1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/i2c.h>
31 #include <linux/mtd/mtd.h>
32 #include <net/busy_poll.h>
33 
34 #include "enum.h"
35 #include "bitfield.h"
36 #include "filter.h"
37 
38 /**************************************************************************
39  *
40  * Build definitions
41  *
42  **************************************************************************/
43 
44 #define EFX_DRIVER_VERSION	"4.1"
45 
46 #ifdef DEBUG
47 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
48 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
49 #else
50 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
51 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
52 #endif
53 
54 /**************************************************************************
55  *
56  * Efx data structures
57  *
58  **************************************************************************/
59 
60 #define EFX_MAX_CHANNELS 32U
61 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
62 #define EFX_EXTRA_CHANNEL_IOV	0
63 #define EFX_EXTRA_CHANNEL_PTP	1
64 #define EFX_MAX_EXTRA_CHANNELS	2U
65 
66 /* Checksum generation is a per-queue option in hardware, so each
67  * queue visible to the networking core is backed by two hardware TX
68  * queues. */
69 #define EFX_MAX_TX_TC		2
70 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
71 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
72 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
73 #define EFX_TXQ_TYPES		4
74 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
75 
76 /* Maximum possible MTU the driver supports */
77 #define EFX_MAX_MTU (9 * 1024)
78 
79 /* Minimum MTU, from RFC791 (IP) */
80 #define EFX_MIN_MTU 68
81 
82 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
83  * and should be a multiple of the cache line size.
84  */
85 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
86 
87 /* If possible, we should ensure cache line alignment at start and end
88  * of every buffer.  Otherwise, we just need to ensure 4-byte
89  * alignment of the network header.
90  */
91 #if NET_IP_ALIGN == 0
92 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
93 #else
94 #define EFX_RX_BUF_ALIGNMENT	4
95 #endif
96 
97 /* Forward declare Precision Time Protocol (PTP) support structure. */
98 struct efx_ptp_data;
99 struct hwtstamp_config;
100 
101 struct efx_self_tests;
102 
103 /**
104  * struct efx_buffer - A general-purpose DMA buffer
105  * @addr: host base address of the buffer
106  * @dma_addr: DMA base address of the buffer
107  * @len: Buffer length, in bytes
108  *
109  * The NIC uses these buffers for its interrupt status registers and
110  * MAC stats dumps.
111  */
112 struct efx_buffer {
113 	void *addr;
114 	dma_addr_t dma_addr;
115 	unsigned int len;
116 };
117 
118 /**
119  * struct efx_special_buffer - DMA buffer entered into buffer table
120  * @buf: Standard &struct efx_buffer
121  * @index: Buffer index within controller;s buffer table
122  * @entries: Number of buffer table entries
123  *
124  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
125  * Event and descriptor rings are addressed via one or more buffer
126  * table entries (and so can be physically non-contiguous, although we
127  * currently do not take advantage of that).  On Falcon and Siena we
128  * have to take care of allocating and initialising the entries
129  * ourselves.  On later hardware this is managed by the firmware and
130  * @index and @entries are left as 0.
131  */
132 struct efx_special_buffer {
133 	struct efx_buffer buf;
134 	unsigned int index;
135 	unsigned int entries;
136 };
137 
138 /**
139  * struct efx_tx_buffer - buffer state for a TX descriptor
140  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
141  *	freed when descriptor completes
142  * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
143  * @dma_addr: DMA address of the fragment.
144  * @flags: Flags for allocation and DMA mapping type
145  * @len: Length of this fragment.
146  *	This field is zero when the queue slot is empty.
147  * @unmap_len: Length of this fragment to unmap
148  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
149  * Only valid if @unmap_len != 0.
150  */
151 struct efx_tx_buffer {
152 	const struct sk_buff *skb;
153 	union {
154 		efx_qword_t option;
155 		dma_addr_t dma_addr;
156 	};
157 	unsigned short flags;
158 	unsigned short len;
159 	unsigned short unmap_len;
160 	unsigned short dma_offset;
161 };
162 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
163 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
164 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
165 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
166 
167 /**
168  * struct efx_tx_queue - An Efx TX queue
169  *
170  * This is a ring buffer of TX fragments.
171  * Since the TX completion path always executes on the same
172  * CPU and the xmit path can operate on different CPUs,
173  * performance is increased by ensuring that the completion
174  * path and the xmit path operate on different cache lines.
175  * This is particularly important if the xmit path is always
176  * executing on one CPU which is different from the completion
177  * path.  There is also a cache line for members which are
178  * read but not written on the fast path.
179  *
180  * @efx: The associated Efx NIC
181  * @queue: DMA queue number
182  * @tso_version: Version of TSO in use for this queue.
183  * @channel: The associated channel
184  * @core_txq: The networking core TX queue structure
185  * @buffer: The software buffer ring
186  * @cb_page: Array of pages of copy buffers.  Carved up according to
187  *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
188  * @txd: The hardware descriptor ring
189  * @ptr_mask: The size of the ring minus 1.
190  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
191  *	Size of the region is efx_piobuf_size.
192  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
193  * @initialised: Has hardware queue been initialised?
194  * @handle_tso: TSO xmit preparation handler.  Sets up the TSO metadata and
195  *	may also map tx data, depending on the nature of the TSO implementation.
196  * @read_count: Current read pointer.
197  *	This is the number of buffers that have been removed from both rings.
198  * @old_write_count: The value of @write_count when last checked.
199  *	This is here for performance reasons.  The xmit path will
200  *	only get the up-to-date value of @write_count if this
201  *	variable indicates that the queue is empty.  This is to
202  *	avoid cache-line ping-pong between the xmit path and the
203  *	completion path.
204  * @merge_events: Number of TX merged completion events
205  * @insert_count: Current insert pointer
206  *	This is the number of buffers that have been added to the
207  *	software ring.
208  * @write_count: Current write pointer
209  *	This is the number of buffers that have been added to the
210  *	hardware ring.
211  * @old_read_count: The value of read_count when last checked.
212  *	This is here for performance reasons.  The xmit path will
213  *	only get the up-to-date value of read_count if this
214  *	variable indicates that the queue is full.  This is to
215  *	avoid cache-line ping-pong between the xmit path and the
216  *	completion path.
