1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 #include <linux/mtd/mtd.h>
31 
32 #include "enum.h"
33 #include "bitfield.h"
34 #include "filter.h"
35 
36 /**************************************************************************
37  *
38  * Build definitions
39  *
40  **************************************************************************/
41 
42 #define EFX_DRIVER_VERSION	"4.0"
43 
44 #ifdef DEBUG
45 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
46 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
47 #else
48 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
49 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
50 #endif
51 
52 /**************************************************************************
53  *
54  * Efx data structures
55  *
56  **************************************************************************/
57 
58 #define EFX_MAX_CHANNELS 32U
59 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
60 #define EFX_EXTRA_CHANNEL_IOV	0
61 #define EFX_EXTRA_CHANNEL_PTP	1
62 #define EFX_MAX_EXTRA_CHANNELS	2U
63 
64 /* Checksum generation is a per-queue option in hardware, so each
65  * queue visible to the networking core is backed by two hardware TX
66  * queues. */
67 #define EFX_MAX_TX_TC		2
68 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
69 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
70 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
71 #define EFX_TXQ_TYPES		4
72 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
73 
74 /* Maximum possible MTU the driver supports */
75 #define EFX_MAX_MTU (9 * 1024)
76 
77 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
78  * and should be a multiple of the cache line size.
79  */
80 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
81 
82 /* If possible, we should ensure cache line alignment at start and end
83  * of every buffer.  Otherwise, we just need to ensure 4-byte
84  * alignment of the network header.
85  */
86 #if NET_IP_ALIGN == 0
87 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
88 #else
89 #define EFX_RX_BUF_ALIGNMENT	4
90 #endif
91 
92 /* Forward declare Precision Time Protocol (PTP) support structure. */
93 struct efx_ptp_data;
94 
95 struct efx_self_tests;
96 
97 /**
98  * struct efx_buffer - A general-purpose DMA buffer
99  * @addr: host base address of the buffer
100  * @dma_addr: DMA base address of the buffer
101  * @len: Buffer length, in bytes
102  *
103  * The NIC uses these buffers for its interrupt status registers and
104  * MAC stats dumps.
105  */
106 struct efx_buffer {
107 	void *addr;
108 	dma_addr_t dma_addr;
109 	unsigned int len;
110 };
111 
112 /**
113  * struct efx_special_buffer - DMA buffer entered into buffer table
114  * @buf: Standard &struct efx_buffer
115  * @index: Buffer index within controller;s buffer table
116  * @entries: Number of buffer table entries
117  *
118  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
119  * Event and descriptor rings are addressed via one or more buffer
120  * table entries (and so can be physically non-contiguous, although we
121  * currently do not take advantage of that).  On Falcon and Siena we
122  * have to take care of allocating and initialising the entries
123  * ourselves.  On later hardware this is managed by the firmware and
124  * @index and @entries are left as 0.
125  */
126 struct efx_special_buffer {
127 	struct efx_buffer buf;
128 	unsigned int index;
129 	unsigned int entries;
130 };
131 
132 /**
133  * struct efx_tx_buffer - buffer state for a TX descriptor
134  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
135  *	freed when descriptor completes
136  * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
137  *	freed when descriptor completes.
138  * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
139  * @dma_addr: DMA address of the fragment.
140  * @flags: Flags for allocation and DMA mapping type
141  * @len: Length of this fragment.
142  *	This field is zero when the queue slot is empty.
143  * @unmap_len: Length of this fragment to unmap
144  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
145  * Only valid if @unmap_len != 0.
146  */
147 struct efx_tx_buffer {
148 	union {
149 		const struct sk_buff *skb;
150 		void *heap_buf;
151 	};
152 	union {
153 		efx_qword_t option;
154 		dma_addr_t dma_addr;
155 	};
156 	unsigned short flags;
157 	unsigned short len;
158 	unsigned short unmap_len;
159 	unsigned short dma_offset;
160 };
161 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
162 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
163 #define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
164 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
165 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
166 
167 /**
168  * struct efx_tx_queue - An Efx TX queue
169  *
170  * This is a ring buffer of TX fragments.
171  * Since the TX completion path always executes on the same
172  * CPU and the xmit path can operate on different CPUs,
173  * performance is increased by ensuring that the completion
174  * path and the xmit path operate on different cache lines.
175  * This is particularly important if the xmit path is always
176  * executing on one CPU which is different from the completion
177  * path.  There is also a cache line for members which are
178  * read but not written on the fast path.
179  *
180  * @efx: The associated Efx NIC
181  * @queue: DMA queue number
182  * @channel: The associated channel
183  * @core_txq: The networking core TX queue structure
184  * @buffer: The software buffer ring
185  * @tsoh_page: Array of pages of TSO header buffers
186  * @txd: The hardware descriptor ring
187  * @ptr_mask: The size of the ring minus 1.
188  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
189  *	Size of the region is efx_piobuf_size.
190  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
191  * @initialised: Has hardware queue been initialised?
192  * @read_count: Current read pointer.
193  *	This is the number of buffers that have been removed from both rings.
194  * @old_write_count: The value of @write_count when last checked.
195  *	This is here for performance reasons.  The xmit path will
196  *	only get the up-to-date value of @write_count if this
197  *	variable indicates that the queue is empty.  This is to
198  *	avoid cache-line ping-pong between the xmit path and the
199  *	completion path.
200  * @merge_events: Number of TX merged completion events
201  * @insert_count: Current insert pointer
202  *	This is the number of buffers that have been added to the
203  *	software ring.
204  * @write_count: Current write pointer
205  *	This is the number of buffers that have been added to the
206  *	hardware ring.
207  * @old_read_count: The value of read_count when last checked.
208  *	This is here for performance reasons.  The xmit path will
209  *	only get the up-to-date value of read_count if this
210  *	variable indicates that the queue is full.  This is to
211  *	avoid cache-line ping-pong between the xmit path and the
212  *	completion path.
