1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 /* Common definitions for all Efx net driver code */
9 
10 #ifndef EFX_NET_DRIVER_H
11 #define EFX_NET_DRIVER_H
12 
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/if_vlan.h>
17 #include <linux/timer.h>
18 #include <linux/mdio.h>
19 #include <linux/list.h>
20 #include <linux/pci.h>
21 #include <linux/device.h>
22 #include <linux/highmem.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/i2c.h>
28 #include <linux/mtd/mtd.h>
29 #include <net/busy_poll.h>
30 
31 #include "enum.h"
32 #include "bitfield.h"
33 #include "filter.h"
34 
35 /**************************************************************************
36  *
37  * Build definitions
38  *
39  **************************************************************************/
40 
41 #define EFX_DRIVER_VERSION	"4.1"
42 
43 #ifdef DEBUG
44 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
45 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
46 #else
47 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
48 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
49 #endif
50 
51 /**************************************************************************
52  *
53  * Efx data structures
54  *
55  **************************************************************************/
56 
57 #define EFX_MAX_CHANNELS 32U
58 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
59 #define EFX_EXTRA_CHANNEL_IOV	0
60 #define EFX_EXTRA_CHANNEL_PTP	1
61 #define EFX_MAX_EXTRA_CHANNELS	2U
62 
63 /* Checksum generation is a per-queue option in hardware, so each
64  * queue visible to the networking core is backed by two hardware TX
65  * queues. */
66 #define EFX_MAX_TX_TC		2
67 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
68 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
69 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
70 #define EFX_TXQ_TYPES		4
71 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
72 
73 /* Maximum possible MTU the driver supports */
74 #define EFX_MAX_MTU (9 * 1024)
75 
76 /* Minimum MTU, from RFC791 (IP) */
77 #define EFX_MIN_MTU 68
78 
79 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
80  * and should be a multiple of the cache line size.
81  */
82 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
83 
84 /* If possible, we should ensure cache line alignment at start and end
85  * of every buffer.  Otherwise, we just need to ensure 4-byte
86  * alignment of the network header.
87  */
88 #if NET_IP_ALIGN == 0
89 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
90 #else
91 #define EFX_RX_BUF_ALIGNMENT	4
92 #endif
93 
94 /* Forward declare Precision Time Protocol (PTP) support structure. */
95 struct efx_ptp_data;
96 struct hwtstamp_config;
97 
98 struct efx_self_tests;
99 
100 /**
101  * struct efx_buffer - A general-purpose DMA buffer
102  * @addr: host base address of the buffer
103  * @dma_addr: DMA base address of the buffer
104  * @len: Buffer length, in bytes
105  *
106  * The NIC uses these buffers for its interrupt status registers and
107  * MAC stats dumps.
108  */
109 struct efx_buffer {
110 	void *addr;
111 	dma_addr_t dma_addr;
112 	unsigned int len;
113 };
114 
115 /**
116  * struct efx_special_buffer - DMA buffer entered into buffer table
117  * @buf: Standard &struct efx_buffer
118  * @index: Buffer index within controller;s buffer table
119  * @entries: Number of buffer table entries
120  *
121  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
122  * Event and descriptor rings are addressed via one or more buffer
123  * table entries (and so can be physically non-contiguous, although we
124  * currently do not take advantage of that).  On Falcon and Siena we
125  * have to take care of allocating and initialising the entries
126  * ourselves.  On later hardware this is managed by the firmware and
127  * @index and @entries are left as 0.
128  */
129 struct efx_special_buffer {
130 	struct efx_buffer buf;
131 	unsigned int index;
132 	unsigned int entries;
133 };
134 
135 /**
136  * struct efx_tx_buffer - buffer state for a TX descriptor
137  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
138  *	freed when descriptor completes
139  * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
140  * @dma_addr: DMA address of the fragment.
141  * @flags: Flags for allocation and DMA mapping type
142  * @len: Length of this fragment.
143  *	This field is zero when the queue slot is empty.
144  * @unmap_len: Length of this fragment to unmap
145  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
146  * Only valid if @unmap_len != 0.
147  */
148 struct efx_tx_buffer {
149 	const struct sk_buff *skb;
150 	union {
151 		efx_qword_t option;
152 		dma_addr_t dma_addr;
153 	};
154 	unsigned short flags;
155 	unsigned short len;
156 	unsigned short unmap_len;
157 	unsigned short dma_offset;
158 };
159 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
160 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
161 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
162 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
163 
164 /**
165  * struct efx_tx_queue - An Efx TX queue
166  *
167  * This is a ring buffer of TX fragments.
168  * Since the TX completion path always executes on the same
169  * CPU and the xmit path can operate on different CPUs,
170  * performance is increased by ensuring that the completion
171  * path and the xmit path operate on different cache lines.
172  * This is particularly important if the xmit path is always
173  * executing on one CPU which is different from the completion
174  * path.  There is also a cache line for members which are
175  * read but not written on the fast path.
176  *
177  * @efx: The associated Efx NIC
178  * @queue: DMA queue number
179  * @tso_version: Version of TSO in use for this queue.
180  * @channel: The associated channel
181  * @core_txq: The networking core TX queue structure
182  * @buffer: The software buffer ring
183  * @cb_page: Array of pages of copy buffers.  Carved up according to
184  *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
185  * @txd: The hardware descriptor ring
186  * @ptr_mask: The size of the ring minus 1.
187  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
188  *	Size of the region is efx_piobuf_size.
189  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
190  * @initialised: Has hardware queue been initialised?
191  * @timestamping: Is timestamping enabled for this channel?
192  * @handle_tso: TSO xmit preparation handler.  Sets up the TSO metadata and
193  *	may also map tx data, depending on the nature of the TSO implementation.
194  * @read_count: Current read pointer.
195  *	This is the number of buffers that have been removed from both rings.
196  * @old_write_count: The value of @write_count when last checked.
197  *	This is here for performance reasons.  The xmit path will
198  *	only get the up-to-date value of @write_count if this
199  *	variable indicates that the queue is empty.  This is to
200  *	avoid cache-line ping-pong between the xmit path and the
201  *	completion path.
202  * @merge_events: Number of TX merged completion events
203  * @completed_desc_ptr: Most recent completed pointer - only used with
204  *      timestamping.
205  * @completed_timestamp_major: Top part of the most recent tx timestamp.
206  * @completed_timestamp_minor: Low part of the most recent tx timestamp.
207  * @insert_count: Current insert pointer
208  *	This is the number of buffers that have been added to the
209  *	software ring.
210  * @write_count: Current write pointer
211  *	This is the number of buffers that have been added to the
212  *	hardware ring.
213  * @packet_write_count: Completable write pointer
214  *	This is the write pointer of the last packet written.
215  *	Normally this will equal @write_count, but as option descriptors
216  *	don't produce completion events, they won't update this.
217  *	Filled in iff @efx->type->option_descriptors; only used for PIO.
218  *	Thus, this is written and used on EF10, and neither on farch.
219  * @old_read_count: The value of read_count when last checked.
220  *	This is here for performance reasons.  The xmit path will
221  *	only get the up-to-date value of read_count if this
222  *	variable indicates that the queue is full.  This is to
223  *	avoid cache-line ping-pong between the xmit path and the
224  *	completion path.
