1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 #include <linux/mtd/mtd.h>
31 
32 #include "enum.h"
33 #include "bitfield.h"
34 #include "filter.h"
35 
36 /**************************************************************************
37  *
38  * Build definitions
39  *
40  **************************************************************************/
41 
42 #define EFX_DRIVER_VERSION	"4.0"
43 
44 #ifdef DEBUG
45 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
46 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
47 #else
48 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
49 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
50 #endif
51 
52 /**************************************************************************
53  *
54  * Efx data structures
55  *
56  **************************************************************************/
57 
58 #define EFX_MAX_CHANNELS 32U
59 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
60 #define EFX_EXTRA_CHANNEL_IOV	0
61 #define EFX_EXTRA_CHANNEL_PTP	1
62 #define EFX_MAX_EXTRA_CHANNELS	2U
63 
64 /* Checksum generation is a per-queue option in hardware, so each
65  * queue visible to the networking core is backed by two hardware TX
66  * queues. */
67 #define EFX_MAX_TX_TC		2
68 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
69 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
70 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
71 #define EFX_TXQ_TYPES		4
72 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
73 
74 /* Maximum possible MTU the driver supports */
75 #define EFX_MAX_MTU (9 * 1024)
76 
77 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
78  * and should be a multiple of the cache line size.
79  */
80 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
81 
82 /* If possible, we should ensure cache line alignment at start and end
83  * of every buffer.  Otherwise, we just need to ensure 4-byte
84  * alignment of the network header.
85  */
86 #if NET_IP_ALIGN == 0
87 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
88 #else
89 #define EFX_RX_BUF_ALIGNMENT	4
90 #endif
91 
92 /* Forward declare Precision Time Protocol (PTP) support structure. */
93 struct efx_ptp_data;
94 struct hwtstamp_config;
95 
96 struct efx_self_tests;
97 
98 /**
99  * struct efx_buffer - A general-purpose DMA buffer
100  * @addr: host base address of the buffer
101  * @dma_addr: DMA base address of the buffer
102  * @len: Buffer length, in bytes
103  *
104  * The NIC uses these buffers for its interrupt status registers and
105  * MAC stats dumps.
106  */
107 struct efx_buffer {
108 	void *addr;
109 	dma_addr_t dma_addr;
110 	unsigned int len;
111 };
112 
113 /**
114  * struct efx_special_buffer - DMA buffer entered into buffer table
115  * @buf: Standard &struct efx_buffer
116  * @index: Buffer index within controller;s buffer table
117  * @entries: Number of buffer table entries
118  *
119  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
120  * Event and descriptor rings are addressed via one or more buffer
121  * table entries (and so can be physically non-contiguous, although we
122  * currently do not take advantage of that).  On Falcon and Siena we
123  * have to take care of allocating and initialising the entries
124  * ourselves.  On later hardware this is managed by the firmware and
125  * @index and @entries are left as 0.
126  */
127 struct efx_special_buffer {
128 	struct efx_buffer buf;
129 	unsigned int index;
130 	unsigned int entries;
131 };
132 
133 /**
134  * struct efx_tx_buffer - buffer state for a TX descriptor
135  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
136  *	freed when descriptor completes
137  * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
138  *	freed when descriptor completes.
139  * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
140  * @dma_addr: DMA address of the fragment.
141  * @flags: Flags for allocation and DMA mapping type
142  * @len: Length of this fragment.
143  *	This field is zero when the queue slot is empty.
144  * @unmap_len: Length of this fragment to unmap
145  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
146  * Only valid if @unmap_len != 0.
147  */
148 struct efx_tx_buffer {
149 	union {
150 		const struct sk_buff *skb;
151 		void *heap_buf;
152 	};
153 	union {
154 		efx_qword_t option;
155 		dma_addr_t dma_addr;
156 	};
157 	unsigned short flags;
158 	unsigned short len;
159 	unsigned short unmap_len;
160 	unsigned short dma_offset;
161 };
162 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
163 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
164 #define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
165 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
166 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
167 
168 /**
169  * struct efx_tx_queue - An Efx TX queue
170  *
171  * This is a ring buffer of TX fragments.
172  * Since the TX completion path always executes on the same
173  * CPU and the xmit path can operate on different CPUs,
174  * performance is increased by ensuring that the completion
175  * path and the xmit path operate on different cache lines.
176  * This is particularly important if the xmit path is always
177  * executing on one CPU which is different from the completion
178  * path.  There is also a cache line for members which are
179  * read but not written on the fast path.
180  *
181  * @efx: The associated Efx NIC
182  * @queue: DMA queue number
183  * @channel: The associated channel
184  * @core_txq: The networking core TX queue structure
185  * @buffer: The software buffer ring
186  * @tsoh_page: Array of pages of TSO header buffers
187  * @txd: The hardware descriptor ring
188  * @ptr_mask: The size of the ring minus 1.
189  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
190  *	Size of the region is efx_piobuf_size.
191  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
192  * @initialised: Has hardware queue been initialised?
193  * @read_count: Current read pointer.
194  *	This is the number of buffers that have been removed from both rings.
195  * @old_write_count: The value of @write_count when last checked.
196  *	This is here for performance reasons.  The xmit path will
197  *	only get the up-to-date value of @write_count if this
198  *	variable indicates that the queue is empty.  This is to
199  *	avoid cache-line ping-pong between the xmit path and the
200  *	completion path.
201  * @merge_events: Number of TX merged completion events
202  * @insert_count: Current insert pointer
203  *	This is the number of buffers that have been added to the
204  *	software ring.
205  * @write_count: Current write pointer
206  *	This is the number of buffers that have been added to the
207  *	hardware ring.
208  * @old_read_count: The value of read_count when last checked.
209  *	This is here for performance reasons.  The xmit path will
210  *	only get the up-to-date value of read_count if this
211  *	variable indicates that the queue is full.  This is to
212  *	avoid cache-line ping-pong between the xmit path and the
213  *	completion path.
