1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 /* Common definitions for all Efx net driver code */ 12 13 #ifndef EFX_NET_DRIVER_H 14 #define EFX_NET_DRIVER_H 15 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/ethtool.h> 19 #include <linux/if_vlan.h> 20 #include <linux/timer.h> 21 #include <linux/mdio.h> 22 #include <linux/list.h> 23 #include <linux/pci.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/workqueue.h> 27 #include <linux/mutex.h> 28 #include <linux/rwsem.h> 29 #include <linux/vmalloc.h> 30 #include <linux/i2c.h> 31 #include <linux/mtd/mtd.h> 32 #include <net/busy_poll.h> 33 34 #include "enum.h" 35 #include "bitfield.h" 36 #include "filter.h" 37 38 /************************************************************************** 39 * 40 * Build definitions 41 * 42 **************************************************************************/ 43 44 #define EFX_DRIVER_VERSION "4.1" 45 46 #ifdef DEBUG 47 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x) 48 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 49 #else 50 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0) 51 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 52 #endif 53 54 /************************************************************************** 55 * 56 * Efx data structures 57 * 58 **************************************************************************/ 59 60 #define EFX_MAX_CHANNELS 32U 61 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 62 #define EFX_EXTRA_CHANNEL_IOV 0 63 #define EFX_EXTRA_CHANNEL_PTP 1 64 #define EFX_MAX_EXTRA_CHANNELS 2U 65 66 /* Checksum generation is a per-queue option in hardware, so each 67 * queue visible to the networking core is backed by two hardware TX 68 * queues. */ 69 #define EFX_MAX_TX_TC 2 70 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 71 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */ 72 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */ 73 #define EFX_TXQ_TYPES 4 74 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS) 75 76 /* Maximum possible MTU the driver supports */ 77 #define EFX_MAX_MTU (9 * 1024) 78 79 /* Minimum MTU, from RFC791 (IP) */ 80 #define EFX_MIN_MTU 68 81 82 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 83 * and should be a multiple of the cache line size. 84 */ 85 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 86 87 /* If possible, we should ensure cache line alignment at start and end 88 * of every buffer. Otherwise, we just need to ensure 4-byte 89 * alignment of the network header. 90 */ 91 #if NET_IP_ALIGN == 0 92 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 93 #else 94 #define EFX_RX_BUF_ALIGNMENT 4 95 #endif 96 97 /* Forward declare Precision Time Protocol (PTP) support structure. */ 98 struct efx_ptp_data; 99 struct hwtstamp_config; 100 101 struct efx_self_tests; 102 103 /** 104 * struct efx_buffer - A general-purpose DMA buffer 105 * @addr: host base address of the buffer 106 * @dma_addr: DMA base address of the buffer 107 * @len: Buffer length, in bytes 108 * 109 * The NIC uses these buffers for its interrupt status registers and 110 * MAC stats dumps. 111 */ 112 struct efx_buffer { 113 void *addr; 114 dma_addr_t dma_addr; 115 unsigned int len; 116 }; 117 118 /** 119 * struct efx_special_buffer - DMA buffer entered into buffer table 120 * @buf: Standard &struct efx_buffer 121 * @index: Buffer index within controller;s buffer table 122 * @entries: Number of buffer table entries 123 * 124 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 125 * Event and descriptor rings are addressed via one or more buffer 126 * table entries (and so can be physically non-contiguous, although we 127 * currently do not take advantage of that). On Falcon and Siena we 128 * have to take care of allocating and initialising the entries 129 * ourselves. On later hardware this is managed by the firmware and 130 * @index and @entries are left as 0. 131 */ 132 struct efx_special_buffer { 133 struct efx_buffer buf; 134 unsigned int index; 135 unsigned int entries; 136 }; 137 138 /** 139 * struct efx_tx_buffer - buffer state for a TX descriptor 140 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 141 * freed when descriptor completes 142 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor. 143 * @dma_addr: DMA address of the fragment. 144 * @flags: Flags for allocation and DMA mapping type 145 * @len: Length of this fragment. 146 * This field is zero when the queue slot is empty. 147 * @unmap_len: Length of this fragment to unmap 148 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 149 * Only valid if @unmap_len != 0. 150 */ 151 struct efx_tx_buffer { 152 const struct sk_buff *skb; 153 union { 154 efx_qword_t option; 155 dma_addr_t dma_addr; 156 }; 157 unsigned short flags; 158 unsigned short len; 159 unsigned short unmap_len; 160 unsigned short dma_offset; 161 }; 162 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 163 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 164 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 165 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 166 167 /** 168 * struct efx_tx_queue - An Efx TX queue 169 * 170 * This is a ring buffer of TX fragments. 171 * Since the TX completion path always executes on the same 172 * CPU and the xmit path can operate on different CPUs, 173 * performance is increased by ensuring that the completion 174 * path and the xmit path operate on different cache lines. 