1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 /* Common definitions for all Efx net driver code */ 9 10 #ifndef EFX_NET_DRIVER_H 11 #define EFX_NET_DRIVER_H 12 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/ethtool.h> 16 #include <linux/if_vlan.h> 17 #include <linux/timer.h> 18 #include <linux/mdio.h> 19 #include <linux/list.h> 20 #include <linux/pci.h> 21 #include <linux/device.h> 22 #include <linux/highmem.h> 23 #include <linux/workqueue.h> 24 #include <linux/mutex.h> 25 #include <linux/rwsem.h> 26 #include <linux/vmalloc.h> 27 #include <linux/mtd/mtd.h> 28 #include <net/busy_poll.h> 29 #include <net/xdp.h> 30 31 #include "enum.h" 32 #include "bitfield.h" 33 #include "filter.h" 34 35 /************************************************************************** 36 * 37 * Build definitions 38 * 39 **************************************************************************/ 40 41 #ifdef DEBUG 42 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x) 43 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 44 #else 45 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0) 46 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 47 #endif 48 49 /************************************************************************** 50 * 51 * Efx data structures 52 * 53 **************************************************************************/ 54 55 #define EFX_MAX_CHANNELS 32U 56 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 57 #define EFX_EXTRA_CHANNEL_IOV 0 58 #define EFX_EXTRA_CHANNEL_PTP 1 59 #define EFX_EXTRA_CHANNEL_TC 2 60 #define EFX_MAX_EXTRA_CHANNELS 3U 61 62 /* Checksum generation is a per-queue option in hardware, so each 63 * queue visible to the networking core is backed by two hardware TX 64 * queues. */ 65 #define EFX_MAX_TX_TC 2 66 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 67 #define EFX_TXQ_TYPE_OUTER_CSUM 1 /* Outer checksum offload */ 68 #define EFX_TXQ_TYPE_INNER_CSUM 2 /* Inner checksum offload */ 69 #define EFX_TXQ_TYPE_HIGHPRI 4 /* High-priority (for TC) */ 70 #define EFX_TXQ_TYPES 8 71 /* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */ 72 #define EFX_MAX_TXQ_PER_CHANNEL 4 73 #define EFX_MAX_TX_QUEUES (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS) 74 75 /* Maximum possible MTU the driver supports */ 76 #define EFX_MAX_MTU (9 * 1024) 77 78 /* Minimum MTU, from RFC791 (IP) */ 79 #define EFX_MIN_MTU 68 80 81 /* Maximum total header length for TSOv2 */ 82 #define EFX_TSO2_MAX_HDRLEN 208 83 84 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 85 * and should be a multiple of the cache line size. 86 */ 87 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 88 89 /* If possible, we should ensure cache line alignment at start and end 90 * of every buffer. Otherwise, we just need to ensure 4-byte 91 * alignment of the network header. 92 */ 93 #if NET_IP_ALIGN == 0 94 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 95 #else 96 #define EFX_RX_BUF_ALIGNMENT 4 97 #endif 98 99 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and 100 * still fit two standard MTU size packets into a single 4K page. 101 */ 102 #define EFX_XDP_HEADROOM 128 103 #define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) 104 105 /* Forward declare Precision Time Protocol (PTP) support structure. */ 106 struct efx_ptp_data; 107 struct hwtstamp_config; 108 109 struct efx_self_tests; 110 111 /** 112 * struct efx_buffer - A general-purpose DMA buffer 113 * @addr: host base address of the buffer 114 * @dma_addr: DMA base address of the buffer 115 * @len: Buffer length, in bytes 116 * 117 * The NIC uses these buffers for its interrupt status registers and 118 * MAC stats dumps. 119 */ 120 struct efx_buffer { 121 void *addr; 122 dma_addr_t dma_addr; 123 unsigned int len; 124 }; 125 126 /** 127 * struct efx_special_buffer - DMA buffer entered into buffer table 128 * @buf: Standard &struct efx_buffer 129 * @index: Buffer index within controller;s buffer table 130 * @entries: Number of buffer table entries 131 * 132 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 133 * Event and descriptor rings are addressed via one or more buffer 134 * table entries (and so can be physically non-contiguous, although we 135 * currently do not take advantage of that). On Falcon and Siena we 136 * have to take care of allocating and initialising the entries 137 * ourselves. On later hardware this is managed by the firmware and 138 * @index and @entries are left as 0. 139 */ 140 struct efx_special_buffer { 141 struct efx_buffer buf; 142 unsigned int index; 143 unsigned int entries; 144 }; 145 146 /** 147 * struct efx_tx_buffer - buffer state for a TX descriptor 148 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 149 * freed when descriptor completes 150 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data 151 * member is the associated buffer to drop a page reference on. 152 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option 153 * descriptor. 154 * @dma_addr: DMA address of the fragment. 155 * @flags: Flags for allocation and DMA mapping type 156 * @len: Length of this fragment. 157 * This field is zero when the queue slot is empty. 158 * @unmap_len: Length of this fragment to unmap 159 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 160 * Only valid if @unmap_len != 0. 161 */ 162 struct efx_tx_buffer { 163 union { 164 const struct sk_buff *skb; 165 struct xdp_frame *xdpf; 166 }; 167 union { 168 efx_qword_t option; /* EF10 */ 169 dma_addr_t dma_addr; 170 }; 171 unsigned short flags; 172 unsigned short len; 173 unsigned short unmap_len; 174 unsigned short dma_offset; 175 }; 176 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 177 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 178 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 179 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 180 #define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */ 181 #define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */ 182 #define EFX_TX_BUF_EFV 0x100 /* buffer was sent from representor */ 183 184 /** 185 * struct efx_tx_queue - An Efx TX queue 186 * 187 * This is a ring buffer of TX fragments. 188 * Since the TX completion path always executes on the same 189 * CPU and the xmit path can operate on different CPUs, 190 * performance is increased by ensuring that the completion 191 * path and the xmit path operate on different cache lines. 192 * This is particularly important if the xmit path is always 193 * executing on one CPU which is different from the completion 194 * path. There is also a cache line for members which are 195 * read but not written on the fast path. 196 * 197 * @efx: The associated Efx NIC 198 * @queue: DMA queue number 199 * @label: Label for TX completion events. 200 * Is our index within @channel->tx_queue array. 201 * @type: configuration type of this TX queue. A bitmask of %EFX_TXQ_TYPE_* flags. 202 * @tso_version: Version of TSO in use for this queue. 203 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series. 204 * @channel: The associated channel 205 * @core_txq: The networking core TX queue structure 206 * @buffer: The software buffer ring 207 * @cb_page: Array of pages of copy buffers. Carved up according to 208 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks. 209 * @txd: The hardware descriptor ring 210 * @ptr_mask: The size of the ring minus 1. 211 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 212 * Size of the region is efx_piobuf_size. 213 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 214 * @initialised: Has hardware queue been initialised? 215 * @timestamping: Is timestamping enabled for this channel? 216 * @xdp_tx: Is this an XDP tx queue? 217 * @read_count: Current read pointer. 218 * This is the number of buffers that have been removed from both rings. 219 * @old_write_count: The value of @write_count when last checked. 220 * This is here for performance reasons. The xmit path will 221 * only get the up-to-date value of @write_count if this 222 * variable indicates that the queue is empty. This is to 223 * avoid cache-line ping-pong between the xmit path and the 224 * completion path. 225 * @merge_events: Number of TX merged completion events 226 * @completed_timestamp_major: Top part of the most recent tx timestamp. 227 * @completed_timestamp_minor: Low part of the most recent tx timestamp. 228 * @insert_count: Current insert pointer 229 * This is the number of buffers that have been added to the 230 * software ring. 231 * @write_count: Current write pointer 232 * This is the number of buffers that have been added to the 233 * hardware ring. 234 * @packet_write_count: Completable write pointer 235 * This is the write pointer of the last packet written. 236 * Normally this will equal @write_count, but as option descriptors 237 * don't produce completion events, they won't update this. 238 * Filled in iff @efx->type->option_descriptors; only used for PIO. 239 * Thus, this is written and used on EF10, and neither on farch. 