217  * @tso_bursts: Number of times TSO xmit invoked by kernel
218  * @tso_long_headers: Number of packets with headers too long for standard
219  *	blocks
220  * @tso_packets: Number of packets via the TSO xmit path
221  * @tso_fallbacks: Number of times TSO fallback used
222  * @pushes: Number of times the TX push feature has been used
223  * @pio_packets: Number of times the TX PIO feature has been used
224  * @xmit_more_available: Are any packets waiting to be pushed to the NIC
225  * @cb_packets: Number of times the TX copybreak feature has been used
226  * @empty_read_count: If the completion path has seen the queue as empty
227  *	and the transmission path has not yet checked this, the value of
228  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
229  */
230 struct efx_tx_queue {
231 	/* Members which don't change on the fast path */
232 	struct efx_nic *efx ____cacheline_aligned_in_smp;
233 	unsigned queue;
234 	unsigned int tso_version;
235 	struct efx_channel *channel;
236 	struct netdev_queue *core_txq;
237 	struct efx_tx_buffer *buffer;
238 	struct efx_buffer *cb_page;
239 	struct efx_special_buffer txd;
240 	unsigned int ptr_mask;
241 	void __iomem *piobuf;
242 	unsigned int piobuf_offset;
243 	bool initialised;
244 
245 	/* Function pointers used in the fast path. */
246 	int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
247 
248 	/* Members used mainly on the completion path */
249 	unsigned int read_count ____cacheline_aligned_in_smp;
250 	unsigned int old_write_count;
251 	unsigned int merge_events;
252 	unsigned int bytes_compl;
253 	unsigned int pkts_compl;
254 
255 	/* Members used only on the xmit path */
256 	unsigned int insert_count ____cacheline_aligned_in_smp;
257 	unsigned int write_count;
258 	unsigned int old_read_count;
259 	unsigned int tso_bursts;
260 	unsigned int tso_long_headers;
261 	unsigned int tso_packets;
262 	unsigned int tso_fallbacks;
263 	unsigned int pushes;
264 	unsigned int pio_packets;
265 	bool xmit_more_available;
266 	unsigned int cb_packets;
267 	/* Statistics to supplement MAC stats */
268 	unsigned long tx_packets;
269 
270 	/* Members shared between paths and sometimes updated */
271 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
272 #define EFX_EMPTY_COUNT_VALID 0x80000000
273 	atomic_t flush_outstanding;
274 };
275 
276 #define EFX_TX_CB_ORDER	7
277 #define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
278 
279 /**
280  * struct efx_rx_buffer - An Efx RX data buffer
281  * @dma_addr: DMA base address of the buffer
282  * @page: The associated page buffer.
283  *	Will be %NULL if the buffer slot is currently free.
284  * @page_offset: If pending: offset in @page of DMA base address.
285  *	If completed: offset in @page of Ethernet header.
286  * @len: If pending: length for DMA descriptor.
287  *	If completed: received length, excluding hash prefix.
288  * @flags: Flags for buffer and packet state.  These are only set on the
289  *	first buffer of a scattered packet.
290  */
291 struct efx_rx_buffer {
292 	dma_addr_t dma_addr;
293 	struct page *page;
294 	u16 page_offset;
295 	u16 len;
296 	u16 flags;
297 };
298 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
299 #define EFX_RX_PKT_CSUMMED	0x0002
300 #define EFX_RX_PKT_DISCARD	0x0004
301 #define EFX_RX_PKT_TCP		0x0040
302 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
303 
304 /**
305  * struct efx_rx_page_state - Page-based rx buffer state
306  *
307  * Inserted at the start of every page allocated for receive buffers.
308  * Used to facilitate sharing dma mappings between recycled rx buffers
309  * and those passed up to the kernel.
310  *
311  * @dma_addr: The dma address of this page.
312  */
313 struct efx_rx_page_state {
314 	dma_addr_t dma_addr;
315 
316 	unsigned int __pad[0] ____cacheline_aligned;
317 };
318 
319 /**
320  * struct efx_rx_queue - An Efx RX queue
321  * @efx: The associated Efx NIC
322  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
323  *	is associated with a real RX queue.
324  * @buffer: The software buffer ring
325  * @rxd: The hardware descriptor ring
326  * @ptr_mask: The size of the ring minus 1.
327  * @refill_enabled: Enable refill whenever fill level is low
328  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
329  *	@rxq_flush_pending.
330  * @added_count: Number of buffers added to the receive queue.
331  * @notified_count: Number of buffers given to NIC (<= @added_count).
332  * @removed_count: Number of buffers removed from the receive queue.
333  * @scatter_n: Used by NIC specific receive code.
334  * @scatter_len: Used by NIC specific receive code.
335  * @page_ring: The ring to store DMA mapped pages for reuse.
336  * @page_add: Counter to calculate the write pointer for the recycle ring.
337  * @page_remove: Counter to calculate the read pointer for the recycle ring.
338  * @page_recycle_count: The number of pages that have been recycled.
339  * @page_recycle_failed: The number of pages that couldn't be recycled because
340  *      the kernel still held a reference to them.
341  * @page_recycle_full: The number of pages that were released because the
342  *      recycle ring was full.
343  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
344  * @max_fill: RX descriptor maximum fill level (<= ring size)
345  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
346  *	(<= @max_fill)
347  * @min_fill: RX descriptor minimum non-zero fill level.
348  *	This records the minimum fill level observed when a ring
349  *	refill was triggered.
350  * @recycle_count: RX buffer recycle counter.
351  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
352  */
353 struct efx_rx_queue {
354 	struct efx_nic *efx;
355 	int core_index;
356 	struct efx_rx_buffer *buffer;
357 	struct efx_special_buffer rxd;
358 	unsigned int ptr_mask;
359 	bool refill_enabled;
360 	bool flush_pending;
361 
362 	unsigned int added_count;
363 	unsigned int notified_count;
364 	unsigned int removed_count;
365 	unsigned int scatter_n;
366 	unsigned int scatter_len;
367 	struct page **page_ring;
368 	unsigned int page_add;
369 	unsigned int page_remove;
370 	unsigned int page_recycle_count;
371 	unsigned int page_recycle_failed;
372 	unsigned int page_recycle_full;
373 	unsigned int page_ptr_mask;
374 	unsigned int max_fill;
375 	unsigned int fast_fill_trigger;
376 	unsigned int min_fill;
377 	unsigned int min_overfill;
378 	unsigned int recycle_count;
379 	struct timer_list slow_fill;
380 	unsigned int slow_fill_count;
381 	/* Statistics to supplement MAC stats */
382 	unsigned long rx_packets;
383 };
384 
385 enum efx_sync_events_state {
386 	SYNC_EVENTS_DISABLED = 0,
387 	SYNC_EVENTS_QUIESCENT,
388 	SYNC_EVENTS_REQUESTED,
389 	SYNC_EVENTS_VALID,
390 };
391 
392 /**
393  * struct efx_channel - An Efx channel
394  *
395  * A channel comprises an event queue, at least one TX queue, at least
396  * one RX queue, and an associated tasklet for processing the event
397  * queue.