225  * @tso_bursts: Number of times TSO xmit invoked by kernel
226  * @tso_long_headers: Number of packets with headers too long for standard
227  *	blocks
228  * @tso_packets: Number of packets via the TSO xmit path
229  * @tso_fallbacks: Number of times TSO fallback used
230  * @pushes: Number of times the TX push feature has been used
231  * @pio_packets: Number of times the TX PIO feature has been used
232  * @xmit_more_available: Are any packets waiting to be pushed to the NIC
233  * @cb_packets: Number of times the TX copybreak feature has been used
234  * @empty_read_count: If the completion path has seen the queue as empty
235  *	and the transmission path has not yet checked this, the value of
236  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
237  */
238 struct efx_tx_queue {
239 	/* Members which don't change on the fast path */
240 	struct efx_nic *efx ____cacheline_aligned_in_smp;
241 	unsigned queue;
242 	unsigned int tso_version;
243 	struct efx_channel *channel;
244 	struct netdev_queue *core_txq;
245 	struct efx_tx_buffer *buffer;
246 	struct efx_buffer *cb_page;
247 	struct efx_special_buffer txd;
248 	unsigned int ptr_mask;
249 	void __iomem *piobuf;
250 	unsigned int piobuf_offset;
251 	bool initialised;
252 	bool timestamping;
253 
254 	/* Function pointers used in the fast path. */
255 	int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
256 
257 	/* Members used mainly on the completion path */
258 	unsigned int read_count ____cacheline_aligned_in_smp;
259 	unsigned int old_write_count;
260 	unsigned int merge_events;
261 	unsigned int bytes_compl;
262 	unsigned int pkts_compl;
263 	unsigned int completed_desc_ptr;
264 	u32 completed_timestamp_major;
265 	u32 completed_timestamp_minor;
266 
267 	/* Members used only on the xmit path */
268 	unsigned int insert_count ____cacheline_aligned_in_smp;
269 	unsigned int write_count;
270 	unsigned int packet_write_count;
271 	unsigned int old_read_count;
272 	unsigned int tso_bursts;
273 	unsigned int tso_long_headers;
274 	unsigned int tso_packets;
275 	unsigned int tso_fallbacks;
276 	unsigned int pushes;
277 	unsigned int pio_packets;
278 	bool xmit_more_available;
279 	unsigned int cb_packets;
280 	/* Statistics to supplement MAC stats */
281 	unsigned long tx_packets;
282 
283 	/* Members shared between paths and sometimes updated */
284 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
285 #define EFX_EMPTY_COUNT_VALID 0x80000000
286 	atomic_t flush_outstanding;
287 };
288 
289 #define EFX_TX_CB_ORDER	7
290 #define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
291 
292 /**
293  * struct efx_rx_buffer - An Efx RX data buffer
294  * @dma_addr: DMA base address of the buffer
295  * @page: The associated page buffer.
296  *	Will be %NULL if the buffer slot is currently free.
297  * @page_offset: If pending: offset in @page of DMA base address.
298  *	If completed: offset in @page of Ethernet header.
299  * @len: If pending: length for DMA descriptor.
300  *	If completed: received length, excluding hash prefix.
301  * @flags: Flags for buffer and packet state.  These are only set on the
302  *	first buffer of a scattered packet.
303  */
304 struct efx_rx_buffer {
305 	dma_addr_t dma_addr;
306 	struct page *page;
307 	u16 page_offset;
308 	u16 len;
309 	u16 flags;
310 };
311 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
312 #define EFX_RX_PKT_CSUMMED	0x0002
313 #define EFX_RX_PKT_DISCARD	0x0004
314 #define EFX_RX_PKT_TCP		0x0040
315 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
316 #define EFX_RX_PKT_CSUM_LEVEL	0x0200
317 
318 /**
319  * struct efx_rx_page_state - Page-based rx buffer state
320  *
321  * Inserted at the start of every page allocated for receive buffers.
322  * Used to facilitate sharing dma mappings between recycled rx buffers
323  * and those passed up to the kernel.
324  *
325  * @dma_addr: The dma address of this page.
326  */
327 struct efx_rx_page_state {
328 	dma_addr_t dma_addr;
329 
330 	unsigned int __pad[0] ____cacheline_aligned;
331 };
332 
333 /**
334  * struct efx_rx_queue - An Efx RX queue
335  * @efx: The associated Efx NIC
336  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
337  *	is associated with a real RX queue.
338  * @buffer: The software buffer ring
339  * @rxd: The hardware descriptor ring
340  * @ptr_mask: The size of the ring minus 1.
341  * @refill_enabled: Enable refill whenever fill level is low
342  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
343  *	@rxq_flush_pending.
344  * @added_count: Number of buffers added to the receive queue.
345  * @notified_count: Number of buffers given to NIC (<= @added_count).
346  * @removed_count: Number of buffers removed from the receive queue.
347  * @scatter_n: Used by NIC specific receive code.
348  * @scatter_len: Used by NIC specific receive code.
349  * @page_ring: The ring to store DMA mapped pages for reuse.
350  * @page_add: Counter to calculate the write pointer for the recycle ring.
351  * @page_remove: Counter to calculate the read pointer for the recycle ring.
352  * @page_recycle_count: The number of pages that have been recycled.
353  * @page_recycle_failed: The number of pages that couldn't be recycled because
354  *      the kernel still held a reference to them.
355  * @page_recycle_full: The number of pages that were released because the
356  *      recycle ring was full.
357  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
358  * @max_fill: RX descriptor maximum fill level (<= ring size)
359  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
360  *	(<= @max_fill)
361  * @min_fill: RX descriptor minimum non-zero fill level.
362  *	This records the minimum fill level observed when a ring
363  *	refill was triggered.
364  * @recycle_count: RX buffer recycle counter.
365  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
366  */
367 struct efx_rx_queue {
368 	struct efx_nic *efx;
369 	int core_index;
370 	struct efx_rx_buffer *buffer;
371 	struct efx_special_buffer rxd;
372 	unsigned int ptr_mask;
373 	bool refill_enabled;
374 	bool flush_pending;
375 
376 	unsigned int added_count;
377 	unsigned int notified_count;
378 	unsigned int removed_count;
379 	unsigned int scatter_n;
380 	unsigned int scatter_len;
381 	struct page **page_ring;
382 	unsigned int page_add;
383 	unsigned int page_remove;
384 	unsigned int page_recycle_count;
385 	unsigned int page_recycle_failed;
386 	unsigned int page_recycle_full;
387 	unsigned int page_ptr_mask;
388 	unsigned int max_fill;
389 	unsigned int fast_fill_trigger;
390 	unsigned int min_fill;
391 	unsigned int min_overfill;
392 	unsigned int recycle_count;
393 	struct timer_list slow_fill;
394 	unsigned int slow_fill_count;
395 	/* Statistics to supplement MAC stats */
396 	unsigned long rx_packets;
397 };
398 
399 enum efx_sync_events_state {
400 	SYNC_EVENTS_DISABLED = 0,
401 	SYNC_EVENTS_QUIESCENT,
402 	SYNC_EVENTS_REQUESTED,
403 	SYNC_EVENTS_VALID,
404 };
405 
406 /**
407  * struct efx_channel - An Efx channel
408  *
409  * A channel comprises an event queue, at least one TX queue, at least
410  * one RX queue, and an associated tasklet for processing the event
411  * queue.