175 * This is particularly important if the xmit path is always 176 * executing on one CPU which is different from the completion 177 * path. There is also a cache line for members which are 178 * read but not written on the fast path. 179 * 180 * @efx: The associated Efx NIC 181 * @queue: DMA queue number 182 * @tso_version: Version of TSO in use for this queue. 183 * @channel: The associated channel 184 * @core_txq: The networking core TX queue structure 185 * @buffer: The software buffer ring 186 * @cb_page: Array of pages of copy buffers. Carved up according to 187 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks. 188 * @txd: The hardware descriptor ring 189 * @ptr_mask: The size of the ring minus 1. 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 191 * Size of the region is efx_piobuf_size. 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 193 * @initialised: Has hardware queue been initialised? 194 * @handle_tso: TSO xmit preparation handler. Sets up the TSO metadata and 195 * may also map tx data, depending on the nature of the TSO implementation. 196 * @read_count: Current read pointer. 197 * This is the number of buffers that have been removed from both rings. 198 * @old_write_count: The value of @write_count when last checked. 199 * This is here for performance reasons. The xmit path will 200 * only get the up-to-date value of @write_count if this 201 * variable indicates that the queue is empty. This is to 202 * avoid cache-line ping-pong between the xmit path and the 203 * completion path. 204 * @merge_events: Number of TX merged completion events 205 * @insert_count: Current insert pointer 206 * This is the number of buffers that have been added to the 207 * software ring. 208 * @write_count: Current write pointer 209 * This is the number of buffers that have been added to the 210 * hardware ring. 211 * @old_read_count: The value of read_count when last checked. 212 * This is here for performance reasons. The xmit path will 213 * only get the up-to-date value of read_count if this 214 * variable indicates that the queue is full. This is to 215 * avoid cache-line ping-pong between the xmit path and the 216 * completion path. 217 * @tso_bursts: Number of times TSO xmit invoked by kernel 218 * @tso_long_headers: Number of packets with headers too long for standard 219 * blocks 220 * @tso_packets: Number of packets via the TSO xmit path 221 * @tso_fallbacks: Number of times TSO fallback used 222 * @pushes: Number of times the TX push feature has been used 223 * @pio_packets: Number of times the TX PIO feature has been used 224 * @xmit_more_available: Are any packets waiting to be pushed to the NIC 225 * @cb_packets: Number of times the TX copybreak feature has been used 226 * @empty_read_count: If the completion path has seen the queue as empty 227 * and the transmission path has not yet checked this, the value of 228 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 229 */ 230 struct efx_tx_queue { 231 /* Members which don't change on the fast path */ 232 struct efx_nic *efx ____cacheline_aligned_in_smp; 233 unsigned queue; 234 unsigned int tso_version; 235 struct efx_channel *channel; 236 struct netdev_queue *core_txq; 237 struct efx_tx_buffer *buffer; 238 struct efx_buffer *cb_page; 239 struct efx_special_buffer txd; 240 unsigned int ptr_mask; 241 void __iomem *piobuf; 242 unsigned int piobuf_offset; 243 bool initialised; 244 245 /* Function pointers used in the fast path. */ 246 int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *); 247 248 /* Members used mainly on the completion path */ 249 unsigned int read_count ____cacheline_aligned_in_smp; 250 unsigned int old_write_count; 251 unsigned int merge_events; 252 unsigned int bytes_compl; 253 unsigned int pkts_compl; 254 255 /* Members used only on the xmit path */ 256 unsigned int insert_count ____cacheline_aligned_in_smp; 257 unsigned int write_count; 258 unsigned int old_read_count; 259 unsigned int tso_bursts; 260 unsigned int tso_long_headers; 261 unsigned int tso_packets; 262 unsigned int tso_fallbacks; 263 unsigned int pushes; 264 unsigned int pio_packets; 265 bool xmit_more_available; 266 unsigned int cb_packets; 267 /* Statistics to supplement MAC stats */ 268 unsigned long tx_packets; 269 270 /* Members shared between paths and sometimes updated */ 271 unsigned int empty_read_count ____cacheline_aligned_in_smp; 272 #define EFX_EMPTY_COUNT_VALID 0x80000000 273 atomic_t flush_outstanding; 274 }; 275 276 #define EFX_TX_CB_ORDER 7 277 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN 278 279 /** 280 * struct efx_rx_buffer - An Efx RX data buffer 281 * @dma_addr: DMA base address of the buffer 282 * @page: The associated page buffer. 283 * Will be %NULL if the buffer slot is currently free. 284 * @page_offset: If pending: offset in @page of DMA base address. 285 * If completed: offset in @page of Ethernet header. 286 * @len: If pending: length for DMA descriptor. 287 * If completed: received length, excluding hash prefix. 288 * @flags: Flags for buffer and packet state. These are only set on the 289 * first buffer of a scattered packet. 