398  *
399  * @efx: Associated Efx NIC
400  * @channel: Channel instance number
401  * @type: Channel type definition
402  * @eventq_init: Event queue initialised flag
403  * @enabled: Channel enabled indicator
404  * @irq: IRQ number (MSI and MSI-X only)
405  * @irq_moderation_us: IRQ moderation value (in microseconds)
406  * @napi_dev: Net device used with NAPI
407  * @napi_str: NAPI control structure
408  * @state: state for NAPI vs busy polling
409  * @state_lock: lock protecting @state
410  * @eventq: Event queue buffer
411  * @eventq_mask: Event queue pointer mask
412  * @eventq_read_ptr: Event queue read pointer
413  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
414  * @irq_count: Number of IRQs since last adaptive moderation decision
415  * @irq_mod_score: IRQ moderation score
416  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
417  *      indexed by filter ID
418  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
419  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
420  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
421  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
422  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
423  * @n_rx_overlength: Count of RX_OVERLENGTH errors
424  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
425  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
426  *	lack of descriptors
427  * @n_rx_merge_events: Number of RX merged completion events
428  * @n_rx_merge_packets: Number of RX packets completed by merged events
429  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
430  *	__efx_rx_packet(), or zero if there is none
431  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
432  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
433  * @rx_queue: RX queue for this channel
434  * @tx_queue: TX queues for this channel
435  * @sync_events_state: Current state of sync events on this channel
436  * @sync_timestamp_major: Major part of the last ptp sync event
437  * @sync_timestamp_minor: Minor part of the last ptp sync event
438  */
439 struct efx_channel {
440 	struct efx_nic *efx;
441 	int channel;
442 	const struct efx_channel_type *type;
443 	bool eventq_init;
444 	bool enabled;
445 	int irq;
446 	unsigned int irq_moderation_us;
447 	struct net_device *napi_dev;
448 	struct napi_struct napi_str;
449 #ifdef CONFIG_NET_RX_BUSY_POLL
450 	unsigned long busy_poll_state;
451 #endif
452 	struct efx_special_buffer eventq;
453 	unsigned int eventq_mask;
454 	unsigned int eventq_read_ptr;
455 	int event_test_cpu;
456 
457 	unsigned int irq_count;
458 	unsigned int irq_mod_score;
459 #ifdef CONFIG_RFS_ACCEL
460 	unsigned int rfs_filters_added;
461 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
462 	u32 *rps_flow_id;
463 #endif
464 
465 	unsigned n_rx_tobe_disc;
466 	unsigned n_rx_ip_hdr_chksum_err;
467 	unsigned n_rx_tcp_udp_chksum_err;
468 	unsigned n_rx_mcast_mismatch;
469 	unsigned n_rx_frm_trunc;
470 	unsigned n_rx_overlength;
471 	unsigned n_skbuff_leaks;
472 	unsigned int n_rx_nodesc_trunc;
473 	unsigned int n_rx_merge_events;
474 	unsigned int n_rx_merge_packets;
475 
476 	unsigned int rx_pkt_n_frags;
477 	unsigned int rx_pkt_index;
478 
479 	struct efx_rx_queue rx_queue;
480 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
481 
482 	enum efx_sync_events_state sync_events_state;
483 	u32 sync_timestamp_major;
484 	u32 sync_timestamp_minor;
485 };
486 
487 #ifdef CONFIG_NET_RX_BUSY_POLL
488 enum efx_channel_busy_poll_state {
489 	EFX_CHANNEL_STATE_IDLE = 0,
490 	EFX_CHANNEL_STATE_NAPI = BIT(0),
491 	EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1,
492 	EFX_CHANNEL_STATE_NAPI_REQ = BIT(1),
493 	EFX_CHANNEL_STATE_POLL_BIT = 2,
494 	EFX_CHANNEL_STATE_POLL = BIT(2),
495 	EFX_CHANNEL_STATE_DISABLE_BIT = 3,
496 };
497 
498 static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
499 {
500 	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
501 }
502 
503 /* Called from the device poll routine to get ownership of a channel. */
504 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
505 {
506 	unsigned long prev, old = READ_ONCE(channel->busy_poll_state);
507 
508 	while (1) {
509 		switch (old) {
510 		case EFX_CHANNEL_STATE_POLL:
511 			/* Ensure efx_channel_try_lock_poll() wont starve us */
512 			set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT,
513 				&channel->busy_poll_state);
514 			/* fallthrough */
515 		case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ:
516 			return false;
517 		default:
518 			break;
519 		}
520 		prev = cmpxchg(&channel->busy_poll_state, old,
521 			       EFX_CHANNEL_STATE_NAPI);
522 		if (unlikely(prev != old)) {
523 			/* This is likely to mean we've just entered polling
524 			 * state. Go back round to set the REQ bit.
525 			 */
526 			old = prev;
527 			continue;
528 		}
529 		return true;
530 	}
531 }
532 
533 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
534 {
535 	/* Make sure write has completed from efx_channel_lock_napi() */
536 	smp_wmb();
537 	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
538 }
539 
540 /* Called from efx_busy_poll(). */
541 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
542 {
543 	return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE,
544 			EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE;
545 }
546 
547 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
548 {
549 	clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
550 }
551 
552 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
553 {
554 	return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
555 }
556 
557 static inline void efx_channel_enable(struct efx_channel *channel)
558 {
559 	clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT,
560 			 &channel->busy_poll_state);
561 }
562 
563 /* Stop further polling or napi access.
564  * Returns false if the channel is currently busy polling.
565  */
566 static inline bool efx_channel_disable(struct efx_channel *channel)
567 {
568 	set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state);
569 	/* Implicit barrier in efx_channel_busy_polling() */
570 	return !efx_channel_busy_polling(channel);
571 }
572 
573 #else /* CONFIG_NET_RX_BUSY_POLL */
574 
575 static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
576 {
577 }
578 
579 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
580 {
581 	return true;
582 }
583 
584 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
585 {
586 }
587 
588 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
589 {
590 	return false;
591 }
592 
593 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
594 {
595 }
596 
597 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
598 {
599 	return false;
600 }
601 
602 static inline void efx_channel_enable(struct efx_channel *channel)
603 {
604 }
605 
606 static inline bool efx_channel_disable(struct efx_channel *channel)
607 {
608 	return true;
609 }
610 #endif /* CONFIG_NET_RX_BUSY_POLL */
611 
612 /**
613  * struct efx_msi_context - Context for each MSI
614  * @efx: The associated NIC
615  * @index: Index of the channel/IRQ
616  * @name: Name of the channel/IRQ
617  *
618  * Unlike &struct efx_channel, this is never reallocated and is always
619  * safe for the IRQ handler to access.
620  */
621 struct efx_msi_context {
622 	struct efx_nic *efx;
623 	unsigned int index;
624 	char name[IFNAMSIZ + 6];
625 };
626 
627 /**
628  * struct efx_channel_type - distinguishes traffic and extra channels
629  * @handle_no_channel: Handle failure to allocate an extra channel
630  * @pre_probe: Set up extra state prior to initialisation
631  * @post_remove: Tear down extra state after finalisation, if allocated.
632  *	May be called on channels that have not been probed.
633  * @get_name: Generate the channel's name (used for its IRQ handler)
634  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
635  *	reallocation is not supported.