240 * @old_read_count: The value of read_count when last checked. 241 * This is here for performance reasons. The xmit path will 242 * only get the up-to-date value of read_count if this 243 * variable indicates that the queue is full. This is to 244 * avoid cache-line ping-pong between the xmit path and the 245 * completion path. 246 * @tso_bursts: Number of times TSO xmit invoked by kernel 247 * @tso_long_headers: Number of packets with headers too long for standard 248 * blocks 249 * @tso_packets: Number of packets via the TSO xmit path 250 * @tso_fallbacks: Number of times TSO fallback used 251 * @pushes: Number of times the TX push feature has been used 252 * @pio_packets: Number of times the TX PIO feature has been used 253 * @xmit_pending: Are any packets waiting to be pushed to the NIC 254 * @cb_packets: Number of times the TX copybreak feature has been used 255 * @notify_count: Count of notified descriptors to the NIC 256 * @empty_read_count: If the completion path has seen the queue as empty 257 * and the transmission path has not yet checked this, the value of 258 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 259 */ 260 struct efx_tx_queue { 261 /* Members which don't change on the fast path */ 262 struct efx_nic *efx ____cacheline_aligned_in_smp; 263 unsigned int queue; 264 unsigned int label; 265 unsigned int type; 266 unsigned int tso_version; 267 bool tso_encap; 268 struct efx_channel *channel; 269 struct netdev_queue *core_txq; 270 struct efx_tx_buffer *buffer; 271 struct efx_buffer *cb_page; 272 struct efx_special_buffer txd; 273 unsigned int ptr_mask; 274 void __iomem *piobuf; 275 unsigned int piobuf_offset; 276 bool initialised; 277 bool timestamping; 278 bool xdp_tx; 279 280 /* Members used mainly on the completion path */ 281 unsigned int read_count ____cacheline_aligned_in_smp; 282 unsigned int old_write_count; 283 unsigned int merge_events; 284 unsigned int bytes_compl; 285 unsigned int pkts_compl; 286 u32 completed_timestamp_major; 287 u32 completed_timestamp_minor; 288 289 /* Members used only on the xmit path */ 290 unsigned int insert_count ____cacheline_aligned_in_smp; 291 unsigned int write_count; 292 unsigned int packet_write_count; 293 unsigned int old_read_count; 294 unsigned int tso_bursts; 295 unsigned int tso_long_headers; 296 unsigned int tso_packets; 297 unsigned int tso_fallbacks; 298 unsigned int pushes; 299 unsigned int pio_packets; 300 bool xmit_pending; 301 unsigned int cb_packets; 302 unsigned int notify_count; 303 /* Statistics to supplement MAC stats */ 304 unsigned long tx_packets; 305 306 /* Members shared between paths and sometimes updated */ 307 unsigned int empty_read_count ____cacheline_aligned_in_smp; 308 #define EFX_EMPTY_COUNT_VALID 0x80000000 309 atomic_t flush_outstanding; 310 }; 311 312 #define EFX_TX_CB_ORDER 7 313 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN 314 315 /** 316 * struct efx_rx_buffer - An Efx RX data buffer 317 * @dma_addr: DMA base address of the buffer 318 * @page: The associated page buffer. 319 * Will be %NULL if the buffer slot is currently free. 320 * @page_offset: If pending: offset in @page of DMA base address. 321 * If completed: offset in @page of Ethernet header. 322 * @len: If pending: length for DMA descriptor. 323 * If completed: received length, excluding hash prefix. 324 * @flags: Flags for buffer and packet state. These are only set on the 325 * first buffer of a scattered packet. 326 */ 327 struct efx_rx_buffer { 328 dma_addr_t dma_addr; 329 struct page *page; 330 u16 page_offset; 331 u16 len; 332 u16 flags; 333 }; 334 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 335 #define EFX_RX_PKT_CSUMMED 0x0002 336 #define EFX_RX_PKT_DISCARD 0x0004 337 #define EFX_RX_PKT_TCP 0x0040 338 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 339 #define EFX_RX_PKT_CSUM_LEVEL 0x0200 340 341 /** 342 * struct efx_rx_page_state - Page-based rx buffer state 343 * 344 * Inserted at the start of every page allocated for receive buffers. 345 * Used to facilitate sharing dma mappings between recycled rx buffers 346 * and those passed up to the kernel. 347 * 348 * @dma_addr: The dma address of this page. 349 */ 350 struct efx_rx_page_state { 351 dma_addr_t dma_addr; 352 353 unsigned int __pad[] ____cacheline_aligned; 354 }; 355 356 /** 357 * struct efx_rx_queue - An Efx RX queue 358 * @efx: The associated Efx NIC 359 * @core_index: Index of network core RX queue. Will be >= 0 iff this 360 * is associated with a real RX queue. 361 * @buffer: The software buffer ring 362 * @rxd: The hardware descriptor ring 363 * @ptr_mask: The size of the ring minus 1. 364 * @refill_enabled: Enable refill whenever fill level is low 365 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 366 * @rxq_flush_pending. 367 * @grant_credits: Posted RX descriptors need to be granted to the MAE with 368 * %MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS. For %EFX_EXTRA_CHANNEL_TC, 369 * and only supported on EF100. 370 * @added_count: Number of buffers added to the receive queue. 371 * @notified_count: Number of buffers given to NIC (<= @added_count). 372 * @granted_count: Number of buffers granted to the MAE (<= @notified_count). 373 * @removed_count: Number of buffers removed from the receive queue. 374 * @scatter_n: Used by NIC specific receive code. 375 * @scatter_len: Used by NIC specific receive code. 376 * @page_ring: The ring to store DMA mapped pages for reuse. 377 * @page_add: Counter to calculate the write pointer for the recycle ring. 378 * @page_remove: Counter to calculate the read pointer for the recycle ring. 379 * @page_recycle_count: The number of pages that have been recycled. 380 * @page_recycle_failed: The number of pages that couldn't be recycled because 381 * the kernel still held a reference to them. 382 * @page_recycle_full: The number of pages that were released because the 383 * recycle ring was full. 384 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 385 * @max_fill: RX descriptor maximum fill level (<= ring size) 386 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 387 * (<= @max_fill) 388 * @min_fill: RX descriptor minimum non-zero fill level. 389 * This records the minimum fill level observed when a ring 390 * refill was triggered. 391 * @recycle_count: RX buffer recycle counter. 392 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 393 * @grant_work: workitem used to grant credits to the MAE if @grant_credits 394 * @xdp_rxq_info: XDP specific RX queue information. 395 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?. 396 */ 397 struct efx_rx_queue { 398 struct efx_nic *efx; 399 int core_index; 400 struct efx_rx_buffer *buffer; 401 struct efx_special_buffer rxd; 402 unsigned int ptr_mask; 403 bool refill_enabled; 404 bool flush_pending; 405 bool grant_credits; 406 407 unsigned int added_count; 408 unsigned int notified_count; 409 unsigned int granted_count; 410 unsigned int removed_count; 411 unsigned int scatter_n; 412 unsigned int scatter_len; 413 struct page **page_ring; 414 unsigned int page_add; 415 unsigned int page_remove; 416 unsigned int page_recycle_count; 417 unsigned int page_recycle_failed; 418 unsigned int page_recycle_full; 419 unsigned int page_ptr_mask; 420 unsigned int max_fill; 421 unsigned int fast_fill_trigger; 422 unsigned int min_fill; 423 unsigned int min_overfill; 424 unsigned int recycle_count; 425 struct timer_list slow_fill; 426 unsigned int slow_fill_count; 427 struct work_struct grant_work; 428 /* Statistics to supplement MAC stats */ 429 unsigned long rx_packets; 430 struct xdp_rxq_info xdp_rxq_info; 431 bool xdp_rxq_info_valid; 432 }; 433 434 enum efx_sync_events_state { 435 SYNC_EVENTS_DISABLED = 0, 436 SYNC_EVENTS_QUIESCENT, 437 SYNC_EVENTS_REQUESTED, 438 SYNC_EVENTS_VALID, 439 }; 440 441 /** 442 * struct efx_channel - An Efx channel 443 * 444 * A channel comprises an event queue, at least one TX queue, at least 445 * one RX queue, and an associated tasklet for processing the event 446 * queue. 