1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 /* Common definitions for all Efx net driver code */ 12 13 #ifndef EFX_NET_DRIVER_H 14 #define EFX_NET_DRIVER_H 15 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/ethtool.h> 19 #include <linux/if_vlan.h> 20 #include <linux/timer.h> 21 #include <linux/mdio.h> 22 #include <linux/list.h> 23 #include <linux/pci.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/workqueue.h> 27 #include <linux/mutex.h> 28 #include <linux/vmalloc.h> 29 #include <linux/i2c.h> 30 #include <linux/mtd/mtd.h> 31 32 #include "enum.h" 33 #include "bitfield.h" 34 #include "filter.h" 35 36 /************************************************************************** 37 * 38 * Build definitions 39 * 40 **************************************************************************/ 41 42 #define EFX_DRIVER_VERSION "4.0" 43 44 #ifdef DEBUG 45 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x) 46 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 47 #else 48 #define EFX_BUG_ON_PARANOID(x) do {} while (0) 49 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 50 #endif 51 52 /************************************************************************** 53 * 54 * Efx data structures 55 * 56 **************************************************************************/ 57 58 #define EFX_MAX_CHANNELS 32U 59 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 60 #define EFX_EXTRA_CHANNEL_IOV 0 61 #define EFX_EXTRA_CHANNEL_PTP 1 62 #define EFX_MAX_EXTRA_CHANNELS 2U 63 64 /* Checksum generation is a per-queue option in hardware, so each 65 * queue visible to the networking core is backed by two hardware TX 66 * queues. */ 67 #define EFX_MAX_TX_TC 2 68 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 69 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */ 70 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */ 71 #define EFX_TXQ_TYPES 4 72 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS) 73 74 /* Maximum possible MTU the driver supports */ 75 #define EFX_MAX_MTU (9 * 1024) 76 77 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 78 * and should be a multiple of the cache line size. 79 */ 80 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 81 82 /* If possible, we should ensure cache line alignment at start and end 83 * of every buffer. Otherwise, we just need to ensure 4-byte 84 * alignment of the network header. 85 */ 86 #if NET_IP_ALIGN == 0 87 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 88 #else 89 #define EFX_RX_BUF_ALIGNMENT 4 90 #endif 91 92 /* Forward declare Precision Time Protocol (PTP) support structure. */ 93 struct efx_ptp_data; 94 95 struct efx_self_tests; 96 97 /** 98 * struct efx_buffer - A general-purpose DMA buffer 99 * @addr: host base address of the buffer 100 * @dma_addr: DMA base address of the buffer 101 * @len: Buffer length, in bytes 102 * 103 * The NIC uses these buffers for its interrupt status registers and 104 * MAC stats dumps. 105 */ 106 struct efx_buffer { 107 void *addr; 108 dma_addr_t dma_addr; 109 unsigned int len; 110 }; 111 112 /** 113 * struct efx_special_buffer - DMA buffer entered into buffer table 114 * @buf: Standard &struct efx_buffer 115 * @index: Buffer index within controller;s buffer table 116 * @entries: Number of buffer table entries 117 * 118 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 119 * Event and descriptor rings are addressed via one or more buffer 120 * table entries (and so can be physically non-contiguous, although we 121 * currently do not take advantage of that). On Falcon and Siena we 122 * have to take care of allocating and initialising the entries 123 * ourselves. On later hardware this is managed by the firmware and 124 * @index and @entries are left as 0. 125 */ 126 struct efx_special_buffer { 127 struct efx_buffer buf; 128 unsigned int index; 129 unsigned int entries; 130 }; 131 132 /** 133 * struct efx_tx_buffer - buffer state for a TX descriptor 134 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 135 * freed when descriptor completes 136 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be 137 * freed when descriptor completes. 138 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor. 139 * @dma_addr: DMA address of the fragment. 140 * @flags: Flags for allocation and DMA mapping type 141 * @len: Length of this fragment. 142 * This field is zero when the queue slot is empty. 143 * @unmap_len: Length of this fragment to unmap 144 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 145 * Only valid if @unmap_len != 0. 146 */ 147 struct efx_tx_buffer { 148 union { 149 const struct sk_buff *skb; 150 void *heap_buf; 151 }; 152 union { 153 efx_qword_t option; 154 dma_addr_t dma_addr; 155 }; 156 unsigned short flags; 157 unsigned short len; 158 unsigned short unmap_len; 159 unsigned short dma_offset; 160 }; 161 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 162 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 163 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */ 164 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 165 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 166 167 /** 168 * struct efx_tx_queue - An Efx TX queue 169 * 170 * This is a ring buffer of TX fragments. 171 * Since the TX completion path always executes on the same 172 * CPU and the xmit path can operate on different CPUs, 173 * performance is increased by ensuring that the completion 174 * path and the xmit path operate on different cache lines. 175 * This is particularly important if the xmit path is always 176 * executing on one CPU which is different from the completion 177 * path. There is also a cache line for members which are 178 * read but not written on the fast path. 179 * 180 * @efx: The associated Efx NIC 181 * @queue: DMA queue number 182 * @channel: The associated channel 183 * @core_txq: The networking core TX queue structure 184 * @buffer: The software buffer ring 185 * @tsoh_page: Array of pages of TSO header buffers 186 * @txd: The hardware descriptor ring 187 * @ptr_mask: The size of the ring minus 1. 188 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 189 * Size of the region is efx_piobuf_size. 190 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 191 * @initialised: Has hardware queue been initialised? 192 * @read_count: Current read pointer. 193 * This is the number of buffers that have been removed from both rings. 