636  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
637  * @keep_eventq: Flag for whether event queue should be kept initialised
638  *	while the device is stopped
639  */
640 struct efx_channel_type {
641 	void (*handle_no_channel)(struct efx_nic *);
642 	int (*pre_probe)(struct efx_channel *);
643 	void (*post_remove)(struct efx_channel *);
644 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
645 	struct efx_channel *(*copy)(const struct efx_channel *);
646 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
647 	bool keep_eventq;
648 };
649 
650 enum efx_led_mode {
651 	EFX_LED_OFF	= 0,
652 	EFX_LED_ON	= 1,
653 	EFX_LED_DEFAULT	= 2
654 };
655 
656 #define STRING_TABLE_LOOKUP(val, member) \
657 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
658 
659 extern const char *const efx_loopback_mode_names[];
660 extern const unsigned int efx_loopback_mode_max;
661 #define LOOPBACK_MODE(efx) \
662 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
663 
664 extern const char *const efx_reset_type_names[];
665 extern const unsigned int efx_reset_type_max;
666 #define RESET_TYPE(type) \
667 	STRING_TABLE_LOOKUP(type, efx_reset_type)
668 
669 enum efx_int_mode {
670 	/* Be careful if altering to correct macro below */
671 	EFX_INT_MODE_MSIX = 0,
672 	EFX_INT_MODE_MSI = 1,
673 	EFX_INT_MODE_LEGACY = 2,
674 	EFX_INT_MODE_MAX	/* Insert any new items before this */
675 };
676 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
677 
678 enum nic_state {
679 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
680 	STATE_READY = 1,	/* hardware ready and netdev registered */
681 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
682 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
683 };
684 
685 /* Forward declaration */
686 struct efx_nic;
687 
688 /* Pseudo bit-mask flow control field */
689 #define EFX_FC_RX	FLOW_CTRL_RX
690 #define EFX_FC_TX	FLOW_CTRL_TX
691 #define EFX_FC_AUTO	4
692 
693 /**
694  * struct efx_link_state - Current state of the link
695  * @up: Link is up
696  * @fd: Link is full-duplex
697  * @fc: Actual flow control flags
698  * @speed: Link speed (Mbps)
699  */
700 struct efx_link_state {
701 	bool up;
702 	bool fd;
703 	u8 fc;
704 	unsigned int speed;
705 };
706 
707 static inline bool efx_link_state_equal(const struct efx_link_state *left,
708 					const struct efx_link_state *right)
709 {
710 	return left->up == right->up && left->fd == right->fd &&
711 		left->fc == right->fc && left->speed == right->speed;
712 }
713 
714 /**
715  * struct efx_phy_operations - Efx PHY operations table
716  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
717  *	efx->loopback_modes.
718  * @init: Initialise PHY
719  * @fini: Shut down PHY
720  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
721  * @poll: Update @link_state and report whether it changed.
722  *	Serialised by the mac_lock.
723  * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
724  * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
725  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
726  *	(only needed where AN bit is set in mmds)
727  * @test_alive: Test that PHY is 'alive' (online)
728  * @test_name: Get the name of a PHY-specific test/result
729  * @run_tests: Run tests and record results as appropriate (offline).
730  *	Flags are the ethtool tests flags.
731  */
732 struct efx_phy_operations {
733 	int (*probe) (struct efx_nic *efx);
734 	int (*init) (struct efx_nic *efx);
735 	void (*fini) (struct efx_nic *efx);
736 	void (*remove) (struct efx_nic *efx);
737 	int (*reconfigure) (struct efx_nic *efx);
738 	bool (*poll) (struct efx_nic *efx);
739 	void (*get_link_ksettings)(struct efx_nic *efx,
740 				   struct ethtool_link_ksettings *cmd);
741 	int (*set_link_ksettings)(struct efx_nic *efx,
742 				  const struct ethtool_link_ksettings *cmd);
743 	void (*set_npage_adv) (struct efx_nic *efx, u32);
744 	int (*test_alive) (struct efx_nic *efx);
745 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
746 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
747 	int (*get_module_eeprom) (struct efx_nic *efx,
748 			       struct ethtool_eeprom *ee,
749 			       u8 *data);
750 	int (*get_module_info) (struct efx_nic *efx,
751 				struct ethtool_modinfo *modinfo);
752 };
753 
754 /**
755  * enum efx_phy_mode - PHY operating mode flags
756  * @PHY_MODE_NORMAL: on and should pass traffic
757  * @PHY_MODE_TX_DISABLED: on with TX disabled
758  * @PHY_MODE_LOW_POWER: set to low power through MDIO
759  * @PHY_MODE_OFF: switched off through external control
760  * @PHY_MODE_SPECIAL: on but will not pass traffic
761  */
762 enum efx_phy_mode {
763 	PHY_MODE_NORMAL		= 0,
764 	PHY_MODE_TX_DISABLED	= 1,
765 	PHY_MODE_LOW_POWER	= 2,
766 	PHY_MODE_OFF		= 4,
767 	PHY_MODE_SPECIAL	= 8,
768 };
769 
770 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
771 {
772 	return !!(mode & ~PHY_MODE_TX_DISABLED);
773 }
774 
775 /**
776  * struct efx_hw_stat_desc - Description of a hardware statistic
777  * @name: Name of the statistic as visible through ethtool, or %NULL if
778  *	it should not be exposed
779  * @dma_width: Width in bits (0 for non-DMA statistics)
780  * @offset: Offset within stats (ignored for non-DMA statistics)
781  */
782 struct efx_hw_stat_desc {
783 	const char *name;
784 	u16 dma_width;
785 	u16 offset;
786 };
787 
788 /* Number of bits used in a multicast filter hash address */
789 #define EFX_MCAST_HASH_BITS 8
790 
791 /* Number of (single-bit) entries in a multicast filter hash */
792 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
793 
794 /* An Efx multicast filter hash */
795 union efx_multicast_hash {
796 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
797 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
798 };
799 
800 struct vfdi_status;
801 
802 /**
803  * struct efx_nic - an Efx NIC
804  * @name: Device name (net device name or bus id before net device registered)
805  * @pci_dev: The PCI device
806  * @node: List node for maintaning primary/secondary function lists
807  * @primary: &struct efx_nic instance for the primary function of this
808  *	controller.  May be the same structure, and may be %NULL if no
809  *	primary function is bound.  Serialised by rtnl_lock.
810  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
811  *	functions of the controller, if this is for the primary function.
812  *	Serialised by rtnl_lock.
813  * @type: Controller type attributes
814  * @legacy_irq: IRQ number
815  * @workqueue: Workqueue for port reconfigures and the HW monitor.
816  *	Work items do not hold and must not acquire RTNL.
817  * @workqueue_name: Name of workqueue
818  * @reset_work: Scheduled reset workitem
819  * @membase_phys: Memory BAR value as physical address
820  * @membase: Memory BAR value
821  * @interrupt_mode: Interrupt mode
822  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
823  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
824  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
825  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
826  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
827  * @msg_enable: Log message enable flags
828  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
829  * @reset_pending: Bitmask for pending resets
830  * @tx_queue: TX DMA queues
831  * @rx_queue: RX DMA queues
832  * @channel: Channels
833  * @msi_context: Context for each MSI
834  * @extra_channel_types: Types of extra (non-traffic) channels that
835  *	should be allocated for this NIC
836  * @rxq_entries: Size of receive queues requested by user.
837  * @txq_entries: Size of transmit queues requested by user.
