1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 /* Common definitions for all Efx net driver code */ 9 10 #ifndef EFX_NET_DRIVER_H 11 #define EFX_NET_DRIVER_H 12 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/ethtool.h> 16 #include <linux/if_vlan.h> 17 #include <linux/timer.h> 18 #include <linux/mdio.h> 19 #include <linux/list.h> 20 #include <linux/pci.h> 21 #include <linux/device.h> 22 #include <linux/highmem.h> 23 #include <linux/workqueue.h> 24 #include <linux/mutex.h> 25 #include <linux/rwsem.h> 26 #include <linux/vmalloc.h> 27 #include <linux/mtd/mtd.h> 28 #include <net/busy_poll.h> 29 #include <net/xdp.h> 30 31 #include "enum.h" 32 #include "bitfield.h" 33 #include "filter.h" 34 35 /************************************************************************** 36 * 37 * Build definitions 38 * 39 **************************************************************************/ 40 41 #define EFX_DRIVER_VERSION "4.1" 42 43 #ifdef DEBUG 44 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x) 45 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 46 #else 47 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0) 48 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 49 #endif 50 51 /************************************************************************** 52 * 53 * Efx data structures 54 * 55 **************************************************************************/ 56 57 #define EFX_MAX_CHANNELS 32U 58 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 59 #define EFX_EXTRA_CHANNEL_IOV 0 60 #define EFX_EXTRA_CHANNEL_PTP 1 61 #define EFX_MAX_EXTRA_CHANNELS 2U 62 63 /* Checksum generation is a per-queue option in hardware, so each 64 * queue visible to the networking core is backed by two hardware TX 65 * queues. */ 66 #define EFX_MAX_TX_TC 2 67 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 68 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */ 69 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */ 70 #define EFX_TXQ_TYPES 4 71 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS) 72 73 /* Maximum possible MTU the driver supports */ 74 #define EFX_MAX_MTU (9 * 1024) 75 76 /* Minimum MTU, from RFC791 (IP) */ 77 #define EFX_MIN_MTU 68 78 79 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 80 * and should be a multiple of the cache line size. 81 */ 82 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 83 84 /* If possible, we should ensure cache line alignment at start and end 85 * of every buffer. Otherwise, we just need to ensure 4-byte 86 * alignment of the network header. 87 */ 88 #if NET_IP_ALIGN == 0 89 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 90 #else 91 #define EFX_RX_BUF_ALIGNMENT 4 92 #endif 93 94 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and 95 * still fit two standard MTU size packets into a single 4K page. 96 */ 97 #define EFX_XDP_HEADROOM 128 98 #define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) 99 100 /* Forward declare Precision Time Protocol (PTP) support structure. */ 101 struct efx_ptp_data; 102 struct hwtstamp_config; 103 104 struct efx_self_tests; 105 106 /** 107 * struct efx_buffer - A general-purpose DMA buffer 108 * @addr: host base address of the buffer 109 * @dma_addr: DMA base address of the buffer 110 * @len: Buffer length, in bytes 111 * 112 * The NIC uses these buffers for its interrupt status registers and 113 * MAC stats dumps. 114 */ 115 struct efx_buffer { 116 void *addr; 117 dma_addr_t dma_addr; 118 unsigned int len; 119 }; 120 121 /** 122 * struct efx_special_buffer - DMA buffer entered into buffer table 123 * @buf: Standard &struct efx_buffer 124 * @index: Buffer index within controller;s buffer table 125 * @entries: Number of buffer table entries 126 * 127 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 128 * Event and descriptor rings are addressed via one or more buffer 129 * table entries (and so can be physically non-contiguous, although we 130 * currently do not take advantage of that). On Falcon and Siena we 131 * have to take care of allocating and initialising the entries 132 * ourselves. On later hardware this is managed by the firmware and 133 * @index and @entries are left as 0. 134 */ 135 struct efx_special_buffer { 136 struct efx_buffer buf; 137 unsigned int index; 138 unsigned int entries; 139 }; 140 141 /** 142 * struct efx_tx_buffer - buffer state for a TX descriptor 143 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 144 * freed when descriptor completes 145 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data 146 * member is the associated buffer to drop a page reference on. 147 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option 148 * descriptor. 149 * @dma_addr: DMA address of the fragment. 150 * @flags: Flags for allocation and DMA mapping type 151 * @len: Length of this fragment. 152 * This field is zero when the queue slot is empty. 153 * @unmap_len: Length of this fragment to unmap 154 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 155 * Only valid if @unmap_len != 0. 156 */ 157 struct efx_tx_buffer { 158 union { 159 const struct sk_buff *skb; 160 struct xdp_frame *xdpf; 161 }; 162 union { 163 efx_qword_t option; /* EF10 */ 164 dma_addr_t dma_addr; 165 }; 166 unsigned short flags; 167 unsigned short len; 168 unsigned short unmap_len; 169 unsigned short dma_offset; 170 }; 171 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 172 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 173 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 174 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 175 #define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */ 176 177 /** 178 * struct efx_tx_queue - An Efx TX queue 179 * 180 * This is a ring buffer of TX fragments. 181 * Since the TX completion path always executes on the same 182 * CPU and the xmit path can operate on different CPUs, 183 * performance is increased by ensuring that the completion 184 * path and the xmit path operate on different cache lines. 185 * This is particularly important if the xmit path is always 186 * executing on one CPU which is different from the completion 187 * path. There is also a cache line for members which are 188 * read but not written on the fast path. 189 * 190 * @efx: The associated Efx NIC 191 * @queue: DMA queue number 192 * @label: Label for TX completion events. 193 * Is our index within @channel->tx_queue array. 194 * @tso_version: Version of TSO in use for this queue. 195 * @channel: The associated channel 196 * @core_txq: The networking core TX queue structure 197 * @buffer: The software buffer ring 198 * @cb_page: Array of pages of copy buffers. Carved up according to 199 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks. 200 * @txd: The hardware descriptor ring 201 * @ptr_mask: The size of the ring minus 1. 202 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 203 * Size of the region is efx_piobuf_size. 204 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 205 * @initialised: Has hardware queue been initialised? 206 * @timestamping: Is timestamping enabled for this channel? 207 * @xdp_tx: Is this an XDP tx queue? 208 * @handle_tso: TSO xmit preparation handler. Sets up the TSO metadata and 209 * may also map tx data, depending on the nature of the TSO implementation. 210 * @read_count: Current read pointer. 211 * This is the number of buffers that have been removed from both rings. 212 * @old_write_count: The value of @write_count when last checked. 213 * This is here for performance reasons. The xmit path will 214 * only get the up-to-date value of @write_count if this 215 * variable indicates that the queue is empty. This is to 216 * avoid cache-line ping-pong between the xmit path and the 217 * completion path. 218 * @merge_events: Number of TX merged completion events 219 * @completed_timestamp_major: Top part of the most recent tx timestamp. 220 * @completed_timestamp_minor: Low part of the most recent tx timestamp. 221 * @insert_count: Current insert pointer 222 * This is the number of buffers that have been added to the 223 * software ring. 224 * @write_count: Current write pointer 225 * This is the number of buffers that have been added to the 226 * hardware ring. 227 * @packet_write_count: Completable write pointer 228 * This is the write pointer of the last packet written. 229 * Normally this will equal @write_count, but as option descriptors 230 * don't produce completion events, they won't update this. 231 * Filled in iff @efx->type->option_descriptors; only used for PIO. 232 * Thus, this is written and used on EF10, and neither on farch. 