a filter by ID, carefully 1322 * @filter_clear_rx: Remove all RX filters whose priority is less than or 1323 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO 1324 * @filter_count_rx_used: Get the number of filters in use at a given priority 1325 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1326 * @filter_get_rx_ids: Get list of RX filters at a given priority 1327 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1328 * This must check whether the specified table entry is used by RFS 1329 * and that rps_may_expire_flow() returns true for it. 1330 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1331 * using efx_mtd_add() 1332 * @mtd_rename: Set an MTD partition name using the net device name 1333 * @mtd_read: Read from an MTD partition 1334 * @mtd_erase: Erase part of an MTD partition 1335 * @mtd_write: Write to an MTD partition 1336 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1337 * also notifies the driver that a writer has finished using this 1338 * partition. 1339 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1340 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1341 * timestamping, possibly only temporarily for the purposes of a reset. 1342 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1343 * and tx_type will already have been validated but this operation 1344 * must validate and update rx_filter. 1345 * @get_phys_port_id: Get the underlying physical port id. 1346 * @set_mac_address: Set the MAC address of the device 1347 * @tso_versions: Returns mask of firmware-assisted TSO versions supported. 1348 * If %NULL, then device does not support any TSO version. 1349 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required. 1350 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel 1351 * @print_additional_fwver: Dump NIC-specific additional FW version info 1352 * @sensor_event: Handle a sensor event from MCDI 1353 * @rx_recycle_ring_size: Size of the RX recycle ring 1354 * @revision: Hardware architecture revision 1355 * @txd_ptr_tbl_base: TX descriptor ring base address 1356 * @rxd_ptr_tbl_base: RX descriptor ring base address 1357 * @buf_tbl_base: Buffer table base address 1358 * @evq_ptr_tbl_base: Event queue pointer table base address 1359 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1360 * @max_dma_mask: Maximum possible DMA mask 1361 * @rx_prefix_size: Size of RX prefix before packet data 1362 * @rx_hash_offset: Offset of RX flow hash within prefix 1363 * @rx_ts_offset: Offset of timestamp within prefix 1364 * @rx_buffer_padding: Size of padding at end of RX packet 1365 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1366 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1367 * @option_descriptors: NIC supports TX option descriptors 1368 * @min_interrupt_mode: Lowest capability interrupt mode supported 1369 * from &enum efx_int_mode. 1370 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1371 * @offload_features: net_device feature flags for protocol offload 1372 * features implemented in hardware 1373 * @mcdi_max_ver: Maximum MCDI version supported 1374 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1375 */ 1376 struct efx_nic_type { 1377 bool is_vf; 1378 unsigned int (*mem_bar)(struct efx_nic *efx); 1379 unsigned int (*mem_map_size)(struct efx_nic *efx); 1380 int (*probe)(struct efx_nic *efx); 1381 void (*remove)(struct efx_nic *efx); 1382 int (*init)(struct efx_nic *efx); 1383 int (*dimension_resources)(struct efx_nic *efx); 1384 void (*fini)(struct efx_nic *efx); 1385 void (*monitor)(struct efx_nic *efx); 1386 enum reset_type (*map_reset_reason)(enum reset_type reason); 1387 int (*map_reset_flags)(u32 *flags); 1388 int (*reset)(struct efx_nic *efx, enum reset_type method); 1389 int (*probe_port)(struct efx_nic *efx); 1390 void (*remove_port)(struct efx_nic *efx); 1391 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1392 int (*fini_dmaq)(struct efx_nic *efx); 1393 void (*prepare_flush)(struct efx_nic *efx); 1394 void (*finish_flush)(struct efx_nic *efx); 1395 void (*prepare_flr)(struct efx_nic *efx); 1396 void (*finish_flr)(struct efx_nic *efx); 1397 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1398 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1399 struct rtnl_link_stats64 *core_stats); 1400 size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats, 1401 struct rtnl_link_stats64 *core_stats); 1402 void (*start_stats)(struct efx_nic *efx); 1403 void (*pull_stats)(struct efx_nic *efx); 1404 void (*stop_stats)(struct efx_nic *efx); 1405 void (*push_irq_moderation)(struct efx_channel *channel); 1406 int (*reconfigure_port)(struct efx_nic *efx); 1407 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1408 int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only); 1409 bool (*check_mac_fault)(struct efx_nic *efx); 1410 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1411 int (*set_wol)(struct efx_nic *efx, u32 type); 1412 void (*resume_wol)(struct efx_nic *efx); 1413 void (*get_fec_stats)(struct efx_nic *efx, 1414 struct ethtool_fec_stats *fec_stats); 1415 unsigned int (*check_caps)(const struct efx_nic *efx, 1416 u8 flag, 1417 u32 offset); 1418 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1419 int (*test_nvram)(struct efx_nic *efx); 1420 void (*mcdi_request)(struct efx_nic *efx, 1421 const efx_dword_t *hdr, size_t hdr_len, 1422 const efx_dword_t *sdu, size_t sdu_len); 1423 bool (*mcdi_poll_response)(struct efx_nic *efx); 1424 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1425 size_t pdu_offset, size_t pdu_len); 1426 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1427 void (*mcdi_reboot_detected)(struct efx_nic *efx); 1428 void (*irq_enable_master)(struct efx_nic *efx); 1429 int (*irq_test_generate)(struct efx_nic *efx); 1430 void (*irq_disable_non_ev)(struct efx_nic *efx); 1431 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1432 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1433 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1434 void (*tx_init)(struct efx_tx_queue *tx_queue); 1435 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1436 void (*tx_write)(struct efx_tx_queue *tx_queue); 1437 netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb); 1438 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue, 1439 dma_addr_t dma_addr, unsigned int len); 1440 int (*rx_push_rss_config)(struct efx_nic *efx, bool user, 1441 const u32 *rx_indir_table, const u8 *key); 1442 int (*rx_pull_rss_config)(struct efx_nic *efx); 1443 int (*rx_push_rss_context_config)(struct efx_nic *efx, 1444 struct efx_rss_context *ctx, 1445 const u32 *rx_indir_table, 1446 const u8 *key); 1447 int (*rx_pull_rss_context_config)(struct efx_nic *efx, 1448 struct efx_rss_context *ctx); 1449 void (*rx_restore_rss_contexts)(struct efx_nic *efx); 1450 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1451 void (*rx_init)(struct efx_rx_queue *rx_queue); 1452 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1453 void (*rx_write)(struct efx_rx_queue *rx_queue); 1454 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1455 void (*rx_packet)(struct efx_channel *channel); 1456 bool (*rx_buf_hash_valid)(const u8 *prefix); 1457 int (*ev_probe)(struct efx_channel *channel); 1458 int (*ev_init)(struct efx_channel *channel); 1459 void (*ev_fini)(struct efx_channel *channel); 1460 void (*ev_remove)(struct efx_channel *channel); 1461 int (*ev_process)(struct efx_channel *channel, int quota); 1462 void (*ev_read_ack)(struct efx_channel *channel); 1463 void (*ev_test_generate)(struct efx_channel *channel); 1464 int (*filter_table_probe)(struct efx_nic *efx); 1465 void (*filter_table_restore)(struct efx_nic *efx); 1466 void (*filter_table_remove)(struct efx_nic *efx); 1467 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1468 s32 (*filter_insert)(struct efx_nic *efx, 1469 struct efx_filter_spec *spec, bool replace); 1470 int (*filter_remove_safe)(struct efx_nic *efx, 1471 enum efx_filter_priority priority, 1472 u32 filter_id); 1473 int (*filter_get_safe)(struct efx_nic *efx, 1474 enum efx_filter_priority priority, 1475 u32 filter_id, struct efx_filter_spec *); 1476 int (*filter_clear_rx)(struct efx_nic *efx, 1477 enum efx_filter_priority priority); 1478 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1479 enum efx_filter_priority priority); 1480 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1481 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1482 enum efx_filter_priority priority, 1483 u32 *buf, u32 size); 1484 #ifdef CONFIG_RFS_ACCEL 1485 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1486 unsigned int index); 1487 #endif 1488 #ifdef CONFIG_SFC_MTD 1489 int (*mtd_probe)(struct efx_nic *efx); 1490 void (*mtd_rename)(struct efx_mtd_partition *part); 1491 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1492 size_t *retlen, u8 *buffer); 1493 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1494 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1495 size_t *retlen, const u8 *buffer); 1496 int (*mtd_sync)(struct mtd_info *mtd); 1497 #endif 1498 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1499 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1500 int (*ptp_set_ts_config)(struct efx_nic *efx, 1501 struct hwtstamp_config *init); 1502 int (*sriov_configure)(struct efx_nic *efx, int num_vfs); 1503 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1504 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1505 int (*get_phys_port_id)(struct efx_nic *efx, 1506 struct netdev_phys_item_id *ppid); 1507 int (*sriov_init)(struct efx_nic *efx); 1508 void (*sriov_fini)(struct efx_nic *efx); 1509 bool (*sriov_wanted)(struct efx_nic *efx); 1510 void (*sriov_reset)(struct efx_nic *efx); 1511 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i); 1512 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac); 1513 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan, 1514 u8 qos); 1515 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i, 1516 bool spoofchk); 1517 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i, 1518 struct ifla_vf_info *ivi); 1519 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i, 1520 int link_state); 1521 int (*vswitching_probe)(struct efx_nic *efx); 1522 int (*vswitching_restore)(struct efx_nic *efx); 1523 void (*vswitching_remove)(struct efx_nic *efx); 1524 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr); 1525 int (*set_mac_address)(struct efx_nic *efx); 1526 u32 (*tso_versions)(struct efx_nic *efx); 1527 int (*udp_tnl_push_ports)(struct efx_nic *efx); 1528 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port); 1529 size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf, 1530 size_t len); 1531 void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev); 1532 unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx); 1533 1534 int revision; 1535 unsigned int txd_ptr_tbl_base; 1536 unsigned int rxd_ptr_tbl_base; 1537 unsigned int buf_tbl_base; 1538 unsigned int evq_ptr_tbl_base; 1539 unsigned int evq_rptr_tbl_base; 1540 u64 max_dma_mask; 1541 unsigned int rx_prefix_size; 1542 unsigned int rx_hash_offset; 1543 unsigned int rx_ts_offset; 1544 unsigned int rx_buffer_padding; 1545 bool can_rx_scatter; 1546 bool always_rx_scatter; 1547 bool option_descriptors; 1548 unsigned int min_interrupt_mode; 1549 unsigned int timer_period_max; 1550 netdev_features_t offload_features; 1551 int mcdi_max_ver; 1552 unsigned int max_rx_ip_filters; 1553 u32 hwtstamp_filters; 1554 unsigned int rx_hash_key_size; 1555 }; 1556 1557 /************************************************************************** 1558 * 1559 * Prototypes and inline functions 1560 * 1561 *************************************************************************/ 1562 1563 static inline struct efx_channel * 1564 efx_get_channel(struct efx_nic *efx, unsigned index) 1565 { 1566 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels); 1567 return efx->channel[index]; 1568 } 1569 1570 /* Iterate over all used channels */ 1571 #define efx_for_each_channel(_channel, _efx) \ 1572 for (_channel = (_efx)->channel[0]; \ 1573 _channel; \ 1574 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1575 (_efx)->channel[_channel->channel + 1] : NULL) 1576 1577 /* Iterate over all used channels in reverse */ 1578 #define efx_for_each_channel_rev(_channel, _efx) \ 1579 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1580 _channel; \ 1581 _channel = _channel->channel ? \ 1582 (_efx)->channel[_channel->channel - 1] : NULL) 1583 1584 static inline struct efx_channel * 1585 efx_get_tx_channel(struct efx_nic *efx, unsigned int index) 1586 { 1587 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels); 1588 return efx->channel[efx->tx_channel_offset + index]; 1589 } 1590 1591 static inline struct efx_channel * 1592 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index) 1593 { 1594 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels); 1595 return efx->channel[efx->xdp_channel_offset + index]; 1596 } 1597 1598 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel) 1599 { 1600 return channel->channel - channel->efx->xdp_channel_offset < 1601 channel->efx->n_xdp_channels; 1602 } 1603 1604 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1605 { 1606 return channel && channel->channel >= channel->efx->tx_channel_offset; 1607 } 1608 1609 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel) 1610 { 1611 if (efx_channel_is_xdp_tx(channel)) 1612 return channel->efx->xdp_tx_per_channel; 1613 return channel->efx->tx_queues_per_channel; 1614 } 1615 1616 static inline struct efx_tx_queue * 1617 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type) 1618 { 1619 EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES); 1620 return channel->tx_queue_by_type[type]; 1621 } 1622 1623 static inline struct efx_tx_queue * 1624 efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type) 1625 { 1626 struct efx_channel *channel = efx_get_tx_channel(efx, index); 1627 1628 return efx_channel_get_tx_queue(channel, type); 1629 } 1630 1631 /* Iterate over all TX queues belonging to a channel */ 1632 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1633 if (!efx_channel_has_tx_queues(_channel)) \ 1634 ; \ 1635 else \ 1636 for (_tx_queue = (_channel)->tx_queue; \ 1637 _tx_queue < (_channel)->tx_queue + \ 1638 efx_channel_num_tx_queues(_channel); \ 1639 _tx_queue++) 1640 1641 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1642 { 1643 return channel->rx_queue.core_index >= 0; 1644 } 1645 1646 static inline struct efx_rx_queue * 1647 efx_channel_get_rx_queue(struct efx_channel *channel) 1648 { 1649 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel)); 1650 return &channel->rx_queue; 1651 } 1652 1653 /* Iterate over all RX queues belonging to a channel */ 1654 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1655 if (!efx_channel_has_rx_queue(_channel)) \ 1656 ; \ 1657 else \ 1658 for (_rx_queue = &(_channel)->rx_queue; \ 1659 _rx_queue; \ 1660 _rx_queue = NULL) 1661 1662 static inline struct efx_channel * 1663 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1664 { 1665 return container_of(rx_queue, struct efx_channel, rx_queue); 1666 } 1667 1668 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1669 { 1670 return efx_rx_queue_channel(rx_queue)->channel; 1671 } 1672 1673 /* Returns a pointer to the specified receive buffer in the RX 1674 * descriptor queue. 1675 */ 1676 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1677 unsigned int index) 1678 { 1679 return &rx_queue->buffer[index]; 1680 } 1681 1682 static inline struct efx_rx_buffer * 1683 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 1684 { 1685 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 1686 return efx_rx_buffer(rx_queue, 0); 1687 else 1688 return rx_buf + 1; 1689 } 1690 1691 /** 1692 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1693 * 1694 * This calculates the maximum frame length that will be used for a 1695 * given MTU. The frame length will be equal to the MTU plus a 1696 * constant amount of header space and padding. This is the quantity 1697 * that the net driver will program into the MAC as the maximum frame 1698 * length. 1699 * 1700 * The 10G MAC requires 8-byte alignment on the frame 1701 * length, so we round up to the nearest 8. 1702 * 1703 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1704 * XGMII cycle). If the frame length reaches the maximum value in the 1705 * same cycle, the XMAC can miss the IPG altogether. We work around 1706 * this by adding a further 16 bytes. 1707 */ 1708 #define EFX_FRAME_PAD 16 1709 #define EFX_MAX_FRAME_LEN(mtu) \ 1710 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8)) 1711 1712 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1713 { 1714 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1715 } 1716 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1717 { 1718 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1719 } 1720 1721 /* Get the max fill level of the TX queues on this channel */ 1722 static inline unsigned int 1723 efx_channel_tx_fill_level(struct efx_channel *channel) 1724 { 1725 struct efx_tx_queue *tx_queue; 1726 unsigned int fill_level = 0; 1727 1728 efx_for_each_channel_tx_queue(tx_queue, channel) 1729 fill_level = max(fill_level, 1730 tx_queue->insert_count - tx_queue->read_count); 1731 1732 return fill_level; 1733 } 1734 1735 /* Conservative approximation of efx_channel_tx_fill_level using cached value */ 1736 static inline unsigned int 1737 efx_channel_tx_old_fill_level(struct efx_channel *channel) 1738 { 1739 struct efx_tx_queue *tx_queue; 1740 unsigned int fill_level = 0; 1741 1742 efx_for_each_channel_tx_queue(tx_queue, channel) 1743 fill_level = max(fill_level, 1744 tx_queue->insert_count - tx_queue->old_read_count); 1745 1746 return fill_level; 1747 } 1748 1749 /* Get all supported features. 1750 * If a feature is not fixed, it is present in hw_features. 1751 * If a feature is fixed, it does not present in hw_features, but 1752 * always in features. 1753 */ 1754 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx) 1755 { 1756 const struct net_device *net_dev = efx->net_dev; 1757 1758 return net_dev->features | net_dev->hw_features; 1759 } 1760 1761 /* Get the current TX queue insert index. */ 1762 static inline unsigned int 1763 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue) 1764 { 1765 return tx_queue->insert_count & tx_queue->ptr_mask; 1766 } 1767 1768 /* Get a TX buffer. */ 1769 static inline struct efx_tx_buffer * 1770 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1771 { 1772 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)]; 1773 } 1774 1775 /* Get a TX buffer, checking it's not currently in use. */ 1776 static inline struct efx_tx_buffer * 1777 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1778 { 1779 struct efx_tx_buffer *buffer = 1780 __efx_tx_queue_get_insert_buffer(tx_queue); 1781 1782 EFX_WARN_ON_ONCE_PARANOID(buffer->len); 1783 EFX_WARN_ON_ONCE_PARANOID(buffer->flags); 1784 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len); 1785 1786 return buffer; 1787 } 1788 1789 #endif /* EFX_NET_DRIVER_H */ 1790