838  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
839  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
840  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
841  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
842  * @sram_lim_qw: Qword address limit of SRAM
843  * @next_buffer_table: First available buffer table id
844  * @n_channels: Number of channels in use
845  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
846  * @n_tx_channels: Number of channels used for TX
847  * @rx_ip_align: RX DMA address offset to have IP header aligned in
848  *	in accordance with NET_IP_ALIGN
849  * @rx_dma_len: Current maximum RX DMA length
850  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
851  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
852  *	for use in sk_buff::truesize
853  * @rx_prefix_size: Size of RX prefix before packet data
854  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
855  *	(valid only if @rx_prefix_size != 0; always negative)
856  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
857  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
858  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
859  *	(valid only if channel->sync_timestamps_enabled; always negative)
860  * @rx_hash_key: Toeplitz hash key for RSS
861  * @rx_indir_table: Indirection table for RSS
862  * @rx_scatter: Scatter mode enabled for receives
863  * @rss_active: RSS enabled on hardware
864  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
865  * @int_error_count: Number of internal errors seen recently
866  * @int_error_expire: Time at which error count will be expired
867  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
868  *	acknowledge but do nothing else.
869  * @irq_status: Interrupt status buffer
870  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
871  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
872  * @selftest_work: Work item for asynchronous self-test
873  * @mtd_list: List of MTDs attached to the NIC
874  * @nic_data: Hardware dependent state
875  * @mcdi: Management-Controller-to-Driver Interface state
876  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
877  *	efx_monitor() and efx_reconfigure_port()
878  * @port_enabled: Port enabled indicator.
879  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
880  *	efx_mac_work() with kernel interfaces. Safe to read under any
881  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
882  *	be held to modify it.
883  * @port_initialized: Port initialized?
884  * @net_dev: Operating system network device. Consider holding the rtnl lock
885  * @fixed_features: Features which cannot be turned off
886  * @stats_buffer: DMA buffer for statistics
887  * @phy_type: PHY type
888  * @phy_op: PHY interface
889  * @phy_data: PHY private data (including PHY-specific stats)
890  * @mdio: PHY MDIO interface
891  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
892  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
893  * @link_advertising: Autonegotiation advertising flags
894  * @link_state: Current state of the link
895  * @n_link_state_changes: Number of times the link has changed state
896  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
897  *	Protected by @mac_lock.
898  * @multicast_hash: Multicast hash table for Falcon-arch.
899  *	Protected by @mac_lock.
900  * @wanted_fc: Wanted flow control flags
901  * @fc_disable: When non-zero flow control is disabled. Typically used to
902  *	ensure that network back pressure doesn't delay dma queue flushes.
903  *	Serialised by the rtnl lock.
904  * @mac_work: Work item for changing MAC promiscuity and multicast hash
905  * @loopback_mode: Loopback status
906  * @loopback_modes: Supported loopback mode bitmask
907  * @loopback_selftest: Offline self-test private state
908  * @filter_sem: Filter table rw_semaphore, for freeing the table
909  * @filter_lock: Filter table lock, for mere content changes
910  * @filter_state: Architecture-dependent filter table state
911  * @rps_expire_channel: Next channel to check for expiry
912  * @rps_expire_index: Next index to check for expiry in
913  *	@rps_expire_channel's @rps_flow_id
914  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
915  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
916  *	Decremented when the efx_flush_rx_queue() is called.
917  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
918  *	completed (either success or failure). Not used when MCDI is used to
919  *	flush receive queues.
920  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
921  * @vf_count: Number of VFs intended to be enabled.
922  * @vf_init_count: Number of VFs that have been fully initialised.
923  * @vi_scale: log2 number of vnics per VF.
924  * @ptp_data: PTP state data
925  * @vpd_sn: Serial number read from VPD
926  * @monitor_work: Hardware monitor workitem
927  * @biu_lock: BIU (bus interface unit) lock
928  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
929  *	field is used by efx_test_interrupts() to verify that an
930  *	interrupt has occurred.
931  * @stats_lock: Statistics update lock. Must be held when calling
932  *	efx_nic_type::{update,start,stop}_stats.
933  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
934  *
935  * This is stored in the private area of the &struct net_device.
936  */
937 struct efx_nic {
938 	/* The following fields should be written very rarely */
939 
940 	char name[IFNAMSIZ];
941 	struct list_head node;
942 	struct efx_nic *primary;
943 	struct list_head secondary_list;
944 	struct pci_dev *pci_dev;
945 	unsigned int port_num;
946 	const struct efx_nic_type *type;
947 	int legacy_irq;
948 	bool eeh_disabled_legacy_irq;
949 	struct workqueue_struct *workqueue;
950 	char workqueue_name[16];
951 	struct work_struct reset_work;
952 	resource_size_t membase_phys;
953 	void __iomem *membase;
954 
955 	enum efx_int_mode interrupt_mode;
956 	unsigned int timer_quantum_ns;
957 	unsigned int timer_max_ns;
958 	bool irq_rx_adaptive;
959 	unsigned int irq_mod_step_us;
960 	unsigned int irq_rx_moderation_us;
961 	u32 msg_enable;
962 
963 	enum nic_state state;
964 	unsigned long reset_pending;
965 
966 	struct efx_channel *channel[EFX_MAX_CHANNELS];
967 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
968 	const struct efx_channel_type *
969 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
970 
971 	unsigned rxq_entries;
972 	unsigned txq_entries;
973 	unsigned int txq_stop_thresh;
974 	unsigned int txq_wake_thresh;
975 
976 	unsigned tx_dc_base;
977 	unsigned rx_dc_base;
978 	unsigned sram_lim_qw;
979 	unsigned next_buffer_table;
980 
981 	unsigned int max_channels;
982 	unsigned int max_tx_channels;
983 	unsigned n_channels;
984 	unsigned n_rx_channels;
985 	unsigned rss_spread;
986 	unsigned tx_channel_offset;
987 	unsigned n_tx_channels;
988 	unsigned int rx_ip_align;
989 	unsigned int rx_dma_len;
990 	unsigned int rx_buffer_order;
991 	unsigned int rx_buffer_truesize;
992 	unsigned int rx_page_buf_step;
993 	unsigned int rx_bufs_per_page;
994 	unsigned int rx_pages_per_batch;
995 	unsigned int rx_prefix_size;
996 	int rx_packet_hash_offset;
997 	int rx_packet_len_offset;
998 	int rx_packet_ts_offset;
999 	u8 rx_hash_key[40];
1000 	u32 rx_indir_table[128];
1001 	bool rx_scatter;
1002 	bool rss_active;
1003 	bool rx_hash_udp_4tuple;
1004 
1005 	unsigned int_error_count;
1006 	unsigned long int_error_expire;
1007 
1008 	bool irq_soft_enabled;
1009 	struct efx_buffer irq_status;
1010 	unsigned irq_zero_count;
1011 	unsigned irq_level;
1012 	struct delayed_work selftest_work;
1013 
1014 #ifdef CONFIG_SFC_MTD
1015 	struct list_head mtd_list;
1016 #endif
1017 
1018 	void *nic_data;
1019 	struct efx_mcdi_data *mcdi;