290 */ 291 struct efx_rx_buffer { 292 dma_addr_t dma_addr; 293 struct page *page; 294 u16 page_offset; 295 u16 len; 296 u16 flags; 297 }; 298 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 299 #define EFX_RX_PKT_CSUMMED 0x0002 300 #define EFX_RX_PKT_DISCARD 0x0004 301 #define EFX_RX_PKT_TCP 0x0040 302 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 303 304 /** 305 * struct efx_rx_page_state - Page-based rx buffer state 306 * 307 * Inserted at the start of every page allocated for receive buffers. 308 * Used to facilitate sharing dma mappings between recycled rx buffers 309 * and those passed up to the kernel. 310 * 311 * @dma_addr: The dma address of this page. 312 */ 313 struct efx_rx_page_state { 314 dma_addr_t dma_addr; 315 316 unsigned int __pad[0] ____cacheline_aligned; 317 }; 318 319 /** 320 * struct efx_rx_queue - An Efx RX queue 321 * @efx: The associated Efx NIC 322 * @core_index: Index of network core RX queue. Will be >= 0 iff this 323 * is associated with a real RX queue. 324 * @buffer: The software buffer ring 325 * @rxd: The hardware descriptor ring 326 * @ptr_mask: The size of the ring minus 1. 327 * @refill_enabled: Enable refill whenever fill level is low 328 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 329 * @rxq_flush_pending. 330 * @added_count: Number of buffers added to the receive queue. 331 * @notified_count: Number of buffers given to NIC (<= @added_count). 332 * @removed_count: Number of buffers removed from the receive queue. 333 * @scatter_n: Used by NIC specific receive code. 334 * @scatter_len: Used by NIC specific receive code. 335 * @page_ring: The ring to store DMA mapped pages for reuse. 336 * @page_add: Counter to calculate the write pointer for the recycle ring. 337 * @page_remove: Counter to calculate the read pointer for the recycle ring. 338 * @page_recycle_count: The number of pages that have been recycled. 339 * @page_recycle_failed: The number of pages that couldn't be recycled because 340 * the kernel still held a reference to them. 341 * @page_recycle_full: The number of pages that were released because the 342 * recycle ring was full. 343 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 344 * @max_fill: RX descriptor maximum fill level (<= ring size) 345 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 346 * (<= @max_fill) 347 * @min_fill: RX descriptor minimum non-zero fill level. 348 * This records the minimum fill level observed when a ring 349 * refill was triggered. 350 * @recycle_count: RX buffer recycle counter. 351 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 352 */ 353 struct efx_rx_queue { 354 struct efx_nic *efx; 355 int core_index; 356 struct efx_rx_buffer *buffer; 357 struct efx_special_buffer rxd; 358 unsigned int ptr_mask; 359 bool refill_enabled; 360 bool flush_pending; 361 362 unsigned int added_count; 363 unsigned int notified_count; 364 unsigned int removed_count; 365 unsigned int scatter_n; 366 unsigned int scatter_len; 367 struct page **page_ring; 368 unsigned int page_add; 369 unsigned int page_remove; 370 unsigned int page_recycle_count; 371 unsigned int page_recycle_failed; 372 unsigned int page_recycle_full; 373 unsigned int page_ptr_mask; 374 unsigned int max_fill; 375 unsigned int fast_fill_trigger; 376 unsigned int min_fill; 377 unsigned int min_overfill; 378 unsigned int recycle_count; 379 struct timer_list slow_fill; 380 unsigned int slow_fill_count; 381 /* Statistics to supplement MAC stats */ 382 unsigned long rx_packets; 383 }; 384 385 enum efx_sync_events_state { 386 SYNC_EVENTS_DISABLED = 0, 387 SYNC_EVENTS_QUIESCENT, 388 SYNC_EVENTS_REQUESTED, 389 SYNC_EVENTS_VALID, 390 }; 391 392 /** 393 * struct efx_channel - An Efx channel 394 * 395 * A channel comprises an event queue, at least one TX queue, at least 396 * one RX queue, and an associated tasklet for processing the event 397 * queue. 398 * 399 * @efx: Associated Efx NIC 400 * @channel: Channel instance number 401 * @type: Channel type definition 402 * @eventq_init: Event queue initialised flag 403 * @enabled: Channel enabled indicator 404 * @irq: IRQ number (MSI and MSI-X only) 405 * @irq_moderation_us: IRQ moderation value (in microseconds) 406 * @napi_dev: Net device used with NAPI 407 * @napi_str: NAPI control structure 408 * @state: state for NAPI vs busy polling 409 * @state_lock: lock protecting @state 410 * @eventq: Event queue buffer 411 * @eventq_mask: Event queue pointer mask 412 * @eventq_read_ptr: Event queue read pointer 413 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 414 * @irq_count: Number of IRQs since last adaptive moderation decision 415 * @irq_mod_score: IRQ moderation score 416 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 417 * indexed by filter ID 418 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 419 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 420 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 421 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 422 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 423 * @n_rx_overlength: Count of RX_OVERLENGTH errors 424 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 425 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 426 * lack of descriptors 427 * @n_rx_merge_events: Number of RX merged completion events 428 * @n_rx_merge_packets: Number of RX packets completed by merged events 429 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 