213  * @tso_bursts: Number of times TSO xmit invoked by kernel
214  * @tso_long_headers: Number of packets with headers too long for standard
215  *	blocks
216  * @tso_packets: Number of packets via the TSO xmit path
217  * @pushes: Number of times the TX push feature has been used
218  * @pio_packets: Number of times the TX PIO feature has been used
219  * @empty_read_count: If the completion path has seen the queue as empty
220  *	and the transmission path has not yet checked this, the value of
221  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
222  */
223 struct efx_tx_queue {
224 	/* Members which don't change on the fast path */
225 	struct efx_nic *efx ____cacheline_aligned_in_smp;
226 	unsigned queue;
227 	struct efx_channel *channel;
228 	struct netdev_queue *core_txq;
229 	struct efx_tx_buffer *buffer;
230 	struct efx_buffer *tsoh_page;
231 	struct efx_special_buffer txd;
232 	unsigned int ptr_mask;
233 	void __iomem *piobuf;
234 	unsigned int piobuf_offset;
235 	bool initialised;
236 
237 	/* Members used mainly on the completion path */
238 	unsigned int read_count ____cacheline_aligned_in_smp;
239 	unsigned int old_write_count;
240 	unsigned int merge_events;
241 
242 	/* Members used only on the xmit path */
243 	unsigned int insert_count ____cacheline_aligned_in_smp;
244 	unsigned int write_count;
245 	unsigned int old_read_count;
246 	unsigned int tso_bursts;
247 	unsigned int tso_long_headers;
248 	unsigned int tso_packets;
249 	unsigned int pushes;
250 	unsigned int pio_packets;
251 
252 	/* Members shared between paths and sometimes updated */
253 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
254 #define EFX_EMPTY_COUNT_VALID 0x80000000
255 	atomic_t flush_outstanding;
256 };
257 
258 /**
259  * struct efx_rx_buffer - An Efx RX data buffer
260  * @dma_addr: DMA base address of the buffer
261  * @page: The associated page buffer.
262  *	Will be %NULL if the buffer slot is currently free.
263  * @page_offset: If pending: offset in @page of DMA base address.
264  *	If completed: offset in @page of Ethernet header.
265  * @len: If pending: length for DMA descriptor.
266  *	If completed: received length, excluding hash prefix.
267  * @flags: Flags for buffer and packet state.  These are only set on the
268  *	first buffer of a scattered packet.
269  */
270 struct efx_rx_buffer {
271 	dma_addr_t dma_addr;
272 	struct page *page;
273 	u16 page_offset;
274 	u16 len;
275 	u16 flags;
276 };
277 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
278 #define EFX_RX_PKT_CSUMMED	0x0002
279 #define EFX_RX_PKT_DISCARD	0x0004
280 #define EFX_RX_PKT_TCP		0x0040
281 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
282 
283 /**
284  * struct efx_rx_page_state - Page-based rx buffer state
285  *
286  * Inserted at the start of every page allocated for receive buffers.
287  * Used to facilitate sharing dma mappings between recycled rx buffers
288  * and those passed up to the kernel.
289  *
290  * @refcnt: Number of struct efx_rx_buffer's referencing this page.
291  *	When refcnt falls to zero, the page is unmapped for dma
292  * @dma_addr: The dma address of this page.
293  */
294 struct efx_rx_page_state {
295 	unsigned refcnt;
296 	dma_addr_t dma_addr;
297 
298 	unsigned int __pad[0] ____cacheline_aligned;
299 };
300 
301 /**
302  * struct efx_rx_queue - An Efx RX queue
303  * @efx: The associated Efx NIC
304  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
305  *	is associated with a real RX queue.
306  * @buffer: The software buffer ring
307  * @rxd: The hardware descriptor ring
308  * @ptr_mask: The size of the ring minus 1.
309  * @refill_enabled: Enable refill whenever fill level is low
310  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
311  *	@rxq_flush_pending.
312  * @added_count: Number of buffers added to the receive queue.
313  * @notified_count: Number of buffers given to NIC (<= @added_count).
314  * @removed_count: Number of buffers removed from the receive queue.
315  * @scatter_n: Used by NIC specific receive code.
316  * @scatter_len: Used by NIC specific receive code.
317  * @page_ring: The ring to store DMA mapped pages for reuse.
318  * @page_add: Counter to calculate the write pointer for the recycle ring.
319  * @page_remove: Counter to calculate the read pointer for the recycle ring.
320  * @page_recycle_count: The number of pages that have been recycled.
321  * @page_recycle_failed: The number of pages that couldn't be recycled because
322  *      the kernel still held a reference to them.
323  * @page_recycle_full: The number of pages that were released because the
324  *      recycle ring was full.
325  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
326  * @max_fill: RX descriptor maximum fill level (<= ring size)
327  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
328  *	(<= @max_fill)
329  * @min_fill: RX descriptor minimum non-zero fill level.
330  *	This records the minimum fill level observed when a ring
331  *	refill was triggered.
332  * @recycle_count: RX buffer recycle counter.
333  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
334  */
335 struct efx_rx_queue {
336 	struct efx_nic *efx;
337 	int core_index;
338 	struct efx_rx_buffer *buffer;
339 	struct efx_special_buffer rxd;
340 	unsigned int ptr_mask;
341 	bool refill_enabled;
342 	bool flush_pending;
343 
344 	unsigned int added_count;
345 	unsigned int notified_count;
346 	unsigned int removed_count;
347 	unsigned int scatter_n;
348 	unsigned int scatter_len;
349 	struct page **page_ring;
350 	unsigned int page_add;
351 	unsigned int page_remove;
352 	unsigned int page_recycle_count;
353 	unsigned int page_recycle_failed;
354 	unsigned int page_recycle_full;
355 	unsigned int page_ptr_mask;
356 	unsigned int max_fill;
357 	unsigned int fast_fill_trigger;
358 	unsigned int min_fill;
359 	unsigned int min_overfill;
360 	unsigned int recycle_count;
361 	struct timer_list slow_fill;
362 	unsigned int slow_fill_count;
363 };
364 
365 enum efx_rx_alloc_method {
366 	RX_ALLOC_METHOD_AUTO = 0,
367 	RX_ALLOC_METHOD_SKB = 1,
368 	RX_ALLOC_METHOD_PAGE = 2,
369 };
370 
371 /**
372  * struct efx_channel - An Efx channel
373  *
374  * A channel comprises an event queue, at least one TX queue, at least
375  * one RX queue, and an associated tasklet for processing the event
376  * queue.