447 * 448 * @efx: Associated Efx NIC 449 * @channel: Channel instance number 450 * @type: Channel type definition 451 * @eventq_init: Event queue initialised flag 452 * @enabled: Channel enabled indicator 453 * @irq: IRQ number (MSI and MSI-X only) 454 * @irq_moderation_us: IRQ moderation value (in microseconds) 455 * @napi_dev: Net device used with NAPI 456 * @napi_str: NAPI control structure 457 * @state: state for NAPI vs busy polling 458 * @state_lock: lock protecting @state 459 * @eventq: Event queue buffer 460 * @eventq_mask: Event queue pointer mask 461 * @eventq_read_ptr: Event queue read pointer 462 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 463 * @irq_count: Number of IRQs since last adaptive moderation decision 464 * @irq_mod_score: IRQ moderation score 465 * @rfs_filter_count: number of accelerated RFS filters currently in place; 466 * equals the count of @rps_flow_id slots filled 467 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters 468 * were checked for expiry 469 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry 470 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions 471 * @n_rfs_failed: number of failed accelerated RFS filter insertions 472 * @filter_work: Work item for efx_filter_rfs_expire() 473 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 474 * indexed by filter ID 475 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 476 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 477 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 478 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 479 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 480 * @n_rx_overlength: Count of RX_OVERLENGTH errors 481 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 482 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 483 * lack of descriptors 484 * @n_rx_merge_events: Number of RX merged completion events 485 * @n_rx_merge_packets: Number of RX packets completed by merged events 486 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP 487 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors 488 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP 489 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP 490 * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was 491 * not recognised 492 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 493 * __efx_rx_packet(), or zero if there is none 494 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 495 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 496 * @rx_list: list of SKBs from current RX, awaiting processing 497 * @rx_queue: RX queue for this channel 498 * @tx_queue: TX queues for this channel 499 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type 500 * @sync_events_state: Current state of sync events on this channel 501 * @sync_timestamp_major: Major part of the last ptp sync event 502 * @sync_timestamp_minor: Minor part of the last ptp sync event 503 */ 504 struct efx_channel { 505 struct efx_nic *efx; 506 int channel; 507 const struct efx_channel_type *type; 508 bool eventq_init; 509 bool enabled; 510 int irq; 511 unsigned int irq_moderation_us; 512 struct net_device *napi_dev; 513 struct napi_struct napi_str; 514 #ifdef CONFIG_NET_RX_BUSY_POLL 515 unsigned long busy_poll_state; 516 #endif 517 struct efx_special_buffer eventq; 518 unsigned int eventq_mask; 519 unsigned int eventq_read_ptr; 520 int event_test_cpu; 521 522 unsigned int irq_count; 523 unsigned int irq_mod_score; 524 #ifdef CONFIG_RFS_ACCEL 525 unsigned int rfs_filter_count; 526 unsigned int rfs_last_expiry; 527 unsigned int rfs_expire_index; 528 unsigned int n_rfs_succeeded; 529 unsigned int n_rfs_failed; 530 struct delayed_work filter_work; 531 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF 532 u32 *rps_flow_id; 533 #endif 534 535 unsigned int n_rx_tobe_disc; 536 unsigned int n_rx_ip_hdr_chksum_err; 537 unsigned int n_rx_tcp_udp_chksum_err; 538 unsigned int n_rx_outer_ip_hdr_chksum_err; 539 unsigned int n_rx_outer_tcp_udp_chksum_err; 540 unsigned int n_rx_inner_ip_hdr_chksum_err; 541 unsigned int n_rx_inner_tcp_udp_chksum_err; 542 unsigned int n_rx_eth_crc_err; 543 unsigned int n_rx_mcast_mismatch; 544 unsigned int n_rx_frm_trunc; 545 unsigned int n_rx_overlength; 546 unsigned int n_skbuff_leaks; 547 unsigned int n_rx_nodesc_trunc; 548 unsigned int n_rx_merge_events; 549 unsigned int n_rx_merge_packets; 550 unsigned int n_rx_xdp_drops; 551 unsigned int n_rx_xdp_bad_drops; 552 unsigned int n_rx_xdp_tx; 553 unsigned int n_rx_xdp_redirect; 554 unsigned int n_rx_mport_bad; 555 556 unsigned int rx_pkt_n_frags; 557 unsigned int rx_pkt_index; 558 559 struct list_head *rx_list; 560 561 struct efx_rx_queue rx_queue; 562 struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL]; 563 struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES]; 564 565 enum efx_sync_events_state sync_events_state; 566 u32 sync_timestamp_major; 567 u32 sync_timestamp_minor; 568 }; 569 570 /** 571 * struct efx_msi_context - Context for each MSI 572 * @efx: The associated NIC 573 * @index: Index of the channel/IRQ 574 * @name: Name of the channel/IRQ 575 * 576 * Unlike &struct efx_channel, this is never reallocated and is always 577 * safe for the IRQ handler to access. 578 */ 579 struct efx_msi_context { 580 struct efx_nic *efx; 581 unsigned int index; 582 char name[IFNAMSIZ + 6]; 583 }; 584 585 /** 586 * struct efx_channel_type - distinguishes traffic and extra channels 587 * @handle_no_channel: Handle failure to allocate an extra channel 588 * @pre_probe: Set up extra state prior to initialisation 589 * @start: called early in efx_start_channels() 590 * @stop: called early in efx_stop_channels() 591 * @post_remove: Tear down extra state after finalisation, if allocated. 592 * May be called on channels that have not been probed. 593 * @get_name: Generate the channel's name (used for its IRQ handler) 594 * @copy: Copy the channel state prior to reallocation. May be %NULL if 595 * reallocation is not supported. 596 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 597 * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet() 598 * @want_txqs: Determine whether this channel should have TX queues 599 * created. If %NULL, TX queues are not created. 600 * @keep_eventq: Flag for whether event queue should be kept initialised 601 * while the device is stopped 602 * @want_pio: Flag for whether PIO buffers should be linked to this 603 * channel's TX queues. 604 */ 605 struct efx_channel_type { 606 void (*handle_no_channel)(struct efx_nic *); 607 int (*pre_probe)(struct efx_channel *); 608 int (*start)(struct efx_channel *); 609 void (*stop)(struct efx_channel *); 610 void (*post_remove)(struct efx_channel *); 611 void (*get_name)(struct efx_channel *, char *buf, size_t len); 612 struct efx_channel *(*copy)(const struct efx_channel *); 613 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 614 bool (*receive_raw)(struct efx_rx_queue *, u32); 615 bool (*want_txqs)(struct efx_channel *); 616 bool keep_eventq; 617 bool want_pio; 618 }; 619 620 enum efx_led_mode { 621 EFX_LED_OFF = 0, 622 EFX_LED_ON = 1, 623 EFX_LED_DEFAULT = 2 624 }; 625 626 #define STRING_TABLE_LOOKUP(val, member) \ 627 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 628 629 extern const char *const efx_loopback_mode_names[]; 630 extern const unsigned int efx_loopback_mode_max; 631 #define LOOPBACK_MODE(efx) \ 632 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 633 634 enum efx_int_mode { 635 /* Be careful if altering to correct macro below */ 636 EFX_INT_MODE_MSIX = 0, 637 EFX_INT_MODE_MSI = 1, 638 EFX_INT_MODE_LEGACY = 2, 639 EFX_INT_MODE_MAX /* Insert any new items before this */ 640 }; 641 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 642 643 enum nic_state { 644 STATE_UNINIT = 0, /* device being probed/removed */ 645 STATE_PROBED, /* hardware probed */ 646 STATE_NET_DOWN, /* netdev registered */ 647 STATE_NET_UP, /* ready for traffic */ 648 STATE_DISABLED, /* device disabled due to hardware errors */ 649 650 STATE_RECOVERY = 0x100,/* recovering from PCI error */ 651 STATE_FROZEN = 0x200, /* frozen by power management */ 652 }; 653 654 static inline bool efx_net_active(enum nic_state state) 655 { 656 return state == STATE_NET_DOWN || state == STATE_NET_UP; 657 } 658 659 static inline bool efx_frozen(enum nic_state state) 660 { 661 return state & STATE_FROZEN; 662 } 663 664 static inline bool efx_recovering(enum nic_state state) 665 { 666 return state & STATE_RECOVERY; 667 } 668 669 static inline enum nic_state efx_freeze(enum nic_state state) 670 { 671 WARN_ON(!efx_net_active(state)); 672 return state | STATE_FROZEN; 673 } 674 675 static inline enum nic_state efx_thaw(enum nic_state state) 676 { 677 WARN_ON(!efx_frozen(state)); 678 return state & ~STATE_FROZEN; 679 } 680 681 static inline enum nic_state efx_recover(enum nic_state state) 682 { 683 WARN_ON(!efx_net_active(state)); 684 return state | STATE_RECOVERY; 685 } 686 687 static inline enum nic_state efx_recovered(enum nic_state state) 688 { 689 WARN_ON(!efx_recovering(state)); 690 return state & ~STATE_RECOVERY; 691 } 692 693 /* Forward declaration */ 694 struct efx_nic; 695 696 /* Pseudo bit-mask flow control field */ 697 #define EFX_FC_RX FLOW_CTRL_RX 698 #define EFX_FC_TX FLOW_CTRL_TX 699 #define EFX_FC_AUTO 4 700 701 /** 702 * struct efx_link_state - Current state of the link 703 * @up: Link is up 704 * @fd: Link is full-duplex 705 * @fc: Actual flow control flags 706 * @speed: Link speed (Mbps) 707 */ 708 struct efx_link_state { 709 bool up; 710 bool fd; 711 u8 fc; 712 unsigned int speed; 713 }; 714 715 static inline bool efx_link_state_equal(const struct efx_link_state *left, 716 const struct efx_link_state *right) 717 { 718 return left->up == right->up && left->fd == right->fd && 719 left->fc == right->fc && left->speed == right->speed; 720 } 721 722 /** 723 * enum efx_phy_mode - PHY operating mode flags 724 * @PHY_MODE_NORMAL: on and should pass traffic 725 * @PHY_MODE_TX_DISABLED: on with TX disabled 726 * @PHY_MODE_LOW_POWER: set to low power through MDIO 727 * @PHY_MODE_OFF: switched off through external control 728 * @PHY_MODE_SPECIAL: on but will not pass traffic 729 */ 730 enum efx_phy_mode { 731 PHY_MODE_NORMAL = 0, 732 PHY_MODE_TX_DISABLED = 1, 733 PHY_MODE_LOW_POWER = 2, 734 PHY_MODE_OFF = 4, 735 PHY_MODE_SPECIAL = 8, 736 }; 737 738 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 739 { 740 return !!