233 * @old_read_count: The value of read_count when last checked. 234 * This is here for performance reasons. The xmit path will 235 * only get the up-to-date value of read_count if this 236 * variable indicates that the queue is full. This is to 237 * avoid cache-line ping-pong between the xmit path and the 238 * completion path. 239 * @tso_bursts: Number of times TSO xmit invoked by kernel 240 * @tso_long_headers: Number of packets with headers too long for standard 241 * blocks 242 * @tso_packets: Number of packets via the TSO xmit path 243 * @tso_fallbacks: Number of times TSO fallback used 244 * @pushes: Number of times the TX push feature has been used 245 * @pio_packets: Number of times the TX PIO feature has been used 246 * @xmit_more_available: Are any packets waiting to be pushed to the NIC 247 * @cb_packets: Number of times the TX copybreak feature has been used 248 * @empty_read_count: If the completion path has seen the queue as empty 249 * and the transmission path has not yet checked this, the value of 250 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 251 */ 252 struct efx_tx_queue { 253 /* Members which don't change on the fast path */ 254 struct efx_nic *efx ____cacheline_aligned_in_smp; 255 unsigned int queue; 256 unsigned int label; 257 unsigned int tso_version; 258 struct efx_channel *channel; 259 struct netdev_queue *core_txq; 260 struct efx_tx_buffer *buffer; 261 struct efx_buffer *cb_page; 262 struct efx_special_buffer txd; 263 unsigned int ptr_mask; 264 void __iomem *piobuf; 265 unsigned int piobuf_offset; 266 bool initialised; 267 bool timestamping; 268 bool xdp_tx; 269 270 /* Function pointers used in the fast path. */ 271 int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *); 272 273 /* Members used mainly on the completion path */ 274 unsigned int read_count ____cacheline_aligned_in_smp; 275 unsigned int old_write_count; 276 unsigned int merge_events; 277 unsigned int bytes_compl; 278 unsigned int pkts_compl; 279 u32 completed_timestamp_major; 280 u32 completed_timestamp_minor; 281 282 /* Members used only on the xmit path */ 283 unsigned int insert_count ____cacheline_aligned_in_smp; 284 unsigned int write_count; 285 unsigned int packet_write_count; 286 unsigned int old_read_count; 287 unsigned int tso_bursts; 288 unsigned int tso_long_headers; 289 unsigned int tso_packets; 290 unsigned int tso_fallbacks; 291 unsigned int pushes; 292 unsigned int pio_packets; 293 bool xmit_more_available; 294 unsigned int cb_packets; 295 /* Statistics to supplement MAC stats */ 296 unsigned long tx_packets; 297 298 /* Members shared between paths and sometimes updated */ 299 unsigned int empty_read_count ____cacheline_aligned_in_smp; 300 #define EFX_EMPTY_COUNT_VALID 0x80000000 301 atomic_t flush_outstanding; 302 }; 303 304 #define EFX_TX_CB_ORDER 7 305 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN 306 307 /** 308 * struct efx_rx_buffer - An Efx RX data buffer 309 * @dma_addr: DMA base address of the buffer 310 * @page: The associated page buffer. 311 * Will be %NULL if the buffer slot is currently free. 312 * @page_offset: If pending: offset in @page of DMA base address. 313 * If completed: offset in @page of Ethernet header. 314 * @len: If pending: length for DMA descriptor. 315 * If completed: received length, excluding hash prefix. 316 * @flags: Flags for buffer and packet state. These are only set on the 317 * first buffer of a scattered packet. 318 */ 319 struct efx_rx_buffer { 320 dma_addr_t dma_addr; 321 struct page *page; 322 u16 page_offset; 323 u16 len; 324 u16 flags; 325 }; 326 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 327 #define EFX_RX_PKT_CSUMMED 0x0002 328 #define EFX_RX_PKT_DISCARD 0x0004 329 #define EFX_RX_PKT_TCP 0x0040 330 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 331 #define EFX_RX_PKT_CSUM_LEVEL 0x0200 332 333 /** 334 * struct efx_rx_page_state - Page-based rx buffer state 335 * 336 * Inserted at the start of every page allocated for receive buffers. 337 * Used to facilitate sharing dma mappings between recycled rx buffers 338 * and those passed up to the kernel. 339 * 340 * @dma_addr: The dma address of this page. 341 */ 342 struct efx_rx_page_state { 343 dma_addr_t dma_addr; 344 345 unsigned int __pad[] ____cacheline_aligned; 346 }; 347 348 /** 349 * struct efx_rx_queue - An Efx RX queue 350 * @efx: The associated Efx NIC 351 * @core_index: Index of network core RX queue. Will be >= 0 iff this 352 * is associated with a real RX queue. 353 * @buffer: The software buffer ring 354 * @rxd: The hardware descriptor ring 355 * @ptr_mask: The size of the ring minus 1. 356 * @refill_enabled: Enable refill whenever fill level is low 357 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 358 * @rxq_flush_pending. 359 * @added_count: Number of buffers added to the receive queue. 360 * @notified_count: Number of buffers given to NIC (<= @added_count). 361 * @removed_count: Number of buffers removed from the receive queue. 362 * @scatter_n: Used by NIC specific receive code. 363 * @scatter_len: Used by NIC specific receive code. 364 * @page_ring: The ring to store DMA mapped pages for reuse. 365 * @page_add: Counter to calculate the write pointer for the recycle ring. 366 * @page_remove: Counter to calculate the read pointer for the recycle ring. 367 * @page_recycle_count: The number of pages that have been recycled. 368 * @page_recycle_failed: The number of pages that couldn't be recycled because 369 * the kernel still held a reference to them. 370 * @page_recycle_full: The number of pages that were released because the 371 * recycle ring was full. 372 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 373 * @max_fill: RX descriptor maximum fill level (<= ring size) 374 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 375 * (<= @max_fill) 376 * @min_fill: RX descriptor minimum non-zero fill level. 377 * This records the minimum fill level observed when a ring 378 * refill was triggered. 379 * @recycle_count: RX buffer recycle counter. 380 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 381 * @xdp_rxq_info: XDP specific RX queue information. 382 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?. 383 */ 384 struct efx_rx_queue { 385 struct efx_nic *efx; 386 int core_index; 387 struct efx_rx_buffer *buffer; 388 struct efx_special_buffer rxd; 389 unsigned int ptr_mask; 390 bool refill_enabled; 391 bool flush_pending; 392 393 unsigned int added_count; 394 unsigned int notified_count; 395 unsigned int removed_count; 396 unsigned int scatter_n; 397 unsigned int scatter_len; 398 struct page **page_ring; 399 unsigned int page_add; 400 unsigned int page_remove; 401 unsigned int page_recycle_count; 402 unsigned int page_recycle_failed; 403 unsigned int page_recycle_full; 404 unsigned int page_ptr_mask; 405 unsigned int max_fill; 406 unsigned int fast_fill_trigger; 407 unsigned int min_fill; 408 unsigned int min_overfill; 409 unsigned int recycle_count; 410 struct timer_list slow_fill; 411 unsigned int slow_fill_count; 412 /* Statistics to supplement MAC stats */ 413 unsigned long rx_packets; 414 struct xdp_rxq_info xdp_rxq_info; 415 bool xdp_rxq_info_valid; 416 }; 417 418 enum efx_sync_events_state { 419 SYNC_EVENTS_DISABLED = 0, 420 SYNC_EVENTS_QUIESCENT, 421 SYNC_EVENTS_REQUESTED, 422 SYNC_EVENTS_VALID, 423 }; 424 425 /** 426 * struct efx_channel - An Efx channel 427 * 428 * A channel comprises an event queue, at least one TX queue, at least 429 * one RX queue, and an associated tasklet for processing the event 430 * queue. 