430 * __efx_rx_packet(), or zero if there is none 431 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 432 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 433 * @rx_queue: RX queue for this channel 434 * @tx_queue: TX queues for this channel 435 * @sync_events_state: Current state of sync events on this channel 436 * @sync_timestamp_major: Major part of the last ptp sync event 437 * @sync_timestamp_minor: Minor part of the last ptp sync event 438 */ 439 struct efx_channel { 440 struct efx_nic *efx; 441 int channel; 442 const struct efx_channel_type *type; 443 bool eventq_init; 444 bool enabled; 445 int irq; 446 unsigned int irq_moderation_us; 447 struct net_device *napi_dev; 448 struct napi_struct napi_str; 449 #ifdef CONFIG_NET_RX_BUSY_POLL 450 unsigned long busy_poll_state; 451 #endif 452 struct efx_special_buffer eventq; 453 unsigned int eventq_mask; 454 unsigned int eventq_read_ptr; 455 int event_test_cpu; 456 457 unsigned int irq_count; 458 unsigned int irq_mod_score; 459 #ifdef CONFIG_RFS_ACCEL 460 unsigned int rfs_filters_added; 461 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF 462 u32 *rps_flow_id; 463 #endif 464 465 unsigned n_rx_tobe_disc; 466 unsigned n_rx_ip_hdr_chksum_err; 467 unsigned n_rx_tcp_udp_chksum_err; 468 unsigned n_rx_mcast_mismatch; 469 unsigned n_rx_frm_trunc; 470 unsigned n_rx_overlength; 471 unsigned n_skbuff_leaks; 472 unsigned int n_rx_nodesc_trunc; 473 unsigned int n_rx_merge_events; 474 unsigned int n_rx_merge_packets; 475 476 unsigned int rx_pkt_n_frags; 477 unsigned int rx_pkt_index; 478 479 struct efx_rx_queue rx_queue; 480 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; 481 482 enum efx_sync_events_state sync_events_state; 483 u32 sync_timestamp_major; 484 u32 sync_timestamp_minor; 485 }; 486 487 #ifdef CONFIG_NET_RX_BUSY_POLL 488 enum efx_channel_busy_poll_state { 489 EFX_CHANNEL_STATE_IDLE = 0, 490 EFX_CHANNEL_STATE_NAPI = BIT(0), 491 EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1, 492 EFX_CHANNEL_STATE_NAPI_REQ = BIT(1), 493 EFX_CHANNEL_STATE_POLL_BIT = 2, 494 EFX_CHANNEL_STATE_POLL = BIT(2), 495 EFX_CHANNEL_STATE_DISABLE_BIT = 3, 496 }; 497 498 static inline void efx_channel_busy_poll_init(struct efx_channel *channel) 499 { 500 WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE); 501 } 502 503 /* Called from the device poll routine to get ownership of a channel. */ 504 static inline bool efx_channel_lock_napi(struct efx_channel *channel) 505 { 506 unsigned long prev, old = READ_ONCE(channel->busy_poll_state); 507 508 while (1) { 509 switch (old) { 510 case EFX_CHANNEL_STATE_POLL: 511 /* Ensure efx_channel_try_lock_poll() wont starve us */ 512 set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT, 513 &channel->busy_poll_state); 514 /* fallthrough */ 515 case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ: 516 return false; 517 default: 518 break; 519 } 520 prev = cmpxchg(&channel->busy_poll_state, old, 521 EFX_CHANNEL_STATE_NAPI); 522 if (unlikely(prev != old)) { 523 /* This is likely to mean we've just entered polling 524 * state. Go back round to set the REQ bit. 525 */ 526 old = prev; 527 continue; 528 } 529 return true; 530 } 531 } 532 533 static inline void efx_channel_unlock_napi(struct efx_channel *channel) 534 { 535 /* Make sure write has completed from efx_channel_lock_napi() */ 536 smp_wmb(); 537 WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE); 538 } 539 540 /* Called from efx_busy_poll(). */ 541 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel) 542 { 543 return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE, 544 EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE; 545 } 546 547 static inline void efx_channel_unlock_poll(struct efx_channel *channel) 548 { 549 clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state); 550 } 551 552 static inline bool efx_channel_busy_polling(struct efx_channel *channel) 553 { 554 return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state); 555 } 556 557 static inline void efx_channel_enable(struct efx_channel *channel) 558 { 559 clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT, 560 &channel->busy_poll_state); 561 } 562 563 /* Stop further polling or napi access. 564 * Returns false if the channel is currently busy polling. 565 */ 566 static inline bool efx_channel_disable(struct efx_channel *channel) 567 { 568 set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state); 569 /* Implicit barrier in efx_channel_busy_polling() */ 570 return !efx_channel_busy_polling(channel); 571 } 572 573 #else /* CONFIG_NET_RX_BUSY_POLL */ 574 575 static inline void efx_channel_busy_poll_init(struct efx_channel *channel) 576 { 577 } 578 579 static inline bool efx_channel_lock_napi(struct efx_channel *channel) 580 { 581 return true; 582 } 583 584 static inline void efx_channel_unlock_napi(struct efx_channel *channel) 585 { 586 } 587 588 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel) 589 { 590 return false; 591 } 592 593 static inline void efx_channel_unlock_poll(struct efx_channel *channel) 594 { 595 } 596 597 static inline bool efx_channel_busy_polling(struct efx_channel *channel) 598 { 599 return false; 600 } 601 602 static inline void efx_channel_enable(struct efx_channel *channel) 603 { 604 } 605 606 static inline bool efx_channel_disable(struct efx_channel *channel) 607 { 608 return true; 609 } 610 #endif /* CONFIG_NET_RX_BUSY_POLL */ 611 612 /** 613 * struct efx_msi_context - Context for each MSI 614 * @efx: The associated NIC 615 * @index: Index of the channel/IRQ 616 * @name: Name of the channel/IRQ 617 * 618 * Unlike &struct efx_channel, this is never reallocated and is always 619 * safe for the IRQ handler to access. 