194 * @old_write_count: The value of @write_count when last checked. 195 * This is here for performance reasons. The xmit path will 196 * only get the up-to-date value of @write_count if this 197 * variable indicates that the queue is empty. This is to 198 * avoid cache-line ping-pong between the xmit path and the 199 * completion path. 200 * @merge_events: Number of TX merged completion events 201 * @insert_count: Current insert pointer 202 * This is the number of buffers that have been added to the 203 * software ring. 204 * @write_count: Current write pointer 205 * This is the number of buffers that have been added to the 206 * hardware ring. 207 * @old_read_count: The value of read_count when last checked. 208 * This is here for performance reasons. The xmit path will 209 * only get the up-to-date value of read_count if this 210 * variable indicates that the queue is full. This is to 211 * avoid cache-line ping-pong between the xmit path and the 212 * completion path. 213 * @tso_bursts: Number of times TSO xmit invoked by kernel 214 * @tso_long_headers: Number of packets with headers too long for standard 215 * blocks 216 * @tso_packets: Number of packets via the TSO xmit path 217 * @pushes: Number of times the TX push feature has been used 218 * @pio_packets: Number of times the TX PIO feature has been used 219 * @empty_read_count: If the completion path has seen the queue as empty 220 * and the transmission path has not yet checked this, the value of 221 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 222 */ 223 struct efx_tx_queue { 224 /* Members which don't change on the fast path */ 225 struct efx_nic *efx ____cacheline_aligned_in_smp; 226 unsigned queue; 227 struct efx_channel *channel; 228 struct netdev_queue *core_txq; 229 struct efx_tx_buffer *buffer; 230 struct efx_buffer *tsoh_page; 231 struct efx_special_buffer txd; 232 unsigned int ptr_mask; 233 void __iomem *piobuf; 234 unsigned int piobuf_offset; 235 bool initialised; 236 237 /* Members used mainly on the completion path */ 238 unsigned int read_count ____cacheline_aligned_in_smp; 239 unsigned int old_write_count; 240 unsigned int merge_events; 241 242 /* Members used only on the xmit path */ 243 unsigned int insert_count ____cacheline_aligned_in_smp; 244 unsigned int write_count; 245 unsigned int old_read_count; 246 unsigned int tso_bursts; 247 unsigned int tso_long_headers; 248 unsigned int tso_packets; 249 unsigned int pushes; 250 unsigned int pio_packets; 251 252 /* Members shared between paths and sometimes updated */ 253 unsigned int empty_read_count ____cacheline_aligned_in_smp; 254 #define EFX_EMPTY_COUNT_VALID 0x80000000 255 atomic_t flush_outstanding; 256 }; 257 258 /** 259 * struct efx_rx_buffer - An Efx RX data buffer 260 * @dma_addr: DMA base address of the buffer 261 * @page: The associated page buffer. 262 * Will be %NULL if the buffer slot is currently free. 263 * @page_offset: If pending: offset in @page of DMA base address. 264 * If completed: offset in @page of Ethernet header. 265 * @len: If pending: length for DMA descriptor. 266 * If completed: received length, excluding hash prefix. 267 * @flags: Flags for buffer and packet state. These are only set on the 268 * first buffer of a scattered packet. 269 */ 270 struct efx_rx_buffer { 271 dma_addr_t dma_addr; 272 struct page *page; 273 u16 page_offset; 274 u16 len; 275 u16 flags; 276 }; 277 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 278 #define EFX_RX_PKT_CSUMMED 0x0002 279 #define EFX_RX_PKT_DISCARD 0x0004 280 #define EFX_RX_PKT_TCP 0x0040 281 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 282 283 /** 284 * struct efx_rx_page_state - Page-based rx buffer state 285 * 286 * Inserted at the start of every page allocated for receive buffers. 287 * Used to facilitate sharing dma mappings between recycled rx buffers 288 * and those passed up to the kernel. 289 * 290 * @refcnt: Number of struct efx_rx_buffer's referencing this page. 291 * When refcnt falls to zero, the page is unmapped for dma 292 * @dma_addr: The dma address of this page. 293 */ 294 struct efx_rx_page_state { 295 unsigned refcnt; 296 dma_addr_t dma_addr; 297 298 unsigned int __pad[0] ____cacheline_aligned; 299 }; 300 301 /** 302 * struct efx_rx_queue - An Efx RX queue 303 * @efx: The associated Efx NIC 304 * @core_index: Index of network core RX queue. Will be >= 0 iff this 305 * is associated with a real RX queue. 306 * @buffer: The software buffer ring 307 * @rxd: The hardware descriptor ring 308 * @ptr_mask: The size of the ring minus 1. 309 * @refill_enabled: Enable refill whenever fill level is low 310 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 311 * @rxq_flush_pending. 312 * @added_count: Number of buffers added to the receive queue. 313 * @notified_count: Number of buffers given to NIC (<= @added_count). 314 * @removed_count: Number of buffers removed from the receive queue. 315 * @scatter_n: Used by NIC specific receive code. 316 * @scatter_len: Used by NIC specific receive code. 317 * @page_ring: The ring to store DMA mapped pages for reuse. 318 * @page_add: Counter to calculate the write pointer for the recycle ring. 319 * @page_remove: Counter to calculate the read pointer for the recycle ring. 320 * @page_recycle_count: The number of pages that have been recycled. 321 * @page_recycle_failed: The number of pages that couldn't be recycled because 322 * the kernel still held a reference to them. 323 * @page_recycle_full: The number of pages that were released because the 324 * recycle ring was full. 325 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 326 * @max_fill: RX descriptor maximum fill level (<= ring size) 327 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 328 * (<= @max_fill) 329 * @min_fill: RX descriptor minimum non-zero fill level. 330 * This records the minimum fill level observed when a ring 331 * refill was triggered. 332 * @recycle_count: RX buffer recycle counter. 