431 * 432 * @efx: Associated Efx NIC 433 * @channel: Channel instance number 434 * @type: Channel type definition 435 * @eventq_init: Event queue initialised flag 436 * @enabled: Channel enabled indicator 437 * @irq: IRQ number (MSI and MSI-X only) 438 * @irq_moderation_us: IRQ moderation value (in microseconds) 439 * @napi_dev: Net device used with NAPI 440 * @napi_str: NAPI control structure 441 * @state: state for NAPI vs busy polling 442 * @state_lock: lock protecting @state 443 * @eventq: Event queue buffer 444 * @eventq_mask: Event queue pointer mask 445 * @eventq_read_ptr: Event queue read pointer 446 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 447 * @irq_count: Number of IRQs since last adaptive moderation decision 448 * @irq_mod_score: IRQ moderation score 449 * @rfs_filter_count: number of accelerated RFS filters currently in place; 450 * equals the count of @rps_flow_id slots filled 451 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters 452 * were checked for expiry 453 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry 454 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions 455 * @n_rfs_failed; number of failed accelerated RFS filter insertions 456 * @filter_work: Work item for efx_filter_rfs_expire() 457 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 458 * indexed by filter ID 459 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 460 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 461 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 462 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 463 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 464 * @n_rx_overlength: Count of RX_OVERLENGTH errors 465 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 466 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 467 * lack of descriptors 468 * @n_rx_merge_events: Number of RX merged completion events 469 * @n_rx_merge_packets: Number of RX packets completed by merged events 470 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP 471 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors 472 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP 473 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP 474 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 475 * __efx_rx_packet(), or zero if there is none 476 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 477 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 478 * @rx_list: list of SKBs from current RX, awaiting processing 479 * @rx_queue: RX queue for this channel 480 * @tx_queue: TX queues for this channel 481 * @sync_events_state: Current state of sync events on this channel 482 * @sync_timestamp_major: Major part of the last ptp sync event 483 * @sync_timestamp_minor: Minor part of the last ptp sync event 484 */ 485 struct efx_channel { 486 struct efx_nic *efx; 487 int channel; 488 const struct efx_channel_type *type; 489 bool eventq_init; 490 bool enabled; 491 int irq; 492 unsigned int irq_moderation_us; 493 struct net_device *napi_dev; 494 struct napi_struct napi_str; 495 #ifdef CONFIG_NET_RX_BUSY_POLL 496 unsigned long busy_poll_state; 497 #endif 498 struct efx_special_buffer eventq; 499 unsigned int eventq_mask; 500 unsigned int eventq_read_ptr; 501 int event_test_cpu; 502 503 unsigned int irq_count; 504 unsigned int irq_mod_score; 505 #ifdef CONFIG_RFS_ACCEL 506 unsigned int rfs_filter_count; 507 unsigned int rfs_last_expiry; 508 unsigned int rfs_expire_index; 509 unsigned int n_rfs_succeeded; 510 unsigned int n_rfs_failed; 511 struct delayed_work filter_work; 512 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF 513 u32 *rps_flow_id; 514 #endif 515 516 unsigned int n_rx_tobe_disc; 517 unsigned int n_rx_ip_hdr_chksum_err; 518 unsigned int n_rx_tcp_udp_chksum_err; 519 unsigned int n_rx_outer_ip_hdr_chksum_err; 520 unsigned int n_rx_outer_tcp_udp_chksum_err; 521 unsigned int n_rx_inner_ip_hdr_chksum_err; 522 unsigned int n_rx_inner_tcp_udp_chksum_err; 523 unsigned int n_rx_eth_crc_err; 524 unsigned int n_rx_mcast_mismatch; 525 unsigned int n_rx_frm_trunc; 526 unsigned int n_rx_overlength; 527 unsigned int n_skbuff_leaks; 528 unsigned int n_rx_nodesc_trunc; 529 unsigned int n_rx_merge_events; 530 unsigned int n_rx_merge_packets; 531 unsigned int n_rx_xdp_drops; 532 unsigned int n_rx_xdp_bad_drops; 533 unsigned int n_rx_xdp_tx; 534 unsigned int n_rx_xdp_redirect; 535 536 unsigned int rx_pkt_n_frags; 537 unsigned int rx_pkt_index; 538 539 struct list_head *rx_list; 540 541 struct efx_rx_queue rx_queue; 542 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; 543 544 enum efx_sync_events_state sync_events_state; 545 u32 sync_timestamp_major; 546 u32 sync_timestamp_minor; 547 }; 548 549 /** 550 * struct efx_msi_context - Context for each MSI 551 * @efx: The associated NIC 552 * @index: Index of the channel/IRQ 553 * @name: Name of the channel/IRQ 554 * 555 * Unlike &struct efx_channel, this is never reallocated and is always 556 * safe for the IRQ handler to access. 557 */ 558 struct efx_msi_context { 559 struct efx_nic *efx; 560 unsigned int index; 561 char name[IFNAMSIZ + 6]; 562 }; 563 564 /** 565 * struct efx_channel_type - distinguishes traffic and extra channels 566 * @handle_no_channel: Handle failure to allocate an extra channel 567 * @pre_probe: Set up extra state prior to initialisation 568 * @post_remove: Tear down extra state after finalisation, if allocated. 569 * May be called on channels that have not been probed. 570 * @get_name: Generate the channel's name (used for its IRQ handler) 571 * @copy: Copy the channel state prior to reallocation. May be %NULL if 572 * reallocation is not supported. 573 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 574 * @want_txqs: Determine whether this channel should have TX queues 575 * created. If %NULL, TX queues are not created. 576 * @keep_eventq: Flag for whether event queue should be kept initialised 577 * while the device is stopped 578 * @want_pio: Flag for whether PIO buffers should be linked to this 579 * channel's TX queues. 580 */ 581 struct efx_channel_type { 582 void (*handle_no_channel)(struct efx_nic *); 583 int (*pre_probe)(struct efx_channel *); 584 void (*post_remove)(struct efx_channel *); 585 void (*get_name)(struct efx_channel *, char *buf, size_t len); 586 struct efx_channel *(*copy)(const struct efx_channel *); 587 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 588 bool (*want_txqs)(struct efx_channel *); 589 bool keep_eventq; 590 bool want_pio; 591 }; 592 593 enum efx_led_mode { 594 EFX_LED_OFF = 0, 595 EFX_LED_ON = 1, 596 EFX_LED_DEFAULT = 2 597 }; 598 599 #define STRING_TABLE_LOOKUP(val, member) \ 600 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 601 602 extern const char *const efx_loopback_mode_names[]; 603 extern const unsigned int efx_loopback_mode_max; 604 #define LOOPBACK_MODE(efx) \ 605 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 606 607 extern const char *const efx_reset_type_names[]; 608 extern const unsigned int efx_reset_type_max; 609 #define RESET_TYPE(type) \ 610 STRING_TABLE_LOOKUP(type, efx_reset_type) 611 612 enum efx_int_mode { 613 /* Be careful if altering to correct macro below */ 614 EFX_INT_MODE_MSIX = 0, 615 EFX_INT_MODE_MSI = 1, 616 EFX_INT_MODE_LEGACY = 2, 617 EFX_INT_MODE_MAX /* Insert any new items before this */ 618 }; 619 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 620 621 enum nic_state { 622 STATE_UNINIT = 0, /* device being probed/removed or is frozen */ 623 STATE_READY = 1, /* hardware ready and netdev registered */ 624 STATE_DISABLED = 2, /* device disabled due to hardware errors */ 625 STATE_RECOVERY = 3, /* device recovering from PCI error */ 626 }; 627 628 /* Forward declaration */ 629 struct efx_nic; 630 631 /* Pseudo bit-mask flow control field */ 632 #define EFX_FC_RX FLOW_CTRL_RX 633 #define EFX_FC_TX FLOW_CTRL_TX 634 #define EFX_FC_AUTO 4 635 636 /** 637 * struct efx_link_state - Current state of the link 638 * @up: Link is up 639 * @fd: Link is full-duplex 640 * @fc: Actual flow control flags 641 * @speed: Link speed (Mbps) 642 */ 643 struct efx_link_state { 644 bool up; 645 bool fd; 646 u8 fc; 647 unsigned int speed; 648 }; 649 650 static inline bool efx_link_state_equal(const struct efx_link_state *left, 651 const struct efx_link_state *right) 652 { 653 return left->up == right->up && left->fd == right->fd && 654 left->fc == right->fc && left->speed == right->speed; 655 } 656 657 /** 658 * struct efx_phy_operations - Efx PHY operations table 659 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, 660 * efx->loopback_modes. 661 * @init: Initialise PHY 662 * @fini: Shut down PHY 663 * @reconfigure: Reconfigure PHY (e.g. for new link parameters) 664 * @poll: Update @link_state and report whether it changed. 665 * Serialised by the mac_lock. 666 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock. 667 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock. 668 * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock. 669 * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock. 670 * @set_npage_adv: Set abilities advertised in (Extended) Next Page 671 * (only needed where AN bit is set in mmds) 672 * @test_alive: Test that PHY is 'alive' (online) 673 * @test_name: Get the name of a PHY-specific test/result 674 * @run_tests: Run tests and record results as appropriate (offline). 