620 */ 621 struct efx_msi_context { 622 struct efx_nic *efx; 623 unsigned int index; 624 char name[IFNAMSIZ + 6]; 625 }; 626 627 /** 628 * struct efx_channel_type - distinguishes traffic and extra channels 629 * @handle_no_channel: Handle failure to allocate an extra channel 630 * @pre_probe: Set up extra state prior to initialisation 631 * @post_remove: Tear down extra state after finalisation, if allocated. 632 * May be called on channels that have not been probed. 633 * @get_name: Generate the channel's name (used for its IRQ handler) 634 * @copy: Copy the channel state prior to reallocation. May be %NULL if 635 * reallocation is not supported. 636 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 637 * @keep_eventq: Flag for whether event queue should be kept initialised 638 * while the device is stopped 639 */ 640 struct efx_channel_type { 641 void (*handle_no_channel)(struct efx_nic *); 642 int (*pre_probe)(struct efx_channel *); 643 void (*post_remove)(struct efx_channel *); 644 void (*get_name)(struct efx_channel *, char *buf, size_t len); 645 struct efx_channel *(*copy)(const struct efx_channel *); 646 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 647 bool keep_eventq; 648 }; 649 650 enum efx_led_mode { 651 EFX_LED_OFF = 0, 652 EFX_LED_ON = 1, 653 EFX_LED_DEFAULT = 2 654 }; 655 656 #define STRING_TABLE_LOOKUP(val, member) \ 657 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 658 659 extern const char *const efx_loopback_mode_names[]; 660 extern const unsigned int efx_loopback_mode_max; 661 #define LOOPBACK_MODE(efx) \ 662 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 663 664 extern const char *const efx_reset_type_names[]; 665 extern const unsigned int efx_reset_type_max; 666 #define RESET_TYPE(type) \ 667 STRING_TABLE_LOOKUP(type, efx_reset_type) 668 669 enum efx_int_mode { 670 /* Be careful if altering to correct macro below */ 671 EFX_INT_MODE_MSIX = 0, 672 EFX_INT_MODE_MSI = 1, 673 EFX_INT_MODE_LEGACY = 2, 674 EFX_INT_MODE_MAX /* Insert any new items before this */ 675 }; 676 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 677 678 enum nic_state { 679 STATE_UNINIT = 0, /* device being probed/removed or is frozen */ 680 STATE_READY = 1, /* hardware ready and netdev registered */ 681 STATE_DISABLED = 2, /* device disabled due to hardware errors */ 682 STATE_RECOVERY = 3, /* device recovering from PCI error */ 683 }; 684 685 /* Forward declaration */ 686 struct efx_nic; 687 688 /* Pseudo bit-mask flow control field */ 689 #define EFX_FC_RX FLOW_CTRL_RX 690 #define EFX_FC_TX FLOW_CTRL_TX 691 #define EFX_FC_AUTO 4 692 693 /** 694 * struct efx_link_state - Current state of the link 695 * @up: Link is up 696 * @fd: Link is full-duplex 697 * @fc: Actual flow control flags 698 * @speed: Link speed (Mbps) 699 */ 700 struct efx_link_state { 701 bool up; 702 bool fd; 703 u8 fc; 704 unsigned int speed; 705 }; 706 707 static inline bool efx_link_state_equal(const struct efx_link_state *left, 708 const struct efx_link_state *right) 709 { 710 return left->up == right->up && left->fd == right->fd && 711 left->fc == right->fc && left->speed == right->speed; 712 } 713 714 /** 715 * struct efx_phy_operations - Efx PHY operations table 716 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, 717 * efx->loopback_modes. 718 * @init: Initialise PHY 719 * @fini: Shut down PHY 720 * @reconfigure: Reconfigure PHY (e.g. for new link parameters) 721 * @poll: Update @link_state and report whether it changed. 722 * Serialised by the mac_lock. 723 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock. 724 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock. 725 * @set_npage_adv: Set abilities advertised in (Extended) Next Page 726 * (only needed where AN bit is set in mmds) 727 * @test_alive: Test that PHY is 'alive' (online) 728 * @test_name: Get the name of a PHY-specific test/result 729 * @run_tests: Run tests and record results as appropriate (offline). 730 * Flags are the ethtool tests flags. 731 */ 732 struct efx_phy_operations { 733 int (*probe) (struct efx_nic *efx); 734 int (*init) (struct efx_nic *efx); 735 void (*fini) (struct efx_nic *efx); 736 void (*remove) (struct efx_nic *efx); 737 int (*reconfigure) (struct efx_nic *efx); 738 bool (*poll) (struct efx_nic *efx); 739 void (*get_link_ksettings)(struct efx_nic *efx, 740 struct ethtool_link_ksettings *cmd); 741 int (*set_link_ksettings)(struct efx_nic *efx, 742 const struct ethtool_link_ksettings *cmd); 743 void (*set_npage_adv) (struct efx_nic *efx, u32); 744 int (*test_alive) (struct efx_nic *efx); 745 const char *(*test_name) (struct efx_nic *efx, unsigned int index); 746 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); 747 int (*get_module_eeprom) (struct efx_nic *efx, 748 struct ethtool_eeprom *ee, 749 u8 *data); 750 int (*get_module_info) (struct efx_nic *efx, 751 struct ethtool_modinfo *modinfo); 752 }; 753 754 /** 755 * enum efx_phy_mode - PHY operating mode flags 756 * @PHY_MODE_NORMAL: on and should pass traffic 757 * @PHY_MODE_TX_DISABLED: on with TX disabled 758 * @PHY_MODE_LOW_POWER: set to low power through MDIO 759 * @PHY_MODE_OFF: switched off through external control 760 * @PHY_MODE_SPECIAL: on but will not pass traffic 761 */ 762 enum efx_phy_mode { 763 PHY_MODE_NORMAL = 0, 764 PHY_MODE_TX_DISABLED = 1, 765 PHY_MODE_LOW_POWER = 2, 766 PHY_MODE_OFF = 4, 767 PHY_MODE_SPECIAL = 8, 768 }; 769 770 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 771 { 772 return !!