(mode & ~PHY_MODE_TX_DISABLED); 741 } 742 743 /** 744 * struct efx_hw_stat_desc - Description of a hardware statistic 745 * @name: Name of the statistic as visible through ethtool, or %NULL if 746 * it should not be exposed 747 * @dma_width: Width in bits (0 for non-DMA statistics) 748 * @offset: Offset within stats (ignored for non-DMA statistics) 749 */ 750 struct efx_hw_stat_desc { 751 const char *name; 752 u16 dma_width; 753 u16 offset; 754 }; 755 756 /* Number of bits used in a multicast filter hash address */ 757 #define EFX_MCAST_HASH_BITS 8 758 759 /* Number of (single-bit) entries in a multicast filter hash */ 760 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 761 762 /* An Efx multicast filter hash */ 763 union efx_multicast_hash { 764 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 765 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 766 }; 767 768 struct vfdi_status; 769 770 /* The reserved RSS context value */ 771 #define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff 772 /** 773 * struct efx_rss_context - A user-defined RSS context for filtering 774 * @list: node of linked list on which this struct is stored 775 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or 776 * %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC. 777 * For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID. 778 * @user_id: the rss_context ID exposed to userspace over ethtool. 779 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled 780 * @rx_hash_key: Toeplitz hash key for this RSS context 781 * @indir_table: Indirection table for this RSS context 782 */ 783 struct efx_rss_context { 784 struct list_head list; 785 u32 context_id; 786 u32 user_id; 787 bool rx_hash_udp_4tuple; 788 u8 rx_hash_key[40]; 789 u32 rx_indir_table[128]; 790 }; 791 792 #ifdef CONFIG_RFS_ACCEL 793 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING 794 * is used to test if filter does or will exist. 795 */ 796 #define EFX_ARFS_FILTER_ID_PENDING -1 797 #define EFX_ARFS_FILTER_ID_ERROR -2 798 #define EFX_ARFS_FILTER_ID_REMOVING -3 799 /** 800 * struct efx_arfs_rule - record of an ARFS filter and its IDs 801 * @node: linkage into hash table 802 * @spec: details of the filter (used as key for hash table). Use efx->type to 803 * determine which member to use. 804 * @rxq_index: channel to which the filter will steer traffic. 805 * @arfs_id: filter ID which was returned to ARFS 806 * @filter_id: index in software filter table. May be 807 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet, 808 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or 809 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter. 810 */ 811 struct efx_arfs_rule { 812 struct hlist_node node; 813 struct efx_filter_spec spec; 814 u16 rxq_index; 815 u16 arfs_id; 816 s32 filter_id; 817 }; 818 819 /* Size chosen so that the table is one page (4kB) */ 820 #define EFX_ARFS_HASH_TABLE_SIZE 512 821 822 /** 823 * struct efx_async_filter_insertion - Request to asynchronously insert a filter 824 * @net_dev: Reference to the netdevice 825 * @spec: The filter to insert 826 * @work: Workitem for this request 827 * @rxq_index: Identifies the channel for which this request was made 828 * @flow_id: Identifies the kernel-side flow for which this request was made 829 */ 830 struct efx_async_filter_insertion { 831 struct net_device *net_dev; 832 struct efx_filter_spec spec; 833 struct work_struct work; 834 u16 rxq_index; 835 u32 flow_id; 836 }; 837 838 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */ 839 #define EFX_RPS_MAX_IN_FLIGHT 8 840 #endif /* CONFIG_RFS_ACCEL */ 841 842 enum efx_xdp_tx_queues_mode { 843 EFX_XDP_TX_QUEUES_DEDICATED, /* one queue per core, locking not needed */ 844 EFX_XDP_TX_QUEUES_SHARED, /* each queue used by more than 1 core */ 845 EFX_XDP_TX_QUEUES_BORROWED /* queues borrowed from net stack */ 846 }; 847 848 struct efx_mae; 849 850 /** 851 * struct efx_nic - an Efx NIC 852 * @name: Device name (net device name or bus id before net device registered) 853 * @pci_dev: The PCI device 854 * @node: List node for maintaning primary/secondary function lists 855 * @primary: &struct efx_nic instance for the primary function of this 856 * controller. May be the same structure, and may be %NULL if no 857 * primary function is bound. Serialised by rtnl_lock. 858 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 859 * functions of the controller, if this is for the primary function. 860 * Serialised by rtnl_lock. 861 * @type: Controller type attributes 862 * @legacy_irq: IRQ number 863 * @workqueue: Workqueue for port reconfigures and the HW monitor. 864 * Work items do not hold and must not acquire RTNL. 865 * @workqueue_name: Name of workqueue 866 * @reset_work: Scheduled reset workitem 867 * @membase_phys: Memory BAR value as physical address 868 * @membase: Memory BAR value 869 * @vi_stride: step between per-VI registers / memory regions 870 * @interrupt_mode: Interrupt mode 871 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 872 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds 873 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 874 * @irqs_hooked: Channel interrupts are hooked 875 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues 876 * @irq_rx_moderation_us: IRQ moderation time for RX event queues 877 * @msg_enable: Log message enable flags 878 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 879 * @reset_pending: Bitmask for pending resets 880 * @tx_queue: TX DMA queues 881 * @rx_queue: RX DMA queues 882 * @channel: Channels 883 * @msi_context: Context for each MSI 884 * @extra_channel_types: Types of extra (non-traffic) channels that 885 * should be allocated for this NIC 886 * @mae: Details of the Match Action Engine 887 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues. 888 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit. 889 * @xdp_txq_queues_mode: XDP TX queues sharing strategy. 890 * @rxq_entries: Size of receive queues requested by user. 891 * @txq_entries: Size of transmit queues requested by user. 892 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 893 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 894 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 895 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 896 * @sram_lim_qw: Qword address limit of SRAM 897 * @next_buffer_table: First available buffer table id 898 * @n_channels: Number of channels in use 899 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 900 * @n_tx_channels: Number of channels used for TX 901 * @n_extra_tx_channels: Number of extra channels with TX queues 902 * @tx_queues_per_channel: number of TX queues probed on each channel 903 * @n_xdp_channels: Number of channels used for XDP TX 904 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX. 905 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel. 906 * @rx_ip_align: RX DMA address offset to have IP header aligned in 907 * in accordance with NET_IP_ALIGN 908 * @rx_dma_len: Current maximum RX DMA length 909 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 910 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 911 * for use in sk_buff::truesize 912 * @rx_prefix_size: Size of RX prefix before packet data 913 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 914 * (valid only if @rx_prefix_size != 0; always negative) 915 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 916 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 917 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 918 * (valid only if channel->sync_timestamps_enabled; always negative) 919 * @rx_scatter: Scatter mode enabled for receives 920 * @rss_context: Main RSS context. Its @list member is the head of the list of 921 * RSS contexts created by user requests 922 * @rss_lock: Protects custom RSS context software state in @rss_context.list 923 * @vport_id: The function's vport ID, only relevant for PFs 924 * @int_error_count: Number of internal errors seen recently 925 * @int_error_expire: Time at which error count will be expired 926 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot 927 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 928 * acknowledge but do nothing else. 929 * @irq_status: Interrupt status buffer 930 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 931 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 932 * @selftest_work: Work item for asynchronous self-test 933 * @mtd_list: List of MTDs attached to the NIC 934 * @nic_data: Hardware dependent state 935 * @mcdi: Management-Controller-to-Driver Interface state 936 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 937 * efx_monitor() and efx_reconfigure_port() 938 * @port_enabled: Port enabled indicator. 