333 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 334 */ 335 struct efx_rx_queue { 336 struct efx_nic *efx; 337 int core_index; 338 struct efx_rx_buffer *buffer; 339 struct efx_special_buffer rxd; 340 unsigned int ptr_mask; 341 bool refill_enabled; 342 bool flush_pending; 343 344 unsigned int added_count; 345 unsigned int notified_count; 346 unsigned int removed_count; 347 unsigned int scatter_n; 348 unsigned int scatter_len; 349 struct page **page_ring; 350 unsigned int page_add; 351 unsigned int page_remove; 352 unsigned int page_recycle_count; 353 unsigned int page_recycle_failed; 354 unsigned int page_recycle_full; 355 unsigned int page_ptr_mask; 356 unsigned int max_fill; 357 unsigned int fast_fill_trigger; 358 unsigned int min_fill; 359 unsigned int min_overfill; 360 unsigned int recycle_count; 361 struct timer_list slow_fill; 362 unsigned int slow_fill_count; 363 }; 364 365 enum efx_rx_alloc_method { 366 RX_ALLOC_METHOD_AUTO = 0, 367 RX_ALLOC_METHOD_SKB = 1, 368 RX_ALLOC_METHOD_PAGE = 2, 369 }; 370 371 /** 372 * struct efx_channel - An Efx channel 373 * 374 * A channel comprises an event queue, at least one TX queue, at least 375 * one RX queue, and an associated tasklet for processing the event 376 * queue. 377 * 378 * @efx: Associated Efx NIC 379 * @channel: Channel instance number 380 * @type: Channel type definition 381 * @eventq_init: Event queue initialised flag 382 * @enabled: Channel enabled indicator 383 * @irq: IRQ number (MSI and MSI-X only) 384 * @irq_moderation: IRQ moderation value (in hardware ticks) 385 * @napi_dev: Net device used with NAPI 386 * @napi_str: NAPI control structure 387 * @eventq: Event queue buffer 388 * @eventq_mask: Event queue pointer mask 389 * @eventq_read_ptr: Event queue read pointer 390 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 391 * @irq_count: Number of IRQs since last adaptive moderation decision 392 * @irq_mod_score: IRQ moderation score 393 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 394 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 395 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 396 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 397 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 398 * @n_rx_overlength: Count of RX_OVERLENGTH errors 399 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 400 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 401 * lack of descriptors 402 * @n_rx_merge_events: Number of RX merged completion events 403 * @n_rx_merge_packets: Number of RX packets completed by merged events 404 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 405 * __efx_rx_packet(), or zero if there is none 406 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 407 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 408 * @rx_queue: RX queue for this channel 409 * @tx_queue: TX queues for this channel 410 */ 411 struct efx_channel { 412 struct efx_nic *efx; 413 int channel; 414 const struct efx_channel_type *type; 415 bool eventq_init; 416 bool enabled; 417 int irq; 418 unsigned int irq_moderation; 419 struct net_device *napi_dev; 420 struct napi_struct napi_str; 421 struct efx_special_buffer eventq; 422 unsigned int eventq_mask; 423 unsigned int eventq_read_ptr; 424 int event_test_cpu; 425 426 unsigned int irq_count; 427 unsigned int irq_mod_score; 428 #ifdef CONFIG_RFS_ACCEL 429 unsigned int rfs_filters_added; 430 #endif 431 432 unsigned n_rx_tobe_disc; 433 unsigned n_rx_ip_hdr_chksum_err; 434 unsigned n_rx_tcp_udp_chksum_err; 435 unsigned n_rx_mcast_mismatch; 436 unsigned n_rx_frm_trunc; 437 unsigned n_rx_overlength; 438 unsigned n_skbuff_leaks; 439 unsigned int n_rx_nodesc_trunc; 440 unsigned int n_rx_merge_events; 441 unsigned int n_rx_merge_packets; 442 443 unsigned int rx_pkt_n_frags; 444 unsigned int rx_pkt_index; 445 446 struct efx_rx_queue rx_queue; 447 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; 448 }; 449 450 /** 451 * struct efx_msi_context - Context for each MSI 452 * @efx: The associated NIC 453 * @index: Index of the channel/IRQ 454 * @name: Name of the channel/IRQ 455 * 456 * Unlike &struct efx_channel, this is never reallocated and is always 457 * safe for the IRQ handler to access. 458 */ 459 struct efx_msi_context { 460 struct efx_nic *efx; 461 unsigned int index; 462 char name[IFNAMSIZ + 6]; 463 }; 464 465 /** 466 * struct efx_channel_type - distinguishes traffic and extra channels 467 * @handle_no_channel: Handle failure to allocate an extra channel 468 * @pre_probe: Set up extra state prior to initialisation 469 * @post_remove: Tear down extra state after finalisation, if allocated. 470 * May be called on channels that have not been probed. 471 * @get_name: Generate the channel's name (used for its IRQ handler) 472 * @copy: Copy the channel state prior to reallocation. May be %NULL if 473 * reallocation is not supported. 474 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 475 * @keep_eventq: Flag for whether event queue should be kept initialised 476 * while the device is stopped 477 */ 478 struct efx_channel_type { 479 void (*handle_no_channel)(struct efx_nic *); 480 int (*pre_probe)(struct efx_channel *); 481 void (*post_remove)(struct efx_channel *); 482 void (*get_name)(struct efx_channel *, char *buf, size_t len); 483 struct efx_channel *(*copy)(const struct efx_channel *); 484 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 485 bool keep_eventq; 486 }; 487 488 enum efx_led_mode { 489 EFX_LED_OFF = 0, 490 EFX_LED_ON = 1, 491 EFX_LED_DEFAULT = 2 492 }; 493 494 #define STRING_TABLE_LOOKUP(val, member) \ 495 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 496 497 extern const char *const efx_loopback_mode_names[]; 498 extern const unsigned int efx_loopback_mode_max; 499 #define LOOPBACK_MODE(efx) \ 500 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 501 502 extern const char *const efx_reset_type_names[]; 503 extern const unsigned int efx_reset_type_max; 504 #define RESET_TYPE(type) \ 505 STRING_TABLE_LOOKUP(type, efx_reset_type) 506 507 enum efx_int_mode { 508 /* Be careful if altering to correct macro below */ 509 EFX_INT_MODE_MSIX = 0, 510 EFX_INT_MODE_MSI = 1, 511 EFX_INT_MODE_LEGACY = 2, 512 EFX_INT_MODE_MAX /* Insert any new items before this */ 513 }; 514 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 515 516 enum nic_state { 517 STATE_UNINIT = 0, /* device being probed/removed or is frozen */ 518 STATE_READY = 1, /* hardware ready and netdev registered */ 519 STATE_DISABLED = 2, /* device disabled due to hardware errors */ 520 STATE_RECOVERY = 3, /* device recovering from PCI error */ 521 }; 522 523 /* 524 * Alignment of the skb->head which wraps a page-allocated RX buffer 525 * 526 * The skb allocated to wrap an rx_buffer can have this alignment. Since 527 * the data is memcpy'd from the rx_buf, it does not need to be equal to 528 * NET_IP_ALIGN. 