377  *
378  * @efx: Associated Efx NIC
379  * @channel: Channel instance number
380  * @type: Channel type definition
381  * @eventq_init: Event queue initialised flag
382  * @enabled: Channel enabled indicator
383  * @irq: IRQ number (MSI and MSI-X only)
384  * @irq_moderation: IRQ moderation value (in hardware ticks)
385  * @napi_dev: Net device used with NAPI
386  * @napi_str: NAPI control structure
387  * @eventq: Event queue buffer
388  * @eventq_mask: Event queue pointer mask
389  * @eventq_read_ptr: Event queue read pointer
390  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
391  * @irq_count: Number of IRQs since last adaptive moderation decision
392  * @irq_mod_score: IRQ moderation score
393  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
394  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
395  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
396  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
397  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
398  * @n_rx_overlength: Count of RX_OVERLENGTH errors
399  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
400  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
401  *	lack of descriptors
402  * @n_rx_merge_events: Number of RX merged completion events
403  * @n_rx_merge_packets: Number of RX packets completed by merged events
404  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
405  *	__efx_rx_packet(), or zero if there is none
406  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
407  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
408  * @rx_queue: RX queue for this channel
409  * @tx_queue: TX queues for this channel
410  */
411 struct efx_channel {
412 	struct efx_nic *efx;
413 	int channel;
414 	const struct efx_channel_type *type;
415 	bool eventq_init;
416 	bool enabled;
417 	int irq;
418 	unsigned int irq_moderation;
419 	struct net_device *napi_dev;
420 	struct napi_struct napi_str;
421 	struct efx_special_buffer eventq;
422 	unsigned int eventq_mask;
423 	unsigned int eventq_read_ptr;
424 	int event_test_cpu;
425 
426 	unsigned int irq_count;
427 	unsigned int irq_mod_score;
428 #ifdef CONFIG_RFS_ACCEL
429 	unsigned int rfs_filters_added;
430 #endif
431 
432 	unsigned n_rx_tobe_disc;
433 	unsigned n_rx_ip_hdr_chksum_err;
434 	unsigned n_rx_tcp_udp_chksum_err;
435 	unsigned n_rx_mcast_mismatch;
436 	unsigned n_rx_frm_trunc;
437 	unsigned n_rx_overlength;
438 	unsigned n_skbuff_leaks;
439 	unsigned int n_rx_nodesc_trunc;
440 	unsigned int n_rx_merge_events;
441 	unsigned int n_rx_merge_packets;
442 
443 	unsigned int rx_pkt_n_frags;
444 	unsigned int rx_pkt_index;
445 
446 	struct efx_rx_queue rx_queue;
447 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
448 };
449 
450 /**
451  * struct efx_msi_context - Context for each MSI
452  * @efx: The associated NIC
453  * @index: Index of the channel/IRQ
454  * @name: Name of the channel/IRQ
455  *
456  * Unlike &struct efx_channel, this is never reallocated and is always
457  * safe for the IRQ handler to access.
458  */
459 struct efx_msi_context {
460 	struct efx_nic *efx;
461 	unsigned int index;
462 	char name[IFNAMSIZ + 6];
463 };
464 
465 /**
466  * struct efx_channel_type - distinguishes traffic and extra channels
467  * @handle_no_channel: Handle failure to allocate an extra channel
468  * @pre_probe: Set up extra state prior to initialisation
469  * @post_remove: Tear down extra state after finalisation, if allocated.
470  *	May be called on channels that have not been probed.
471  * @get_name: Generate the channel's name (used for its IRQ handler)
472  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
473  *	reallocation is not supported.
474  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
475  * @keep_eventq: Flag for whether event queue should be kept initialised
476  *	while the device is stopped
477  */
478 struct efx_channel_type {
479 	void (*handle_no_channel)(struct efx_nic *);
480 	int (*pre_probe)(struct efx_channel *);
481 	void (*post_remove)(struct efx_channel *);
482 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
483 	struct efx_channel *(*copy)(const struct efx_channel *);
484 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
485 	bool keep_eventq;
486 };
487 
488 enum efx_led_mode {
489 	EFX_LED_OFF	= 0,
490 	EFX_LED_ON	= 1,
491 	EFX_LED_DEFAULT	= 2
492 };
493 
494 #define STRING_TABLE_LOOKUP(val, member) \
495 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
496 
497 extern const char *const efx_loopback_mode_names[];
498 extern const unsigned int efx_loopback_mode_max;
499 #define LOOPBACK_MODE(efx) \
500 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
501 
502 extern const char *const efx_reset_type_names[];
503 extern const unsigned int efx_reset_type_max;
504 #define RESET_TYPE(type) \
505 	STRING_TABLE_LOOKUP(type, efx_reset_type)
506 
507 enum efx_int_mode {
508 	/* Be careful if altering to correct macro below */
509 	EFX_INT_MODE_MSIX = 0,
510 	EFX_INT_MODE_MSI = 1,
511 	EFX_INT_MODE_LEGACY = 2,
512 	EFX_INT_MODE_MAX	/* Insert any new items before this */
513 };
514 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
515 
516 enum nic_state {
517 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
518 	STATE_READY = 1,	/* hardware ready and netdev registered */
519 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
520 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
521 };
522 
523 /*
524  * Alignment of the skb->head which wraps a page-allocated RX buffer
525  *
526  * The skb allocated to wrap an rx_buffer can have this alignment. Since
527  * the data is memcpy'd from the rx_buf, it does not need to be equal to
528  * NET_IP_ALIGN.