214  * @tso_bursts: Number of times TSO xmit invoked by kernel
215  * @tso_long_headers: Number of packets with headers too long for standard
216  *	blocks
217  * @tso_packets: Number of packets via the TSO xmit path
218  * @pushes: Number of times the TX push feature has been used
219  * @pio_packets: Number of times the TX PIO feature has been used
220  * @empty_read_count: If the completion path has seen the queue as empty
221  *	and the transmission path has not yet checked this, the value of
222  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
223  */
224 struct efx_tx_queue {
225 	/* Members which don't change on the fast path */
226 	struct efx_nic *efx ____cacheline_aligned_in_smp;
227 	unsigned queue;
228 	struct efx_channel *channel;
229 	struct netdev_queue *core_txq;
230 	struct efx_tx_buffer *buffer;
231 	struct efx_buffer *tsoh_page;
232 	struct efx_special_buffer txd;
233 	unsigned int ptr_mask;
234 	void __iomem *piobuf;
235 	unsigned int piobuf_offset;
236 	bool initialised;
237 
238 	/* Members used mainly on the completion path */
239 	unsigned int read_count ____cacheline_aligned_in_smp;
240 	unsigned int old_write_count;
241 	unsigned int merge_events;
242 
243 	/* Members used only on the xmit path */
244 	unsigned int insert_count ____cacheline_aligned_in_smp;
245 	unsigned int write_count;
246 	unsigned int old_read_count;
247 	unsigned int tso_bursts;
248 	unsigned int tso_long_headers;
249 	unsigned int tso_packets;
250 	unsigned int pushes;
251 	unsigned int pio_packets;
252 
253 	/* Members shared between paths and sometimes updated */
254 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
255 #define EFX_EMPTY_COUNT_VALID 0x80000000
256 	atomic_t flush_outstanding;
257 };
258 
259 /**
260  * struct efx_rx_buffer - An Efx RX data buffer
261  * @dma_addr: DMA base address of the buffer
262  * @page: The associated page buffer.
263  *	Will be %NULL if the buffer slot is currently free.
264  * @page_offset: If pending: offset in @page of DMA base address.
265  *	If completed: offset in @page of Ethernet header.
266  * @len: If pending: length for DMA descriptor.
267  *	If completed: received length, excluding hash prefix.
268  * @flags: Flags for buffer and packet state.  These are only set on the
269  *	first buffer of a scattered packet.
270  */
271 struct efx_rx_buffer {
272 	dma_addr_t dma_addr;
273 	struct page *page;
274 	u16 page_offset;
275 	u16 len;
276 	u16 flags;
277 };
278 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
279 #define EFX_RX_PKT_CSUMMED	0x0002
280 #define EFX_RX_PKT_DISCARD	0x0004
281 #define EFX_RX_PKT_TCP		0x0040
282 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
283 
284 /**
285  * struct efx_rx_page_state - Page-based rx buffer state
286  *
287  * Inserted at the start of every page allocated for receive buffers.
288  * Used to facilitate sharing dma mappings between recycled rx buffers
289  * and those passed up to the kernel.
290  *
291  * @dma_addr: The dma address of this page.
292  */
293 struct efx_rx_page_state {
294 	dma_addr_t dma_addr;
295 
296 	unsigned int __pad[0] ____cacheline_aligned;
297 };
298 
299 /**
300  * struct efx_rx_queue - An Efx RX queue
301  * @efx: The associated Efx NIC
302  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
303  *	is associated with a real RX queue.
304  * @buffer: The software buffer ring
305  * @rxd: The hardware descriptor ring
306  * @ptr_mask: The size of the ring minus 1.
307  * @refill_enabled: Enable refill whenever fill level is low
308  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
309  *	@rxq_flush_pending.
310  * @added_count: Number of buffers added to the receive queue.
311  * @notified_count: Number of buffers given to NIC (<= @added_count).
312  * @removed_count: Number of buffers removed from the receive queue.
313  * @scatter_n: Used by NIC specific receive code.
314  * @scatter_len: Used by NIC specific receive code.
315  * @page_ring: The ring to store DMA mapped pages for reuse.
316  * @page_add: Counter to calculate the write pointer for the recycle ring.
317  * @page_remove: Counter to calculate the read pointer for the recycle ring.
318  * @page_recycle_count: The number of pages that have been recycled.
319  * @page_recycle_failed: The number of pages that couldn't be recycled because
320  *      the kernel still held a reference to them.
321  * @page_recycle_full: The number of pages that were released because the
322  *      recycle ring was full.
323  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
324  * @max_fill: RX descriptor maximum fill level (<= ring size)
325  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
326  *	(<= @max_fill)
327  * @min_fill: RX descriptor minimum non-zero fill level.
328  *	This records the minimum fill level observed when a ring
329  *	refill was triggered.
330  * @recycle_count: RX buffer recycle counter.
331  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
332  */
333 struct efx_rx_queue {
334 	struct efx_nic *efx;
335 	int core_index;
336 	struct efx_rx_buffer *buffer;
337 	struct efx_special_buffer rxd;
338 	unsigned int ptr_mask;
339 	bool refill_enabled;
340 	bool flush_pending;
341 
342 	unsigned int added_count;
343 	unsigned int notified_count;
344 	unsigned int removed_count;
345 	unsigned int scatter_n;
346 	unsigned int scatter_len;
347 	struct page **page_ring;
348 	unsigned int page_add;
349 	unsigned int page_remove;
350 	unsigned int page_recycle_count;
351 	unsigned int page_recycle_failed;
352 	unsigned int page_recycle_full;
353 	unsigned int page_ptr_mask;
354 	unsigned int max_fill;
355 	unsigned int fast_fill_trigger;
356 	unsigned int min_fill;
357 	unsigned int min_overfill;
358 	unsigned int recycle_count;
359 	struct timer_list slow_fill;
360 	unsigned int slow_fill_count;
361 };
362 
363 enum efx_sync_events_state {
364 	SYNC_EVENTS_DISABLED = 0,
365 	SYNC_EVENTS_QUIESCENT,
366 	SYNC_EVENTS_REQUESTED,
367 	SYNC_EVENTS_VALID,
368 };
369 
370 /**
371  * struct efx_channel - An Efx channel
372  *
373  * A channel comprises an event queue, at least one TX queue, at least
374  * one RX queue, and an associated tasklet for processing the event
375  * queue.