529 */ 530 #define EFX_PAGE_SKB_ALIGN 2 531 532 /* Forward declaration */ 533 struct efx_nic; 534 535 /* Pseudo bit-mask flow control field */ 536 #define EFX_FC_RX FLOW_CTRL_RX 537 #define EFX_FC_TX FLOW_CTRL_TX 538 #define EFX_FC_AUTO 4 539 540 /** 541 * struct efx_link_state - Current state of the link 542 * @up: Link is up 543 * @fd: Link is full-duplex 544 * @fc: Actual flow control flags 545 * @speed: Link speed (Mbps) 546 */ 547 struct efx_link_state { 548 bool up; 549 bool fd; 550 u8 fc; 551 unsigned int speed; 552 }; 553 554 static inline bool efx_link_state_equal(const struct efx_link_state *left, 555 const struct efx_link_state *right) 556 { 557 return left->up == right->up && left->fd == right->fd && 558 left->fc == right->fc && left->speed == right->speed; 559 } 560 561 /** 562 * struct efx_phy_operations - Efx PHY operations table 563 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, 564 * efx->loopback_modes. 565 * @init: Initialise PHY 566 * @fini: Shut down PHY 567 * @reconfigure: Reconfigure PHY (e.g. for new link parameters) 568 * @poll: Update @link_state and report whether it changed. 569 * Serialised by the mac_lock. 570 * @get_settings: Get ethtool settings. Serialised by the mac_lock. 571 * @set_settings: Set ethtool settings. Serialised by the mac_lock. 572 * @set_npage_adv: Set abilities advertised in (Extended) Next Page 573 * (only needed where AN bit is set in mmds) 574 * @test_alive: Test that PHY is 'alive' (online) 575 * @test_name: Get the name of a PHY-specific test/result 576 * @run_tests: Run tests and record results as appropriate (offline). 577 * Flags are the ethtool tests flags. 578 */ 579 struct efx_phy_operations { 580 int (*probe) (struct efx_nic *efx); 581 int (*init) (struct efx_nic *efx); 582 void (*fini) (struct efx_nic *efx); 583 void (*remove) (struct efx_nic *efx); 584 int (*reconfigure) (struct efx_nic *efx); 585 bool (*poll) (struct efx_nic *efx); 586 void (*get_settings) (struct efx_nic *efx, 587 struct ethtool_cmd *ecmd); 588 int (*set_settings) (struct efx_nic *efx, 589 struct ethtool_cmd *ecmd); 590 void (*set_npage_adv) (struct efx_nic *efx, u32); 591 int (*test_alive) (struct efx_nic *efx); 592 const char *(*test_name) (struct efx_nic *efx, unsigned int index); 593 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); 594 int (*get_module_eeprom) (struct efx_nic *efx, 595 struct ethtool_eeprom *ee, 596 u8 *data); 597 int (*get_module_info) (struct efx_nic *efx, 598 struct ethtool_modinfo *modinfo); 599 }; 600 601 /** 602 * enum efx_phy_mode - PHY operating mode flags 603 * @PHY_MODE_NORMAL: on and should pass traffic 604 * @PHY_MODE_TX_DISABLED: on with TX disabled 605 * @PHY_MODE_LOW_POWER: set to low power through MDIO 606 * @PHY_MODE_OFF: switched off through external control 607 * @PHY_MODE_SPECIAL: on but will not pass traffic 608 */ 609 enum efx_phy_mode { 610 PHY_MODE_NORMAL = 0, 611 PHY_MODE_TX_DISABLED = 1, 612 PHY_MODE_LOW_POWER = 2, 613 PHY_MODE_OFF = 4, 614 PHY_MODE_SPECIAL = 8, 615 }; 616 617 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 618 { 619 return !!(mode & ~PHY_MODE_TX_DISABLED); 620 } 621 622 /** 623 * struct efx_hw_stat_desc - Description of a hardware statistic 624 * @name: Name of the statistic as visible through ethtool, or %NULL if 625 * it should not be exposed 626 * @dma_width: Width in bits (0 for non-DMA statistics) 627 * @offset: Offset within stats (ignored for non-DMA statistics) 628 */ 629 struct efx_hw_stat_desc { 630 const char *name; 631 u16 dma_width; 632 u16 offset; 633 }; 634 635 /* Number of bits used in a multicast filter hash address */ 636 #define EFX_MCAST_HASH_BITS 8 637 638 /* Number of (single-bit) entries in a multicast filter hash */ 639 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 640 641 /* An Efx multicast filter hash */ 642 union efx_multicast_hash { 643 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 644 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 645 }; 646 647 struct efx_vf; 648 struct vfdi_status; 649 650 /** 651 * struct efx_nic - an Efx NIC 652 * @name: Device name (net device name or bus id before net device registered) 653 * @pci_dev: The PCI device 654 * @type: Controller type attributes 655 * @legacy_irq: IRQ number 656 * @workqueue: Workqueue for port reconfigures and the HW monitor. 657 * Work items do not hold and must not acquire RTNL. 658 * @workqueue_name: Name of workqueue 659 * @reset_work: Scheduled reset workitem 660 * @membase_phys: Memory BAR value as physical address 661 * @membase: Memory BAR value 662 * @interrupt_mode: Interrupt mode 663 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 664 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 665 * @irq_rx_moderation: IRQ moderation time for RX event queues 666 * @msg_enable: Log message enable flags 667 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 668 * @reset_pending: Bitmask for pending resets 669 * @tx_queue: TX DMA queues 670 * @rx_queue: RX DMA queues 671 * @channel: Channels 672 * @msi_context: Context for each MSI 673 * @extra_channel_types: Types of extra (non-traffic) channels that 674 * should be allocated for this NIC 675 * @rxq_entries: Size of receive queues requested by user. 676 * @txq_entries: Size of transmit queues requested by user. 677 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 678 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 679 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 680 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 681 * @sram_lim_qw: Qword address limit of SRAM 682 * @next_buffer_table: First available buffer table id 683 * @n_channels: Number of channels in use 684 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 685 * @n_tx_channels: Number of channels used for TX 686 * @rx_ip_align: RX DMA address offset to have IP header aligned in 687 * in accordance with NET_IP_ALIGN 688 * @rx_dma_len: Current maximum RX DMA length 689 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 690 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 691 * for use in sk_buff::truesize 692 * @rx_prefix_size: Size of RX prefix before packet data 693 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 694 * (valid only if @rx_prefix_size != 0; always negative) 