529  */
530 #define EFX_PAGE_SKB_ALIGN 2
531 
532 /* Forward declaration */
533 struct efx_nic;
534 
535 /* Pseudo bit-mask flow control field */
536 #define EFX_FC_RX	FLOW_CTRL_RX
537 #define EFX_FC_TX	FLOW_CTRL_TX
538 #define EFX_FC_AUTO	4
539 
540 /**
541  * struct efx_link_state - Current state of the link
542  * @up: Link is up
543  * @fd: Link is full-duplex
544  * @fc: Actual flow control flags
545  * @speed: Link speed (Mbps)
546  */
547 struct efx_link_state {
548 	bool up;
549 	bool fd;
550 	u8 fc;
551 	unsigned int speed;
552 };
553 
554 static inline bool efx_link_state_equal(const struct efx_link_state *left,
555 					const struct efx_link_state *right)
556 {
557 	return left->up == right->up && left->fd == right->fd &&
558 		left->fc == right->fc && left->speed == right->speed;
559 }
560 
561 /**
562  * struct efx_phy_operations - Efx PHY operations table
563  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
564  *	efx->loopback_modes.
565  * @init: Initialise PHY
566  * @fini: Shut down PHY
567  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
568  * @poll: Update @link_state and report whether it changed.
569  *	Serialised by the mac_lock.
570  * @get_settings: Get ethtool settings. Serialised by the mac_lock.
571  * @set_settings: Set ethtool settings. Serialised by the mac_lock.
572  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
573  *	(only needed where AN bit is set in mmds)
574  * @test_alive: Test that PHY is 'alive' (online)
575  * @test_name: Get the name of a PHY-specific test/result
576  * @run_tests: Run tests and record results as appropriate (offline).
577  *	Flags are the ethtool tests flags.
578  */
579 struct efx_phy_operations {
580 	int (*probe) (struct efx_nic *efx);
581 	int (*init) (struct efx_nic *efx);
582 	void (*fini) (struct efx_nic *efx);
583 	void (*remove) (struct efx_nic *efx);
584 	int (*reconfigure) (struct efx_nic *efx);
585 	bool (*poll) (struct efx_nic *efx);
586 	void (*get_settings) (struct efx_nic *efx,
587 			      struct ethtool_cmd *ecmd);
588 	int (*set_settings) (struct efx_nic *efx,
589 			     struct ethtool_cmd *ecmd);
590 	void (*set_npage_adv) (struct efx_nic *efx, u32);
591 	int (*test_alive) (struct efx_nic *efx);
592 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
593 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
594 	int (*get_module_eeprom) (struct efx_nic *efx,
595 			       struct ethtool_eeprom *ee,
596 			       u8 *data);
597 	int (*get_module_info) (struct efx_nic *efx,
598 				struct ethtool_modinfo *modinfo);
599 };
600 
601 /**
602  * enum efx_phy_mode - PHY operating mode flags
603  * @PHY_MODE_NORMAL: on and should pass traffic
604  * @PHY_MODE_TX_DISABLED: on with TX disabled
605  * @PHY_MODE_LOW_POWER: set to low power through MDIO
606  * @PHY_MODE_OFF: switched off through external control
607  * @PHY_MODE_SPECIAL: on but will not pass traffic
608  */
609 enum efx_phy_mode {
610 	PHY_MODE_NORMAL		= 0,
611 	PHY_MODE_TX_DISABLED	= 1,
612 	PHY_MODE_LOW_POWER	= 2,
613 	PHY_MODE_OFF		= 4,
614 	PHY_MODE_SPECIAL	= 8,
615 };
616 
617 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
618 {
619 	return !!(mode & ~PHY_MODE_TX_DISABLED);
620 }
621 
622 /**
623  * struct efx_hw_stat_desc - Description of a hardware statistic
624  * @name: Name of the statistic as visible through ethtool, or %NULL if
625  *	it should not be exposed
626  * @dma_width: Width in bits (0 for non-DMA statistics)
627  * @offset: Offset within stats (ignored for non-DMA statistics)
628  */
629 struct efx_hw_stat_desc {
630 	const char *name;
631 	u16 dma_width;
632 	u16 offset;
633 };
634 
635 /* Number of bits used in a multicast filter hash address */
636 #define EFX_MCAST_HASH_BITS 8
637 
638 /* Number of (single-bit) entries in a multicast filter hash */
639 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
640 
641 /* An Efx multicast filter hash */
642 union efx_multicast_hash {
643 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
644 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
645 };
646 
647 struct efx_vf;
648 struct vfdi_status;
649 
650 /**
651  * struct efx_nic - an Efx NIC
652  * @name: Device name (net device name or bus id before net device registered)
653  * @pci_dev: The PCI device
654  * @type: Controller type attributes
655  * @legacy_irq: IRQ number
656  * @workqueue: Workqueue for port reconfigures and the HW monitor.
657  *	Work items do not hold and must not acquire RTNL.
658  * @workqueue_name: Name of workqueue
659  * @reset_work: Scheduled reset workitem
660  * @membase_phys: Memory BAR value as physical address
661  * @membase: Memory BAR value
662  * @interrupt_mode: Interrupt mode
663  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
664  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
665  * @irq_rx_moderation: IRQ moderation time for RX event queues
666  * @msg_enable: Log message enable flags
667  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
668  * @reset_pending: Bitmask for pending resets
669  * @tx_queue: TX DMA queues
670  * @rx_queue: RX DMA queues
671  * @channel: Channels
672  * @msi_context: Context for each MSI
673  * @extra_channel_types: Types of extra (non-traffic) channels that
674  *	should be allocated for this NIC
675  * @rxq_entries: Size of receive queues requested by user.
676  * @txq_entries: Size of transmit queues requested by user.