376  *
377  * @efx: Associated Efx NIC
378  * @channel: Channel instance number
379  * @type: Channel type definition
380  * @eventq_init: Event queue initialised flag
381  * @enabled: Channel enabled indicator
382  * @irq: IRQ number (MSI and MSI-X only)
383  * @irq_moderation: IRQ moderation value (in hardware ticks)
384  * @napi_dev: Net device used with NAPI
385  * @napi_str: NAPI control structure
386  * @eventq: Event queue buffer
387  * @eventq_mask: Event queue pointer mask
388  * @eventq_read_ptr: Event queue read pointer
389  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
390  * @irq_count: Number of IRQs since last adaptive moderation decision
391  * @irq_mod_score: IRQ moderation score
392  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
393  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
394  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
395  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
396  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
397  * @n_rx_overlength: Count of RX_OVERLENGTH errors
398  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
399  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
400  *	lack of descriptors
401  * @n_rx_merge_events: Number of RX merged completion events
402  * @n_rx_merge_packets: Number of RX packets completed by merged events
403  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
404  *	__efx_rx_packet(), or zero if there is none
405  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
406  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
407  * @rx_queue: RX queue for this channel
408  * @tx_queue: TX queues for this channel
409  * @sync_events_state: Current state of sync events on this channel
410  * @sync_timestamp_major: Major part of the last ptp sync event
411  * @sync_timestamp_minor: Minor part of the last ptp sync event
412  */
413 struct efx_channel {
414 	struct efx_nic *efx;
415 	int channel;
416 	const struct efx_channel_type *type;
417 	bool eventq_init;
418 	bool enabled;
419 	int irq;
420 	unsigned int irq_moderation;
421 	struct net_device *napi_dev;
422 	struct napi_struct napi_str;
423 	struct efx_special_buffer eventq;
424 	unsigned int eventq_mask;
425 	unsigned int eventq_read_ptr;
426 	int event_test_cpu;
427 
428 	unsigned int irq_count;
429 	unsigned int irq_mod_score;
430 #ifdef CONFIG_RFS_ACCEL
431 	unsigned int rfs_filters_added;
432 #endif
433 
434 	unsigned n_rx_tobe_disc;
435 	unsigned n_rx_ip_hdr_chksum_err;
436 	unsigned n_rx_tcp_udp_chksum_err;
437 	unsigned n_rx_mcast_mismatch;
438 	unsigned n_rx_frm_trunc;
439 	unsigned n_rx_overlength;
440 	unsigned n_skbuff_leaks;
441 	unsigned int n_rx_nodesc_trunc;
442 	unsigned int n_rx_merge_events;
443 	unsigned int n_rx_merge_packets;
444 
445 	unsigned int rx_pkt_n_frags;
446 	unsigned int rx_pkt_index;
447 
448 	struct efx_rx_queue rx_queue;
449 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
450 
451 	enum efx_sync_events_state sync_events_state;
452 	u32 sync_timestamp_major;
453 	u32 sync_timestamp_minor;
454 };
455 
456 /**
457  * struct efx_msi_context - Context for each MSI
458  * @efx: The associated NIC
459  * @index: Index of the channel/IRQ
460  * @name: Name of the channel/IRQ
461  *
462  * Unlike &struct efx_channel, this is never reallocated and is always
463  * safe for the IRQ handler to access.
464  */
465 struct efx_msi_context {
466 	struct efx_nic *efx;
467 	unsigned int index;
468 	char name[IFNAMSIZ + 6];
469 };
470 
471 /**
472  * struct efx_channel_type - distinguishes traffic and extra channels
473  * @handle_no_channel: Handle failure to allocate an extra channel
474  * @pre_probe: Set up extra state prior to initialisation
475  * @post_remove: Tear down extra state after finalisation, if allocated.
476  *	May be called on channels that have not been probed.
477  * @get_name: Generate the channel's name (used for its IRQ handler)
478  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
479  *	reallocation is not supported.
480  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
481  * @keep_eventq: Flag for whether event queue should be kept initialised
482  *	while the device is stopped
483  */
484 struct efx_channel_type {
485 	void (*handle_no_channel)(struct efx_nic *);
486 	int (*pre_probe)(struct efx_channel *);
487 	void (*post_remove)(struct efx_channel *);
488 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
489 	struct efx_channel *(*copy)(const struct efx_channel *);
490 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
491 	bool keep_eventq;
492 };
493 
494 enum efx_led_mode {
495 	EFX_LED_OFF	= 0,
496 	EFX_LED_ON	= 1,
497 	EFX_LED_DEFAULT	= 2
498 };
499 
500 #define STRING_TABLE_LOOKUP(val, member) \
501 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
502 
503 extern const char *const efx_loopback_mode_names[];
504 extern const unsigned int efx_loopback_mode_max;
505 #define LOOPBACK_MODE(efx) \
506 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
507 
508 extern const char *const efx_reset_type_names[];
509 extern const unsigned int efx_reset_type_max;
510 #define RESET_TYPE(type) \
511 	STRING_TABLE_LOOKUP(type, efx_reset_type)
512 
513 enum efx_int_mode {
514 	/* Be careful if altering to correct macro below */
515 	EFX_INT_MODE_MSIX = 0,
516 	EFX_INT_MODE_MSI = 1,
517 	EFX_INT_MODE_LEGACY = 2,
518 	EFX_INT_MODE_MAX	/* Insert any new items before this */
519 };
520 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
521 
522 enum nic_state {
523 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
524 	STATE_READY = 1,	/* hardware ready and netdev registered */
525 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
526 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
527 };
528 
529 /* Forward declaration */
530 struct efx_nic;
531 
532 /* Pseudo bit-mask flow control field */
533 #define EFX_FC_RX	FLOW_CTRL_RX
534 #define EFX_FC_TX	FLOW_CTRL_TX
535 #define EFX_FC_AUTO	4
536 
537 /**
538  * struct efx_link_state - Current state of the link
539  * @up: Link is up
540  * @fd: Link is full-duplex
541  * @fc: Actual flow control flags
542  * @speed: Link speed (Mbps)
543  */
544 struct efx_link_state {
545 	bool up;
546 	bool fd;
547 	u8 fc;
548 	unsigned int speed;
549 };
550 
551 static inline bool efx_link_state_equal(const struct efx_link_state *left,
552 					const struct efx_link_state *right)
553 {
554 	return left->up == right->up && left->fd == right->fd &&
555 		left->fc == right->fc && left->speed == right->speed;
556 }
557 
558 /**
559  * struct efx_phy_operations - Efx PHY operations table
560  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
561  *	efx->loopback_modes.