695 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 696 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 697 * @rx_hash_key: Toeplitz hash key for RSS 698 * @rx_indir_table: Indirection table for RSS 699 * @rx_scatter: Scatter mode enabled for receives 700 * @int_error_count: Number of internal errors seen recently 701 * @int_error_expire: Time at which error count will be expired 702 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 703 * acknowledge but do nothing else. 704 * @irq_status: Interrupt status buffer 705 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 706 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 707 * @selftest_work: Work item for asynchronous self-test 708 * @mtd_list: List of MTDs attached to the NIC 709 * @nic_data: Hardware dependent state 710 * @mcdi: Management-Controller-to-Driver Interface state 711 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 712 * efx_monitor() and efx_reconfigure_port() 713 * @port_enabled: Port enabled indicator. 714 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 715 * efx_mac_work() with kernel interfaces. Safe to read under any 716 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 717 * be held to modify it. 718 * @port_initialized: Port initialized? 719 * @net_dev: Operating system network device. Consider holding the rtnl lock 720 * @stats_buffer: DMA buffer for statistics 721 * @phy_type: PHY type 722 * @phy_op: PHY interface 723 * @phy_data: PHY private data (including PHY-specific stats) 724 * @mdio: PHY MDIO interface 725 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 726 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 727 * @link_advertising: Autonegotiation advertising flags 728 * @link_state: Current state of the link 729 * @n_link_state_changes: Number of times the link has changed state 730 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 731 * Protected by @mac_lock. 732 * @multicast_hash: Multicast hash table for Falcon-arch. 733 * Protected by @mac_lock. 734 * @wanted_fc: Wanted flow control flags 735 * @fc_disable: When non-zero flow control is disabled. Typically used to 736 * ensure that network back pressure doesn't delay dma queue flushes. 737 * Serialised by the rtnl lock. 738 * @mac_work: Work item for changing MAC promiscuity and multicast hash 739 * @loopback_mode: Loopback status 740 * @loopback_modes: Supported loopback mode bitmask 741 * @loopback_selftest: Offline self-test private state 742 * @filter_lock: Filter table lock 743 * @filter_state: Architecture-dependent filter table state 744 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 745 * indexed by filter ID 746 * @rps_expire_index: Next index to check for expiry in @rps_flow_id 747 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 748 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 749 * Decremented when the efx_flush_rx_queue() is called. 750 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 751 * completed (either success or failure). Not used when MCDI is used to 752 * flush receive queues. 753 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 754 * @vf: Array of &struct efx_vf objects. 755 * @vf_count: Number of VFs intended to be enabled. 756 * @vf_init_count: Number of VFs that have been fully initialised. 757 * @vi_scale: log2 number of vnics per VF. 758 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues. 759 * @vfdi_status: Common VFDI status page to be dmad to VF address space. 760 * @local_addr_list: List of local addresses. Protected by %local_lock. 761 * @local_page_list: List of DMA addressable pages used to broadcast 762 * %local_addr_list. Protected by %local_lock. 763 * @local_lock: Mutex protecting %local_addr_list and %local_page_list. 764 * @peer_work: Work item to broadcast peer addresses to VMs. 765 * @ptp_data: PTP state data 766 * @monitor_work: Hardware monitor workitem 767 * @biu_lock: BIU (bus interface unit) lock 768 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 769 * field is used by efx_test_interrupts() to verify that an 770 * interrupt has occurred. 771 * @stats_lock: Statistics update lock. Must be held when calling 772 * efx_nic_type::{update,start,stop}_stats. 773 * 774 * This is stored in the private area of the &struct net_device. 775 */ 776 struct efx_nic { 777 /* The following fields should be written very rarely */ 778 779 char name[IFNAMSIZ]; 780 struct pci_dev *pci_dev; 781 unsigned int port_num; 782 const struct efx_nic_type *type; 783 int legacy_irq; 784 bool eeh_disabled_legacy_irq; 785 struct workqueue_struct *workqueue; 786 char workqueue_name[16]; 787 struct work_struct reset_work; 788 resource_size_t membase_phys; 789 void __iomem *membase; 790 791 enum efx_int_mode interrupt_mode; 792 unsigned int timer_quantum_ns; 793 bool irq_rx_adaptive; 794 unsigned int irq_rx_moderation; 795 u32 msg_enable; 796 797 enum nic_state state; 798 unsigned long reset_pending; 799 800 struct efx_channel *channel[EFX_MAX_CHANNELS]; 801 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 802 const struct efx_channel_type * 803 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 804 805 unsigned rxq_entries; 806 unsigned txq_entries; 807 unsigned int txq_stop_thresh; 808 unsigned int txq_wake_thresh; 809 810 unsigned tx_dc_base; 811 unsigned rx_dc_base; 812 unsigned sram_lim_qw; 813 unsigned next_buffer_table; 814 815 unsigned int max_channels; 816 unsigned n_channels; 817 unsigned n_rx_channels; 818 unsigned rss_spread; 819 unsigned tx_channel_offset; 820 unsigned n_tx_channels; 821 unsigned int rx_ip_align; 822 unsigned int rx_dma_len; 823 unsigned int rx_buffer_order; 824 unsigned int rx_buffer_truesize; 825 unsigned int rx_page_buf_step; 826 unsigned int rx_bufs_per_page; 827 unsigned int rx_pages_per_batch; 828 unsigned int rx_prefix_size; 829 int rx_packet_hash_offset; 830 int rx_packet_len_offset; 831 u8 rx_hash_key[40]; 832 u32 rx_indir_table[128]; 833 bool rx_scatter; 834 835 unsigned int_error_count; 836 unsigned long int_error_expire; 837 838 bool irq_soft_enabled; 839 struct efx_buffer irq_status; 840 unsigned irq_zero_count; 841 unsigned irq_level; 842 struct delayed_work selftest_work; 843 844 #ifdef CONFIG_SFC_MTD 845 struct list_head mtd_list; 846 #endif 847 848 void *nic_data; 849 struct efx_mcdi_data *mcdi; 850 851 struct mutex mac_lock; 852 struct work_struct mac_work; 853 