677  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
678  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
679  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
680  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
681  * @sram_lim_qw: Qword address limit of SRAM
682  * @next_buffer_table: First available buffer table id
683  * @n_channels: Number of channels in use
684  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
685  * @n_tx_channels: Number of channels used for TX
686  * @rx_ip_align: RX DMA address offset to have IP header aligned in
687  *	in accordance with NET_IP_ALIGN
688  * @rx_dma_len: Current maximum RX DMA length
689  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
690  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
691  *	for use in sk_buff::truesize
692  * @rx_prefix_size: Size of RX prefix before packet data
693  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
694  *	(valid only if @rx_prefix_size != 0; always negative)
695  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
696  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
697  * @rx_hash_key: Toeplitz hash key for RSS
698  * @rx_indir_table: Indirection table for RSS
699  * @rx_scatter: Scatter mode enabled for receives
700  * @int_error_count: Number of internal errors seen recently
701  * @int_error_expire: Time at which error count will be expired
702  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
703  *	acknowledge but do nothing else.
704  * @irq_status: Interrupt status buffer
705  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
706  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
707  * @selftest_work: Work item for asynchronous self-test
708  * @mtd_list: List of MTDs attached to the NIC
709  * @nic_data: Hardware dependent state
710  * @mcdi: Management-Controller-to-Driver Interface state
711  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
712  *	efx_monitor() and efx_reconfigure_port()
713  * @port_enabled: Port enabled indicator.
714  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
715  *	efx_mac_work() with kernel interfaces. Safe to read under any
716  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
717  *	be held to modify it.
718  * @port_initialized: Port initialized?
719  * @net_dev: Operating system network device. Consider holding the rtnl lock
720  * @stats_buffer: DMA buffer for statistics
721  * @phy_type: PHY type
722  * @phy_op: PHY interface
723  * @phy_data: PHY private data (including PHY-specific stats)
724  * @mdio: PHY MDIO interface
725  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
726  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
727  * @link_advertising: Autonegotiation advertising flags
728  * @link_state: Current state of the link
729  * @n_link_state_changes: Number of times the link has changed state
730  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
731  *	Protected by @mac_lock.
732  * @multicast_hash: Multicast hash table for Falcon-arch.
733  *	Protected by @mac_lock.
734  * @wanted_fc: Wanted flow control flags
735  * @fc_disable: When non-zero flow control is disabled. Typically used to
736  *	ensure that network back pressure doesn't delay dma queue flushes.
737  *	Serialised by the rtnl lock.
738  * @mac_work: Work item for changing MAC promiscuity and multicast hash
739  * @loopback_mode: Loopback status
740  * @loopback_modes: Supported loopback mode bitmask
741  * @loopback_selftest: Offline self-test private state
742  * @filter_lock: Filter table lock
743  * @filter_state: Architecture-dependent filter table state
744  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
745  *	indexed by filter ID
746  * @rps_expire_index: Next index to check for expiry in @rps_flow_id
747  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
748  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
749  *	Decremented when the efx_flush_rx_queue() is called.
750  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
751  *	completed (either success or failure). Not used when MCDI is used to
752  *	flush receive queues.
753  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
754  * @vf: Array of &struct efx_vf objects.
755  * @vf_count: Number of VFs intended to be enabled.
756  * @vf_init_count: Number of VFs that have been fully initialised.
757  * @vi_scale: log2 number of vnics per VF.
758  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
759  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
760  * @local_addr_list: List of local addresses. Protected by %local_lock.
761  * @local_page_list: List of DMA addressable pages used to broadcast
762  *	%local_addr_list. Protected by %local_lock.
763  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
764  * @peer_work: Work item to broadcast peer addresses to VMs.
765  * @ptp_data: PTP state data
766  * @monitor_work: Hardware monitor workitem
767  * @biu_lock: BIU (bus interface unit) lock
768  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
769  *	field is used by efx_test_interrupts() to verify that an
770  *	interrupt has occurred.
771  * @stats_lock: Statistics update lock. Must be held when calling
772  *	efx_nic_type::{update,start,stop}_stats.
773  *
774  * This is stored in the private area of the &struct net_device.
775  */
776 struct efx_nic {
777 	/* The following fields should be written very rarely */
778 
779 	char name[IFNAMSIZ];
780 	struct pci_dev *pci_dev;
781 	unsigned int port_num;
782 	const struct efx_nic_type *type;
783 	int legacy_irq;
784 	bool eeh_disabled_legacy_irq;
785 	struct workqueue_struct *workqueue;
786 	char workqueue_name[16];
787 	struct work_struct reset_work;
788 	resource_size_t membase_phys;
789 	void __iomem *membase;
790 
791 	enum efx_int_mode interrupt_mode;
792 	unsigned int timer_quantum_ns;
793 	bool irq_rx_adaptive;
794 	unsigned int irq_rx_moderation;
795 	u32 msg_enable;
796 
797 	enum nic_state state;
798 	unsigned long reset_pending;
799 
800 	struct efx_channel *channel[EFX_MAX_CHANNELS];
801 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
802 	const struct efx_channel_type *
803 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
804 
805 	unsigned rxq_entries;
806 	unsigned txq_entries;
807 	unsigned int txq_stop_thresh;
808 	unsigned int txq_wake_thresh;
809 
810 	unsigned tx_dc_base;
811 	unsigned rx_dc_base;
812 	unsigned sram_lim_qw;
813 	unsigned next_buffer_table;