(mode & ~PHY_MODE_TX_DISABLED); 773 } 774 775 /** 776 * struct efx_hw_stat_desc - Description of a hardware statistic 777 * @name: Name of the statistic as visible through ethtool, or %NULL if 778 * it should not be exposed 779 * @dma_width: Width in bits (0 for non-DMA statistics) 780 * @offset: Offset within stats (ignored for non-DMA statistics) 781 */ 782 struct efx_hw_stat_desc { 783 const char *name; 784 u16 dma_width; 785 u16 offset; 786 }; 787 788 /* Number of bits used in a multicast filter hash address */ 789 #define EFX_MCAST_HASH_BITS 8 790 791 /* Number of (single-bit) entries in a multicast filter hash */ 792 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 793 794 /* An Efx multicast filter hash */ 795 union efx_multicast_hash { 796 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 797 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 798 }; 799 800 struct vfdi_status; 801 802 /** 803 * struct efx_nic - an Efx NIC 804 * @name: Device name (net device name or bus id before net device registered) 805 * @pci_dev: The PCI device 806 * @node: List node for maintaning primary/secondary function lists 807 * @primary: &struct efx_nic instance for the primary function of this 808 * controller. May be the same structure, and may be %NULL if no 809 * primary function is bound. Serialised by rtnl_lock. 810 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 811 * functions of the controller, if this is for the primary function. 812 * Serialised by rtnl_lock. 813 * @type: Controller type attributes 814 * @legacy_irq: IRQ number 815 * @workqueue: Workqueue for port reconfigures and the HW monitor. 816 * Work items do not hold and must not acquire RTNL. 817 * @workqueue_name: Name of workqueue 818 * @reset_work: Scheduled reset workitem 819 * @membase_phys: Memory BAR value as physical address 820 * @membase: Memory BAR value 821 * @interrupt_mode: Interrupt mode 822 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 823 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds 824 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 825 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues 826 * @irq_rx_moderation_us: IRQ moderation time for RX event queues 827 * @msg_enable: Log message enable flags 828 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 829 * @reset_pending: Bitmask for pending resets 830 * @tx_queue: TX DMA queues 831 * @rx_queue: RX DMA queues 832 * @channel: Channels 833 * @msi_context: Context for each MSI 834 * @extra_channel_types: Types of extra (non-traffic) channels that 835 * should be allocated for this NIC 836 * @rxq_entries: Size of receive queues requested by user. 837 * @txq_entries: Size of transmit queues requested by user. 838 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 839 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 840 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 841 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 842 * @sram_lim_qw: Qword address limit of SRAM 843 * @next_buffer_table: First available buffer table id 844 * @n_channels: Number of channels in use 845 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 846 * @n_tx_channels: Number of channels used for TX 847 * @rx_ip_align: RX DMA address offset to have IP header aligned in 848 * in accordance with NET_IP_ALIGN 849 * @rx_dma_len: Current maximum RX DMA length 850 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 851 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 852 * for use in sk_buff::truesize 853 * @rx_prefix_size: Size of RX prefix before packet data 854 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 855 * (valid only if @rx_prefix_size != 0; always negative) 856 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 857 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 858 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 859 * (valid only if channel->sync_timestamps_enabled; always negative) 860 * @rx_hash_key: Toeplitz hash key for RSS 861 * @rx_indir_table: Indirection table for RSS 862 * @rx_scatter: Scatter mode enabled for receives 863 * @rss_active: RSS enabled on hardware 864 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled 865 * @int_error_count: Number of internal errors seen recently 866 * @int_error_expire: Time at which error count will be expired 867 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 868 * acknowledge but do nothing else. 869 * @irq_status: Interrupt status buffer 870 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 871 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 872 * @selftest_work: Work item for asynchronous self-test 873 * @mtd_list: List of MTDs attached to the NIC 874 * @nic_data: Hardware dependent state 875 * @mcdi: Management-Controller-to-Driver Interface state 876 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 877 * efx_monitor() and efx_reconfigure_port() 878 * @port_enabled: Port enabled indicator. 