675 * Flags are the ethtool tests flags. 676 */ 677 struct efx_phy_operations { 678 int (*probe) (struct efx_nic *efx); 679 int (*init) (struct efx_nic *efx); 680 void (*fini) (struct efx_nic *efx); 681 void (*remove) (struct efx_nic *efx); 682 int (*reconfigure) (struct efx_nic *efx); 683 bool (*poll) (struct efx_nic *efx); 684 void (*get_link_ksettings)(struct efx_nic *efx, 685 struct ethtool_link_ksettings *cmd); 686 int (*set_link_ksettings)(struct efx_nic *efx, 687 const struct ethtool_link_ksettings *cmd); 688 int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec); 689 int (*set_fecparam)(struct efx_nic *efx, 690 const struct ethtool_fecparam *fec); 691 void (*set_npage_adv) (struct efx_nic *efx, u32); 692 int (*test_alive) (struct efx_nic *efx); 693 const char *(*test_name) (struct efx_nic *efx, unsigned int index); 694 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); 695 int (*get_module_eeprom) (struct efx_nic *efx, 696 struct ethtool_eeprom *ee, 697 u8 *data); 698 int (*get_module_info) (struct efx_nic *efx, 699 struct ethtool_modinfo *modinfo); 700 }; 701 702 /** 703 * enum efx_phy_mode - PHY operating mode flags 704 * @PHY_MODE_NORMAL: on and should pass traffic 705 * @PHY_MODE_TX_DISABLED: on with TX disabled 706 * @PHY_MODE_LOW_POWER: set to low power through MDIO 707 * @PHY_MODE_OFF: switched off through external control 708 * @PHY_MODE_SPECIAL: on but will not pass traffic 709 */ 710 enum efx_phy_mode { 711 PHY_MODE_NORMAL = 0, 712 PHY_MODE_TX_DISABLED = 1, 713 PHY_MODE_LOW_POWER = 2, 714 PHY_MODE_OFF = 4, 715 PHY_MODE_SPECIAL = 8, 716 }; 717 718 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 719 { 720 return !!(mode & ~PHY_MODE_TX_DISABLED); 721 } 722 723 /** 724 * struct efx_hw_stat_desc - Description of a hardware statistic 725 * @name: Name of the statistic as visible through ethtool, or %NULL if 726 * it should not be exposed 727 * @dma_width: Width in bits (0 for non-DMA statistics) 728 * @offset: Offset within stats (ignored for non-DMA statistics) 729 */ 730 struct efx_hw_stat_desc { 731 const char *name; 732 u16 dma_width; 733 u16 offset; 734 }; 735 736 /* Number of bits used in a multicast filter hash address */ 737 #define EFX_MCAST_HASH_BITS 8 738 739 /* Number of (single-bit) entries in a multicast filter hash */ 740 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 741 742 /* An Efx multicast filter hash */ 743 union efx_multicast_hash { 744 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 745 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 746 }; 747 748 struct vfdi_status; 749 750 /* The reserved RSS context value */ 751 #define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff 752 /** 753 * struct efx_rss_context - A user-defined RSS context for filtering 754 * @list: node of linked list on which this struct is stored 755 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or 756 * %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC. 757 * For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID. 758 * @user_id: the rss_context ID exposed to userspace over ethtool. 759 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled 760 * @rx_hash_key: Toeplitz hash key for this RSS context 761 * @indir_table: Indirection table for this RSS context 762 */ 763 struct efx_rss_context { 764 struct list_head list; 765 u32 context_id; 766 u32 user_id; 767 bool rx_hash_udp_4tuple; 768 u8 rx_hash_key[40]; 769 u32 rx_indir_table[128]; 770 }; 771 772 #ifdef CONFIG_RFS_ACCEL 773 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING 774 * is used to test if filter does or will exist. 775 */ 776 #define EFX_ARFS_FILTER_ID_PENDING -1 777 #define EFX_ARFS_FILTER_ID_ERROR -2 778 #define EFX_ARFS_FILTER_ID_REMOVING -3 779 /** 780 * struct efx_arfs_rule - record of an ARFS filter and its IDs 781 * @node: linkage into hash table 782 * @spec: details of the filter (used as key for hash table). Use efx->type to 783 * determine which member to use. 784 * @rxq_index: channel to which the filter will steer traffic. 785 * @arfs_id: filter ID which was returned to ARFS 786 * @filter_id: index in software filter table. May be 787 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet, 788 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or 789 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter. 790 */ 791 struct efx_arfs_rule { 792 struct hlist_node node; 793 struct efx_filter_spec spec; 794 u16 rxq_index; 795 u16 arfs_id; 796 s32 filter_id; 797 }; 798 799 /* Size chosen so that the table is one page (4kB) */ 800 #define EFX_ARFS_HASH_TABLE_SIZE 512 801 802 /** 803 * struct efx_async_filter_insertion - Request to asynchronously insert a filter 804 * @net_dev: Reference to the netdevice 805 * @spec: The filter to insert 806 * @work: Workitem for this request 807 * @rxq_index: Identifies the channel for which this request was made 808 * @flow_id: Identifies the kernel-side flow for which this request was made 809 */ 810 struct efx_async_filter_insertion { 811 struct net_device *net_dev; 812 struct efx_filter_spec spec; 813 struct work_struct work; 814 u16 rxq_index; 815 u32 flow_id; 816 }; 817 818 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */ 819 #define EFX_RPS_MAX_IN_FLIGHT 8 820 #endif /* CONFIG_RFS_ACCEL */ 821 822 /** 823 * struct efx_nic - an Efx NIC 824 * @name: Device name (net device name or bus id before net device registered) 825 * @pci_dev: The PCI device 826 * @node: List node for maintaning primary/secondary function lists 827 * @primary: &struct efx_nic instance for the primary function of this 828 * controller. May be the same structure, and may be %NULL if no 829 * primary function is bound. Serialised by rtnl_lock. 830 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 831 * functions of the controller, if this is for the primary function. 832 * Serialised by rtnl_lock. 833 * @type: Controller type attributes 834 * @legacy_irq: IRQ number 835 * @workqueue: Workqueue for port reconfigures and the HW monitor. 836 * Work items do not hold and must not acquire RTNL. 837 * @workqueue_name: Name of workqueue 838 * @reset_work: Scheduled reset workitem 839 * @membase_phys: Memory BAR value as physical address 840 * @membase: Memory BAR value 841 * @vi_stride: step between per-VI registers / memory regions 842 * @interrupt_mode: Interrupt mode 843 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 844 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds 845 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 846 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues 847 * @irq_rx_moderation_us: IRQ moderation time for RX event queues 848 * @msg_enable: Log message enable flags 849 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 850 * @reset_pending: Bitmask for pending resets 851 * @tx_queue: TX DMA queues 852 * @rx_queue: RX DMA queues 853 * @channel: Channels 854 * @msi_context: Context for each MSI 855 * @extra_channel_types: Types of extra (non-traffic) channels that 856 * should be allocated for this NIC 857 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues. 858 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit. 859 * @rxq_entries: Size of receive queues requested by user. 860 * @txq_entries: Size of transmit queues requested by user. 861 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 862 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 863 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 864 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 865 * @sram_lim_qw: Qword address limit of SRAM 866 * @next_buffer_table: First available buffer table id 867 * @n_channels: Number of channels in use 868 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 869 * @n_tx_channels: Number of channels used for TX 870 * @n_extra_tx_channels: Number of extra channels with TX queues 871 * @tx_queues_per_channel: number of TX queues probed on each channel 872 * @n_xdp_channels: Number of channels used for XDP TX 873 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX. 874 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel. 875 * @rx_ip_align: RX DMA address offset to have IP header aligned in 876 * in accordance with NET_IP_ALIGN 877 * @rx_dma_len: Current maximum RX DMA length 878 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 879 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 880 * for use in sk_buff::truesize 881 * @rx_prefix_size: Size of RX prefix before packet data 882 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 