939 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 940 * efx_mac_work() with kernel interfaces. Safe to read under any 941 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 942 * be held to modify it. 943 * @port_initialized: Port initialized? 944 * @net_dev: Operating system network device. Consider holding the rtnl lock 945 * @fixed_features: Features which cannot be turned off 946 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS 947 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS) 948 * @stats_buffer: DMA buffer for statistics 949 * @phy_type: PHY type 950 * @phy_data: PHY private data (including PHY-specific stats) 951 * @mdio: PHY MDIO interface 952 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 953 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 954 * @link_advertising: Autonegotiation advertising flags 955 * @fec_config: Forward Error Correction configuration flags. For bit positions 956 * see &enum ethtool_fec_config_bits. 957 * @link_state: Current state of the link 958 * @n_link_state_changes: Number of times the link has changed state 959 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 960 * Protected by @mac_lock. 961 * @multicast_hash: Multicast hash table for Falcon-arch. 962 * Protected by @mac_lock. 963 * @wanted_fc: Wanted flow control flags 964 * @fc_disable: When non-zero flow control is disabled. Typically used to 965 * ensure that network back pressure doesn't delay dma queue flushes. 966 * Serialised by the rtnl lock. 967 * @mac_work: Work item for changing MAC promiscuity and multicast hash 968 * @loopback_mode: Loopback status 969 * @loopback_modes: Supported loopback mode bitmask 970 * @loopback_selftest: Offline self-test private state 971 * @xdp_prog: Current XDP programme for this interface 972 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state 973 * @filter_state: Architecture-dependent filter table state 974 * @rps_mutex: Protects RPS state of all channels 975 * @rps_slot_map: bitmap of in-flight entries in @rps_slot 976 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work() 977 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and 978 * @rps_next_id). 979 * @rps_hash_table: Mapping between ARFS filters and their various IDs 980 * @rps_next_id: next arfs_id for an ARFS filter 981 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 982 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 983 * Decremented when the efx_flush_rx_queue() is called. 984 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 985 * completed (either success or failure). Not used when MCDI is used to 986 * flush receive queues. 987 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 988 * @vf_count: Number of VFs intended to be enabled. 989 * @vf_init_count: Number of VFs that have been fully initialised. 990 * @vi_scale: log2 number of vnics per VF. 991 * @vf_reps_lock: Protects vf_reps list 992 * @vf_reps: local VF reps 993 * @ptp_data: PTP state data 994 * @ptp_warned: has this NIC seen and warned about unexpected PTP events? 995 * @vpd_sn: Serial number read from VPD 996 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their 997 * xdp_rxq_info structures? 998 * @netdev_notifier: Netdevice notifier. 999 * @tc: state for TC offload (EF100). 1000 * @devlink: reference to devlink structure owned by this device 1001 * @dl_port: devlink port associated with the PF 1002 * @mem_bar: The BAR that is mapped into membase. 1003 * @reg_base: Offset from the start of the bar to the function control window. 1004 * @monitor_work: Hardware monitor workitem 1005 * @biu_lock: BIU (bus interface unit) lock 1006 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 1007 * field is used by efx_test_interrupts() to verify that an 1008 * interrupt has occurred. 1009 * @stats_lock: Statistics update lock. Must be held when calling 1010 * efx_nic_type::{update,start,stop}_stats. 1011 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb 1012 * 1013 * This is stored in the private area of the &struct net_device. 1014 */ 1015 struct efx_nic { 1016 /* The following fields should be written very rarely */ 1017 1018 char name[IFNAMSIZ]; 1019 struct list_head node; 1020 struct efx_nic *primary; 1021 struct list_head secondary_list; 1022 struct pci_dev *pci_dev; 1023 unsigned int port_num; 1024 const struct efx_nic_type *type; 1025 int legacy_irq; 1026 bool eeh_disabled_legacy_irq; 1027 struct workqueue_struct *workqueue; 1028 char workqueue_name[16]; 1029 struct work_struct reset_work; 1030 resource_size_t membase_phys; 1031 void __iomem *membase; 1032 1033 unsigned int vi_stride; 1034 1035 enum efx_int_mode interrupt_mode; 1036 unsigned int timer_quantum_ns; 1037 unsigned int timer_max_ns; 1038 bool irq_rx_adaptive; 1039 bool irqs_hooked; 1040 unsigned int irq_mod_step_us; 1041 unsigned int irq_rx_moderation_us; 1042 u32 msg_enable; 1043 1044 enum nic_state state; 1045 unsigned long reset_pending; 1046 1047 struct efx_channel *channel[EFX_MAX_CHANNELS]; 1048 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 1049 const struct efx_channel_type * 1050 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 1051 struct efx_mae *mae; 1052 1053 unsigned int xdp_tx_queue_count; 1054 struct efx_tx_queue **xdp_tx_queues; 1055 enum efx_xdp_tx_queues_mode xdp_txq_queues_mode; 1056 1057 unsigned rxq_entries; 1058 unsigned txq_entries; 1059 unsigned int txq_stop_thresh; 1060 unsigned int txq_wake_thresh; 1061 1062 unsigned tx_dc_base; 1063 unsigned rx_dc_base; 1064 unsigned sram_lim_qw; 1065 unsigned next_buffer_table; 1066 1067 unsigned int max_channels; 1068 unsigned int max_vis; 1069 unsigned int max_tx_channels; 1070 unsigned n_channels; 1071 unsigned n_rx_channels; 1072 unsigned rss_spread; 1073 unsigned tx_channel_offset; 1074 unsigned n_tx_channels; 1075 unsigned n_extra_tx_channels; 1076 unsigned int tx_queues_per_channel; 1077 unsigned int n_xdp_channels; 1078 unsigned int xdp_channel_offset; 1079 unsigned int xdp_tx_per_channel; 1080 unsigned int rx_ip_align; 1081 unsigned int rx_dma_len; 1082 unsigned int rx_buffer_order; 1083 unsigned int rx_buffer_truesize; 1084 unsigned int rx_page_buf_step; 1085 unsigned int rx_bufs_per_page; 1086 unsigned int rx_pages_per_batch; 1087 unsigned int rx_prefix_size; 1088 int rx_packet_hash_offset; 1089 int rx_packet_len_offset; 1090 int rx_packet_ts_offset; 1091 bool rx_scatter; 1092 struct efx_rss_context rss_context; 1093 struct mutex rss_lock; 1094 u32 vport_id; 1095 1096 unsigned int_error_count; 1097 unsigned long int_error_expire; 1098 1099 bool must_realloc_vis; 1100 bool irq_soft_enabled; 1101 struct efx_buffer irq_status; 1102 unsigned irq_zero_count; 1103 unsigned irq_level; 1104 struct delayed_work selftest_work; 1105 1106 #ifdef CONFIG_SFC_MTD 1107 struct list_head mtd_list; 1108 #endif 1109 1110 void *nic_data; 1111 struct efx_mcdi_data *mcdi; 1112 1113 struct mutex mac_lock; 1114 struct work_struct mac_work; 1115 bool port_enabled; 1116 1117 bool mc_bist_for_other_fn; 1118 bool port_initialized; 1119 struct net_device *net_dev; 1120 1121 netdev_features_t fixed_features; 1122 1123 u16 num_mac_stats; 1124 struct efx_buffer stats_buffer; 1125 u64 rx_nodesc_drops_total; 1126 u64 rx_nodesc_drops_while_down; 1127 bool rx_nodesc_drops_prev_state; 1128 1129 unsigned int phy_type; 1130 void *phy_data; 1131 struct mdio_if_info mdio; 1132 unsigned int mdio_bus; 1133 enum efx_phy_mode phy_mode; 1134 1135 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising); 1136 u32 fec_config; 1137 struct efx_link_state link_state; 1138 unsigned int n_link_state_changes; 1139 1140 bool unicast_filter; 1141 union efx_multicast_hash multicast_hash; 1142 u8 wanted_fc; 1143 unsigned fc_disable; 1144 1145 atomic_t rx_reset; 1146 enum efx_loopback_mode loopback_mode; 1147 u64 loopback_modes; 1148 1149 void *loopback_selftest; 1150 /* We access loopback_selftest immediately before running XDP, 1151 * so we want them next to each other. 