562  * @init: Initialise PHY
563  * @fini: Shut down PHY
564  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
565  * @poll: Update @link_state and report whether it changed.
566  *	Serialised by the mac_lock.
567  * @get_settings: Get ethtool settings. Serialised by the mac_lock.
568  * @set_settings: Set ethtool settings. Serialised by the mac_lock.
569  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
570  *	(only needed where AN bit is set in mmds)
571  * @test_alive: Test that PHY is 'alive' (online)
572  * @test_name: Get the name of a PHY-specific test/result
573  * @run_tests: Run tests and record results as appropriate (offline).
574  *	Flags are the ethtool tests flags.
575  */
576 struct efx_phy_operations {
577 	int (*probe) (struct efx_nic *efx);
578 	int (*init) (struct efx_nic *efx);
579 	void (*fini) (struct efx_nic *efx);
580 	void (*remove) (struct efx_nic *efx);
581 	int (*reconfigure) (struct efx_nic *efx);
582 	bool (*poll) (struct efx_nic *efx);
583 	void (*get_settings) (struct efx_nic *efx,
584 			      struct ethtool_cmd *ecmd);
585 	int (*set_settings) (struct efx_nic *efx,
586 			     struct ethtool_cmd *ecmd);
587 	void (*set_npage_adv) (struct efx_nic *efx, u32);
588 	int (*test_alive) (struct efx_nic *efx);
589 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
590 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
591 	int (*get_module_eeprom) (struct efx_nic *efx,
592 			       struct ethtool_eeprom *ee,
593 			       u8 *data);
594 	int (*get_module_info) (struct efx_nic *efx,
595 				struct ethtool_modinfo *modinfo);
596 };
597 
598 /**
599  * enum efx_phy_mode - PHY operating mode flags
600  * @PHY_MODE_NORMAL: on and should pass traffic
601  * @PHY_MODE_TX_DISABLED: on with TX disabled
602  * @PHY_MODE_LOW_POWER: set to low power through MDIO
603  * @PHY_MODE_OFF: switched off through external control
604  * @PHY_MODE_SPECIAL: on but will not pass traffic
605  */
606 enum efx_phy_mode {
607 	PHY_MODE_NORMAL		= 0,
608 	PHY_MODE_TX_DISABLED	= 1,
609 	PHY_MODE_LOW_POWER	= 2,
610 	PHY_MODE_OFF		= 4,
611 	PHY_MODE_SPECIAL	= 8,
612 };
613 
614 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
615 {
616 	return !!(mode & ~PHY_MODE_TX_DISABLED);
617 }
618 
619 /**
620  * struct efx_hw_stat_desc - Description of a hardware statistic
621  * @name: Name of the statistic as visible through ethtool, or %NULL if
622  *	it should not be exposed
623  * @dma_width: Width in bits (0 for non-DMA statistics)
624  * @offset: Offset within stats (ignored for non-DMA statistics)
625  */
626 struct efx_hw_stat_desc {
627 	const char *name;
628 	u16 dma_width;
629 	u16 offset;
630 };
631 
632 /* Number of bits used in a multicast filter hash address */
633 #define EFX_MCAST_HASH_BITS 8
634 
635 /* Number of (single-bit) entries in a multicast filter hash */
636 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
637 
638 /* An Efx multicast filter hash */
639 union efx_multicast_hash {
640 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
641 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
642 };
643 
644 struct efx_vf;
645 struct vfdi_status;
646 
647 /**
648  * struct efx_nic - an Efx NIC
649  * @name: Device name (net device name or bus id before net device registered)
650  * @pci_dev: The PCI device
651  * @node: List node for maintaning primary/secondary function lists
652  * @primary: &struct efx_nic instance for the primary function of this
653  *	controller.  May be the same structure, and may be %NULL if no
654  *	primary function is bound.  Serialised by rtnl_lock.
655  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
656  *	functions of the controller, if this is for the primary function.
657  *	Serialised by rtnl_lock.
658  * @type: Controller type attributes
659  * @legacy_irq: IRQ number
660  * @workqueue: Workqueue for port reconfigures and the HW monitor.
661  *	Work items do not hold and must not acquire RTNL.
662  * @workqueue_name: Name of workqueue
663  * @reset_work: Scheduled reset workitem
664  * @membase_phys: Memory BAR value as physical address
665  * @membase: Memory BAR value
666  * @interrupt_mode: Interrupt mode
667  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
668  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
669  * @irq_rx_moderation: IRQ moderation time for RX event queues
670  * @msg_enable: Log message enable flags
671  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
672  * @reset_pending: Bitmask for pending resets
673  * @tx_queue: TX DMA queues
674  * @rx_queue: RX DMA queues
675  * @channel: Channels
676  * @msi_context: Context for each MSI
677  * @extra_channel_types: Types of extra (non-traffic) channels that
678  *	should be allocated for this NIC
679  * @rxq_entries: Size of receive queues requested by user.
680  * @txq_entries: Size of transmit queues requested by user.
681  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
682  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
683  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
684  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
685  * @sram_lim_qw: Qword address limit of SRAM
686  * @next_buffer_table: First available buffer table id
687  * @n_channels: Number of channels in use
688  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
689  * @n_tx_channels: Number of channels used for TX
690  * @rx_ip_align: RX DMA address offset to have IP header aligned in
691  *	in accordance with NET_IP_ALIGN
692  * @rx_dma_len: Current maximum RX DMA length
693  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
694  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
695  *	for use in sk_buff::truesize
696  * @rx_prefix_size: Size of RX prefix before packet data
697  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
698  *	(valid only if @rx_prefix_size != 0; always negative)
699  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
700  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
701  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
702  *	(valid only if channel->sync_timestamps_enabled; always negative)
703  * @rx_hash_key: Toeplitz hash key for RSS
704  * @rx_indir_table: Indirection table for RSS
705  * @rx_scatter: Scatter mode enabled for receives
706  * @int_error_count: Number of internal errors seen recently
707  * @int_error_expire: Time at which error count will be expired
708  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
709  *	acknowledge but do nothing else.