412  *
413  * @efx: Associated Efx NIC
414  * @channel: Channel instance number
415  * @type: Channel type definition
416  * @eventq_init: Event queue initialised flag
417  * @enabled: Channel enabled indicator
418  * @irq: IRQ number (MSI and MSI-X only)
419  * @irq_moderation_us: IRQ moderation value (in microseconds)
420  * @napi_dev: Net device used with NAPI
421  * @napi_str: NAPI control structure
422  * @state: state for NAPI vs busy polling
423  * @state_lock: lock protecting @state
424  * @eventq: Event queue buffer
425  * @eventq_mask: Event queue pointer mask
426  * @eventq_read_ptr: Event queue read pointer
427  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
428  * @irq_count: Number of IRQs since last adaptive moderation decision
429  * @irq_mod_score: IRQ moderation score
430  * @filter_work: Work item for efx_filter_rfs_expire()
431  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
432  *      indexed by filter ID
433  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
434  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
435  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
436  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
437  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
438  * @n_rx_overlength: Count of RX_OVERLENGTH errors
439  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
440  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
441  *	lack of descriptors
442  * @n_rx_merge_events: Number of RX merged completion events
443  * @n_rx_merge_packets: Number of RX packets completed by merged events
444  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
445  *	__efx_rx_packet(), or zero if there is none
446  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
447  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
448  * @rx_list: list of SKBs from current RX, awaiting processing
449  * @rx_queue: RX queue for this channel
450  * @tx_queue: TX queues for this channel
451  * @sync_events_state: Current state of sync events on this channel
452  * @sync_timestamp_major: Major part of the last ptp sync event
453  * @sync_timestamp_minor: Minor part of the last ptp sync event
454  */
455 struct efx_channel {
456 	struct efx_nic *efx;
457 	int channel;
458 	const struct efx_channel_type *type;
459 	bool eventq_init;
460 	bool enabled;
461 	int irq;
462 	unsigned int irq_moderation_us;
463 	struct net_device *napi_dev;
464 	struct napi_struct napi_str;
465 #ifdef CONFIG_NET_RX_BUSY_POLL
466 	unsigned long busy_poll_state;
467 #endif
468 	struct efx_special_buffer eventq;
469 	unsigned int eventq_mask;
470 	unsigned int eventq_read_ptr;
471 	int event_test_cpu;
472 
473 	unsigned int irq_count;
474 	unsigned int irq_mod_score;
475 #ifdef CONFIG_RFS_ACCEL
476 	unsigned int rfs_filters_added;
477 	struct work_struct filter_work;
478 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
479 	u32 *rps_flow_id;
480 #endif
481 
482 	unsigned int n_rx_tobe_disc;
483 	unsigned int n_rx_ip_hdr_chksum_err;
484 	unsigned int n_rx_tcp_udp_chksum_err;
485 	unsigned int n_rx_outer_ip_hdr_chksum_err;
486 	unsigned int n_rx_outer_tcp_udp_chksum_err;
487 	unsigned int n_rx_inner_ip_hdr_chksum_err;
488 	unsigned int n_rx_inner_tcp_udp_chksum_err;
489 	unsigned int n_rx_eth_crc_err;
490 	unsigned int n_rx_mcast_mismatch;
491 	unsigned int n_rx_frm_trunc;
492 	unsigned int n_rx_overlength;
493 	unsigned int n_skbuff_leaks;
494 	unsigned int n_rx_nodesc_trunc;
495 	unsigned int n_rx_merge_events;
496 	unsigned int n_rx_merge_packets;
497 
498 	unsigned int rx_pkt_n_frags;
499 	unsigned int rx_pkt_index;
500 
501 	struct list_head *rx_list;
502 
503 	struct efx_rx_queue rx_queue;
504 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
505 
506 	enum efx_sync_events_state sync_events_state;
507 	u32 sync_timestamp_major;
508 	u32 sync_timestamp_minor;
509 };
510 
511 /**
512  * struct efx_msi_context - Context for each MSI
513  * @efx: The associated NIC
514  * @index: Index of the channel/IRQ
515  * @name: Name of the channel/IRQ
516  *
517  * Unlike &struct efx_channel, this is never reallocated and is always
518  * safe for the IRQ handler to access.
519  */
520 struct efx_msi_context {
521 	struct efx_nic *efx;
522 	unsigned int index;
523 	char name[IFNAMSIZ + 6];
524 };
525 
526 /**
527  * struct efx_channel_type - distinguishes traffic and extra channels
528  * @handle_no_channel: Handle failure to allocate an extra channel
529  * @pre_probe: Set up extra state prior to initialisation
530  * @post_remove: Tear down extra state after finalisation, if allocated.
531  *	May be called on channels that have not been probed.
532  * @get_name: Generate the channel's name (used for its IRQ handler)
533  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
534  *	reallocation is not supported.
535  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
536  * @want_txqs: Determine whether this channel should have TX queues
537  *	created.  If %NULL, TX queues are not created.
538  * @keep_eventq: Flag for whether event queue should be kept initialised
539  *	while the device is stopped
540  * @want_pio: Flag for whether PIO buffers should be linked to this
541  *	channel's TX queues.
542  */
543 struct efx_channel_type {
544 	void (*handle_no_channel)(struct efx_nic *);
545 	int (*pre_probe)(struct efx_channel *);
546 	void (*post_remove)(struct efx_channel *);
547 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
548 	struct efx_channel *(*copy)(const struct efx_channel *);
549 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
550 	bool (*want_txqs)(struct efx_channel *);
551 	bool keep_eventq;
552 	bool want_pio;
553 };
554 
555 enum efx_led_mode {
556 	EFX_LED_OFF	= 0,
557 	EFX_LED_ON	= 1,
558 	EFX_LED_DEFAULT	= 2
559 };
560 
561 #define STRING_TABLE_LOOKUP(val, member) \
562 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
563 
564 extern const char *const efx_loopback_mode_names[];
565 extern const unsigned int efx_loopback_mode_max;
566 #define LOOPBACK_MODE(efx) \
567 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
568 
569 extern const char *const efx_reset_type_names[];
570 extern const unsigned int efx_reset_type_max;
571 #define RESET_TYPE(type) \
572 	STRING_TABLE_LOOKUP(type, efx_reset_type)
573 
574 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen);
575 
576 enum efx_int_mode {
577 	/* Be careful if altering to correct macro below */
578 	EFX_INT_MODE_MSIX = 0,
579 	EFX_INT_MODE_MSI = 1,
580 	EFX_INT_MODE_LEGACY = 2,
581 	EFX_INT_MODE_MAX	/* Insert any new items before this */
582 };
583 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
584 
585 enum nic_state {
586 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
587 	STATE_READY = 1,	/* hardware ready and netdev registered */
588 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
589 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
590 };
591 
592 /* Forward declaration */
593 struct efx_nic;
594 
595 /* Pseudo bit-mask flow control field */
596 #define EFX_FC_RX	FLOW_CTRL_RX
597 #define EFX_FC_TX	FLOW_CTRL_TX
598 #define EFX_FC_AUTO	4
599 
600 /**
601  * struct efx_link_state - Current state of the link
602  * @up: Link is up
603  * @fd: Link is full-duplex
604  * @fc: Actual flow control flags
605  * @speed: Link speed (Mbps)
606  */
607 struct efx_link_state {
608 	bool up;
609 	bool fd;
610 	u8 fc;
611 	unsigned int speed;
612 };
613 
614 static inline bool efx_link_state_equal(const struct efx_link_state *left,
615 					const struct efx_link_state *right)
616 {
617 	return left->up == right->up && left->fd == right->fd &&
618 		left->fc == right->fc && left->speed == right->speed;
619 }
620 
621 /**
622  * struct efx_phy_operations - Efx PHY operations table
623  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
624  *	efx->loopback_modes.
625  * @init: Initialise PHY
626  * @fini: Shut down PHY
627  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
628  * @poll: Update @link_state and report whether it changed.
629  *	Serialised by the mac_lock.