1152 */ 1153 struct bpf_prog __rcu *xdp_prog; 1154 1155 struct rw_semaphore filter_sem; 1156 void *filter_state; 1157 #ifdef CONFIG_RFS_ACCEL 1158 struct mutex rps_mutex; 1159 unsigned long rps_slot_map; 1160 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT]; 1161 spinlock_t rps_hash_lock; 1162 struct hlist_head *rps_hash_table; 1163 u32 rps_next_id; 1164 #endif 1165 1166 atomic_t active_queues; 1167 atomic_t rxq_flush_pending; 1168 atomic_t rxq_flush_outstanding; 1169 wait_queue_head_t flush_wq; 1170 1171 #ifdef CONFIG_SFC_SRIOV 1172 unsigned vf_count; 1173 unsigned vf_init_count; 1174 unsigned vi_scale; 1175 #endif 1176 spinlock_t vf_reps_lock; 1177 struct list_head vf_reps; 1178 1179 struct efx_ptp_data *ptp_data; 1180 bool ptp_warned; 1181 1182 char *vpd_sn; 1183 bool xdp_rxq_info_failed; 1184 1185 struct notifier_block netdev_notifier; 1186 struct efx_tc_state *tc; 1187 1188 struct devlink *devlink; 1189 struct devlink_port *dl_port; 1190 unsigned int mem_bar; 1191 u32 reg_base; 1192 1193 /* The following fields may be written more often */ 1194 1195 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 1196 spinlock_t biu_lock; 1197 int last_irq_cpu; 1198 spinlock_t stats_lock; 1199 atomic_t n_rx_noskb_drops; 1200 }; 1201 1202 /** 1203 * struct efx_probe_data - State after hardware probe 1204 * @pci_dev: The PCI device 1205 * @efx: Efx NIC details 1206 */ 1207 struct efx_probe_data { 1208 struct pci_dev *pci_dev; 1209 struct efx_nic efx; 1210 }; 1211 1212 static inline struct efx_nic *efx_netdev_priv(struct net_device *dev) 1213 { 1214 struct efx_probe_data **probe_ptr = netdev_priv(dev); 1215 struct efx_probe_data *probe_data = *probe_ptr; 1216 1217 return &probe_data->efx; 1218 } 1219 1220 static inline int efx_dev_registered(struct efx_nic *efx) 1221 { 1222 return efx->net_dev->reg_state == NETREG_REGISTERED; 1223 } 1224 1225 static inline unsigned int efx_port_num(struct efx_nic *efx) 1226 { 1227 return efx->port_num; 1228 } 1229 1230 struct efx_mtd_partition { 1231 struct list_head node; 1232 struct mtd_info mtd; 1233 const char *dev_type_name; 1234 const char *type_name; 1235 char name[IFNAMSIZ + 20]; 1236 }; 1237 1238 struct efx_udp_tunnel { 1239 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff 1240 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */ 1241 __be16 port; 1242 }; 1243 1244 /** 1245 * struct efx_nic_type - Efx device type definition 1246 * @mem_bar: Get the memory BAR 1247 * @mem_map_size: Get memory BAR mapped size 1248 * @probe: Probe the controller 1249 * @remove: Free resources allocated by probe() 1250 * @init: Initialise the controller 1251 * @dimension_resources: Dimension controller resources (buffer table, 1252 * and VIs once the available interrupt resources are clear) 1253 * @fini: Shut down the controller 1254 * @monitor: Periodic function for polling link state and hardware monitor 1255 * @map_reset_reason: Map ethtool reset reason to a reset method 1256 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 1257 * @reset: Reset the controller hardware and possibly the PHY. This will 1258 * be called while the controller is uninitialised. 1259 * @probe_port: Probe the MAC and PHY 1260 * @remove_port: Free resources allocated by probe_port() 1261 * @handle_global_event: Handle a "global" event (may be %NULL) 1262 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 1263 * @prepare_flush: Prepare the hardware for flushing the DMA queues 1264 * (for Falcon architecture) 1265 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 1266 * architecture) 1267 * @prepare_flr: Prepare for an FLR 1268 * @finish_flr: Clean up after an FLR 1269 * @describe_stats: Describe statistics for ethtool 1270 * @update_stats: Update statistics not provided by event handling. 1271 * Either argument may be %NULL. 1272 * @update_stats_atomic: Update statistics while in atomic context, if that 1273 * is more limiting than @update_stats. Otherwise, leave %NULL and 1274 * driver core will call @update_stats. 1275 * @start_stats: Start the regular fetching of statistics 1276 * @pull_stats: Pull stats from the NIC and wait until they arrive. 1277 * @stop_stats: Stop the regular fetching of statistics 1278 * @push_irq_moderation: Apply interrupt moderation value 1279 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 1280 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 1281 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 1282 * to the hardware. Serialised by the mac_lock. 1283 * @check_mac_fault: Check MAC fault state. True if fault present. 1284 * @get_wol: Get WoL configuration from driver state 1285 * @set_wol: Push WoL configuration to the NIC 1286 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1287 * @get_fec_stats: Get standard FEC statistics. 1288 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 1289 * expected to reset the NIC. 1290 * @test_nvram: Test validity of NVRAM contents 1291 * @mcdi_request: Send an MCDI request with the given header and SDU. 1292 * The SDU length may be any value from 0 up to the protocol- 1293 * defined maximum, but its buffer will be padded to a multiple 1294 * of 4 bytes. 1295 * @mcdi_poll_response: Test whether an MCDI response is available. 1296 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1297 * be a multiple of 4. The length may not be, but the buffer 1298 * will be padded so it is safe to round up. 1299 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1300 * return an appropriate error code for aborting any current 1301 * request; otherwise return 0. 1302 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1303 * be separately enabled after this. 1304 * @irq_test_generate: Generate a test IRQ 1305 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1306 * queue must be separately disabled before this. 1307 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1308 * a pointer to the &struct efx_msi_context for the channel. 1309 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1310 * is a pointer to the &struct efx_nic. 1311 * @tx_probe: Allocate resources for TX queue (and select TXQ type) 1312 * @tx_init: Initialise TX queue on the NIC 1313 * @tx_remove: Free resources for TX queue 1314 * @tx_write: Write TX descriptors and doorbell 1315 * @tx_enqueue: Add an SKB to TX queue 1316 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC 1317 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC 1318 * @rx_push_rss_context_config: Write RSS hash key and indirection table for 1319 * user RSS context to the NIC 1320 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user 1321 * RSS context back from the NIC 1322 * @rx_probe: Allocate resources for RX queue 1323 * @rx_init: Initialise RX queue on the NIC 1324 * @rx_remove: Free resources for RX queue 1325 * @rx_write: Write RX descriptors and doorbell 1326 * @rx_defer_refill: Generate a refill reminder event 1327 * @rx_packet: Receive the queued RX buffer on a channel 1328 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash 1329 * @ev_probe: Allocate resources for event queue 1330 * @ev_init: Initialise event queue on the NIC 1331 * @ev_fini: Deinitialise event queue on the NIC 1332 * @ev_remove: Free resources for event queue 1333 * @ev_process: Process events for a queue, up to the given NAPI quota 1334 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1335 * @ev_test_generate: Generate a test event 1336 * @filter_table_probe: Probe filter capabilities and set up filter software state 1337 * @filter_table_restore: Restore filters removed from hardware 1338 * @filter_table_remove: Remove filters from hardware and tear down software state 1339 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1340 * @filter_insert: add or replace a filter 1341 * @filter_remove_safe: remove a filter by ID, carefully 1342 * @filter_get_safe: retrieve a filter by ID, carefully 1343 * @filter_clear_rx: Remove all RX filters whose priority is less than or 1344 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO 1345 * @filter_count_rx_used: Get the number of filters in use at a given priority 1346 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1347 * @filter_get_rx_ids: Get list of RX filters at a given priority 1348 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1349 * This must check whether the specified table entry is used by RFS 1350 * and that rps_may_expire_flow() returns true for it. 1351 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1352 * using efx_mtd_add() 1353 * @mtd_rename: Set an MTD partition name using the net device name 1354 * @mtd_read: Read from an MTD partition 1355 * @mtd_erase: Erase part of an MTD partition 1356 * @mtd_write: Write to an MTD partition 1357 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1358 * also notifies the driver that a writer has finished using this 1359 * partition. 1360 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1361 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1362 * timestamping, possibly only temporarily for the purposes of a reset. 1363 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1364 * and tx_type will already have been validated but this operation 1365 * must validate and update rx_filter. 