1020 
1021 	struct mutex mac_lock;
1022 	struct work_struct mac_work;
1023 	bool port_enabled;
1024 
1025 	bool mc_bist_for_other_fn;
1026 	bool port_initialized;
1027 	struct net_device *net_dev;
1028 
1029 	netdev_features_t fixed_features;
1030 
1031 	struct efx_buffer stats_buffer;
1032 	u64 rx_nodesc_drops_total;
1033 	u64 rx_nodesc_drops_while_down;
1034 	bool rx_nodesc_drops_prev_state;
1035 
1036 	unsigned int phy_type;
1037 	const struct efx_phy_operations *phy_op;
1038 	void *phy_data;
1039 	struct mdio_if_info mdio;
1040 	unsigned int mdio_bus;
1041 	enum efx_phy_mode phy_mode;
1042 
1043 	u32 link_advertising;
1044 	struct efx_link_state link_state;
1045 	unsigned int n_link_state_changes;
1046 
1047 	bool unicast_filter;
1048 	union efx_multicast_hash multicast_hash;
1049 	u8 wanted_fc;
1050 	unsigned fc_disable;
1051 
1052 	atomic_t rx_reset;
1053 	enum efx_loopback_mode loopback_mode;
1054 	u64 loopback_modes;
1055 
1056 	void *loopback_selftest;
1057 
1058 	struct rw_semaphore filter_sem;
1059 	spinlock_t filter_lock;
1060 	void *filter_state;
1061 #ifdef CONFIG_RFS_ACCEL
1062 	unsigned int rps_expire_channel;
1063 	unsigned int rps_expire_index;
1064 #endif
1065 
1066 	atomic_t active_queues;
1067 	atomic_t rxq_flush_pending;
1068 	atomic_t rxq_flush_outstanding;
1069 	wait_queue_head_t flush_wq;
1070 
1071 #ifdef CONFIG_SFC_SRIOV
1072 	unsigned vf_count;
1073 	unsigned vf_init_count;
1074 	unsigned vi_scale;
1075 #endif
1076 
1077 	struct efx_ptp_data *ptp_data;
1078 
1079 	char *vpd_sn;
1080 
1081 	/* The following fields may be written more often */
1082 
1083 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1084 	spinlock_t biu_lock;
1085 	int last_irq_cpu;
1086 	spinlock_t stats_lock;
1087 	atomic_t n_rx_noskb_drops;
1088 };
1089 
1090 static inline int efx_dev_registered(struct efx_nic *efx)
1091 {
1092 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1093 }
1094 
1095 static inline unsigned int efx_port_num(struct efx_nic *efx)
1096 {
1097 	return efx->port_num;
1098 }
1099 
1100 struct efx_mtd_partition {
1101 	struct list_head node;
1102 	struct mtd_info mtd;
1103 	const char *dev_type_name;
1104 	const char *type_name;
1105 	char name[IFNAMSIZ + 20];
1106 };
1107 
1108 /**
1109  * struct efx_nic_type - Efx device type definition
1110  * @mem_bar: Get the memory BAR
1111  * @mem_map_size: Get memory BAR mapped size
1112  * @probe: Probe the controller
1113  * @remove: Free resources allocated by probe()
1114  * @init: Initialise the controller
1115  * @dimension_resources: Dimension controller resources (buffer table,
1116  *	and VIs once the available interrupt resources are clear)
1117  * @fini: Shut down the controller
1118  * @monitor: Periodic function for polling link state and hardware monitor
1119  * @map_reset_reason: Map ethtool reset reason to a reset method
1120  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1121  * @reset: Reset the controller hardware and possibly the PHY.  This will
1122  *	be called while the controller is uninitialised.
1123  * @probe_port: Probe the MAC and PHY
1124  * @remove_port: Free resources allocated by probe_port()
1125  * @handle_global_event: Handle a "global" event (may be %NULL)
1126  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1127  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1128  *	(for Falcon architecture)
1129  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1130  *	architecture)
1131  * @prepare_flr: Prepare for an FLR
1132  * @finish_flr: Clean up after an FLR
1133  * @describe_stats: Describe statistics for ethtool
1134  * @update_stats: Update statistics not provided by event handling.
1135  *	Either argument may be %NULL.
1136  * @start_stats: Start the regular fetching of statistics
1137  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1138  * @stop_stats: Stop the regular fetching of statistics
1139  * @set_id_led: Set state of identifying LED or revert to automatic function
1140  * @push_irq_moderation: Apply interrupt moderation value
1141  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1142  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1143  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1144  *	to the hardware.  Serialised by the mac_lock.
1145  * @check_mac_fault: Check MAC fault state. True if fault present.
1146  * @get_wol: Get WoL configuration from driver state
1147  * @set_wol: Push WoL configuration to the NIC
1148  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1149  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1150  *	expected to reset the NIC.
1151  * @test_nvram: Test validity of NVRAM contents
1152  * @mcdi_request: Send an MCDI request with the given header and SDU.
1153  *	The SDU length may be any value from 0 up to the protocol-
1154  *	defined maximum, but its buffer will be padded to a multiple
1155  *	of 4 bytes.
1156  * @mcdi_poll_response: Test whether an MCDI response is available.
1157  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1158  *	be a multiple of 4.  The length may not be, but the buffer
1159  *	will be padded so it is safe to round up.
1160  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1161  *	return an appropriate error code for aborting any current
1162  *	request; otherwise return 0.
1163  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1164  *	be separately enabled after this.
1165  * @irq_test_generate: Generate a test IRQ
1166  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1167  *	queue must be separately disabled before this.
1168  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1169  *	a pointer to the &struct efx_msi_context for the channel.
1170  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1171  *	is a pointer to the &struct efx_nic.
1172  * @tx_probe: Allocate resources for TX queue
1173  * @tx_init: Initialise TX queue on the NIC
1174  * @tx_remove: Free resources for TX queue
1175  * @tx_write: Write TX descriptors and doorbell
1176  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1177  * @rx_probe: Allocate resources for RX queue
1178  * @rx_init: Initialise RX queue on the NIC
1179  * @rx_remove: Free resources for RX queue
1180  * @rx_write: Write RX descriptors and doorbell
1181  * @rx_defer_refill: Generate a refill reminder event
1182  * @ev_probe: Allocate resources for event queue
1183  * @ev_init: Initialise event queue on the NIC
1184  * @ev_fini: Deinitialise event queue on the NIC
1185  * @ev_remove: Free resources for event queue
1186  * @ev_process: Process events for a queue, up to the given NAPI quota
1187  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1188  * @ev_test_generate: Generate a test event
1189  * @filter_table_probe: Probe filter capabilities and set up filter software state
1190  * @filter_table_restore: Restore filters removed from hardware
1191  * @filter_table_remove: Remove filters from hardware and tear down software state
1192  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1193  * @filter_insert: add or replace a filter
1194  * @filter_remove_safe: remove a filter by ID, carefully
1195  * @filter_get_safe: retrieve a filter by ID, carefully
1196  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1197  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1198  * @filter_count_rx_used: Get the number of filters in use at a given priority
1199  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1200  * @filter_get_rx_ids: Get list of RX filters at a given priority
1201  * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1202  *	atomic.  The hardware change may be asynchronous but should
1203  *	not be delayed for long.  It may fail if this can't be done
1204  *	atomically.