630  * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
631  * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
632  * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock.
633  * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock.
634  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
635  *	(only needed where AN bit is set in mmds)
636  * @test_alive: Test that PHY is 'alive' (online)
637  * @test_name: Get the name of a PHY-specific test/result
638  * @run_tests: Run tests and record results as appropriate (offline).
639  *	Flags are the ethtool tests flags.
640  */
641 struct efx_phy_operations {
642 	int (*probe) (struct efx_nic *efx);
643 	int (*init) (struct efx_nic *efx);
644 	void (*fini) (struct efx_nic *efx);
645 	void (*remove) (struct efx_nic *efx);
646 	int (*reconfigure) (struct efx_nic *efx);
647 	bool (*poll) (struct efx_nic *efx);
648 	void (*get_link_ksettings)(struct efx_nic *efx,
649 				   struct ethtool_link_ksettings *cmd);
650 	int (*set_link_ksettings)(struct efx_nic *efx,
651 				  const struct ethtool_link_ksettings *cmd);
652 	int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec);
653 	int (*set_fecparam)(struct efx_nic *efx,
654 			    const struct ethtool_fecparam *fec);
655 	void (*set_npage_adv) (struct efx_nic *efx, u32);
656 	int (*test_alive) (struct efx_nic *efx);
657 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
658 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
659 	int (*get_module_eeprom) (struct efx_nic *efx,
660 			       struct ethtool_eeprom *ee,
661 			       u8 *data);
662 	int (*get_module_info) (struct efx_nic *efx,
663 				struct ethtool_modinfo *modinfo);
664 };
665 
666 /**
667  * enum efx_phy_mode - PHY operating mode flags
668  * @PHY_MODE_NORMAL: on and should pass traffic
669  * @PHY_MODE_TX_DISABLED: on with TX disabled
670  * @PHY_MODE_LOW_POWER: set to low power through MDIO
671  * @PHY_MODE_OFF: switched off through external control
672  * @PHY_MODE_SPECIAL: on but will not pass traffic
673  */
674 enum efx_phy_mode {
675 	PHY_MODE_NORMAL		= 0,
676 	PHY_MODE_TX_DISABLED	= 1,
677 	PHY_MODE_LOW_POWER	= 2,
678 	PHY_MODE_OFF		= 4,
679 	PHY_MODE_SPECIAL	= 8,
680 };
681 
682 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
683 {
684 	return !!(mode & ~PHY_MODE_TX_DISABLED);
685 }
686 
687 /**
688  * struct efx_hw_stat_desc - Description of a hardware statistic
689  * @name: Name of the statistic as visible through ethtool, or %NULL if
690  *	it should not be exposed
691  * @dma_width: Width in bits (0 for non-DMA statistics)
692  * @offset: Offset within stats (ignored for non-DMA statistics)
693  */
694 struct efx_hw_stat_desc {
695 	const char *name;
696 	u16 dma_width;
697 	u16 offset;
698 };
699 
700 /* Number of bits used in a multicast filter hash address */
701 #define EFX_MCAST_HASH_BITS 8
702 
703 /* Number of (single-bit) entries in a multicast filter hash */
704 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
705 
706 /* An Efx multicast filter hash */
707 union efx_multicast_hash {
708 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
709 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
710 };
711 
712 struct vfdi_status;
713 
714 /* The reserved RSS context value */
715 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
716 /**
717  * struct efx_rss_context - A user-defined RSS context for filtering
718  * @list: node of linked list on which this struct is stored
719  * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
720  *	%EFX_EF10_RSS_CONTEXT_INVALID if this context is not present on the NIC.
721  *	For Siena, 0 if RSS is active, else %EFX_EF10_RSS_CONTEXT_INVALID.
722  * @user_id: the rss_context ID exposed to userspace over ethtool.
723  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
724  * @rx_hash_key: Toeplitz hash key for this RSS context
725  * @indir_table: Indirection table for this RSS context
726  */
727 struct efx_rss_context {
728 	struct list_head list;
729 	u32 context_id;
730 	u32 user_id;
731 	bool rx_hash_udp_4tuple;
732 	u8 rx_hash_key[40];
733 	u32 rx_indir_table[128];
734 };
735 
736 #ifdef CONFIG_RFS_ACCEL
737 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
738  * is used to test if filter does or will exist.
739  */
740 #define EFX_ARFS_FILTER_ID_PENDING	-1
741 #define EFX_ARFS_FILTER_ID_ERROR	-2
742 #define EFX_ARFS_FILTER_ID_REMOVING	-3
743 /**
744  * struct efx_arfs_rule - record of an ARFS filter and its IDs
745  * @node: linkage into hash table
746  * @spec: details of the filter (used as key for hash table).  Use efx->type to
747  *	determine which member to use.
748  * @rxq_index: channel to which the filter will steer traffic.
749  * @arfs_id: filter ID which was returned to ARFS
750  * @filter_id: index in software filter table.  May be
751  *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
752  *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
753  *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
754  */
755 struct efx_arfs_rule {
756 	struct hlist_node node;
757 	struct efx_filter_spec spec;
758 	u16 rxq_index;
759 	u16 arfs_id;
760 	s32 filter_id;
761 };
762 
763 /* Size chosen so that the table is one page (4kB) */
764 #define EFX_ARFS_HASH_TABLE_SIZE	512
765 
766 /**
767  * struct efx_async_filter_insertion - Request to asynchronously insert a filter
768  * @net_dev: Reference to the netdevice
769  * @spec: The filter to insert
770  * @work: Workitem for this request
771  * @rxq_index: Identifies the channel for which this request was made
772  * @flow_id: Identifies the kernel-side flow for which this request was made
773  */
774 struct efx_async_filter_insertion {
775 	struct net_device *net_dev;
776 	struct efx_filter_spec spec;
777 	struct work_struct work;
778 	u16 rxq_index;
779 	u32 flow_id;
780 };
781 
782 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
783 #define EFX_RPS_MAX_IN_FLIGHT	8
784 #endif /* CONFIG_RFS_ACCEL */
785 
786 /**
787  * struct efx_nic - an Efx NIC
788  * @name: Device name (net device name or bus id before net device registered)
789  * @pci_dev: The PCI device
790  * @node: List node for maintaning primary/secondary function lists
791  * @primary: &struct efx_nic instance for the primary function of this
792  *	controller.  May be the same structure, and may be %NULL if no
793  *	primary function is bound.  Serialised by rtnl_lock.
794  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
795  *	functions of the controller, if this is for the primary function.
796  *	Serialised by rtnl_lock.
797  * @type: Controller type attributes
798  * @legacy_irq: IRQ number
799  * @workqueue: Workqueue for port reconfigures and the HW monitor.
800  *	Work items do not hold and must not acquire RTNL.
801  * @workqueue_name: Name of workqueue
802  * @reset_work: Scheduled reset workitem
803  * @membase_phys: Memory BAR value as physical address
804  * @membase: Memory BAR value
805  * @vi_stride: step between per-VI registers / memory regions
806  * @interrupt_mode: Interrupt mode
807  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
808  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
809  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
810  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
811  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
812  * @msg_enable: Log message enable flags
813  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
814  * @reset_pending: Bitmask for pending resets
815  * @tx_queue: TX DMA queues
816  * @rx_queue: RX DMA queues
817  * @channel: Channels
818  * @msi_context: Context for each MSI
819  * @extra_channel_types: Types of extra (non-traffic) channels that
820  *	should be allocated for this NIC
821  * @rxq_entries: Size of receive queues requested by user.