710  * @irq_status: Interrupt status buffer
711  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
712  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
713  * @selftest_work: Work item for asynchronous self-test
714  * @mtd_list: List of MTDs attached to the NIC
715  * @nic_data: Hardware dependent state
716  * @mcdi: Management-Controller-to-Driver Interface state
717  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
718  *	efx_monitor() and efx_reconfigure_port()
719  * @port_enabled: Port enabled indicator.
720  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
721  *	efx_mac_work() with kernel interfaces. Safe to read under any
722  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
723  *	be held to modify it.
724  * @port_initialized: Port initialized?
725  * @net_dev: Operating system network device. Consider holding the rtnl lock
726  * @stats_buffer: DMA buffer for statistics
727  * @phy_type: PHY type
728  * @phy_op: PHY interface
729  * @phy_data: PHY private data (including PHY-specific stats)
730  * @mdio: PHY MDIO interface
731  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
732  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
733  * @link_advertising: Autonegotiation advertising flags
734  * @link_state: Current state of the link
735  * @n_link_state_changes: Number of times the link has changed state
736  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
737  *	Protected by @mac_lock.
738  * @multicast_hash: Multicast hash table for Falcon-arch.
739  *	Protected by @mac_lock.
740  * @wanted_fc: Wanted flow control flags
741  * @fc_disable: When non-zero flow control is disabled. Typically used to
742  *	ensure that network back pressure doesn't delay dma queue flushes.
743  *	Serialised by the rtnl lock.
744  * @mac_work: Work item for changing MAC promiscuity and multicast hash
745  * @loopback_mode: Loopback status
746  * @loopback_modes: Supported loopback mode bitmask
747  * @loopback_selftest: Offline self-test private state
748  * @filter_lock: Filter table lock
749  * @filter_state: Architecture-dependent filter table state
750  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
751  *	indexed by filter ID
752  * @rps_expire_index: Next index to check for expiry in @rps_flow_id
753  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
754  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
755  *	Decremented when the efx_flush_rx_queue() is called.
756  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
757  *	completed (either success or failure). Not used when MCDI is used to
758  *	flush receive queues.
759  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
760  * @vf: Array of &struct efx_vf objects.
761  * @vf_count: Number of VFs intended to be enabled.
762  * @vf_init_count: Number of VFs that have been fully initialised.
763  * @vi_scale: log2 number of vnics per VF.
764  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
765  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
766  * @local_addr_list: List of local addresses. Protected by %local_lock.
767  * @local_page_list: List of DMA addressable pages used to broadcast
768  *	%local_addr_list. Protected by %local_lock.
769  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
770  * @peer_work: Work item to broadcast peer addresses to VMs.
771  * @ptp_data: PTP state data
772  * @vpd_sn: Serial number read from VPD
773  * @monitor_work: Hardware monitor workitem
774  * @biu_lock: BIU (bus interface unit) lock
775  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
776  *	field is used by efx_test_interrupts() to verify that an
777  *	interrupt has occurred.
778  * @stats_lock: Statistics update lock. Must be held when calling
779  *	efx_nic_type::{update,start,stop}_stats.
780  *
781  * This is stored in the private area of the &struct net_device.
782  */
783 struct efx_nic {
784 	/* The following fields should be written very rarely */
785 
786 	char name[IFNAMSIZ];
787 	struct list_head node;
788 	struct efx_nic *primary;
789 	struct list_head secondary_list;
790 	struct pci_dev *pci_dev;
791 	unsigned int port_num;
792 	const struct efx_nic_type *type;
793 	int legacy_irq;
794 	bool eeh_disabled_legacy_irq;
795 	struct workqueue_struct *workqueue;
796 	char workqueue_name[16];
797 	struct work_struct reset_work;
798 	resource_size_t membase_phys;
799 	void __iomem *membase;
800 
801 	enum efx_int_mode interrupt_mode;
802 	unsigned int timer_quantum_ns;
803 	bool irq_rx_adaptive;
804 	unsigned int irq_rx_moderation;
805 	u32 msg_enable;
806 
807 	enum nic_state state;
808 	unsigned long reset_pending;
809 
810 	struct efx_channel *channel[EFX_MAX_CHANNELS];
811 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
812 	const struct efx_channel_type *
813 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
814 
815 	unsigned rxq_entries;
816 	unsigned txq_entries;
817 	unsigned int txq_stop_thresh;
818 	unsigned int txq_wake_thresh;
819 
820 	unsigned tx_dc_base;
821 	unsigned rx_dc_base;
822 	unsigned sram_lim_qw;
823 	unsigned next_buffer_table;
824 
825 	unsigned int max_channels;
826 	unsigned n_channels;
827 	unsigned n_rx_channels;
828 	unsigned rss_spread;
829 	unsigned tx_channel_offset;
830 	unsigned n_tx_channels;
831 	unsigned int rx_ip_align;
832 	unsigned int rx_dma_len;
833 	unsigned int rx_buffer_order;
834 	unsigned int rx_buffer_truesize;
835 	unsigned int rx_page_buf_step;
836 	unsigned int rx_bufs_per_page;
837 	unsigned int rx_pages_per_batch;
838 	unsigned int rx_prefix_size;
839 	int rx_packet_hash_offset;
840 	int rx_packet_len_offset;
841 	int rx_packet_ts_offset;
842 	u8 rx_hash_key[40];
843 	u32 rx_indir_table[128];
844 	bool rx_scatter;
845 
846 	unsigned int_error_count;
847 	unsigned long int_error_expire;
848 
849 	bool irq_soft_enabled;
850 	struct efx_buffer irq_status;
851 	unsigned irq_zero_count;
852 	unsigned irq_level;
853 	struct delayed_work selftest_work;