bool port_enabled; 854 855 bool port_initialized; 856 struct net_device *net_dev; 857 858 struct efx_buffer stats_buffer; 859 860 unsigned int phy_type; 861 const struct efx_phy_operations *phy_op; 862 void *phy_data; 863 struct mdio_if_info mdio; 864 unsigned int mdio_bus; 865 enum efx_phy_mode phy_mode; 866 867 u32 link_advertising; 868 struct efx_link_state link_state; 869 unsigned int n_link_state_changes; 870 871 bool unicast_filter; 872 union efx_multicast_hash multicast_hash; 873 u8 wanted_fc; 874 unsigned fc_disable; 875 876 atomic_t rx_reset; 877 enum efx_loopback_mode loopback_mode; 878 u64 loopback_modes; 879 880 void *loopback_selftest; 881 882 spinlock_t filter_lock; 883 void *filter_state; 884 #ifdef CONFIG_RFS_ACCEL 885 u32 *rps_flow_id; 886 unsigned int rps_expire_index; 887 #endif 888 889 atomic_t active_queues; 890 atomic_t rxq_flush_pending; 891 atomic_t rxq_flush_outstanding; 892 wait_queue_head_t flush_wq; 893 894 #ifdef CONFIG_SFC_SRIOV 895 struct efx_channel *vfdi_channel; 896 struct efx_vf *vf; 897 unsigned vf_count; 898 unsigned vf_init_count; 899 unsigned vi_scale; 900 unsigned vf_buftbl_base; 901 struct efx_buffer vfdi_status; 902 struct list_head local_addr_list; 903 struct list_head local_page_list; 904 struct mutex local_lock; 905 struct work_struct peer_work; 906 #endif 907 908 struct efx_ptp_data *ptp_data; 909 910 /* The following fields may be written more often */ 911 912 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 913 spinlock_t biu_lock; 914 int last_irq_cpu; 915 spinlock_t stats_lock; 916 }; 917 918 static inline int efx_dev_registered(struct efx_nic *efx) 919 { 920 return efx->net_dev->reg_state == NETREG_REGISTERED; 921 } 922 923 static inline unsigned int efx_port_num(struct efx_nic *efx) 924 { 925 return efx->port_num; 926 } 927 928 struct efx_mtd_partition { 929 struct list_head node; 930 struct mtd_info mtd; 931 const char *dev_type_name; 932 const char *type_name; 933 char name[IFNAMSIZ + 20]; 934 }; 935 936 /** 937 * struct efx_nic_type - Efx device type definition 938 * @mem_map_size: Get memory BAR mapped size 939 * @probe: Probe the controller 940 * @remove: Free resources allocated by probe() 941 * @init: Initialise the controller 942 * @dimension_resources: Dimension controller resources (buffer table, 943 * and VIs once the available interrupt resources are clear) 944 * @fini: Shut down the controller 945 * @monitor: Periodic function for polling link state and hardware monitor 946 * @map_reset_reason: Map ethtool reset reason to a reset method 947 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 948 * @reset: Reset the controller hardware and possibly the PHY. This will 949 * be called while the controller is uninitialised. 950 * @probe_port: Probe the MAC and PHY 951 * @remove_port: Free resources allocated by probe_port() 952 * @handle_global_event: Handle a "global" event (may be %NULL) 953 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 954 * @prepare_flush: Prepare the hardware for flushing the DMA queues 955 * (for Falcon architecture) 956 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 957 * architecture) 958 * @describe_stats: Describe statistics for ethtool 959 * @update_stats: Update statistics not provided by event handling. 960 * Either argument may be %NULL. 961 * @start_stats: Start the regular fetching of statistics 962 * @stop_stats: Stop the regular fetching of statistics 963 * @set_id_led: Set state of identifying LED or revert to automatic function 964 * @push_irq_moderation: Apply interrupt moderation value 965 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 966 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 967 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 968 * to the hardware. Serialised by the mac_lock. 969 * @check_mac_fault: Check MAC fault state. True if fault present. 970 * @get_wol: Get WoL configuration from driver state 971 * @set_wol: Push WoL configuration to the NIC 972 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 973 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 974 * expected to reset the NIC. 975 * @test_nvram: Test validity of NVRAM contents 976 * @mcdi_request: Send an MCDI request with the given header and SDU. 977 * The SDU length may be any value from 0 up to the protocol- 978 * defined maximum, but its buffer will be padded to a multiple 979 * of 4 bytes. 980 * @mcdi_poll_response: Test whether an MCDI response is available. 981 * @mcdi_read_response: Read the MCDI response PDU. The offset will 982 * be a multiple of 4. The length may not be, but the buffer 983 * will be padded so it is safe to round up. 984 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 985 * return an appropriate error code for aborting any current 986 * request; otherwise return 0. 987 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 988 * be separately enabled after this. 989 * @irq_test_generate: Generate a test IRQ 990 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 991 * queue must be separately disabled before this. 992 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 993 * a pointer to the &struct efx_msi_context for the channel. 994 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 995 * is a pointer to the &struct efx_nic. 996 * @tx_probe: Allocate resources for TX queue 997 * @tx_init: Initialise TX queue on the NIC 998 * @tx_remove: Free resources for TX queue 999 * @tx_write: Write TX descriptors and doorbell 1000 * @rx_push_indir_table: Write RSS indirection table to the NIC 1001 * @rx_probe: Allocate resources for RX queue 1002 * @rx_init: Initialise RX queue on the NIC 1003 * @rx_remove: Free resources for RX queue 1004 * @rx_write: Write RX descriptors and doorbell 1005 * @rx_defer_refill: Generate a refill reminder event 1006 * @ev_probe: Allocate resources for event queue 1007 * @ev_init: Initialise event queue on the NIC 1008 * @ev_fini: Deinitialise event queue on the NIC 1009 * @ev_remove: Free resources for event queue 1010 * @ev_process: Process events for a queue, up to the given NAPI quota 1011 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1012 * @ev_test_generate: Generate a test event 1013 * @filter_table_probe: Probe filter capabilities and set up filter software state 1014 * @filter_table_restore: Restore filters removed from hardware 1015 * @filter_table_remove: Remove filters from hardware and tear down software state 1016 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1017 * @filter_insert: add or replace a filter 1018 * @filter_remove_safe: remove a filter by ID, carefully 1019 * @filter_get_safe: retrieve a filter by ID, carefully 1020 * @filter_clear_rx: remove RX filters by priority 1021 * @filter_count_rx_used: Get the number of filters in use at a given priority 1022 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1023 * @filter_get_rx_ids: Get list of RX filters at a given priority 1024 * @filter_rfs_insert: Add or replace a filter for RFS. This must be 1025 * atomic. The hardware change may be asynchronous but should 1026 * not be delayed for long. It may fail if this can't be done 1027 * atomically. 