814 
815 	unsigned int max_channels;
816 	unsigned n_channels;
817 	unsigned n_rx_channels;
818 	unsigned rss_spread;
819 	unsigned tx_channel_offset;
820 	unsigned n_tx_channels;
821 	unsigned int rx_ip_align;
822 	unsigned int rx_dma_len;
823 	unsigned int rx_buffer_order;
824 	unsigned int rx_buffer_truesize;
825 	unsigned int rx_page_buf_step;
826 	unsigned int rx_bufs_per_page;
827 	unsigned int rx_pages_per_batch;
828 	unsigned int rx_prefix_size;
829 	int rx_packet_hash_offset;
830 	int rx_packet_len_offset;
831 	u8 rx_hash_key[40];
832 	u32 rx_indir_table[128];
833 	bool rx_scatter;
834 
835 	unsigned int_error_count;
836 	unsigned long int_error_expire;
837 
838 	bool irq_soft_enabled;
839 	struct efx_buffer irq_status;
840 	unsigned irq_zero_count;
841 	unsigned irq_level;
842 	struct delayed_work selftest_work;
843 
844 #ifdef CONFIG_SFC_MTD
845 	struct list_head mtd_list;
846 #endif
847 
848 	void *nic_data;
849 	struct efx_mcdi_data *mcdi;
850 
851 	struct mutex mac_lock;
852 	struct work_struct mac_work;
853 	bool port_enabled;
854 
855 	bool port_initialized;
856 	struct net_device *net_dev;
857 
858 	struct efx_buffer stats_buffer;
859 
860 	unsigned int phy_type;
861 	const struct efx_phy_operations *phy_op;
862 	void *phy_data;
863 	struct mdio_if_info mdio;
864 	unsigned int mdio_bus;
865 	enum efx_phy_mode phy_mode;
866 
867 	u32 link_advertising;
868 	struct efx_link_state link_state;
869 	unsigned int n_link_state_changes;
870 
871 	bool unicast_filter;
872 	union efx_multicast_hash multicast_hash;
873 	u8 wanted_fc;
874 	unsigned fc_disable;
875 
876 	atomic_t rx_reset;
877 	enum efx_loopback_mode loopback_mode;
878 	u64 loopback_modes;
879 
880 	void *loopback_selftest;
881 
882 	spinlock_t filter_lock;
883 	void *filter_state;
884 #ifdef CONFIG_RFS_ACCEL
885 	u32 *rps_flow_id;
886 	unsigned int rps_expire_index;
887 #endif
888 
889 	atomic_t active_queues;
890 	atomic_t rxq_flush_pending;
891 	atomic_t rxq_flush_outstanding;
892 	wait_queue_head_t flush_wq;
893 
894 #ifdef CONFIG_SFC_SRIOV
895 	struct efx_channel *vfdi_channel;
896 	struct efx_vf *vf;
897 	unsigned vf_count;
898 	unsigned vf_init_count;
899 	unsigned vi_scale;
900 	unsigned vf_buftbl_base;
901 	struct efx_buffer vfdi_status;
902 	struct list_head local_addr_list;
903 	struct list_head local_page_list;
904 	struct mutex local_lock;
905 	struct work_struct peer_work;
906 #endif
907 
908 	struct efx_ptp_data *ptp_data;
909 
910 	/* The following fields may be written more often */
911 
912 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
913 	spinlock_t biu_lock;
914 	int last_irq_cpu;
915 	spinlock_t stats_lock;
916 };
917 
918 static inline int efx_dev_registered(struct efx_nic *efx)
919 {
920 	return efx->net_dev->reg_state == NETREG_REGISTERED;
921 }
922 
923 static inline unsigned int efx_port_num(struct efx_nic *efx)
924 {
925 	return efx->port_num;
926 }
927 
928 struct efx_mtd_partition {
929 	struct list_head node;
930 	struct mtd_info mtd;
931 	const char *dev_type_name;
932 	const char *type_name;
933 	char name[IFNAMSIZ + 20];
934 };
935 
936 /**
937  * struct efx_nic_type - Efx device type definition
938  * @mem_map_size: Get memory BAR mapped size
939  * @probe: Probe the controller
940  * @remove: Free resources allocated by probe()
941  * @init: Initialise the controller
942  * @dimension_resources: Dimension controller resources (buffer table,
943  *	and VIs once the available interrupt resources are clear)
944  * @fini: Shut down the controller
945  * @monitor: Periodic function for polling link state and hardware monitor
946  * @map_reset_reason: Map ethtool reset reason to a reset method
947  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
948  * @reset: Reset the controller hardware and possibly the PHY.  This will
949  *	be called while the controller is uninitialised.
950  * @probe_port: Probe the MAC and PHY
951  * @remove_port: Free resources allocated by probe_port()
952  * @handle_global_event: Handle a "global" event (may be %NULL)
953  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
954  * @prepare_flush: Prepare the hardware for flushing the DMA queues
955  *	(for Falcon architecture)
956  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
957  *	architecture)
958  * @describe_stats: Describe statistics for ethtool
959  * @update_stats: Update statistics not provided by event handling.
960  *	Either argument may be %NULL.
961  * @start_stats: Start the regular fetching of statistics
962  * @stop_stats: Stop the regular fetching of statistics
963  * @set_id_led: Set state of identifying LED or revert to automatic function
964  * @push_irq_moderation: Apply interrupt moderation value
965  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
966  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
967  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
968  *	to the hardware.  Serialised by the mac_lock.
969  * @check_mac_fault: Check MAC fault state. True if fault present.
970  * @get_wol: Get WoL configuration from driver state
971  * @set_wol: Push WoL configuration to the NIC
972  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
973  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
974  *	expected to reset the NIC.
975  * @test_nvram: Test validity of NVRAM contents
976  * @mcdi_request: Send an MCDI request with the given header and SDU.
977  *	The SDU length may be any value from 0 up to the protocol-
978  *	defined maximum, but its buffer will be padded to a multiple
979  *	of 4 bytes.
980  * @mcdi_poll_response: Test whether an MCDI response is available.
981  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
982  *	be a multiple of 4.  The length may not be, but the buffer
983  *	will be padded so it is safe to round up.
984  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
985  *	return an appropriate error code for aborting any current
986  *	request; otherwise return 0.
987  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
988  *	be separately enabled after this.
989  * @irq_test_generate: Generate a test IRQ
990  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
991  *	queue must be separately disabled before this.
992  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
993  *	a pointer to the &struct efx_msi_context for the channel.
994  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
995  *	is a pointer to the &struct efx_nic.