822  * @txq_entries: Size of transmit queues requested by user.
823  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
824  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
825  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
826  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
827  * @sram_lim_qw: Qword address limit of SRAM
828  * @next_buffer_table: First available buffer table id
829  * @n_channels: Number of channels in use
830  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
831  * @n_tx_channels: Number of channels used for TX
832  * @n_extra_tx_channels: Number of extra channels with TX queues
833  * @rx_ip_align: RX DMA address offset to have IP header aligned in
834  *	in accordance with NET_IP_ALIGN
835  * @rx_dma_len: Current maximum RX DMA length
836  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
837  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
838  *	for use in sk_buff::truesize
839  * @rx_prefix_size: Size of RX prefix before packet data
840  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
841  *	(valid only if @rx_prefix_size != 0; always negative)
842  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
843  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
844  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
845  *	(valid only if channel->sync_timestamps_enabled; always negative)
846  * @rx_scatter: Scatter mode enabled for receives
847  * @rss_context: Main RSS context.  Its @list member is the head of the list of
848  *	RSS contexts created by user requests
849  * @rss_lock: Protects custom RSS context software state in @rss_context.list
850  * @int_error_count: Number of internal errors seen recently
851  * @int_error_expire: Time at which error count will be expired
852  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
853  *	acknowledge but do nothing else.
854  * @irq_status: Interrupt status buffer
855  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
856  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
857  * @selftest_work: Work item for asynchronous self-test
858  * @mtd_list: List of MTDs attached to the NIC
859  * @nic_data: Hardware dependent state
860  * @mcdi: Management-Controller-to-Driver Interface state
861  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
862  *	efx_monitor() and efx_reconfigure_port()
863  * @port_enabled: Port enabled indicator.
864  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
865  *	efx_mac_work() with kernel interfaces. Safe to read under any
866  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
867  *	be held to modify it.
868  * @port_initialized: Port initialized?
869  * @net_dev: Operating system network device. Consider holding the rtnl lock
870  * @fixed_features: Features which cannot be turned off
871  * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
872  *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
873  * @stats_buffer: DMA buffer for statistics
874  * @phy_type: PHY type
875  * @phy_op: PHY interface
876  * @phy_data: PHY private data (including PHY-specific stats)
877  * @mdio: PHY MDIO interface
878  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
879  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
880  * @link_advertising: Autonegotiation advertising flags
881  * @fec_config: Forward Error Correction configuration flags.  For bit positions
882  *	see &enum ethtool_fec_config_bits.
883  * @link_state: Current state of the link
884  * @n_link_state_changes: Number of times the link has changed state
885  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
886  *	Protected by @mac_lock.
887  * @multicast_hash: Multicast hash table for Falcon-arch.
888  *	Protected by @mac_lock.
889  * @wanted_fc: Wanted flow control flags
890  * @fc_disable: When non-zero flow control is disabled. Typically used to
891  *	ensure that network back pressure doesn't delay dma queue flushes.
892  *	Serialised by the rtnl lock.
893  * @mac_work: Work item for changing MAC promiscuity and multicast hash
894  * @loopback_mode: Loopback status
895  * @loopback_modes: Supported loopback mode bitmask
896  * @loopback_selftest: Offline self-test private state
897  * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
898  * @filter_state: Architecture-dependent filter table state
899  * @rps_mutex: Protects RPS state of all channels
900  * @rps_expire_channel: Next channel to check for expiry
901  * @rps_expire_index: Next index to check for expiry in
902  *	@rps_expire_channel's @rps_flow_id
903  * @rps_slot_map: bitmap of in-flight entries in @rps_slot
904  * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
905  * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
906  *	@rps_next_id).
907  * @rps_hash_table: Mapping between ARFS filters and their various IDs
908  * @rps_next_id: next arfs_id for an ARFS filter
909  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
910  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
911  *	Decremented when the efx_flush_rx_queue() is called.
912  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
913  *	completed (either success or failure). Not used when MCDI is used to
914  *	flush receive queues.
915  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
916  * @vf_count: Number of VFs intended to be enabled.
917  * @vf_init_count: Number of VFs that have been fully initialised.
918  * @vi_scale: log2 number of vnics per VF.
919  * @ptp_data: PTP state data
920  * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
921  * @vpd_sn: Serial number read from VPD
922  * @monitor_work: Hardware monitor workitem
923  * @biu_lock: BIU (bus interface unit) lock
924  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
925  *	field is used by efx_test_interrupts() to verify that an
926  *	interrupt has occurred.
927  * @stats_lock: Statistics update lock. Must be held when calling
928  *	efx_nic_type::{update,start,stop}_stats.
929  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
930  *
931  * This is stored in the private area of the &struct net_device.
932  */
933 struct efx_nic {
934 	/* The following fields should be written very rarely */
935 
936 	char name[IFNAMSIZ];
937 	struct list_head node;
938 	struct efx_nic *primary;
939 	struct list_head secondary_list;
940 	struct pci_dev *pci_dev;
941 	unsigned int port_num;
942 	const struct efx_nic_type *type;
943 	int legacy_irq;
944 	bool eeh_disabled_legacy_irq;
945 	struct workqueue_struct *workqueue;
946 	char workqueue_name[16];
947 	struct work_struct reset_work;
948 	resource_size_t membase_phys;
949 	void __iomem *membase;
950 
951 	unsigned int vi_stride;
952 
953 	enum efx_int_mode interrupt_mode;
954 	unsigned int timer_quantum_ns;
955 	unsigned int timer_max_ns;
956 	bool irq_rx_adaptive;
957 	unsigned int irq_mod_step_us;
958 	unsigned int irq_rx_moderation_us;
959 	u32 msg_enable;
960 
961 	enum nic_state state;
962 	unsigned long reset_pending;
963 
964 	struct efx_channel *channel[EFX_MAX_CHANNELS];
965 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
966 	const struct efx_channel_type *
967 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
968 
969 	unsigned rxq_entries;
970 	unsigned txq_entries;
971 	unsigned int txq_stop_thresh;
972 	unsigned int txq_wake_thresh;
973 
974 	unsigned tx_dc_base;
975 	unsigned rx_dc_base;
976 	unsigned sram_lim_qw;
977 	unsigned next_buffer_table;
978 
979 	unsigned int max_channels;
980 	unsigned int max_tx_channels;
981 	unsigned n_channels;
982 	unsigned n_rx_channels;
983 	unsigned rss_spread;
984 	unsigned tx_channel_offset;
985 	unsigned n_tx_channels;
986 	unsigned n_extra_tx_channels;
987 	unsigned int rx_ip_align;
988 	unsigned int rx_dma_len;
989 	unsigned int rx_buffer_order;
990 	unsigned int rx_buffer_truesize;
991 	unsigned int rx_page_buf_step;
992 	unsigned int rx_bufs_per_page;
993 	unsigned int rx_pages_per_batch;
994 	unsigned int rx_prefix_size;
995 	int rx_packet_hash_offset;
996 	int rx_packet_len_offset;
997 	int rx_packet_ts_offset;
998 	bool rx_scatter;
999 	struct efx_rss_context rss_context;
1000 	struct mutex rss_lock;
1001 
1002 	unsigned int_error_count;
1003 	unsigned long int_error_expire;
1004 
1005 	bool irq_soft_enabled;
1006 	struct efx_buffer irq_status;
1007 	unsigned irq_zero_count;
1008 	unsigned irq_level;
1009 	struct delayed_work selftest_work;
1010 
1011 #ifdef CONFIG_SFC_MTD
1012 	struct list_head mtd_list;
1013 #endif
1014 
1015 	void *nic_data;
1016 	struct efx_mcdi_data *mcdi;