1028 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1029 * This must check whether the specified table entry is used by RFS 1030 * and that rps_may_expire_flow() returns true for it. 1031 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1032 * using efx_mtd_add() 1033 * @mtd_rename: Set an MTD partition name using the net device name 1034 * @mtd_read: Read from an MTD partition 1035 * @mtd_erase: Erase part of an MTD partition 1036 * @mtd_write: Write to an MTD partition 1037 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1038 * also notifies the driver that a writer has finished using this 1039 * partition. 1040 * @revision: Hardware architecture revision 1041 * @txd_ptr_tbl_base: TX descriptor ring base address 1042 * @rxd_ptr_tbl_base: RX descriptor ring base address 1043 * @buf_tbl_base: Buffer table base address 1044 * @evq_ptr_tbl_base: Event queue pointer table base address 1045 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1046 * @max_dma_mask: Maximum possible DMA mask 1047 * @rx_prefix_size: Size of RX prefix before packet data 1048 * @rx_hash_offset: Offset of RX flow hash within prefix 1049 * @rx_buffer_padding: Size of padding at end of RX packet 1050 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1051 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1052 * @max_interrupt_mode: Highest capability interrupt mode supported 1053 * from &enum efx_init_mode. 1054 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1055 * @offload_features: net_device feature flags for protocol offload 1056 * features implemented in hardware 1057 * @mcdi_max_ver: Maximum MCDI version supported 1058 */ 1059 struct efx_nic_type { 1060 unsigned int (*mem_map_size)(struct efx_nic *efx); 1061 int (*probe)(struct efx_nic *efx); 1062 void (*remove)(struct efx_nic *efx); 1063 int (*init)(struct efx_nic *efx); 1064 int (*dimension_resources)(struct efx_nic *efx); 1065 void (*fini)(struct efx_nic *efx); 1066 void (*monitor)(struct efx_nic *efx); 1067 enum reset_type (*map_reset_reason)(enum reset_type reason); 1068 int (*map_reset_flags)(u32 *flags); 1069 int (*reset)(struct efx_nic *efx, enum reset_type method); 1070 int (*probe_port)(struct efx_nic *efx); 1071 void (*remove_port)(struct efx_nic *efx); 1072 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1073 int (*fini_dmaq)(struct efx_nic *efx); 1074 void (*prepare_flush)(struct efx_nic *efx); 1075 void (*finish_flush)(struct efx_nic *efx); 1076 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1077 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1078 struct rtnl_link_stats64 *core_stats); 1079 void (*start_stats)(struct efx_nic *efx); 1080 void (*stop_stats)(struct efx_nic *efx); 1081 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); 1082 void (*push_irq_moderation)(struct efx_channel *channel); 1083 int (*reconfigure_port)(struct efx_nic *efx); 1084 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1085 int (*reconfigure_mac)(struct efx_nic *efx); 1086 bool (*check_mac_fault)(struct efx_nic *efx); 1087 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1088 int (*set_wol)(struct efx_nic *efx, u32 type); 1089 void (*resume_wol)(struct efx_nic *efx); 1090 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1091 int (*test_nvram)(struct efx_nic *efx); 1092 void (*mcdi_request)(struct efx_nic *efx, 1093 const efx_dword_t *hdr, size_t hdr_len, 1094 const efx_dword_t *sdu, size_t sdu_len); 1095 bool (*mcdi_poll_response)(struct efx_nic *efx); 1096 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1097 size_t pdu_offset, size_t pdu_len); 1098 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1099 void (*irq_enable_master)(struct efx_nic *efx); 1100 void (*irq_test_generate)(struct efx_nic *efx); 1101 void (*irq_disable_non_ev)(struct efx_nic *efx); 1102 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1103 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1104 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1105 void (*tx_init)(struct efx_tx_queue *tx_queue); 1106 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1107 void (*tx_write)(struct efx_tx_queue *tx_queue); 1108 void (*rx_push_indir_table)(struct efx_nic *efx); 1109 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1110 void (*rx_init)(struct efx_rx_queue *rx_queue); 1111 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1112 void (*rx_write)(struct efx_rx_queue *rx_queue); 1113 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1114 int (*ev_probe)(struct efx_channel *channel); 1115 int (*ev_init)(struct efx_channel *channel); 1116 void (*ev_fini)(struct efx_channel *channel); 1117 void (*ev_remove)(struct efx_channel *channel); 1118 int (*ev_process)(struct efx_channel *channel, int quota); 1119 void (*ev_read_ack)(struct efx_channel *channel); 1120 void (*ev_test_generate)(struct efx_channel *channel); 1121 int (*filter_table_probe)(struct efx_nic *efx); 1122 void (*filter_table_restore)(struct efx_nic *efx); 1123 void (*filter_table_remove)(struct efx_nic *efx); 1124 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1125 s32 (*filter_insert)(struct efx_nic *efx, 1126 struct efx_filter_spec *spec, bool replace); 1127 int (*filter_remove_safe)(struct efx_nic *efx, 1128 enum efx_filter_priority priority, 1129 u32 filter_id); 1130 int (*filter_get_safe)(struct efx_nic *efx, 1131 enum efx_filter_priority priority, 1132 u32 filter_id, struct efx_filter_spec *); 1133 void (*filter_clear_rx)(struct efx_nic *efx, 1134 enum efx_filter_priority priority); 1135 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1136 enum