883 * (valid only if @rx_prefix_size != 0; always negative) 884 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 885 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 886 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 887 * (valid only if channel->sync_timestamps_enabled; always negative) 888 * @rx_scatter: Scatter mode enabled for receives 889 * @rss_context: Main RSS context. Its @list member is the head of the list of 890 * RSS contexts created by user requests 891 * @rss_lock: Protects custom RSS context software state in @rss_context.list 892 * @vport_id: The function's vport ID, only relevant for PFs 893 * @int_error_count: Number of internal errors seen recently 894 * @int_error_expire: Time at which error count will be expired 895 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot 896 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 897 * acknowledge but do nothing else. 898 * @irq_status: Interrupt status buffer 899 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 900 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 901 * @selftest_work: Work item for asynchronous self-test 902 * @mtd_list: List of MTDs attached to the NIC 903 * @nic_data: Hardware dependent state 904 * @mcdi: Management-Controller-to-Driver Interface state 905 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 906 * efx_monitor() and efx_reconfigure_port() 907 * @port_enabled: Port enabled indicator. 908 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 909 * efx_mac_work() with kernel interfaces. Safe to read under any 910 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 911 * be held to modify it. 912 * @port_initialized: Port initialized? 913 * @net_dev: Operating system network device. Consider holding the rtnl lock 914 * @fixed_features: Features which cannot be turned off 915 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS 916 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS) 917 * @stats_buffer: DMA buffer for statistics 918 * @phy_type: PHY type 919 * @phy_op: PHY interface 920 * @phy_data: PHY private data (including PHY-specific stats) 921 * @mdio: PHY MDIO interface 922 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 923 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 924 * @link_advertising: Autonegotiation advertising flags 925 * @fec_config: Forward Error Correction configuration flags. For bit positions 926 * see &enum ethtool_fec_config_bits. 927 * @link_state: Current state of the link 928 * @n_link_state_changes: Number of times the link has changed state 929 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 930 * Protected by @mac_lock. 931 * @multicast_hash: Multicast hash table for Falcon-arch. 932 * Protected by @mac_lock. 933 * @wanted_fc: Wanted flow control flags 934 * @fc_disable: When non-zero flow control is disabled. Typically used to 935 * ensure that network back pressure doesn't delay dma queue flushes. 936 * Serialised by the rtnl lock. 937 * @mac_work: Work item for changing MAC promiscuity and multicast hash 938 * @loopback_mode: Loopback status 939 * @loopback_modes: Supported loopback mode bitmask 940 * @loopback_selftest: Offline self-test private state 941 * @xdp_prog: Current XDP programme for this interface 942 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state 943 * @filter_state: Architecture-dependent filter table state 944 * @rps_mutex: Protects RPS state of all channels 945 * @rps_slot_map: bitmap of in-flight entries in @rps_slot 946 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work() 947 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and 948 * @rps_next_id). 949 * @rps_hash_table: Mapping between ARFS filters and their various IDs 950 * @rps_next_id: next arfs_id for an ARFS filter 951 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 952 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 953 * Decremented when the efx_flush_rx_queue() is called. 954 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 955 * completed (either success or failure). Not used when MCDI is used to 956 * flush receive queues. 957 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 958 * @vf_count: Number of VFs intended to be enabled. 959 * @vf_init_count: Number of VFs that have been fully initialised. 960 * @vi_scale: log2 number of vnics per VF. 961 * @ptp_data: PTP state data 962 * @ptp_warned: has this NIC seen and warned about unexpected PTP events? 963 * @vpd_sn: Serial number read from VPD 964 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their 965 * xdp_rxq_info structures? 966 * @netdev_notifier: Netdevice notifier. 967 * @mem_bar: The BAR that is mapped into membase. 968 * @reg_base: Offset from the start of the bar to the function control window. 969 * @monitor_work: Hardware monitor workitem 970 * @biu_lock: BIU (bus interface unit) lock 971 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 972 * field is used by efx_test_interrupts() to verify that an 973 * interrupt has occurred. 974 * @stats_lock: Statistics update lock. Must be held when calling 975 * efx_nic_type::{update,start,stop}_stats. 976 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb 977 * 978 * This is stored in the private area of the &struct net_device. 979 */ 980 struct efx_nic { 981 /* The following fields should be written very rarely */ 982 983 char name[IFNAMSIZ]; 984 struct list_head node; 985 struct efx_nic *primary; 986 struct list_head secondary_list; 987 struct pci_dev *pci_dev; 988 unsigned int port_num; 989 const struct efx_nic_type *type; 990 int legacy_irq; 991 bool eeh_disabled_legacy_irq; 992 struct workqueue_struct *workqueue; 993 char workqueue_name[16]; 994 struct work_struct reset_work; 995 resource_size_t membase_phys; 996 void __iomem *membase; 997 998 unsigned int vi_stride; 999 1000 enum efx_int_mode interrupt_mode; 1001 unsigned int timer_quantum_ns; 1002 unsigned int timer_max_ns; 1003 bool irq_rx_adaptive; 1004 unsigned int irq_mod_step_us; 1005 unsigned int irq_rx_moderation_us; 1006 u32 msg_enable; 1007 1008 enum nic_state state; 1009 unsigned long reset_pending; 1010 1011 struct efx_channel *channel[EFX_MAX_CHANNELS]; 1012 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 1013 const struct efx_channel_type * 1014 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 1015 1016 unsigned int xdp_tx_queue_count; 1017 struct efx_tx_queue **xdp_tx_queues; 1018 1019 unsigned rxq_entries; 1020 unsigned txq_entries; 1021 unsigned int txq_stop_thresh; 1022 unsigned int txq_wake_thresh; 1023 1024 unsigned tx_dc_base; 1025 unsigned rx_dc_base; 1026 unsigned sram_lim_qw; 1027 unsigned next_buffer_table; 1028 1029 unsigned int max_channels; 1030 unsigned int max_vis; 1031 unsigned int max_tx_channels; 1032 unsigned n_channels; 1033 unsigned n_rx_channels; 1034 unsigned rss_spread; 1035 unsigned tx_channel_offset; 1036 unsigned n_tx_channels; 1037 unsigned n_extra_tx_channels; 1038 unsigned int tx_queues_per_channel; 1039 unsigned int n_xdp_channels; 1040 unsigned int xdp_channel_offset; 1041 unsigned int xdp_tx_per_channel; 1042 unsigned int rx_ip_align; 1043 unsigned int rx_dma_len; 1044 unsigned int rx_buffer_order; 1045 unsigned int rx_buffer_truesize; 1046 unsigned int rx_page_buf_step; 1047 unsigned int rx_bufs_per_page; 1048 unsigned int rx_pages_per_batch; 1049 unsigned int rx_prefix_size; 1050 int rx_packet_hash_offset; 1051 int rx_packet_len_offset; 1052 int rx_packet_ts_offset; 1053 bool rx_scatter; 1054 struct efx_rss_context rss_context; 1055 struct mutex rss_lock; 1056 u32 vport_id; 1057 1058 unsigned int_error_count; 1059 unsigned long int_error_expire; 1060 1061 bool must_realloc_vis; 1062 bool irq_soft_enabled; 1063 struct efx_buffer irq_status; 1064 unsigned irq_zero_count; 1065 unsigned irq_level; 1066 struct delayed_work selftest_work; 1067 1068 #ifdef CONFIG_SFC_MTD 1069 struct list_head mtd_list; 1070 #endif 1071 1072 void *nic_data; 1073 struct efx_mcdi_data *mcdi; 1074 1075 struct mutex mac_lock; 1076 struct work_struct mac_work; 1077 bool port_enabled; 1078 1079 bool mc_bist_for_other_fn; 1080 bool port_initialized; 1081 struct net_device *net_dev; 1082 1083 netdev_features_t fixed_features; 1084 1085 u16 num_mac_stats; 1086 struct efx_buffer stats_buffer; 1087 u64 rx_nodesc_drops_total; 1088 u64 rx_nodesc_drops_while_down; 1089 bool rx_nodesc_drops_prev_state; 1090 1091 unsigned int phy_type; 1092 const struct efx_phy_operations *phy_op; 1093 void *phy_data; 1094 struct mdio_if_info mdio; 1095 unsigned int mdio_bus; 1096 enum efx_phy_mode phy_mode; 1097 1098 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising); 1099 u32 fec_config; 1100 struct efx_link_state link_state; 1101 unsigned int n_link_state_changes; 1102 1103 bool unicast_filter; 1104 union efx_multicast_hash multicast_hash; 1105 u8 wanted_fc; 1106 unsigned fc_disable; 1107 1108 atomic_t rx_reset; 1109 enum efx_loopback_mode loopback_mode; 1110 u64 loopback_modes; 1111 1112 void *loopback_selftest; 1113 /* We access loopback_selftest immediately before running XDP, 1114 * so we want them next to each other. 