879 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 880 * efx_mac_work() with kernel interfaces. Safe to read under any 881 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 882 * be held to modify it. 883 * @port_initialized: Port initialized? 884 * @net_dev: Operating system network device. Consider holding the rtnl lock 885 * @fixed_features: Features which cannot be turned off 886 * @stats_buffer: DMA buffer for statistics 887 * @phy_type: PHY type 888 * @phy_op: PHY interface 889 * @phy_data: PHY private data (including PHY-specific stats) 890 * @mdio: PHY MDIO interface 891 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 892 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 893 * @link_advertising: Autonegotiation advertising flags 894 * @link_state: Current state of the link 895 * @n_link_state_changes: Number of times the link has changed state 896 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 897 * Protected by @mac_lock. 898 * @multicast_hash: Multicast hash table for Falcon-arch. 899 * Protected by @mac_lock. 900 * @wanted_fc: Wanted flow control flags 901 * @fc_disable: When non-zero flow control is disabled. Typically used to 902 * ensure that network back pressure doesn't delay dma queue flushes. 903 * Serialised by the rtnl lock. 904 * @mac_work: Work item for changing MAC promiscuity and multicast hash 905 * @loopback_mode: Loopback status 906 * @loopback_modes: Supported loopback mode bitmask 907 * @loopback_selftest: Offline self-test private state 908 * @filter_sem: Filter table rw_semaphore, for freeing the table 909 * @filter_lock: Filter table lock, for mere content changes 910 * @filter_state: Architecture-dependent filter table state 911 * @rps_expire_channel: Next channel to check for expiry 912 * @rps_expire_index: Next index to check for expiry in 913 * @rps_expire_channel's @rps_flow_id 914 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 915 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 916 * Decremented when the efx_flush_rx_queue() is called. 917 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 918 * completed (either success or failure). Not used when MCDI is used to 919 * flush receive queues. 920 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 921 * @vf_count: Number of VFs intended to be enabled. 922 * @vf_init_count: Number of VFs that have been fully initialised. 923 * @vi_scale: log2 number of vnics per VF. 924 * @ptp_data: PTP state data 925 * @vpd_sn: Serial number read from VPD 926 * @monitor_work: Hardware monitor workitem 927 * @biu_lock: BIU (bus interface unit) lock 928 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 929 * field is used by efx_test_interrupts() to verify that an 930 * interrupt has occurred. 931 * @stats_lock: Statistics update lock. Must be held when calling 932 * efx_nic_type::{update,start,stop}_stats. 933 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb 934 * 935 * This is stored in the private area of the &struct net_device. 936 */ 937 struct efx_nic { 938 /* The following fields should be written very rarely */ 939 940 char name[IFNAMSIZ]; 941 struct list_head node; 942 struct efx_nic *primary; 943 struct list_head secondary_list; 944 struct pci_dev *pci_dev; 945 unsigned int port_num; 946 const struct efx_nic_type *type; 947 int legacy_irq; 948 bool eeh_disabled_legacy_irq; 949 struct workqueue_struct *workqueue; 950 char workqueue_name[16]; 951 struct work_struct reset_work; 952 resource_size_t membase_phys; 953 void __iomem *membase; 954 955 enum efx_int_mode interrupt_mode; 956 unsigned int timer_quantum_ns; 957 unsigned int timer_max_ns; 958 bool irq_rx_adaptive; 959 unsigned int irq_mod_step_us; 960 unsigned int irq_rx_moderation_us; 961 u32 msg_enable; 962 963 enum nic_state state; 964 unsigned long reset_pending; 965 966 struct efx_channel *channel[EFX_MAX_CHANNELS]; 967 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 968 const struct efx_channel_type * 969 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 970 971 unsigned rxq_entries; 972 unsigned txq_entries; 973 unsigned int txq_stop_thresh; 974 unsigned int txq_wake_thresh; 975 976 unsigned tx_dc_base; 977 unsigned rx_dc_base; 978 unsigned sram_lim_qw; 979 unsigned next_buffer_table; 980 981 unsigned int max_channels; 982 unsigned int max_tx_channels; 983 unsigned n_channels; 984 unsigned n_rx_channels; 985 unsigned rss_spread; 986 unsigned tx_channel_offset; 987 unsigned n_tx_channels; 988 unsigned int rx_ip_align; 989 unsigned int rx_dma_len; 990 unsigned int rx_buffer_order; 991 unsigned int rx_buffer_truesize; 992 unsigned int rx_page_buf_step; 993 unsigned int rx_bufs_per_page; 994 unsigned int rx_pages_per_batch; 995 unsigned int rx_prefix_size; 996 int rx_packet_hash_offset; 997 int rx_packet_len_offset; 998 int rx_packet_ts_offset; 999 u8 rx_hash_key[40]; 1000 u32 rx_indir_table[128]; 1001 bool rx_scatter; 1002 bool rss_active; 1003 bool rx_hash_udp_4tuple; 1004 1005 unsigned int_error_count; 1006 unsigned long int_error_expire; 1007 1008 bool irq_soft_enabled; 1009 struct efx_buffer irq_status; 1010 unsigned irq_zero_count; 1011 unsigned irq_level; 1012 struct