1366 * @get_phys_port_id: Get the underlying physical port id. 1367 * @set_mac_address: Set the MAC address of the device 1368 * @tso_versions: Returns mask of firmware-assisted TSO versions supported. 1369 * If %NULL, then device does not support any TSO version. 1370 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required. 1371 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel 1372 * @print_additional_fwver: Dump NIC-specific additional FW version info 1373 * @sensor_event: Handle a sensor event from MCDI 1374 * @rx_recycle_ring_size: Size of the RX recycle ring 1375 * @revision: Hardware architecture revision 1376 * @txd_ptr_tbl_base: TX descriptor ring base address 1377 * @rxd_ptr_tbl_base: RX descriptor ring base address 1378 * @buf_tbl_base: Buffer table base address 1379 * @evq_ptr_tbl_base: Event queue pointer table base address 1380 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1381 * @max_dma_mask: Maximum possible DMA mask 1382 * @rx_prefix_size: Size of RX prefix before packet data 1383 * @rx_hash_offset: Offset of RX flow hash within prefix 1384 * @rx_ts_offset: Offset of timestamp within prefix 1385 * @rx_buffer_padding: Size of padding at end of RX packet 1386 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1387 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1388 * @option_descriptors: NIC supports TX option descriptors 1389 * @min_interrupt_mode: Lowest capability interrupt mode supported 1390 * from &enum efx_int_mode. 1391 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1392 * @offload_features: net_device feature flags for protocol offload 1393 * features implemented in hardware 1394 * @mcdi_max_ver: Maximum MCDI version supported 1395 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1396 */ 1397 struct efx_nic_type { 1398 bool is_vf; 1399 unsigned int (*mem_bar)(struct efx_nic *efx); 1400 unsigned int (*mem_map_size)(struct efx_nic *efx); 1401 int (*probe)(struct efx_nic *efx); 1402 void (*remove)(struct efx_nic *efx); 1403 int (*init)(struct efx_nic *efx); 1404 int (*dimension_resources)(struct efx_nic *efx); 1405 void (*fini)(struct efx_nic *efx); 1406 void (*monitor)(struct efx_nic *efx); 1407 enum reset_type (*map_reset_reason)(enum reset_type reason); 1408 int (*map_reset_flags)(u32 *flags); 1409 int (*reset)(struct efx_nic *efx, enum reset_type method); 1410 int (*probe_port)(struct efx_nic *efx); 1411 void (*remove_port)(struct efx_nic *efx); 1412 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1413 int (*fini_dmaq)(struct efx_nic *efx); 1414 void (*prepare_flush)(struct efx_nic *efx); 1415 void (*finish_flush)(struct efx_nic *efx); 1416 void (*prepare_flr)(struct efx_nic *efx); 1417 void (*finish_flr)(struct efx_nic *efx); 1418 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1419 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1420 struct rtnl_link_stats64 *core_stats); 1421 size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats, 1422 struct rtnl_link_stats64 *core_stats); 1423 void (*start_stats)(struct efx_nic *efx); 1424 void (*pull_stats)(struct efx_nic *efx); 1425 void (*stop_stats)(struct efx_nic *efx); 1426 void (*push_irq_moderation)(struct efx_channel *channel); 1427 int (*reconfigure_port)(struct efx_nic *efx); 1428 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1429 int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only); 1430 bool (*check_mac_fault)(struct efx_nic *efx); 1431 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1432 int (*set_wol)(struct efx_nic *efx, u32 type); 1433 void (*resume_wol)(struct efx_nic *efx); 1434 void (*get_fec_stats)(struct efx_nic *efx, 1435 struct ethtool_fec_stats *fec_stats); 1436 unsigned int (*check_caps)(const struct efx_nic *efx, 1437 u8 flag, 1438 u32 offset); 1439 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1440 int (*test_nvram)(struct efx_nic *efx); 1441 void (*mcdi_request)(struct efx_nic *efx, 1442 const efx_dword_t *hdr, size_t hdr_len, 1443 const efx_dword_t *sdu, size_t sdu_len); 1444 bool (*mcdi_poll_response)(struct efx_nic *efx); 1445 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1446 size_t pdu_offset, size_t pdu_len); 1447 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1448 void (*mcdi_reboot_detected)(struct efx_nic *efx); 1449 void (*irq_enable_master)(struct efx_nic *efx); 1450 int (*irq_test_generate)(struct efx_nic *efx); 1451 void (*irq_disable_non_ev)(struct efx_nic *efx); 1452 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1453 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1454 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1455 void (*tx_init)(struct efx_tx_queue *tx_queue); 1456 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1457 void (*tx_write)(struct efx_tx_queue *tx_queue); 1458 netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb); 1459 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue, 1460 dma_addr_t dma_addr, unsigned int len); 1461 int (*rx_push_rss_config)(struct efx_nic *efx, bool user, 1462 const u32 *rx_indir_table, const u8 *key); 1463 int (*rx_pull_rss_config)(struct efx_nic *efx); 1464 int (*rx_push_rss_context_config)(struct efx_nic *efx, 1465 struct efx_rss_context *ctx, 1466 const u32 *rx_indir_table, 1467 const u8 *key); 1468 int (*rx_pull_rss_context_config)(struct efx_nic *efx, 1469 struct efx_rss_context *ctx); 1470 void (*rx_restore_rss_contexts)(struct efx_nic *efx); 1471 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1472 void (*rx_init)(struct efx_rx_queue *rx_queue); 1473 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1474 void (*rx_write)(struct efx_rx_queue *rx_queue); 1475 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1476 void (*rx_packet)(struct efx_channel *channel); 1477 bool (*rx_buf_hash_valid)(const u8 *prefix); 1478 int (*ev_probe)(struct efx_channel *channel); 1479 int (*ev_init)(struct efx_channel *channel); 1480 void (*ev_fini)(struct efx_channel *channel); 1481 void (*ev_remove)(struct efx_channel *channel); 1482 int (*ev_process)(struct efx_channel *channel, int quota); 1483 void (*ev_read_ack)(struct efx_channel *channel); 1484 void (*ev_test_generate)(struct efx_channel *channel); 1485 int (*filter_table_probe)(struct efx_nic *efx); 1486 void (*filter_table_restore)(struct efx_nic *efx); 1487 void (*filter_table_remove)(struct efx_nic *efx); 1488 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1489 s32 (*filter_insert)(struct efx_nic *efx, 1490 struct efx_filter_spec *spec, bool replace); 1491 int (*filter_remove_safe)(struct efx_nic *efx, 1492 enum efx_filter_priority priority, 1493 u32 filter_id); 1494 int (*filter_get_safe)(struct efx_nic *efx, 1495 enum efx_filter_priority priority, 1496 u32 filter_id, struct efx_filter_spec *); 1497 int (*filter_clear_rx)(struct efx_nic *efx, 1498 enum efx_filter_priority priority); 1499 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1500 enum efx_filter_priority priority); 1501 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1502 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1503 enum efx_filter_priority priority, 1504 u32 *buf, u32 size); 1505 #ifdef CONFIG_RFS_ACCEL 1506 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1507 unsigned int index); 1508 #endif 1509 #ifdef CONFIG_SFC_MTD 1510 int (*mtd_probe)(struct efx_nic *efx); 1511 void (*mtd_rename)(struct efx_mtd_partition *part); 1512 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1513 size_t *retlen, u8 *buffer); 1514 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1515 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1516 size_t *retlen, const u8 *buffer); 1517 int (*mtd_sync)(struct mtd_info *mtd); 1518 #endif 1519 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1520 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1521 int (*ptp_set_ts_config)(struct efx_nic *efx, 1522 struct hwtstamp_config *init); 1523 int (*sriov_configure)(struct efx_nic *efx, int num_vfs); 1524 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1525 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1526 int (*get_phys_port_id)(struct efx_nic *efx, 1527 struct netdev_phys_item_id *ppid); 1528 int (*sriov_init)(struct efx_nic *efx); 1529 void (*sriov_fini)(struct efx_nic *efx); 1530 bool (*sriov_wanted)(struct efx_nic *efx); 1531 void (*sriov_reset)(struct efx_nic *efx); 1532 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i); 1533 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac); 1534 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan, 1535 u8 qos); 1536 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i, 1537 bool spoofchk); 1538 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i, 1539 struct ifla_vf_info *ivi); 1540 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i, 1541 int link_state); 1542 int (*vswitching_probe)(struct efx_nic *efx); 1543 int (*vswitching_restore)(struct efx_nic *efx); 1544 void (*vswitching_remove)(struct efx_nic *efx); 1545 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr); 1546 int (*set_mac_address)(struct efx_nic *efx); 1547 u32 (*tso_versions)(struct efx_nic *efx); 1548 int (*udp_tnl_push_ports)(struct efx_nic *efx); 1549 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port); 1550 size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf, 1551 size_t len); 1552 void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev); 1553 unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx); 1554 1555 int revision; 1556 unsigned int txd_ptr_tbl_base; 1557 unsigned int rxd_ptr_tbl_base; 1558 unsigned int buf_tbl_base; 1559 unsigned int evq_ptr_tbl_base; 1560 unsigned int evq_rptr_tbl_base; 1561 u64 max_dma_mask; 1562 unsigned int rx_prefix_size; 1563 unsigned int rx_hash_offset; 1564 unsigned int rx_ts_offset; 1565 unsigned int rx_buffer_padding; 1566 bool can_rx_scatter; 1567 bool always_rx_scatter; 1568 bool option_descriptors; 1569 unsigned int min_interrupt_mode; 1570 unsigned int timer_period_max; 1571 netdev_features_t offload_features; 1572 int mcdi_max_ver; 1573 unsigned int max_rx_ip_filters; 1574 u32 hwtstamp_filters; 1575 unsigned int rx_hash_key_size; 1576 }; 1577 1578 /************************************************************************** 1579 * 1580 * Prototypes and inline functions 1581 * 1582 *************************************************************************/ 1583 1584 static inline struct efx_channel * 1585 efx_get_channel(struct efx_nic *efx, unsigned index) 1586 { 1587 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels); 1588 return efx->channel[index]; 1589 } 1590 1591 /* Iterate over all used channels */ 1592 #define efx_for_each_channel(_channel, _efx) \ 1593 for (_channel = (_efx)->channel[0]; \ 1594 _channel; \ 1595 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1596 (_efx)->channel[_channel->channel + 1] : NULL) 1597 1598 /* Iterate over all used channels in reverse */ 1599 #define efx_for_each_channel_rev(_channel, _efx) \ 1600 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1601 _channel; \ 1602 _channel = _channel->channel ? \ 1603 (_efx)->channel[_channel->channel - 1] : NULL) 1604 1605 static inline struct efx_channel * 1606 efx_get_tx_channel(struct efx_nic *efx, unsigned int index) 1607 { 1608 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels); 1609 return efx->channel[efx->tx_channel_offset + index]; 1610 } 1611 1612 static inline struct efx_channel * 1613 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index) 1614 { 1615 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels); 1616 return efx->channel[efx->xdp_channel_offset + index]; 1617 } 1618 1619 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel) 1620 { 1621 return channel->channel - channel->efx->xdp_channel_offset < 1622 channel->efx->n_xdp_channels; 1623 } 1624 1625 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1626 { 1627 return channel && channel->channel >= channel->efx->tx_channel_offset; 1628 } 1629 1630 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel) 1631 { 1632 if (efx_channel_is_xdp_tx(channel)) 1633 return channel->efx->xdp_tx_per_channel; 1634 return channel->efx->tx_queues_per_channel; 1635 } 1636 1637 static inline struct efx_tx_queue * 1638 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type) 1639 { 1640 EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES); 1641 return channel->tx_queue_by_type[type]; 1642 } 1643 1644 static inline struct efx_tx_queue * 1645 efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type) 1646 { 1647 struct efx_channel *channel = efx_get_tx_channel(efx, index); 1648 1649 return efx_channel_get_tx_queue(channel, type); 1650 } 1651 1652 /* Iterate over all TX queues belonging to a channel */ 1653 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1654 if (!efx_channel_has_tx_queues(_channel)) \ 1655 ; \ 1656 else \ 1657 for (_tx_queue = (_channel)->tx_queue; \ 1658 _tx_queue < (_channel)->tx_queue + \ 1659 efx_channel_num_tx_queues(_channel); \ 1660 _tx_queue++) 1661 1662 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1663 { 1664 return channel->rx_queue.core_index >= 0; 1665 } 1666 1667 static inline struct efx_rx_queue * 1668 efx_channel_get_rx_queue(struct efx_channel *channel) 1669 { 1670 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel)); 1671 return &channel->rx_queue; 1672 } 1673 1674 /* Iterate over all RX queues belonging to a channel */ 1675 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1676 if (!efx_channel_has_rx_queue(_channel)) \ 1677 ; \ 1678 else \ 1679 for (_rx_queue = &(_channel)->rx_queue; \ 1680 _rx_queue; \ 1681 _rx_queue = NULL) 1682 1683 static inline struct efx_channel * 1684 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1685 { 1686 return container_of(rx_queue, struct efx_channel, rx_queue); 1687 } 1688 1689 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1690 { 1691 return efx_rx_queue_channel(rx_queue)->channel; 1692 } 1693 1694 /* Returns a pointer to the specified receive buffer in the RX 1695 * descriptor queue. 1696 */ 1697 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1698 unsigned int index) 1699 { 1700 return &rx_queue->buffer[index]; 1701 } 1702 1703 static inline struct efx_rx_buffer * 1704 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 1705 { 1706 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 1707 return efx_rx_buffer(rx_queue, 0); 1708 else 1709 return rx_buf + 1; 1710 } 1711 1712 /** 1713 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1714 * 1715 * This calculates the maximum frame length that will be used for a 1716 * given MTU. The frame length will be equal to the MTU plus a 1717 * constant amount of header space and padding. This is the quantity 1718 * that the net driver will program into the MAC as the maximum frame 1719 * length. 1720 * 1721 * The 10G MAC requires 8-byte alignment on the frame 1722 * length, so we round up to the nearest 8. 1723 * 1724 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1725 * XGMII cycle). If the frame length reaches the maximum value in the 1726 * same cycle, the XMAC can miss the IPG altogether. We work around 1727 * this by adding a further 16 bytes. 1728 */ 1729 #define EFX_FRAME_PAD 16 1730 #define EFX_MAX_FRAME_LEN(mtu) \ 1731 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8)) 1732 1733 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1734 { 1735 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1736 } 1737 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1738 { 1739 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1740 } 1741 1742 /* Get the max fill level of the TX queues on this channel */ 1743 static inline unsigned int 1744 efx_channel_tx_fill_level(struct efx_channel *channel) 1745 { 1746 struct efx_tx_queue *tx_queue; 1747 unsigned int fill_level = 0; 1748 1749 efx_for_each_channel_tx_queue(tx_queue, channel) 1750 fill_level = max(fill_level, 1751 tx_queue->insert_count - tx_queue->read_count); 1752 1753 return fill_level; 1754 } 1755 1756 /* Conservative approximation of efx_channel_tx_fill_level using cached value */ 1757 static inline unsigned int 1758 efx_channel_tx_old_fill_level(struct efx_channel *channel) 1759 { 1760 struct efx_tx_queue *tx_queue; 1761 unsigned int fill_level = 0; 1762 1763 efx_for_each_channel_tx_queue(tx_queue, channel) 1764 fill_level = max(fill_level, 1765 tx_queue->insert_count - tx_queue->old_read_count); 1766 1767 return fill_level; 1768 } 1769 1770 /* Get all supported features. 1771 * If a feature is not fixed, it is present in hw_features. 1772 * If a feature is fixed, it does not present in hw_features, but 1773 * always in features. 1774 */ 1775 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx) 1776 { 1777 const struct net_device *net_dev = efx->net_dev; 1778 1779 return net_dev->features | net_dev->hw_features; 1780 } 1781 1782 /* Get the current TX queue insert index. */ 1783 static inline unsigned int 1784 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue) 1785 { 1786 return tx_queue->insert_count & tx_queue->ptr_mask; 1787 } 1788 1789 /* Get a TX buffer. */ 1790 static inline struct efx_tx_buffer * 1791 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1792 { 1793 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)]; 1794 } 1795 1796 /* Get a TX buffer, checking it's not currently in use. */ 1797 static inline struct efx_tx_buffer * 1798 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1799 { 1800 struct efx_tx_buffer *buffer = 1801 __efx_tx_queue_get_insert_buffer(tx_queue); 1802 1803 EFX_WARN_ON_ONCE_PARANOID(buffer->len); 1804 EFX_WARN_ON_ONCE_PARANOID(buffer->flags); 1805 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len); 1806 1807 return buffer; 1808 } 1809 1810 #endif /* EFX_NET_DRIVER_H */ 1811