1017 
1018 	struct mutex mac_lock;
1019 	struct work_struct mac_work;
1020 	bool port_enabled;
1021 
1022 	bool mc_bist_for_other_fn;
1023 	bool port_initialized;
1024 	struct net_device *net_dev;
1025 
1026 	netdev_features_t fixed_features;
1027 
1028 	u16 num_mac_stats;
1029 	struct efx_buffer stats_buffer;
1030 	u64 rx_nodesc_drops_total;
1031 	u64 rx_nodesc_drops_while_down;
1032 	bool rx_nodesc_drops_prev_state;
1033 
1034 	unsigned int phy_type;
1035 	const struct efx_phy_operations *phy_op;
1036 	void *phy_data;
1037 	struct mdio_if_info mdio;
1038 	unsigned int mdio_bus;
1039 	enum efx_phy_mode phy_mode;
1040 
1041 	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1042 	u32 fec_config;
1043 	struct efx_link_state link_state;
1044 	unsigned int n_link_state_changes;
1045 
1046 	bool unicast_filter;
1047 	union efx_multicast_hash multicast_hash;
1048 	u8 wanted_fc;
1049 	unsigned fc_disable;
1050 
1051 	atomic_t rx_reset;
1052 	enum efx_loopback_mode loopback_mode;
1053 	u64 loopback_modes;
1054 
1055 	void *loopback_selftest;
1056 
1057 	struct rw_semaphore filter_sem;
1058 	void *filter_state;
1059 #ifdef CONFIG_RFS_ACCEL
1060 	struct mutex rps_mutex;
1061 	unsigned int rps_expire_channel;
1062 	unsigned int rps_expire_index;
1063 	unsigned long rps_slot_map;
1064 	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1065 	spinlock_t rps_hash_lock;
1066 	struct hlist_head *rps_hash_table;
1067 	u32 rps_next_id;
1068 #endif
1069 
1070 	atomic_t active_queues;
1071 	atomic_t rxq_flush_pending;
1072 	atomic_t rxq_flush_outstanding;
1073 	wait_queue_head_t flush_wq;
1074 
1075 #ifdef CONFIG_SFC_SRIOV
1076 	unsigned vf_count;
1077 	unsigned vf_init_count;
1078 	unsigned vi_scale;
1079 #endif
1080 
1081 	struct efx_ptp_data *ptp_data;
1082 	bool ptp_warned;
1083 
1084 	char *vpd_sn;
1085 
1086 	/* The following fields may be written more often */
1087 
1088 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1089 	spinlock_t biu_lock;
1090 	int last_irq_cpu;
1091 	spinlock_t stats_lock;
1092 	atomic_t n_rx_noskb_drops;
1093 };
1094 
1095 static inline int efx_dev_registered(struct efx_nic *efx)
1096 {
1097 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1098 }
1099 
1100 static inline unsigned int efx_port_num(struct efx_nic *efx)
1101 {
1102 	return efx->port_num;
1103 }
1104 
1105 struct efx_mtd_partition {
1106 	struct list_head node;
1107 	struct mtd_info mtd;
1108 	const char *dev_type_name;
1109 	const char *type_name;
1110 	char name[IFNAMSIZ + 20];
1111 };
1112 
1113 struct efx_udp_tunnel {
1114 	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1115 	__be16 port;
1116 	/* Count of repeated adds of the same port.  Used only inside the list,
1117 	 * not in request arguments.
1118 	 */
1119 	u16 count;
1120 };
1121 
1122 /**
1123  * struct efx_nic_type - Efx device type definition
1124  * @mem_bar: Get the memory BAR
1125  * @mem_map_size: Get memory BAR mapped size
1126  * @probe: Probe the controller
1127  * @remove: Free resources allocated by probe()
1128  * @init: Initialise the controller
1129  * @dimension_resources: Dimension controller resources (buffer table,
1130  *	and VIs once the available interrupt resources are clear)
1131  * @fini: Shut down the controller
1132  * @monitor: Periodic function for polling link state and hardware monitor
1133  * @map_reset_reason: Map ethtool reset reason to a reset method
1134  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1135  * @reset: Reset the controller hardware and possibly the PHY.  This will
1136  *	be called while the controller is uninitialised.
1137  * @probe_port: Probe the MAC and PHY
1138  * @remove_port: Free resources allocated by probe_port()
1139  * @handle_global_event: Handle a "global" event (may be %NULL)
1140  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1141  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1142  *	(for Falcon architecture)
1143  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1144  *	architecture)
1145  * @prepare_flr: Prepare for an FLR
1146  * @finish_flr: Clean up after an FLR
1147  * @describe_stats: Describe statistics for ethtool
1148  * @update_stats: Update statistics not provided by event handling.
1149  *	Either argument may be %NULL.
1150  * @start_stats: Start the regular fetching of statistics
1151  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1152  * @stop_stats: Stop the regular fetching of statistics
1153  * @set_id_led: Set state of identifying LED or revert to automatic function
1154  * @push_irq_moderation: Apply interrupt moderation value
1155  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1156  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1157  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1158  *	to the hardware.  Serialised by the mac_lock.
1159  * @check_mac_fault: Check MAC fault state. True if fault present.
1160  * @get_wol: Get WoL configuration from driver state
1161  * @set_wol: Push WoL configuration to the NIC
1162  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1163  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1164  *	expected to reset the NIC.
1165  * @test_nvram: Test validity of NVRAM contents
1166  * @mcdi_request: Send an MCDI request with the given header and SDU.
1167  *	The SDU length may be any value from 0 up to the protocol-
1168  *	defined maximum, but its buffer will be padded to a multiple
1169  *	of 4 bytes.
1170  * @mcdi_poll_response: Test whether an MCDI response is available.
1171  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1172  *	be a multiple of 4.  The length may not be, but the buffer
1173  *	will be padded so it is safe to round up.
1174  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1175  *	return an appropriate error code for aborting any current
1176  *	request; otherwise return 0.
1177  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1178  *	be separately enabled after this.
1179  * @irq_test_generate: Generate a test IRQ
1180  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1181  *	queue must be separately disabled before this.
1182  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1183  *	a pointer to the &struct efx_msi_context for the channel.
1184  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1185  *	is a pointer to the &struct efx_nic.
1186  * @tx_probe: Allocate resources for TX queue
1187  * @tx_init: Initialise TX queue on the NIC
1188  * @tx_remove: Free resources for TX queue
1189  * @tx_write: Write TX descriptors and doorbell
1190  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1191  * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1192  * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1193  *	user RSS context to the NIC
1194  * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1195  *	RSS context back from the NIC
1196  * @rx_probe: Allocate resources for RX queue
1197  * @rx_init: Initialise RX queue on the NIC
1198  * @rx_remove: Free resources for RX queue
1199  * @rx_write: Write RX descriptors and doorbell
1200  * @rx_defer_refill: Generate a refill reminder event
1201  * @ev_probe: Allocate resources for event queue
1202  * @ev_init: Initialise event queue on the NIC
1203  * @ev_fini: Deinitialise event queue on the NIC
1204  * @ev_remove: Free resources for event queue
1205  * @ev_process: Process events for a queue, up to the given NAPI quota
1206  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1207  * @ev_test_generate: Generate a test event
1208  * @filter_table_probe: Probe filter capabilities and set up filter software state
1209  * @filter_table_restore: Restore filters removed from hardware
1210  * @filter_table_remove: Remove filters from hardware and tear down software state
1211  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1212  * @filter_insert: add or replace a filter
1213  * @filter_remove_safe: remove a filter by ID, carefully
1214  * @filter_get_safe: retrieve a filter by ID, carefully
1215  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1216  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1217  * @filter_count_rx_used: Get the number of filters in use at a given priority
1218  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1219  * @filter_get_rx_ids: Get list of RX filters at a given priority
1220  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1221  *	This must check whether the specified table entry is used by RFS
1222  *	and that rps_may_expire_flow() returns true for it.