854 
855 #ifdef CONFIG_SFC_MTD
856 	struct list_head mtd_list;
857 #endif
858 
859 	void *nic_data;
860 	struct efx_mcdi_data *mcdi;
861 
862 	struct mutex mac_lock;
863 	struct work_struct mac_work;
864 	bool port_enabled;
865 
866 	bool mc_bist_for_other_fn;
867 	bool port_initialized;
868 	struct net_device *net_dev;
869 
870 	struct efx_buffer stats_buffer;
871 	u64 rx_nodesc_drops_total;
872 	u64 rx_nodesc_drops_while_down;
873 	bool rx_nodesc_drops_prev_state;
874 
875 	unsigned int phy_type;
876 	const struct efx_phy_operations *phy_op;
877 	void *phy_data;
878 	struct mdio_if_info mdio;
879 	unsigned int mdio_bus;
880 	enum efx_phy_mode phy_mode;
881 
882 	u32 link_advertising;
883 	struct efx_link_state link_state;
884 	unsigned int n_link_state_changes;
885 
886 	bool unicast_filter;
887 	union efx_multicast_hash multicast_hash;
888 	u8 wanted_fc;
889 	unsigned fc_disable;
890 
891 	atomic_t rx_reset;
892 	enum efx_loopback_mode loopback_mode;
893 	u64 loopback_modes;
894 
895 	void *loopback_selftest;
896 
897 	spinlock_t filter_lock;
898 	void *filter_state;
899 #ifdef CONFIG_RFS_ACCEL
900 	u32 *rps_flow_id;
901 	unsigned int rps_expire_index;
902 #endif
903 
904 	atomic_t active_queues;
905 	atomic_t rxq_flush_pending;
906 	atomic_t rxq_flush_outstanding;
907 	wait_queue_head_t flush_wq;
908 
909 #ifdef CONFIG_SFC_SRIOV
910 	struct efx_channel *vfdi_channel;
911 	struct efx_vf *vf;
912 	unsigned vf_count;
913 	unsigned vf_init_count;
914 	unsigned vi_scale;
915 	unsigned vf_buftbl_base;
916 	struct efx_buffer vfdi_status;
917 	struct list_head local_addr_list;
918 	struct list_head local_page_list;
919 	struct mutex local_lock;
920 	struct work_struct peer_work;
921 #endif
922 
923 	struct efx_ptp_data *ptp_data;
924 
925 	char *vpd_sn;
926 
927 	/* The following fields may be written more often */
928 
929 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
930 	spinlock_t biu_lock;
931 	int last_irq_cpu;
932 	spinlock_t stats_lock;
933 };
934 
935 static inline int efx_dev_registered(struct efx_nic *efx)
936 {
937 	return efx->net_dev->reg_state == NETREG_REGISTERED;
938 }
939 
940 static inline unsigned int efx_port_num(struct efx_nic *efx)
941 {
942 	return efx->port_num;
943 }
944 
945 struct efx_mtd_partition {
946 	struct list_head node;
947 	struct mtd_info mtd;
948 	const char *dev_type_name;
949 	const char *type_name;
950 	char name[IFNAMSIZ + 20];
951 };
952 
953 /**
954  * struct efx_nic_type - Efx device type definition
955  * @mem_map_size: Get memory BAR mapped size
956  * @probe: Probe the controller
957  * @remove: Free resources allocated by probe()
958  * @init: Initialise the controller
959  * @dimension_resources: Dimension controller resources (buffer table,
960  *	and VIs once the available interrupt resources are clear)
961  * @fini: Shut down the controller
962  * @monitor: Periodic function for polling link state and hardware monitor
963  * @map_reset_reason: Map ethtool reset reason to a reset method
964  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
965  * @reset: Reset the controller hardware and possibly the PHY.  This will
966  *	be called while the controller is uninitialised.
967  * @probe_port: Probe the MAC and PHY
968  * @remove_port: Free resources allocated by probe_port()
969  * @handle_global_event: Handle a "global" event (may be %NULL)
970  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
971  * @prepare_flush: Prepare the hardware for flushing the DMA queues
972  *	(for Falcon architecture)
973  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
974  *	architecture)
975  * @prepare_flr: Prepare for an FLR
976  * @finish_flr: Clean up after an FLR
977  * @describe_stats: Describe statistics for ethtool
978  * @update_stats: Update statistics not provided by event handling.
979  *	Either argument may be %NULL.
980  * @start_stats: Start the regular fetching of statistics
981  * @pull_stats: Pull stats from the NIC and wait until they arrive.
982  * @stop_stats: Stop the regular fetching of statistics
983  * @set_id_led: Set state of identifying LED or revert to automatic function
984  * @push_irq_moderation: Apply interrupt moderation value
985  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
986  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
987  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
988  *	to the hardware.  Serialised by the mac_lock.
989  * @check_mac_fault: Check MAC fault state. True if fault present.
990  * @get_wol: Get WoL configuration from driver state
991  * @set_wol: Push WoL configuration to the NIC
992  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
993  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
994  *	expected to reset the NIC.
995  * @test_nvram: Test validity of NVRAM contents
996  * @mcdi_request: Send an MCDI request with the given header and SDU.
997  *	The SDU length may be any value from 0 up to the protocol-
998  *	defined maximum, but its buffer will be padded to a multiple
999  *	of 4 bytes.
1000  * @mcdi_poll_response: Test whether an MCDI response is available.
1001  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1002  *	be a multiple of 4.  The length may not be, but the buffer
1003  *	will be padded so it is safe to round up.
1004  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1005  *	return an appropriate error code for aborting any current
1006  *	request; otherwise return 0.
1007  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1008  *	be separately enabled after this.
1009  * @irq_test_generate: Generate a test IRQ
1010  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1011  *	queue must be separately disabled before this.
1012  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1013  *	a pointer to the &struct efx_msi_context for the channel.
1014  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1015  *	is a pointer to the &struct efx_nic.