1115 */ 1116 struct bpf_prog __rcu *xdp_prog; 1117 1118 struct rw_semaphore filter_sem; 1119 void *filter_state; 1120 #ifdef CONFIG_RFS_ACCEL 1121 struct mutex rps_mutex; 1122 unsigned long rps_slot_map; 1123 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT]; 1124 spinlock_t rps_hash_lock; 1125 struct hlist_head *rps_hash_table; 1126 u32 rps_next_id; 1127 #endif 1128 1129 atomic_t active_queues; 1130 atomic_t rxq_flush_pending; 1131 atomic_t rxq_flush_outstanding; 1132 wait_queue_head_t flush_wq; 1133 1134 #ifdef CONFIG_SFC_SRIOV 1135 unsigned vf_count; 1136 unsigned vf_init_count; 1137 unsigned vi_scale; 1138 #endif 1139 1140 struct efx_ptp_data *ptp_data; 1141 bool ptp_warned; 1142 1143 char *vpd_sn; 1144 bool xdp_rxq_info_failed; 1145 1146 struct notifier_block netdev_notifier; 1147 1148 unsigned int mem_bar; 1149 u32 reg_base; 1150 1151 /* The following fields may be written more often */ 1152 1153 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 1154 spinlock_t biu_lock; 1155 int last_irq_cpu; 1156 spinlock_t stats_lock; 1157 atomic_t n_rx_noskb_drops; 1158 }; 1159 1160 static inline int efx_dev_registered(struct efx_nic *efx) 1161 { 1162 return efx->net_dev->reg_state == NETREG_REGISTERED; 1163 } 1164 1165 static inline unsigned int efx_port_num(struct efx_nic *efx) 1166 { 1167 return efx->port_num; 1168 } 1169 1170 struct efx_mtd_partition { 1171 struct list_head node; 1172 struct mtd_info mtd; 1173 const char *dev_type_name; 1174 const char *type_name; 1175 char name[IFNAMSIZ + 20]; 1176 }; 1177 1178 struct efx_udp_tunnel { 1179 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff 1180 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */ 1181 __be16 port; 1182 }; 1183 1184 /** 1185 * struct efx_nic_type - Efx device type definition 1186 * @mem_bar: Get the memory BAR 1187 * @mem_map_size: Get memory BAR mapped size 1188 * @probe: Probe the controller 1189 * @remove: Free resources allocated by probe() 1190 * @init: Initialise the controller 1191 * @dimension_resources: Dimension controller resources (buffer table, 1192 * and VIs once the available interrupt resources are clear) 1193 * @fini: Shut down the controller 1194 * @monitor: Periodic function for polling link state and hardware monitor 1195 * @map_reset_reason: Map ethtool reset reason to a reset method 1196 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 1197 * @reset: Reset the controller hardware and possibly the PHY. This will 1198 * be called while the controller is uninitialised. 1199 * @probe_port: Probe the MAC and PHY 1200 * @remove_port: Free resources allocated by probe_port() 1201 * @handle_global_event: Handle a "global" event (may be %NULL) 1202 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 1203 * @prepare_flush: Prepare the hardware for flushing the DMA queues 1204 * (for Falcon architecture) 1205 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 1206 * architecture) 1207 * @prepare_flr: Prepare for an FLR 1208 * @finish_flr: Clean up after an FLR 1209 * @describe_stats: Describe statistics for ethtool 1210 * @update_stats: Update statistics not provided by event handling. 1211 * Either argument may be %NULL. 1212 * @start_stats: Start the regular fetching of statistics 1213 * @pull_stats: Pull stats from the NIC and wait until they arrive. 1214 * @stop_stats: Stop the regular fetching of statistics 1215 * @set_id_led: Set state of identifying LED or revert to automatic function 1216 * @push_irq_moderation: Apply interrupt moderation value 1217 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 1218 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 1219 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 1220 * to the hardware. Serialised by the mac_lock. 1221 * @check_mac_fault: Check MAC fault state. True if fault present. 1222 * @get_wol: Get WoL configuration from driver state 1223 * @set_wol: Push WoL configuration to the NIC 1224 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1225 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 1226 * expected to reset the NIC. 1227 * @test_nvram: Test validity of NVRAM contents 1228 * @mcdi_request: Send an MCDI request with the given header and SDU. 1229 * The SDU length may be any value from 0 up to the protocol- 1230 * defined maximum, but its buffer will be padded to a multiple 1231 * of 4 bytes. 1232 * @mcdi_poll_response: Test whether an MCDI response is available. 1233 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1234 * be a multiple of 4. The length may not be, but the buffer 1235 * will be padded so it is safe to round up. 1236 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1237 * return an appropriate error code for aborting any current 1238 * request; otherwise return 0. 1239 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1240 * be separately enabled after this. 1241 * @irq_test_generate: Generate a test IRQ 1242 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1243 * queue must be separately disabled before this. 1244 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1245 * a pointer to the &struct efx_msi_context for the channel. 1246 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1247 * is a pointer to the &struct efx_nic. 1248 * @tx_probe: Allocate resources for TX queue 1249 * @tx_init: Initialise TX queue on the NIC 1250 * @tx_remove: Free resources for TX queue 1251 * @tx_write: Write TX descriptors and doorbell 1252 * @tx_enqueue: Add an SKB to TX queue 1253 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC 1254 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC 1255 * @rx_push_rss_context_config: Write RSS hash key and indirection table for 1256 * user RSS context to the NIC 1257 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user 1258 * RSS context back from the NIC 1259 * @rx_probe: Allocate resources for RX queue 1260 * @rx_init: Initialise RX queue on the NIC 1261 * @rx_remove: Free resources for RX queue 1262 * @rx_write: Write RX descriptors and doorbell 1263 * @rx_defer_refill: Generate a refill reminder event 1264 * @rx_packet: Receive the queued RX buffer on a channel 1265 * @ev_probe: Allocate resources for event queue 1266 * @ev_init: Initialise event queue on the NIC 1267 * @ev_fini: Deinitialise event queue on the NIC 1268 * @ev_remove: Free resources for event queue 1269 * @ev_process: Process events for a queue, up to the given NAPI quota 1270 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1271 * @ev_test_generate: Generate a test event 1272 * @filter_table_probe: Probe filter capabilities and set up filter software state 1273 * @filter_table_restore: Restore filters removed from hardware 1274 * @filter_table_remove: Remove filters from hardware and tear down software state 1275 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1276 * @filter_insert: add or replace a filter 1277 * @filter_remove_safe: remove a filter by ID, carefully 1278 * @filter_get_safe: retrieve a filter by ID, carefully 1279 * @filter_clear_rx: Remove all RX filters whose priority is less than or 1280 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO 1281 * @filter_count_rx_used: Get the number of filters in use at a given priority 1282 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1283 * @filter_get_rx_ids: Get list of RX filters at a given priority 1284 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1285 * This must check whether the specified table entry is used by RFS 1286 * and that rps_may_expire_flow() returns true for it. 1287 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1288 * using efx_mtd_add() 1289 * @mtd_rename: Set an MTD partition name using the net device name 1290 * @mtd_read: Read from an MTD partition 1291 * @mtd_erase: Erase part of an MTD partition 1292 * @mtd_write: Write to an MTD partition 1293 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1294 * also notifies the driver that a writer has finished using this 1295 * partition. 