1223  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1224  *	 using efx_mtd_add()
1225  * @mtd_rename: Set an MTD partition name using the net device name
1226  * @mtd_read: Read from an MTD partition
1227  * @mtd_erase: Erase part of an MTD partition
1228  * @mtd_write: Write to an MTD partition
1229  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1230  *	also notifies the driver that a writer has finished using this
1231  *	partition.
1232  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1233  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1234  *	timestamping, possibly only temporarily for the purposes of a reset.
1235  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1236  *	and tx_type will already have been validated but this operation
1237  *	must validate and update rx_filter.
1238  * @get_phys_port_id: Get the underlying physical port id.
1239  * @set_mac_address: Set the MAC address of the device
1240  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1241  *	If %NULL, then device does not support any TSO version.
1242  * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1243  * @udp_tnl_add_port: Add a UDP tunnel port
1244  * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1245  * @udp_tnl_del_port: Remove a UDP tunnel port
1246  * @revision: Hardware architecture revision
1247  * @txd_ptr_tbl_base: TX descriptor ring base address
1248  * @rxd_ptr_tbl_base: RX descriptor ring base address
1249  * @buf_tbl_base: Buffer table base address
1250  * @evq_ptr_tbl_base: Event queue pointer table base address
1251  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1252  * @max_dma_mask: Maximum possible DMA mask
1253  * @rx_prefix_size: Size of RX prefix before packet data
1254  * @rx_hash_offset: Offset of RX flow hash within prefix
1255  * @rx_ts_offset: Offset of timestamp within prefix
1256  * @rx_buffer_padding: Size of padding at end of RX packet
1257  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1258  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1259  * @option_descriptors: NIC supports TX option descriptors
1260  * @min_interrupt_mode: Lowest capability interrupt mode supported
1261  *	from &enum efx_int_mode.
1262  * @max_interrupt_mode: Highest capability interrupt mode supported
1263  *	from &enum efx_int_mode.
1264  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1265  * @offload_features: net_device feature flags for protocol offload
1266  *	features implemented in hardware
1267  * @mcdi_max_ver: Maximum MCDI version supported
1268  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1269  */
1270 struct efx_nic_type {
1271 	bool is_vf;
1272 	unsigned int (*mem_bar)(struct efx_nic *efx);
1273 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1274 	int (*probe)(struct efx_nic *efx);
1275 	void (*remove)(struct efx_nic *efx);
1276 	int (*init)(struct efx_nic *efx);
1277 	int (*dimension_resources)(struct efx_nic *efx);
1278 	void (*fini)(struct efx_nic *efx);
1279 	void (*monitor)(struct efx_nic *efx);
1280 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1281 	int (*map_reset_flags)(u32 *flags);
1282 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1283 	int (*probe_port)(struct efx_nic *efx);
1284 	void (*remove_port)(struct efx_nic *efx);
1285 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1286 	int (*fini_dmaq)(struct efx_nic *efx);
1287 	void (*prepare_flush)(struct efx_nic *efx);
1288 	void (*finish_flush)(struct efx_nic *efx);
1289 	void (*prepare_flr)(struct efx_nic *efx);
1290 	void (*finish_flr)(struct efx_nic *efx);
1291 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1292 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1293 			       struct rtnl_link_stats64 *core_stats);
1294 	void (*start_stats)(struct efx_nic *efx);
1295 	void (*pull_stats)(struct efx_nic *efx);
1296 	void (*stop_stats)(struct efx_nic *efx);
1297 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1298 	void (*push_irq_moderation)(struct efx_channel *channel);
1299 	int (*reconfigure_port)(struct efx_nic *efx);
1300 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1301 	int (*reconfigure_mac)(struct efx_nic *efx);
1302 	bool (*check_mac_fault)(struct efx_nic *efx);
1303 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1304 	int (*set_wol)(struct efx_nic *efx, u32 type);
1305 	void (*resume_wol)(struct efx_nic *efx);
1306 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1307 	int (*test_nvram)(struct efx_nic *efx);
1308 	void (*mcdi_request)(struct efx_nic *efx,
1309 			     const efx_dword_t *hdr, size_t hdr_len,
1310 			     const efx_dword_t *sdu, size_t sdu_len);
1311 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1312 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1313 				   size_t pdu_offset, size_t pdu_len);
1314 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1315 	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1316 	void (*irq_enable_master)(struct efx_nic *efx);
1317 	int (*irq_test_generate)(struct efx_nic *efx);
1318 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1319 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1320 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1321 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1322 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1323 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1324 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1325 	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1326 				     dma_addr_t dma_addr, unsigned int len);
1327 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1328 				  const u32 *rx_indir_table, const u8 *key);
1329 	int (*rx_pull_rss_config)(struct efx_nic *efx);
1330 	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1331 					  struct efx_rss_context *ctx,
1332 					  const u32 *rx_indir_table,
1333 					  const u8 *key);
1334 	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1335 					  struct efx_rss_context *ctx);
1336 	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1337 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1338 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1339 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1340 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1341 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1342 	int (*ev_probe)(struct efx_channel *channel);
1343 	int (*ev_init)(struct efx_channel *channel);
1344 	void (*ev_fini)(struct efx_channel *channel);
1345 	void (*ev_remove)(struct efx_channel *channel);
1346 	int (*ev_process)(struct efx_channel *channel, int quota);
1347 	void (*ev_read_ack)(struct efx_channel *channel);
1348 	void (*ev_test_generate)(struct efx_channel *channel);
1349 	int (*filter_table_probe)(struct efx_nic *efx);
1350 	void (*filter_table_restore)(struct efx_nic *efx);
1351 	void (*filter_table_remove)(struct efx_nic *efx);
1352 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1353 	s32 (*filter_insert)(struct efx_nic *efx,
1354 			     struct efx_filter_spec *spec, bool replace);
1355 	int (*filter_remove_safe)(struct efx_nic *efx,
1356 				  enum efx_filter_priority priority,
1357 				  u32 filter_id);
1358 	int (*filter_get_safe)(struct efx_nic *efx,
1359 			       enum efx_filter_priority priority,
1360 			       u32 filter_id, struct efx_filter_spec *);
1361 	int (*filter_clear_rx)(struct efx_nic *efx,
1362 			       enum efx_filter_priority priority);
1363 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1364 				    enum efx_filter_priority priority);
1365 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1366 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1367 				 enum efx_filter_priority priority,
1368 				 u32 *buf, u32 size);
1369 #ifdef CONFIG_RFS_ACCEL
1370 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1371 				      unsigned int index);
1372 #endif
1373 #ifdef CONFIG_SFC_MTD
1374 	int (*mtd_probe)(struct efx_nic *efx);
1375 	void (*mtd_rename)(struct efx_mtd_partition *part);
1376 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1377 			size_t *retlen, u8 *buffer);
1378 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1379 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1380 			 size_t *retlen, const u8 *buffer);
1381 	int (*mtd_sync)(struct mtd_info *mtd);
1382 #endif
1383 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1384 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1385 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1386 				 struct hwtstamp_config *init);