1016  * @tx_probe: Allocate resources for TX queue
1017  * @tx_init: Initialise TX queue on the NIC
1018  * @tx_remove: Free resources for TX queue
1019  * @tx_write: Write TX descriptors and doorbell
1020  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1021  * @rx_probe: Allocate resources for RX queue
1022  * @rx_init: Initialise RX queue on the NIC
1023  * @rx_remove: Free resources for RX queue
1024  * @rx_write: Write RX descriptors and doorbell
1025  * @rx_defer_refill: Generate a refill reminder event
1026  * @ev_probe: Allocate resources for event queue
1027  * @ev_init: Initialise event queue on the NIC
1028  * @ev_fini: Deinitialise event queue on the NIC
1029  * @ev_remove: Free resources for event queue
1030  * @ev_process: Process events for a queue, up to the given NAPI quota
1031  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1032  * @ev_test_generate: Generate a test event
1033  * @filter_table_probe: Probe filter capabilities and set up filter software state
1034  * @filter_table_restore: Restore filters removed from hardware
1035  * @filter_table_remove: Remove filters from hardware and tear down software state
1036  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1037  * @filter_insert: add or replace a filter
1038  * @filter_remove_safe: remove a filter by ID, carefully
1039  * @filter_get_safe: retrieve a filter by ID, carefully
1040  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1041  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1042  * @filter_count_rx_used: Get the number of filters in use at a given priority
1043  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1044  * @filter_get_rx_ids: Get list of RX filters at a given priority
1045  * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1046  *	atomic.  The hardware change may be asynchronous but should
1047  *	not be delayed for long.  It may fail if this can't be done
1048  *	atomically.
1049  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1050  *	This must check whether the specified table entry is used by RFS
1051  *	and that rps_may_expire_flow() returns true for it.
1052  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1053  *	 using efx_mtd_add()
1054  * @mtd_rename: Set an MTD partition name using the net device name
1055  * @mtd_read: Read from an MTD partition
1056  * @mtd_erase: Erase part of an MTD partition
1057  * @mtd_write: Write to an MTD partition
1058  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1059  *	also notifies the driver that a writer has finished using this
1060  *	partition.
1061  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1062  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1063  *	timestamping, possibly only temporarily for the purposes of a reset.
1064  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1065  *	and tx_type will already have been validated but this operation
1066  *	must validate and update rx_filter.
1067  * @revision: Hardware architecture revision
1068  * @txd_ptr_tbl_base: TX descriptor ring base address
1069  * @rxd_ptr_tbl_base: RX descriptor ring base address
1070  * @buf_tbl_base: Buffer table base address
1071  * @evq_ptr_tbl_base: Event queue pointer table base address
1072  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1073  * @max_dma_mask: Maximum possible DMA mask
1074  * @rx_prefix_size: Size of RX prefix before packet data
1075  * @rx_hash_offset: Offset of RX flow hash within prefix
1076  * @rx_ts_offset: Offset of timestamp within prefix
1077  * @rx_buffer_padding: Size of padding at end of RX packet
1078  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1079  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1080  * @max_interrupt_mode: Highest capability interrupt mode supported
1081  *	from &enum efx_init_mode.
1082  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1083  * @offload_features: net_device feature flags for protocol offload
1084  *	features implemented in hardware
1085  * @mcdi_max_ver: Maximum MCDI version supported
1086  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1087  */
1088 struct efx_nic_type {
1089 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1090 	int (*probe)(struct efx_nic *efx);
1091 	void (*remove)(struct efx_nic *efx);
1092 	int (*init)(struct efx_nic *efx);
1093 	int (*dimension_resources)(struct efx_nic *efx);
1094 	void (*fini)(struct efx_nic *efx);
1095 	void (*monitor)(struct efx_nic *efx);
1096 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1097 	int (*map_reset_flags)(u32 *flags);
1098 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1099 	int (*probe_port)(struct efx_nic *efx);
1100 	void (*remove_port)(struct efx_nic *efx);
1101 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1102 	int (*fini_dmaq)(struct efx_nic *efx);
1103 	void (*prepare_flush)(struct efx_nic *efx);
1104 	void (*finish_flush)(struct efx_nic *efx);
1105 	void (*prepare_flr)(struct efx_nic *efx);
1106 	void (*finish_flr)(struct efx_nic *efx);
1107 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1108 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1109 			       struct rtnl_link_stats64 *core_stats);
1110 	void (*start_stats)(struct efx_nic *efx);
1111 	void (*pull_stats)(struct efx_nic *efx);
1112 	void (*stop_stats)(struct efx_nic *efx);
1113 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1114 	void (*push_irq_moderation)(struct efx_channel *channel);
1115 	int (*reconfigure_port)(struct efx_nic *efx);
1116 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1117 	int (*reconfigure_mac)(struct efx_nic *efx);
1118 	bool (*check_mac_fault)(struct efx_nic *efx);
1119 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1120 	int (*set_wol)(struct efx_nic *efx, u32 type);
1121 	void (*resume_wol)(struct efx_nic *efx);
1122 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1123 	int (*test_nvram)(struct efx_nic *efx);
1124 	void (*mcdi_request)(struct efx_nic *efx,
1125 			     const efx_dword_t *hdr, size_t hdr_len,
1126 			     const efx_dword_t *sdu, size_t sdu_len);
1127 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1128 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1129 				   size_t pdu_offset, size_t pdu_len);
1130 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1131 	void (*irq_enable_master)(struct efx_nic *efx);
1132 	void (*irq_test_generate)(struct efx_nic *efx);
1133 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1134 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1135 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1136 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1137 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1138 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1139 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1140 	void (*rx_push_rss_config)(struct efx_nic *efx);
1141 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1142 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1143 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1144 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1145 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1146 	int (*ev_probe)(struct efx_channel *channel);
1147 	int (*ev_init)(struct efx_channel *channel);
1148 	void (*ev_fini)(struct efx_channel *channel);
1149 	void (*ev_remove)(struct efx_channel *channel);
1150 	int (*ev_process)(struct efx_channel *channel, int quota);
1151 	void (*ev_read_ack)(struct efx_channel *channel);
1152 	void (*ev_test_generate)(struct efx_channel *channel);
1153 	int (*filter_table_probe)(struct efx_nic *efx);