1205  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1206  *	This must check whether the specified table entry is used by RFS
1207  *	and that rps_may_expire_flow() returns true for it.
1208  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1209  *	 using efx_mtd_add()
1210  * @mtd_rename: Set an MTD partition name using the net device name
1211  * @mtd_read: Read from an MTD partition
1212  * @mtd_erase: Erase part of an MTD partition
1213  * @mtd_write: Write to an MTD partition
1214  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1215  *	also notifies the driver that a writer has finished using this
1216  *	partition.
1217  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1218  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1219  *	timestamping, possibly only temporarily for the purposes of a reset.
1220  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1221  *	and tx_type will already have been validated but this operation
1222  *	must validate and update rx_filter.
1223  * @set_mac_address: Set the MAC address of the device
1224  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1225  *	If %NULL, then device does not support any TSO version.
1226  * @revision: Hardware architecture revision
1227  * @txd_ptr_tbl_base: TX descriptor ring base address
1228  * @rxd_ptr_tbl_base: RX descriptor ring base address
1229  * @buf_tbl_base: Buffer table base address
1230  * @evq_ptr_tbl_base: Event queue pointer table base address
1231  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1232  * @max_dma_mask: Maximum possible DMA mask
1233  * @rx_prefix_size: Size of RX prefix before packet data
1234  * @rx_hash_offset: Offset of RX flow hash within prefix
1235  * @rx_ts_offset: Offset of timestamp within prefix
1236  * @rx_buffer_padding: Size of padding at end of RX packet
1237  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1238  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1239  * @max_interrupt_mode: Highest capability interrupt mode supported
1240  *	from &enum efx_init_mode.
1241  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1242  * @offload_features: net_device feature flags for protocol offload
1243  *	features implemented in hardware
1244  * @mcdi_max_ver: Maximum MCDI version supported
1245  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1246  */
1247 struct efx_nic_type {
1248 	bool is_vf;
1249 	unsigned int mem_bar;
1250 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1251 	int (*probe)(struct efx_nic *efx);
1252 	void (*remove)(struct efx_nic *efx);
1253 	int (*init)(struct efx_nic *efx);
1254 	int (*dimension_resources)(struct efx_nic *efx);
1255 	void (*fini)(struct efx_nic *efx);
1256 	void (*monitor)(struct efx_nic *efx);
1257 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1258 	int (*map_reset_flags)(u32 *flags);
1259 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1260 	int (*probe_port)(struct efx_nic *efx);
1261 	void (*remove_port)(struct efx_nic *efx);
1262 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1263 	int (*fini_dmaq)(struct efx_nic *efx);
1264 	void (*prepare_flush)(struct efx_nic *efx);
1265 	void (*finish_flush)(struct efx_nic *efx);
1266 	void (*prepare_flr)(struct efx_nic *efx);
1267 	void (*finish_flr)(struct efx_nic *efx);
1268 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1269 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1270 			       struct rtnl_link_stats64 *core_stats);
1271 	void (*start_stats)(struct efx_nic *efx);
1272 	void (*pull_stats)(struct efx_nic *efx);
1273 	void (*stop_stats)(struct efx_nic *efx);
1274 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1275 	void (*push_irq_moderation)(struct efx_channel *channel);
1276 	int (*reconfigure_port)(struct efx_nic *efx);
1277 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1278 	int (*reconfigure_mac)(struct efx_nic *efx);
1279 	bool (*check_mac_fault)(struct efx_nic *efx);
1280 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1281 	int (*set_wol)(struct efx_nic *efx, u32 type);
1282 	void (*resume_wol)(struct efx_nic *efx);
1283 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1284 	int (*test_nvram)(struct efx_nic *efx);
1285 	void (*mcdi_request)(struct efx_nic *efx,
1286 			     const efx_dword_t *hdr, size_t hdr_len,
1287 			     const efx_dword_t *sdu, size_t sdu_len);
1288 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1289 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1290 				   size_t pdu_offset, size_t pdu_len);
1291 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1292 	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1293 	void (*irq_enable_master)(struct efx_nic *efx);
1294 	int (*irq_test_generate)(struct efx_nic *efx);
1295 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1296 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1297 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1298 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1299 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1300 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1301 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1302 	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1303 				     dma_addr_t dma_addr, unsigned int len);
1304 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1305 				  const u32 *rx_indir_table);
1306 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1307 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1308 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1309 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1310 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1311 	int (*ev_probe)(struct efx_channel *channel);
1312 	int (*ev_init)(struct efx_channel *channel);
1313 	void (*ev_fini)(struct efx_channel *channel);
1314 	void (*ev_remove)(struct efx_channel *channel);
1315 	int (*ev_process)(struct efx_channel *channel, int quota);
1316 	void (*ev_read_ack)(struct efx_channel *channel);
1317 	void (*ev_test_generate)(struct efx_channel *channel);
1318 	int (*filter_table_probe)(struct efx_nic *efx);
1319 	void (*filter_table_restore)(struct efx_nic *efx);
1320 	void (*filter_table_remove)(struct efx_nic *efx);
1321 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1322 	s32 (*filter_insert)(struct efx_nic *efx,
1323 			     struct efx_filter_spec *spec, bool replace);
1324 	int (*filter_remove_safe)(struct efx_nic *efx,
1325 				  enum efx_filter_priority priority,
1326 				  u32 filter_id);
1327 	int (*filter_get_safe)(struct efx_nic *efx,
1328 			       enum efx_filter_priority priority,
1329 			       u32 filter_id, struct efx_filter_spec *);
1330 	int (*filter_clear_rx)(struct efx_nic *efx,
1331 			       enum efx_filter_priority priority);
1332 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1333 				    enum efx_filter_priority priority);
1334 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1335 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1336 				 enum efx_filter_priority priority,
1337 				 u32 *buf, u32 size);
1338 #ifdef CONFIG_RFS_ACCEL
1339 	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1340 				 struct efx_filter_spec *spec);
1341 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1342 				      unsigned int index);
1343 #endif
1344 #ifdef CONFIG_SFC_MTD
1345 	int (*mtd_probe)(struct efx_nic *efx);
1346 	void (*mtd_rename)(struct efx_mtd_partition *part);
1347 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1348 			size_t *retlen, u8 *buffer);
1349 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1350 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1351 			 size_t *retlen, const u8 *buffer);
1352 	int (*mtd_sync)(struct mtd_info *mtd);
1353 #endif
1354 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1355 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1356 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1357 				 struct hwtstamp_config *init);
1358 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1359 	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1360 	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1361 	int (*sriov_init)(struct efx_nic *efx);