996  * @tx_probe: Allocate resources for TX queue
997  * @tx_init: Initialise TX queue on the NIC
998  * @tx_remove: Free resources for TX queue
999  * @tx_write: Write TX descriptors and doorbell
1000  * @rx_push_indir_table: Write RSS indirection table to the NIC
1001  * @rx_probe: Allocate resources for RX queue
1002  * @rx_init: Initialise RX queue on the NIC
1003  * @rx_remove: Free resources for RX queue
1004  * @rx_write: Write RX descriptors and doorbell
1005  * @rx_defer_refill: Generate a refill reminder event
1006  * @ev_probe: Allocate resources for event queue
1007  * @ev_init: Initialise event queue on the NIC
1008  * @ev_fini: Deinitialise event queue on the NIC
1009  * @ev_remove: Free resources for event queue
1010  * @ev_process: Process events for a queue, up to the given NAPI quota
1011  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1012  * @ev_test_generate: Generate a test event
1013  * @filter_table_probe: Probe filter capabilities and set up filter software state
1014  * @filter_table_restore: Restore filters removed from hardware
1015  * @filter_table_remove: Remove filters from hardware and tear down software state
1016  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1017  * @filter_insert: add or replace a filter
1018  * @filter_remove_safe: remove a filter by ID, carefully
1019  * @filter_get_safe: retrieve a filter by ID, carefully
1020  * @filter_clear_rx: remove RX filters by priority
1021  * @filter_count_rx_used: Get the number of filters in use at a given priority
1022  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1023  * @filter_get_rx_ids: Get list of RX filters at a given priority
1024  * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1025  *	atomic.  The hardware change may be asynchronous but should
1026  *	not be delayed for long.  It may fail if this can't be done
1027  *	atomically.
1028  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1029  *	This must check whether the specified table entry is used by RFS
1030  *	and that rps_may_expire_flow() returns true for it.
1031  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1032  *	 using efx_mtd_add()
1033  * @mtd_rename: Set an MTD partition name using the net device name
1034  * @mtd_read: Read from an MTD partition
1035  * @mtd_erase: Erase part of an MTD partition
1036  * @mtd_write: Write to an MTD partition
1037  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1038  *	also notifies the driver that a writer has finished using this
1039  *	partition.
1040  * @revision: Hardware architecture revision
1041  * @txd_ptr_tbl_base: TX descriptor ring base address
1042  * @rxd_ptr_tbl_base: RX descriptor ring base address
1043  * @buf_tbl_base: Buffer table base address
1044  * @evq_ptr_tbl_base: Event queue pointer table base address
1045  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1046  * @max_dma_mask: Maximum possible DMA mask
1047  * @rx_prefix_size: Size of RX prefix before packet data
1048  * @rx_hash_offset: Offset of RX flow hash within prefix
1049  * @rx_buffer_padding: Size of padding at end of RX packet
1050  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1051  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1052  * @max_interrupt_mode: Highest capability interrupt mode supported
1053  *	from &enum efx_init_mode.
1054  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1055  * @offload_features: net_device feature flags for protocol offload
1056  *	features implemented in hardware
1057  * @mcdi_max_ver: Maximum MCDI version supported
1058  */
1059 struct efx_nic_type {
1060 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1061 	int (*probe)(struct efx_nic *efx);
1062 	void (*remove)(struct efx_nic *efx);
1063 	int (*init)(struct efx_nic *efx);
1064 	int (*dimension_resources)(struct efx_nic *efx);
1065 	void (*fini)(struct efx_nic *efx);
1066 	void (*monitor)(struct efx_nic *efx);
1067 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1068 	int (*map_reset_flags)(u32 *flags);
1069 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1070 	int (*probe_port)(struct efx_nic *efx);
1071 	void (*remove_port)(struct efx_nic *efx);
1072 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1073 	int (*fini_dmaq)(struct efx_nic *efx);
1074 	void (*prepare_flush)(struct efx_nic *efx);
1075 	void (*finish_flush)(struct efx_nic *efx);
1076 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1077 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1078 			       struct rtnl_link_stats64 *core_stats);
1079 	void (*start_stats)(struct efx_nic *efx);
1080 	void (*stop_stats)(struct efx_nic *efx);
1081 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1082 	void (*push_irq_moderation)(struct efx_channel *channel);
1083 	int (*reconfigure_port)(struct efx_nic *efx);
1084 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1085 	int (*reconfigure_mac)(struct efx_nic *efx);
1086 	bool (*check_mac_fault)(struct efx_nic *efx);
1087 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1088 	int (*set_wol)(struct efx_nic *efx, u32 type);
1089 	void (*resume_wol)(struct efx_nic *efx);
1090 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1091 	int (*test_nvram)(struct efx_nic *efx);
1092 	void (*mcdi_request)(struct efx_nic *efx,
1093 			     const efx_dword_t *hdr, size_t hdr_len,
1094 			     const efx_dword_t *sdu, size_t sdu_len);
1095 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1096 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1097 				   size_t pdu_offset, size_t pdu_len);
1098 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1099 	void (*irq_enable_master)(struct efx_nic *efx);
1100 	void (*irq_test_generate)(struct efx_nic *efx);
1101 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1102 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1103 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1104 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1105 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1106 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1107 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1108 	void (*rx_push_indir_table)(struct efx_nic *efx);
1109 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1110 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1111 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1112 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1113 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1114 	int (*ev_probe)(struct efx_channel *channel);
1115 	int (*ev_init)(struct efx_channel *channel);
1116 	void (*ev_fini)(struct efx_channel *channel);
1117 	void (*ev_remove)(struct efx_channel *channel);
1118 	int (*ev_process)(struct efx_channel *channel, int quota);
1119 	void (*ev_read_ack)(struct efx_channel *channel);
1120 	void (*ev_test_generate)(struct efx_channel *channel);
1121 	int (*filter_table_probe)(struct efx_nic *efx);
1122 	void (*filter_table_restore)(struct efx_nic *efx);
1123 	void (*filter_table_remove)(struct efx_nic *efx);
1124 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1125 	s32 (*filter_insert)(struct efx_nic *efx,