1296 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1297 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1298 * timestamping, possibly only temporarily for the purposes of a reset. 1299 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1300 * and tx_type will already have been validated but this operation 1301 * must validate and update rx_filter. 1302 * @get_phys_port_id: Get the underlying physical port id. 1303 * @set_mac_address: Set the MAC address of the device 1304 * @tso_versions: Returns mask of firmware-assisted TSO versions supported. 1305 * If %NULL, then device does not support any TSO version. 1306 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required. 1307 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel 1308 * @print_additional_fwver: Dump NIC-specific additional FW version info 1309 * @sensor_event: Handle a sensor event from MCDI 1310 * @revision: Hardware architecture revision 1311 * @txd_ptr_tbl_base: TX descriptor ring base address 1312 * @rxd_ptr_tbl_base: RX descriptor ring base address 1313 * @buf_tbl_base: Buffer table base address 1314 * @evq_ptr_tbl_base: Event queue pointer table base address 1315 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1316 * @max_dma_mask: Maximum possible DMA mask 1317 * @rx_prefix_size: Size of RX prefix before packet data 1318 * @rx_hash_offset: Offset of RX flow hash within prefix 1319 * @rx_ts_offset: Offset of timestamp within prefix 1320 * @rx_buffer_padding: Size of padding at end of RX packet 1321 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1322 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1323 * @option_descriptors: NIC supports TX option descriptors 1324 * @min_interrupt_mode: Lowest capability interrupt mode supported 1325 * from &enum efx_int_mode. 1326 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1327 * @offload_features: net_device feature flags for protocol offload 1328 * features implemented in hardware 1329 * @mcdi_max_ver: Maximum MCDI version supported 1330 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1331 */ 1332 struct efx_nic_type { 1333 bool is_vf; 1334 unsigned int (*mem_bar)(struct efx_nic *efx); 1335 unsigned int (*mem_map_size)(struct efx_nic *efx); 1336 int (*probe)(struct efx_nic *efx); 1337 void (*remove)(struct efx_nic *efx); 1338 int (*init)(struct efx_nic *efx); 1339 int (*dimension_resources)(struct efx_nic *efx); 1340 void (*fini)(struct efx_nic *efx); 1341 void (*monitor)(struct efx_nic *efx); 1342 enum reset_type (*map_reset_reason)(enum reset_type reason); 1343 int (*map_reset_flags)(u32 *flags); 1344 int (*reset)(struct efx_nic *efx, enum reset_type method); 1345 int (*probe_port)(struct efx_nic *efx); 1346 void (*remove_port)(struct efx_nic *efx); 1347 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1348 int (*fini_dmaq)(struct efx_nic *efx); 1349 void (*prepare_flush)(struct efx_nic *efx); 1350 void (*finish_flush)(struct efx_nic *efx); 1351 void (*prepare_flr)(struct efx_nic *efx); 1352 void (*finish_flr)(struct efx_nic *efx); 1353 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1354 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1355 struct rtnl_link_stats64 *core_stats); 1356 void (*start_stats)(struct efx_nic *efx); 1357 void (*pull_stats)(struct efx_nic *efx); 1358 void (*stop_stats)(struct efx_nic *efx); 1359 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); 1360 void (*push_irq_moderation)(struct efx_channel *channel); 1361 int (*reconfigure_port)(struct efx_nic *efx); 1362 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1363 int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only); 1364 bool (*check_mac_fault)(struct efx_nic *efx); 1365 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1366 int (*set_wol)(struct efx_nic *efx, u32 type); 1367 void (*resume_wol)(struct efx_nic *efx); 1368 unsigned int (*check_caps)(const struct efx_nic *efx, 1369 u8 flag, 1370 u32 offset); 1371 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1372 int (*test_nvram)(struct efx_nic *efx); 1373 void (*mcdi_request)(struct efx_nic *efx, 1374 const efx_dword_t *hdr, size_t hdr_len, 1375 const efx_dword_t *sdu, size_t sdu_len); 1376 bool (*mcdi_poll_response)(struct efx_nic *efx); 1377 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1378 size_t pdu_offset, size_t pdu_len); 1379 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1380 void (*mcdi_reboot_detected)(struct efx_nic *efx); 1381 void (*irq_enable_master)(struct efx_nic *efx); 1382 int (*irq_test_generate)(struct efx_nic *efx); 1383 void (*irq_disable_non_ev)(struct efx_nic *efx); 1384 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1385 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1386 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1387 void (*tx_init)(struct efx_tx_queue *tx_queue); 1388 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1389 void (*tx_write)(struct efx_tx_queue *tx_queue); 1390 netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb); 1391 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue, 1392 dma_addr_t dma_addr, unsigned int len); 1393 int (*rx_push_rss_config)(struct efx_nic *efx, bool user, 1394 const u32 *rx_indir_table, const u8 *key); 1395 int (*rx_pull_rss_config)(struct efx_nic *efx); 1396 int (*rx_push_rss_context_config)(struct efx_nic *efx, 1397 struct efx_rss_context *ctx, 1398 const u32 *rx_indir_table, 1399 const u8 *key); 1400 int (*rx_pull_rss_context_config)(struct efx_nic *efx, 1401 struct efx_rss_context *ctx); 1402 void (*rx_restore_rss_contexts)(struct efx_nic *efx); 1403 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1404 void (*rx_init)(struct efx_rx_queue *rx_queue); 1405 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1406 void (*rx_write)(struct efx_rx_queue *rx_queue); 1407 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1408 void (*rx_packet)(struct efx_channel *channel); 1409 int (*ev_probe)(struct efx_channel *channel); 1410 int (*ev_init)(struct efx_channel *channel); 1411 void (*ev_fini)(struct efx_channel *channel); 1412 void (*ev_remove)(struct efx_channel *channel); 1413 int (*ev_process)(struct efx_channel *channel, int quota); 1414 void (*ev_read_ack)(struct efx_channel *channel); 1415 void (*ev_test_generate)(struct efx_channel *channel); 1416 int (*filter_table_probe)(struct efx_nic *efx); 1417 void (*filter_table_restore)(struct efx_nic *efx); 1418 void (*filter_table_remove)(struct efx_nic *efx); 1419 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1420 s32 (*filter_insert)(struct efx_nic *efx, 1421 struct efx_filter_spec *spec, bool replace); 1422 int (*filter_remove_safe)(struct efx_nic *efx, 1423 enum efx_filter_priority priority, 1424 u32 filter_id); 1425 int (*filter_get_safe)(struct efx_nic *efx, 1426 enum efx_filter_priority priority, 1427 u32 filter_id, struct efx_filter_spec *); 1428 int (*filter_clear_rx)(struct efx_nic *efx, 1429 enum efx_filter_priority priority); 1430 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1431 enum efx_filter_priority priority); 1432 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1433 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1434 enum efx_filter_priority priority, 1435 u32 *buf, u32 size); 1436 #ifdef CONFIG_RFS_ACCEL 1437 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1438 unsigned int index); 1439 #endif 1440 #ifdef CONFIG_SFC_MTD 1441 int (*mtd_probe)(struct efx_nic *efx); 1442 void (*mtd_rename)(struct efx_mtd_partition *part); 1443 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1444 size_t *retlen, u8 *buffer); 1445 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1446 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1447 size_t *retlen, const u8 *buffer); 1448 int (*mtd_sync)(struct mtd_info *mtd); 1449 #endif 1450 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1451 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1452 int (*ptp_set_ts_config)(struct efx_nic *efx, 1453 struct hwtstamp_config *init); 1454 int (*sriov_configure)(struct efx_nic *efx, int num_vfs); 1455 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1456 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1457 int (*get_phys_port_id)(struct efx_nic *efx, 1458 struct netdev_phys_item_id *ppid); 1459 int (*sriov_init)(struct efx_nic *efx); 1460 void (*sriov_fini)(struct efx_nic *efx); 1461 bool (*sriov_wanted)(struct efx_nic *efx); 1462 void (*sriov_reset)(struct