1387 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1388 	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1389 	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1390 	int (*get_phys_port_id)(struct efx_nic *efx,
1391 				struct netdev_phys_item_id *ppid);
1392 	int (*sriov_init)(struct efx_nic *efx);
1393 	void (*sriov_fini)(struct efx_nic *efx);
1394 	bool (*sriov_wanted)(struct efx_nic *efx);
1395 	void (*sriov_reset)(struct efx_nic *efx);
1396 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1397 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1398 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1399 				 u8 qos);
1400 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1401 				     bool spoofchk);
1402 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1403 				   struct ifla_vf_info *ivi);
1404 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1405 				       int link_state);
1406 	int (*vswitching_probe)(struct efx_nic *efx);
1407 	int (*vswitching_restore)(struct efx_nic *efx);
1408 	void (*vswitching_remove)(struct efx_nic *efx);
1409 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1410 	int (*set_mac_address)(struct efx_nic *efx);
1411 	u32 (*tso_versions)(struct efx_nic *efx);
1412 	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1413 	int (*udp_tnl_add_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1414 	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1415 	int (*udp_tnl_del_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1416 
1417 	int revision;
1418 	unsigned int txd_ptr_tbl_base;
1419 	unsigned int rxd_ptr_tbl_base;
1420 	unsigned int buf_tbl_base;
1421 	unsigned int evq_ptr_tbl_base;
1422 	unsigned int evq_rptr_tbl_base;
1423 	u64 max_dma_mask;
1424 	unsigned int rx_prefix_size;
1425 	unsigned int rx_hash_offset;
1426 	unsigned int rx_ts_offset;
1427 	unsigned int rx_buffer_padding;
1428 	bool can_rx_scatter;
1429 	bool always_rx_scatter;
1430 	bool option_descriptors;
1431 	unsigned int min_interrupt_mode;
1432 	unsigned int max_interrupt_mode;
1433 	unsigned int timer_period_max;
1434 	netdev_features_t offload_features;
1435 	int mcdi_max_ver;
1436 	unsigned int max_rx_ip_filters;
1437 	u32 hwtstamp_filters;
1438 	unsigned int rx_hash_key_size;
1439 };
1440 
1441 /**************************************************************************
1442  *
1443  * Prototypes and inline functions
1444  *
1445  *************************************************************************/
1446 
1447 static inline struct efx_channel *
1448 efx_get_channel(struct efx_nic *efx, unsigned index)
1449 {
1450 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1451 	return efx->channel[index];
1452 }
1453 
1454 /* Iterate over all used channels */
1455 #define efx_for_each_channel(_channel, _efx)				\
1456 	for (_channel = (_efx)->channel[0];				\
1457 	     _channel;							\
1458 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1459 		     (_efx)->channel[_channel->channel + 1] : NULL)
1460 
1461 /* Iterate over all used channels in reverse */
1462 #define efx_for_each_channel_rev(_channel, _efx)			\
1463 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1464 	     _channel;							\
1465 	     _channel = _channel->channel ?				\
1466 		     (_efx)->channel[_channel->channel - 1] : NULL)
1467 
1468 static inline struct efx_tx_queue *
1469 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1470 {
1471 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1472 				  type >= EFX_TXQ_TYPES);
1473 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1474 }
1475 
1476 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1477 {
1478 	return channel->type && channel->type->want_txqs &&
1479 				channel->type->want_txqs(channel);
1480 }
1481 
1482 static inline struct efx_tx_queue *
1483 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1484 {
1485 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_tx_queues(channel) ||
1486 				  type >= EFX_TXQ_TYPES);
1487 	return &channel->tx_queue[type];
1488 }
1489 
1490 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1491 {
1492 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1493 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1494 }
1495 
1496 /* Iterate over all TX queues belonging to a channel */
1497 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1498 	if (!efx_channel_has_tx_queues(_channel))			\
1499 		;							\
1500 	else								\
1501 		for (_tx_queue = (_channel)->tx_queue;			\
1502 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1503 			     efx_tx_queue_used(_tx_queue);		\
1504 		     _tx_queue++)
1505 
1506 /* Iterate over all possible TX queues belonging to a channel */
1507 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1508 	if (!efx_channel_has_tx_queues(_channel))			\
1509 		;							\
1510 	else								\
1511 		for (_tx_queue = (_channel)->tx_queue;			\
1512 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1513 		     _tx_queue++)
1514 
1515 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1516 {
1517 	return channel->rx_queue.core_index >= 0;
1518 }
1519 
1520 static inline struct efx_rx_queue *
1521 efx_channel_get_rx_queue(struct efx_channel *channel)
1522 {
1523 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1524 	return &channel->rx_queue;
1525 }
1526 
1527 /* Iterate over all RX queues belonging to a channel */
1528 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1529 	if (!efx_channel_has_rx_queue(_channel))			\
1530 		;							\
1531 	else								\
1532 		for (_rx_queue = &(_channel)->rx_queue;			\
1533 		     _rx_queue;						\
1534 		     _rx_queue = NULL)
1535 
1536 static inline struct efx_channel *
1537 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1538 {
1539 	return container_of(rx_queue, struct efx_channel, rx_queue);
1540 }
1541 
1542 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1543 {
1544 	return efx_rx_queue_channel(rx_queue)->channel;
1545 }
1546 
1547 /* Returns a pointer to the specified receive buffer in the RX
1548  * descriptor queue.
1549  */
1550 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1551 						  unsigned int index)
1552 {
1553 	return &rx_queue->buffer[index];
1554 }
1555 
1556 /**
1557  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1558  *
1559  * This calculates the maximum frame length that will be used for a
1560  * given MTU.  The frame length will be equal to the MTU plus a
1561  * constant amount of header space and padding.  This is the quantity
1562  * that the net driver will program into the MAC as the maximum frame
1563  * length.
1564  *
1565  * The 10G MAC requires 8-byte alignment on the frame
1566  * length, so we round up to the nearest 8.
1567  *
1568  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1569  * XGMII cycle).  If the frame length reaches the maximum value in the
1570  * same cycle, the XMAC can miss the IPG altogether.  We work around
1571  * this by adding a further 16 bytes.
1572  */
1573 #define EFX_FRAME_PAD	16
1574 #define EFX_MAX_FRAME_LEN(mtu) \
1575 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1576 
1577 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1578 {
1579 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1580 }
1581 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1582 {
1583 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1584 }
1585 
1586 /* Get all supported features.
1587  * If a feature is not fixed, it is present in hw_features.
1588  * If a feature is fixed, it does not present in hw_features, but
1589  * always in features.
1590  */
1591 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1592 {
1593 	const struct net_device *net_dev = efx->net_dev;
1594 
1595 	return net_dev->features | net_dev->hw_features;
1596 }
1597 
1598 /* Get the current TX queue insert index. */
1599 static inline unsigned int
1600 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1601 {
1602 	return tx_queue->insert_count & tx_queue->ptr_mask;
1603 }
1604 
1605 /* Get a TX buffer. */
1606 static inline struct efx_tx_buffer *
1607 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1608 {
1609 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1610 }
1611 
1612 /* Get a TX buffer, checking it's not currently in use. */
1613 static inline struct efx_tx_buffer *
1614 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1615 {
1616 	struct efx_tx_buffer *buffer =
1617 		__efx_tx_queue_get_insert_buffer(tx_queue);
1618 
1619 	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1620 	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1621 	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1622 
1623 	return buffer;
1624 }
1625 
1626 #endif /* EFX_NET_DRIVER_H */
1627