1154 	void (*filter_table_restore)(struct efx_nic *efx);
1155 	void (*filter_table_remove)(struct efx_nic *efx);
1156 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1157 	s32 (*filter_insert)(struct efx_nic *efx,
1158 			     struct efx_filter_spec *spec, bool replace);
1159 	int (*filter_remove_safe)(struct efx_nic *efx,
1160 				  enum efx_filter_priority priority,
1161 				  u32 filter_id);
1162 	int (*filter_get_safe)(struct efx_nic *efx,
1163 			       enum efx_filter_priority priority,
1164 			       u32 filter_id, struct efx_filter_spec *);
1165 	int (*filter_clear_rx)(struct efx_nic *efx,
1166 			       enum efx_filter_priority priority);
1167 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1168 				    enum efx_filter_priority priority);
1169 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1170 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1171 				 enum efx_filter_priority priority,
1172 				 u32 *buf, u32 size);
1173 #ifdef CONFIG_RFS_ACCEL
1174 	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1175 				 struct efx_filter_spec *spec);
1176 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1177 				      unsigned int index);
1178 #endif
1179 #ifdef CONFIG_SFC_MTD
1180 	int (*mtd_probe)(struct efx_nic *efx);
1181 	void (*mtd_rename)(struct efx_mtd_partition *part);
1182 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1183 			size_t *retlen, u8 *buffer);
1184 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1185 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1186 			 size_t *retlen, const u8 *buffer);
1187 	int (*mtd_sync)(struct mtd_info *mtd);
1188 #endif
1189 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1190 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1191 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1192 				 struct hwtstamp_config *init);
1193 
1194 	int revision;
1195 	unsigned int txd_ptr_tbl_base;
1196 	unsigned int rxd_ptr_tbl_base;
1197 	unsigned int buf_tbl_base;
1198 	unsigned int evq_ptr_tbl_base;
1199 	unsigned int evq_rptr_tbl_base;
1200 	u64 max_dma_mask;
1201 	unsigned int rx_prefix_size;
1202 	unsigned int rx_hash_offset;
1203 	unsigned int rx_ts_offset;
1204 	unsigned int rx_buffer_padding;
1205 	bool can_rx_scatter;
1206 	bool always_rx_scatter;
1207 	unsigned int max_interrupt_mode;
1208 	unsigned int timer_period_max;
1209 	netdev_features_t offload_features;
1210 	int mcdi_max_ver;
1211 	unsigned int max_rx_ip_filters;
1212 	u32 hwtstamp_filters;
1213 };
1214 
1215 /**************************************************************************
1216  *
1217  * Prototypes and inline functions
1218  *
1219  *************************************************************************/
1220 
1221 static inline struct efx_channel *
1222 efx_get_channel(struct efx_nic *efx, unsigned index)
1223 {
1224 	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1225 	return efx->channel[index];
1226 }
1227 
1228 /* Iterate over all used channels */
1229 #define efx_for_each_channel(_channel, _efx)				\
1230 	for (_channel = (_efx)->channel[0];				\
1231 	     _channel;							\
1232 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1233 		     (_efx)->channel[_channel->channel + 1] : NULL)
1234 
1235 /* Iterate over all used channels in reverse */
1236 #define efx_for_each_channel_rev(_channel, _efx)			\
1237 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1238 	     _channel;							\
1239 	     _channel = _channel->channel ?				\
1240 		     (_efx)->channel[_channel->channel - 1] : NULL)
1241 
1242 static inline struct efx_tx_queue *
1243 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1244 {
1245 	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1246 			    type >= EFX_TXQ_TYPES);
1247 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1248 }
1249 
1250 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1251 {
1252 	return channel->channel - channel->efx->tx_channel_offset <
1253 		channel->efx->n_tx_channels;
1254 }
1255 
1256 static inline struct efx_tx_queue *
1257 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1258 {
1259 	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1260 			    type >= EFX_TXQ_TYPES);
1261 	return &channel->tx_queue[type];
1262 }
1263 
1264 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1265 {
1266 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1267 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1268 }
1269 
1270 /* Iterate over all TX queues belonging to a channel */
1271 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1272 	if (!efx_channel_has_tx_queues(_channel))			\
1273 		;							\
1274 	else								\
1275 		for (_tx_queue = (_channel)->tx_queue;			\
1276 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1277 			     efx_tx_queue_used(_tx_queue);		\
1278 		     _tx_queue++)
1279 
1280 /* Iterate over all possible TX queues belonging to a channel */
1281 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1282 	if (!efx_channel_has_tx_queues(_channel))			\
1283 		;							\
1284 	else								\
1285 		for (_tx_queue = (_channel)->tx_queue;			\
1286 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1287 		     _tx_queue++)
1288 
1289 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1290 {
1291 	return channel->rx_queue.core_index >= 0;
1292 }
1293 
1294 static inline struct efx_rx_queue *
1295 efx_channel_get_rx_queue(struct efx_channel *channel)
1296 {
1297 	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1298 	return &channel->rx_queue;
1299 }
1300 
1301 /* Iterate over all RX queues belonging to a channel */
1302 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1303 	if (!efx_channel_has_rx_queue(_channel))			\
1304 		;							\
1305 	else								\
1306 		for (_rx_queue = &(_channel)->rx_queue;			\
1307 		     _rx_queue;						\
1308 		     _rx_queue = NULL)
1309 
1310 static inline struct efx_channel *
1311 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1312 {
1313 	return container_of(rx_queue, struct efx_channel, rx_queue);
1314 }
1315 
1316 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1317 {
1318 	return efx_rx_queue_channel(rx_queue)->channel;
1319 }
1320 
1321 /* Returns a pointer to the specified receive buffer in the RX
1322  * descriptor queue.
1323  */
1324 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1325 						  unsigned int index)
1326 {
1327 	return &rx_queue->buffer[index];
1328 }
1329 
1330 /**
1331  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1332  *
1333  * This calculates the maximum frame length that will be used for a
1334  * given MTU.  The frame length will be equal to the MTU plus a
1335  * constant amount of header space and padding.  This is the quantity
1336  * that the net driver will program into the MAC as the maximum frame
1337  * length.
1338  *
1339  * The 10G MAC requires 8-byte alignment on the frame
1340  * length, so we round up to the nearest 8.
1341  *
1342  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1343  * XGMII cycle).  If the frame length reaches the maximum value in the
1344  * same cycle, the XMAC can miss the IPG altogether.  We work around
1345  * this by adding a further 16 bytes.
1346  */
1347 #define EFX_MAX_FRAME_LEN(mtu) \
1348 	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1349 
1350 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1351 {
1352 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1353 }
1354 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1355 {
1356 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1357 }
1358 
1359 #endif /* EFX_NET_DRIVER_H */
1360