1126 			     struct efx_filter_spec *spec, bool replace);
1127 	int (*filter_remove_safe)(struct efx_nic *efx,
1128 				  enum efx_filter_priority priority,
1129 				  u32 filter_id);
1130 	int (*filter_get_safe)(struct efx_nic *efx,
1131 			       enum efx_filter_priority priority,
1132 			       u32 filter_id, struct efx_filter_spec *);
1133 	void (*filter_clear_rx)(struct efx_nic *efx,
1134 				enum efx_filter_priority priority);
1135 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1136 				    enum efx_filter_priority priority);
1137 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1138 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1139 				 enum efx_filter_priority priority,
1140 				 u32 *buf, u32 size);
1141 #ifdef CONFIG_RFS_ACCEL
1142 	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1143 				 struct efx_filter_spec *spec);
1144 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1145 				      unsigned int index);
1146 #endif
1147 #ifdef CONFIG_SFC_MTD
1148 	int (*mtd_probe)(struct efx_nic *efx);
1149 	void (*mtd_rename)(struct efx_mtd_partition *part);
1150 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1151 			size_t *retlen, u8 *buffer);
1152 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1153 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1154 			 size_t *retlen, const u8 *buffer);
1155 	int (*mtd_sync)(struct mtd_info *mtd);
1156 #endif
1157 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1158 
1159 	int revision;
1160 	unsigned int txd_ptr_tbl_base;
1161 	unsigned int rxd_ptr_tbl_base;
1162 	unsigned int buf_tbl_base;
1163 	unsigned int evq_ptr_tbl_base;
1164 	unsigned int evq_rptr_tbl_base;
1165 	u64 max_dma_mask;
1166 	unsigned int rx_prefix_size;
1167 	unsigned int rx_hash_offset;
1168 	unsigned int rx_buffer_padding;
1169 	bool can_rx_scatter;
1170 	bool always_rx_scatter;
1171 	unsigned int max_interrupt_mode;
1172 	unsigned int timer_period_max;
1173 	netdev_features_t offload_features;
1174 	int mcdi_max_ver;
1175 	unsigned int max_rx_ip_filters;
1176 };
1177 
1178 /**************************************************************************
1179  *
1180  * Prototypes and inline functions
1181  *
1182  *************************************************************************/
1183 
1184 static inline struct efx_channel *
1185 efx_get_channel(struct efx_nic *efx, unsigned index)
1186 {
1187 	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1188 	return efx->channel[index];
1189 }
1190 
1191 /* Iterate over all used channels */
1192 #define efx_for_each_channel(_channel, _efx)				\
1193 	for (_channel = (_efx)->channel[0];				\
1194 	     _channel;							\
1195 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1196 		     (_efx)->channel[_channel->channel + 1] : NULL)
1197 
1198 /* Iterate over all used channels in reverse */
1199 #define efx_for_each_channel_rev(_channel, _efx)			\
1200 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1201 	     _channel;							\
1202 	     _channel = _channel->channel ?				\
1203 		     (_efx)->channel[_channel->channel - 1] : NULL)
1204 
1205 static inline struct efx_tx_queue *
1206 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1207 {
1208 	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1209 			    type >= EFX_TXQ_TYPES);
1210 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1211 }
1212 
1213 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1214 {
1215 	return channel->channel - channel->efx->tx_channel_offset <
1216 		channel->efx->n_tx_channels;
1217 }
1218 
1219 static inline struct efx_tx_queue *
1220 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1221 {
1222 	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1223 			    type >= EFX_TXQ_TYPES);
1224 	return &channel->tx_queue[type];
1225 }
1226 
1227 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1228 {
1229 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1230 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1231 }
1232 
1233 /* Iterate over all TX queues belonging to a channel */
1234 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1235 	if (!efx_channel_has_tx_queues(_channel))			\
1236 		;							\
1237 	else								\
1238 		for (_tx_queue = (_channel)->tx_queue;			\
1239 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1240 			     efx_tx_queue_used(_tx_queue);		\
1241 		     _tx_queue++)
1242 
1243 /* Iterate over all possible TX queues belonging to a channel */
1244 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1245 	if (!efx_channel_has_tx_queues(_channel))			\
1246 		;							\
1247 	else								\
1248 		for (_tx_queue = (_channel)->tx_queue;			\
1249 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1250 		     _tx_queue++)
1251 
1252 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1253 {
1254 	return channel->rx_queue.core_index >= 0;
1255 }
1256 
1257 static inline struct efx_rx_queue *
1258 efx_channel_get_rx_queue(struct efx_channel *channel)
1259 {
1260 	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1261 	return &channel->rx_queue;
1262 }
1263 
1264 /* Iterate over all RX queues belonging to a channel */
1265 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1266 	if (!efx_channel_has_rx_queue(_channel))			\
1267 		;							\
1268 	else								\
1269 		for (_rx_queue = &(_channel)->rx_queue;			\
1270 		     _rx_queue;						\
1271 		     _rx_queue = NULL)
1272 
1273 static inline struct efx_channel *
1274 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1275 {
1276 	return container_of(rx_queue, struct efx_channel, rx_queue);
1277 }
1278 
1279 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1280 {
1281 	return efx_rx_queue_channel(rx_queue)->channel;
1282 }
1283 
1284 /* Returns a pointer to the specified receive buffer in the RX
1285  * descriptor queue.
1286  */
1287 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1288 						  unsigned int index)
1289 {
1290 	return &rx_queue->buffer[index];
1291 }
1292 
1293 
1294 /**
1295  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1296  *
1297  * This calculates the maximum frame length that will be used for a
1298  * given MTU.  The frame length will be equal to the MTU plus a
1299  * constant amount of header space and padding.  This is the quantity
1300  * that the net driver will program into the MAC as the maximum frame
1301  * length.
1302  *
1303  * The 10G MAC requires 8-byte alignment on the frame
1304  * length, so we round up to the nearest 8.
1305  *
1306  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1307  * XGMII cycle).  If the frame length reaches the maximum value in the
1308  * same cycle, the XMAC can miss the IPG altogether.  We work around
1309  * this by adding a further 16 bytes.
1310  */
1311 #define EFX_MAX_FRAME_LEN(mtu) \
1312 	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1313 
1314 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1315 {
1316 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1317 }
1318 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1319 {
1320 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1321 }
1322 
1323 #endif /* EFX_NET_DRIVER_H */
1324