1362 	void (*sriov_fini)(struct efx_nic *efx);
1363 	bool (*sriov_wanted)(struct efx_nic *efx);
1364 	void (*sriov_reset)(struct efx_nic *efx);
1365 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1366 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1367 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1368 				 u8 qos);
1369 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1370 				     bool spoofchk);
1371 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1372 				   struct ifla_vf_info *ivi);
1373 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1374 				       int link_state);
1375 	int (*sriov_get_phys_port_id)(struct efx_nic *efx,
1376 				      struct netdev_phys_item_id *ppid);
1377 	int (*vswitching_probe)(struct efx_nic *efx);
1378 	int (*vswitching_restore)(struct efx_nic *efx);
1379 	void (*vswitching_remove)(struct efx_nic *efx);
1380 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1381 	int (*set_mac_address)(struct efx_nic *efx);
1382 	u32 (*tso_versions)(struct efx_nic *efx);
1383 
1384 	int revision;
1385 	unsigned int txd_ptr_tbl_base;
1386 	unsigned int rxd_ptr_tbl_base;
1387 	unsigned int buf_tbl_base;
1388 	unsigned int evq_ptr_tbl_base;
1389 	unsigned int evq_rptr_tbl_base;
1390 	u64 max_dma_mask;
1391 	unsigned int rx_prefix_size;
1392 	unsigned int rx_hash_offset;
1393 	unsigned int rx_ts_offset;
1394 	unsigned int rx_buffer_padding;
1395 	bool can_rx_scatter;
1396 	bool always_rx_scatter;
1397 	unsigned int max_interrupt_mode;
1398 	unsigned int timer_period_max;
1399 	netdev_features_t offload_features;
1400 	int mcdi_max_ver;
1401 	unsigned int max_rx_ip_filters;
1402 	u32 hwtstamp_filters;
1403 };
1404 
1405 /**************************************************************************
1406  *
1407  * Prototypes and inline functions
1408  *
1409  *************************************************************************/
1410 
1411 static inline struct efx_channel *
1412 efx_get_channel(struct efx_nic *efx, unsigned index)
1413 {
1414 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1415 	return efx->channel[index];
1416 }
1417 
1418 /* Iterate over all used channels */
1419 #define efx_for_each_channel(_channel, _efx)				\
1420 	for (_channel = (_efx)->channel[0];				\
1421 	     _channel;							\
1422 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1423 		     (_efx)->channel[_channel->channel + 1] : NULL)
1424 
1425 /* Iterate over all used channels in reverse */
1426 #define efx_for_each_channel_rev(_channel, _efx)			\
1427 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1428 	     _channel;							\
1429 	     _channel = _channel->channel ?				\
1430 		     (_efx)->channel[_channel->channel - 1] : NULL)
1431 
1432 static inline struct efx_tx_queue *
1433 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1434 {
1435 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1436 				  type >= EFX_TXQ_TYPES);
1437 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1438 }
1439 
1440 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1441 {
1442 	return channel->channel - channel->efx->tx_channel_offset <
1443 		channel->efx->n_tx_channels;
1444 }
1445 
1446 static inline struct efx_tx_queue *
1447 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1448 {
1449 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_tx_queues(channel) ||
1450 				  type >= EFX_TXQ_TYPES);
1451 	return &channel->tx_queue[type];
1452 }
1453 
1454 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1455 {
1456 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1457 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1458 }
1459 
1460 /* Iterate over all TX queues belonging to a channel */
1461 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1462 	if (!efx_channel_has_tx_queues(_channel))			\
1463 		;							\
1464 	else								\
1465 		for (_tx_queue = (_channel)->tx_queue;			\
1466 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1467 			     efx_tx_queue_used(_tx_queue);		\
1468 		     _tx_queue++)
1469 
1470 /* Iterate over all possible TX queues belonging to a channel */
1471 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1472 	if (!efx_channel_has_tx_queues(_channel))			\
1473 		;							\
1474 	else								\
1475 		for (_tx_queue = (_channel)->tx_queue;			\
1476 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1477 		     _tx_queue++)
1478 
1479 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1480 {
1481 	return channel->rx_queue.core_index >= 0;
1482 }
1483 
1484 static inline struct efx_rx_queue *
1485 efx_channel_get_rx_queue(struct efx_channel *channel)
1486 {
1487 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1488 	return &channel->rx_queue;
1489 }
1490 
1491 /* Iterate over all RX queues belonging to a channel */
1492 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1493 	if (!efx_channel_has_rx_queue(_channel))			\
1494 		;							\
1495 	else								\
1496 		for (_rx_queue = &(_channel)->rx_queue;			\
1497 		     _rx_queue;						\
1498 		     _rx_queue = NULL)
1499 
1500 static inline struct efx_channel *
1501 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1502 {
1503 	return container_of(rx_queue, struct efx_channel, rx_queue);
1504 }
1505 
1506 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1507 {
1508 	return efx_rx_queue_channel(rx_queue)->channel;
1509 }
1510 
1511 /* Returns a pointer to the specified receive buffer in the RX
1512  * descriptor queue.
1513  */
1514 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1515 						  unsigned int index)
1516 {
1517 	return &rx_queue->buffer[index];
1518 }
1519 
1520 /**
1521  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1522  *
1523  * This calculates the maximum frame length that will be used for a
1524  * given MTU.  The frame length will be equal to the MTU plus a
1525  * constant amount of header space and padding.  This is the quantity
1526  * that the net driver will program into the MAC as the maximum frame
1527  * length.
1528  *
1529  * The 10G MAC requires 8-byte alignment on the frame
1530  * length, so we round up to the nearest 8.
1531  *
1532  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1533  * XGMII cycle).  If the frame length reaches the maximum value in the
1534  * same cycle, the XMAC can miss the IPG altogether.  We work around
1535  * this by adding a further 16 bytes.
1536  */
1537 #define EFX_FRAME_PAD	16
1538 #define EFX_MAX_FRAME_LEN(mtu) \
1539 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1540 
1541 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1542 {
1543 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1544 }
1545 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1546 {
1547 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1548 }
1549 
1550 /* Get all supported features.
1551  * If a feature is not fixed, it is present in hw_features.
1552  * If a feature is fixed, it does not present in hw_features, but
1553  * always in features.
1554  */
1555 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1556 {
1557 	const struct net_device *net_dev = efx->net_dev;
1558 
1559 	return net_dev->features | net_dev->hw_features;
1560 }
1561 
1562 /* Get the current TX queue insert index. */
1563 static inline unsigned int
1564 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1565 {
1566 	return tx_queue->insert_count & tx_queue->ptr_mask;
1567 }
1568 
1569 /* Get a TX buffer. */
1570 static inline struct efx_tx_buffer *
1571 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1572 {
1573 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1574 }
1575 
1576 /* Get a TX buffer, checking it's not currently in use. */
1577 static inline struct efx_tx_buffer *
1578 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1579 {
1580 	struct efx_tx_buffer *buffer =
1581 		__efx_tx_queue_get_insert_buffer(tx_queue);
1582 
1583 	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1584 	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1585 	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1586 
1587 	return buffer;
1588 }
1589 
1590 #endif /* EFX_NET_DRIVER_H */
1591