efx_nic *efx); 1463 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i); 1464 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac); 1465 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan, 1466 u8 qos); 1467 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i, 1468 bool spoofchk); 1469 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i, 1470 struct ifla_vf_info *ivi); 1471 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i, 1472 int link_state); 1473 int (*vswitching_probe)(struct efx_nic *efx); 1474 int (*vswitching_restore)(struct efx_nic *efx); 1475 void (*vswitching_remove)(struct efx_nic *efx); 1476 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr); 1477 int (*set_mac_address)(struct efx_nic *efx); 1478 u32 (*tso_versions)(struct efx_nic *efx); 1479 int (*udp_tnl_push_ports)(struct efx_nic *efx); 1480 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port); 1481 size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf, 1482 size_t len); 1483 void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev); 1484 1485 int revision; 1486 unsigned int txd_ptr_tbl_base; 1487 unsigned int rxd_ptr_tbl_base; 1488 unsigned int buf_tbl_base; 1489 unsigned int evq_ptr_tbl_base; 1490 unsigned int evq_rptr_tbl_base; 1491 u64 max_dma_mask; 1492 unsigned int rx_prefix_size; 1493 unsigned int rx_hash_offset; 1494 unsigned int rx_ts_offset; 1495 unsigned int rx_buffer_padding; 1496 bool can_rx_scatter; 1497 bool always_rx_scatter; 1498 bool option_descriptors; 1499 unsigned int min_interrupt_mode; 1500 unsigned int timer_period_max; 1501 netdev_features_t offload_features; 1502 int mcdi_max_ver; 1503 unsigned int max_rx_ip_filters; 1504 u32 hwtstamp_filters; 1505 unsigned int rx_hash_key_size; 1506 }; 1507 1508 /************************************************************************** 1509 * 1510 * Prototypes and inline functions 1511 * 1512 *************************************************************************/ 1513 1514 static inline struct efx_channel * 1515 efx_get_channel(struct efx_nic *efx, unsigned index) 1516 { 1517 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels); 1518 return efx->channel[index]; 1519 } 1520 1521 /* Iterate over all used channels */ 1522 #define efx_for_each_channel(_channel, _efx) \ 1523 for (_channel = (_efx)->channel[0]; \ 1524 _channel; \ 1525 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1526 (_efx)->channel[_channel->channel + 1] : NULL) 1527 1528 /* Iterate over all used channels in reverse */ 1529 #define efx_for_each_channel_rev(_channel, _efx) \ 1530 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1531 _channel; \ 1532 _channel = _channel->channel ? \ 1533 (_efx)->channel[_channel->channel - 1] : NULL) 1534 1535 static inline struct efx_channel * 1536 efx_get_tx_channel(struct efx_nic *efx, unsigned int index) 1537 { 1538 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels); 1539 return efx->channel[efx->tx_channel_offset + index]; 1540 } 1541 1542 static inline struct efx_tx_queue * 1543 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type) 1544 { 1545 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels || 1546 type >= efx->tx_queues_per_channel); 1547 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type]; 1548 } 1549 1550 static inline struct efx_channel * 1551 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index) 1552 { 1553 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels); 1554 return efx->channel[efx->xdp_channel_offset + index]; 1555 } 1556 1557 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel) 1558 { 1559 return channel->channel - channel->efx->xdp_channel_offset < 1560 channel->efx->n_xdp_channels; 1561 } 1562 1563 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1564 { 1565 return true; 1566 } 1567 1568 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel) 1569 { 1570 if (efx_channel_is_xdp_tx(channel)) 1571 return channel->efx->xdp_tx_per_channel; 1572 return channel->efx->tx_queues_per_channel; 1573 } 1574 1575 static inline struct efx_tx_queue * 1576 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type) 1577 { 1578 EFX_WARN_ON_ONCE_PARANOID(type >= efx_channel_num_tx_queues(channel)); 1579 return &channel->tx_queue[type]; 1580 } 1581 1582 /* Iterate over all TX queues belonging to a channel */ 1583 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1584 if (!efx_channel_has_tx_queues(_channel)) \ 1585 ; \ 1586 else \ 1587 for (_tx_queue = (_channel)->tx_queue; \ 1588 _tx_queue < (_channel)->tx_queue + \ 1589 efx_channel_num_tx_queues(_channel); \ 1590 _tx_queue++) 1591 1592 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1593 { 1594 return channel->rx_queue.core_index >= 0; 1595 } 1596 1597 static inline struct efx_rx_queue * 1598 efx_channel_get_rx_queue(struct efx_channel *channel) 1599 { 1600 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel)); 1601 return &channel->rx_queue; 1602 } 1603 1604 /* Iterate over all RX queues belonging to a channel */ 1605 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1606 if (!efx_channel_has_rx_queue(_channel)) \ 1607 ; \ 1608 else \ 1609 for (_rx_queue = &(_channel)->rx_queue; \ 1610 _rx_queue; \ 1611 _rx_queue = NULL) 1612 1613 static inline struct efx_channel * 1614 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1615 { 1616 return container_of(rx_queue, struct efx_channel, rx_queue); 1617 } 1618 1619 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1620 { 1621 return efx_rx_queue_channel(rx_queue)->channel; 1622 } 1623 1624 /* Returns a pointer to the specified receive buffer in the RX 1625 * descriptor queue. 1626 */ 1627 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1628 unsigned int index) 1629 { 1630 return &rx_queue->buffer[index]; 1631 } 1632 1633 static inline struct efx_rx_buffer * 1634 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 1635 { 1636 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 1637 return efx_rx_buffer(rx_queue, 0); 1638 else 1639 return rx_buf + 1; 1640 } 1641 1642 /** 1643 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1644 * 1645 * This calculates the maximum frame length that will be used for a 1646 * given MTU. The frame length will be equal to the MTU plus a 1647 * constant amount of header space and padding. This is the quantity 1648 * that the net driver will program into the MAC as the maximum frame 1649 * length. 1650 * 1651 * The 10G MAC requires 8-byte alignment on the frame 1652 * length, so we round up to the nearest 8. 1653 * 1654 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1655 * XGMII cycle). If the frame length reaches the maximum value in the 1656 * same cycle, the XMAC can miss the IPG altogether. We work around 1657 * this by adding a further 16 bytes. 1658 */ 1659 #define EFX_FRAME_PAD 16 1660 #define EFX_MAX_FRAME_LEN(mtu) \ 1661 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8)) 1662 1663 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1664 { 1665 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1666 } 1667 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1668 { 1669 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1670 } 1671 1672 /* Get all supported features. 1673 * If a feature is not fixed, it is present in hw_features. 1674 * If a feature is fixed, it does not present in hw_features, but 1675 * always in features. 1676 */ 1677 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx) 1678 { 1679 const struct net_device *net_dev = efx->net_dev; 1680 1681 return net_dev->features | net_dev->hw_features; 1682 } 1683 1684 /* Get the current TX queue insert index. */ 1685 static inline unsigned int 1686 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue) 1687 { 1688 return tx_queue->insert_count & tx_queue->ptr_mask; 1689 } 1690 1691 /* Get a TX buffer. */ 1692 static inline struct efx_tx_buffer * 1693 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1694 { 1695 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)]; 1696 } 1697 1698 /* Get a TX buffer, checking it's not currently in use. */ 1699 static inline struct efx_tx_buffer * 1700 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1701 { 1702 struct efx_tx_buffer *buffer = 1703 __efx_tx_queue_get_insert_buffer(tx_queue); 1704 1705 EFX_WARN_ON_ONCE_PARANOID(buffer->len); 1706 EFX_WARN_ON_ONCE_PARANOID(buffer->flags); 1707 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len); 1708 1709 return buffer; 1710 } 1711 1712 #endif /* EFX_NET_DRIVER_H */ 1713