efx_filter_priority priority); 1137 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1138 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1139 enum efx_filter_priority priority, 1140 u32 *buf, u32 size); 1141 #ifdef CONFIG_RFS_ACCEL 1142 s32 (*filter_rfs_insert)(struct efx_nic *efx, 1143 struct efx_filter_spec *spec); 1144 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1145 unsigned int index); 1146 #endif 1147 #ifdef CONFIG_SFC_MTD 1148 int (*mtd_probe)(struct efx_nic *efx); 1149 void (*mtd_rename)(struct efx_mtd_partition *part); 1150 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1151 size_t *retlen, u8 *buffer); 1152 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1153 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1154 size_t *retlen, const u8 *buffer); 1155 int (*mtd_sync)(struct mtd_info *mtd); 1156 #endif 1157 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1158 1159 int revision; 1160 unsigned int txd_ptr_tbl_base; 1161 unsigned int rxd_ptr_tbl_base; 1162 unsigned int buf_tbl_base; 1163 unsigned int evq_ptr_tbl_base; 1164 unsigned int evq_rptr_tbl_base; 1165 u64 max_dma_mask; 1166 unsigned int rx_prefix_size; 1167 unsigned int rx_hash_offset; 1168 unsigned int rx_buffer_padding; 1169 bool can_rx_scatter; 1170 bool always_rx_scatter; 1171 unsigned int max_interrupt_mode; 1172 unsigned int timer_period_max; 1173 netdev_features_t offload_features; 1174 int mcdi_max_ver; 1175 unsigned int max_rx_ip_filters; 1176 }; 1177 1178 /************************************************************************** 1179 * 1180 * Prototypes and inline functions 1181 * 1182 *************************************************************************/ 1183 1184 static inline struct efx_channel * 1185 efx_get_channel(struct efx_nic *efx, unsigned index) 1186 { 1187 EFX_BUG_ON_PARANOID(index >= efx->n_channels); 1188 return efx->channel[index]; 1189 } 1190 1191 /* Iterate over all used channels */ 1192 #define efx_for_each_channel(_channel, _efx) \ 1193 for (_channel = (_efx)->channel[0]; \ 1194 _channel; \ 1195 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1196 (_efx)->channel[_channel->channel + 1] : NULL) 1197 1198 /* Iterate over all used channels in reverse */ 1199 #define efx_for_each_channel_rev(_channel, _efx) \ 1200 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1201 _channel; \ 1202 _channel = _channel->channel ? \ 1203 (_efx)->channel[_channel->channel - 1] : NULL) 1204 1205 static inline struct efx_tx_queue * 1206 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type) 1207 { 1208 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels || 1209 type >= EFX_TXQ_TYPES); 1210 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type]; 1211 } 1212 1213 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1214 { 1215 return channel->channel - channel->efx->tx_channel_offset < 1216 channel->efx->n_tx_channels; 1217 } 1218 1219 static inline struct efx_tx_queue * 1220 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type) 1221 { 1222 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) || 1223 type >= EFX_TXQ_TYPES); 1224 return &channel->tx_queue[type]; 1225 } 1226 1227 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue) 1228 { 1229 return !(tx_queue->efx->net_dev->num_tc < 2 && 1230 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI); 1231 } 1232 1233 /* Iterate over all TX queues belonging to a channel */ 1234 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1235 if (!efx_channel_has_tx_queues(_channel)) \ 1236 ; \ 1237 else \ 1238 for (_tx_queue = (_channel)->tx_queue; \ 1239 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \ 1240 efx_tx_queue_used(_tx_queue); \ 1241 _tx_queue++) 1242 1243 /* Iterate over all possible TX queues belonging to a channel */ 1244 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \ 1245 if (!efx_channel_has_tx_queues(_channel)) \ 1246 ; \ 1247 else \ 1248 for (_tx_queue = (_channel)->tx_queue; \ 1249 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \ 1250 _tx_queue++) 1251 1252 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1253 { 1254 return channel->rx_queue.core_index >= 0; 1255 } 1256 1257 static inline struct efx_rx_queue * 1258 efx_channel_get_rx_queue(struct efx_channel *channel) 1259 { 1260 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel)); 1261 return &channel->rx_queue; 1262 } 1263 1264 /* Iterate over all RX queues belonging to a channel */ 1265 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1266 if (!efx_channel_has_rx_queue(_channel)) \ 1267 ; \ 1268 else \ 1269 for (_rx_queue = &(_channel)->rx_queue; \ 1270 _rx_queue; \ 1271 _rx_queue = NULL) 1272 1273 static inline struct efx_channel * 1274 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1275 { 1276 return container_of(rx_queue, struct efx_channel, rx_queue); 1277 } 1278 1279 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1280 { 1281 return efx_rx_queue_channel(rx_queue)->channel; 1282 } 1283 1284 /* Returns a pointer to the specified receive buffer in the RX 1285 * descriptor queue. 1286 */ 1287 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1288 unsigned int index) 1289 { 1290 return &rx_queue->buffer[index]; 1291 } 1292 1293 1294 /** 1295 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1296 * 1297 * This calculates the maximum frame length that will be used for a 1298 * given MTU. The frame length will be equal to the MTU plus a 1299 * constant amount of header space and padding. This is the quantity 1300 * that the net driver will program into the MAC as the maximum frame 1301 * length. 1302 * 1303 * The 10G MAC requires 8-byte alignment on the frame 1304 * length, so we round up to the nearest 8. 1305 * 1306 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1307 * XGMII cycle). If the frame length reaches the maximum value in the 1308 * same cycle, the XMAC can miss the IPG altogether. We work around 1309 * this by adding a further 16 bytes. 1310 */ 1311 #define EFX_MAX_FRAME_LEN(mtu) \ 1312 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16) 1313 1314 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1315 { 1316 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1317 } 1318 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1319 { 1320 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1321 } 1322 1323 #endif /* EFX_NET_DRIVER_H */ 1324