delayed_work selftest_work; 1013 1014 #ifdef CONFIG_SFC_MTD 1015 struct list_head mtd_list; 1016 #endif 1017 1018 void *nic_data; 1019 struct efx_mcdi_data *mcdi; 1020 1021 struct mutex mac_lock; 1022 struct work_struct mac_work; 1023 bool port_enabled; 1024 1025 bool mc_bist_for_other_fn; 1026 bool port_initialized; 1027 struct net_device *net_dev; 1028 1029 netdev_features_t fixed_features; 1030 1031 struct efx_buffer stats_buffer; 1032 u64 rx_nodesc_drops_total; 1033 u64 rx_nodesc_drops_while_down; 1034 bool rx_nodesc_drops_prev_state; 1035 1036 unsigned int phy_type; 1037 const struct efx_phy_operations *phy_op; 1038 void *phy_data; 1039 struct mdio_if_info mdio; 1040 unsigned int mdio_bus; 1041 enum efx_phy_mode phy_mode; 1042 1043 u32 link_advertising; 1044 struct efx_link_state link_state; 1045 unsigned int n_link_state_changes; 1046 1047 bool unicast_filter; 1048 union efx_multicast_hash multicast_hash; 1049 u8 wanted_fc; 1050 unsigned fc_disable; 1051 1052 atomic_t rx_reset; 1053 enum efx_loopback_mode loopback_mode; 1054 u64 loopback_modes; 1055 1056 void *loopback_selftest; 1057 1058 struct rw_semaphore filter_sem; 1059 spinlock_t filter_lock; 1060 void *filter_state; 1061 #ifdef CONFIG_RFS_ACCEL 1062 unsigned int rps_expire_channel; 1063 unsigned int rps_expire_index; 1064 #endif 1065 1066 atomic_t active_queues; 1067 atomic_t rxq_flush_pending; 1068 atomic_t rxq_flush_outstanding; 1069 wait_queue_head_t flush_wq; 1070 1071 #ifdef CONFIG_SFC_SRIOV 1072 unsigned vf_count; 1073 unsigned vf_init_count; 1074 unsigned vi_scale; 1075 #endif 1076 1077 struct efx_ptp_data *ptp_data; 1078 1079 char *vpd_sn; 1080 1081 /* The following fields may be written more often */ 1082 1083 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 1084 spinlock_t biu_lock; 1085 int last_irq_cpu; 1086 spinlock_t stats_lock; 1087 atomic_t n_rx_noskb_drops; 1088 }; 1089 1090 static inline int efx_dev_registered(struct efx_nic *efx) 1091 { 1092 return efx->net_dev->reg_state == NETREG_REGISTERED; 1093 } 1094 1095 static inline unsigned int efx_port_num(struct efx_nic *efx) 1096 { 1097 return efx->port_num; 1098 } 1099 1100 struct efx_mtd_partition { 1101 struct list_head node; 1102 struct mtd_info mtd; 1103 const char *dev_type_name; 1104 const char *type_name; 1105 char name[IFNAMSIZ + 20]; 1106 }; 1107 1108 /** 1109 * struct efx_nic_type - Efx device type definition 1110 * @mem_bar: Get the memory BAR 1111 * @mem_map_size: Get memory BAR mapped size 1112 * @probe: Probe the controller 1113 * @remove: Free resources allocated by probe() 1114 * @init: Initialise the controller 1115 * @dimension_resources: Dimension controller resources (buffer table, 1116 * and VIs once the available interrupt resources are clear) 1117 * @fini: Shut down the controller 1118 * @monitor: Periodic function for polling link state and hardware monitor 1119 * @map_reset_reason: Map ethtool reset reason to a reset method 1120 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 1121 * @reset: Reset the controller hardware and possibly the PHY. This will 1122 * be called while the controller is uninitialised. 1123 * @probe_port: Probe the MAC and PHY 1124 * @remove_port: Free resources allocated by probe_port() 1125 * @handle_global_event: Handle a "global" event (may be %NULL) 1126 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 1127 * @prepare_flush: Prepare the hardware for flushing the DMA queues 1128 * (for Falcon architecture) 1129 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 1130 * architecture) 1131 * @prepare_flr: Prepare for an FLR 1132 * @finish_flr: Clean up after an FLR 1133 * @describe_stats: Describe statistics for ethtool 1134 * @update_stats: Update statistics not provided by event handling. 1135 * Either argument may be %NULL. 1136 * @start_stats: Start the regular fetching of statistics 1137 * @pull_stats: Pull stats from the NIC and wait until they arrive. 1138 * @stop_stats: Stop the regular fetching of statistics 1139 * @set_id_led: Set state of identifying LED or revert to automatic function 1140 * @push_irq_moderation: Apply interrupt moderation value 1141 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 1142 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 1143 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 1144 * to the hardware. Serialised by the mac_lock. 1145 * @check_mac_fault: Check MAC fault state. True if fault present. 1146 * @get_wol: Get WoL configuration from driver state 1147 * @set_wol: Push WoL configuration to the NIC 1148 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1149 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 1150 * expected to reset the NIC. 1151 * @test_nvram: Test validity of NVRAM contents 1152 * @mcdi_request: Send an MCDI request with the given header and SDU. 1153 * The SDU length may be any value from 0 up to the protocol- 1154 * defined maximum, but its buffer will be padded to a multiple 1155 * of 4 bytes. 1156 * @mcdi_poll_response: Test whether an MCDI response is available. 1157 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1158 * be a multiple of 4. The length may not be, but the buffer 1159 * will be padded so it is safe to round up. 1160 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1161 * return an appropriate error code for aborting any current 1162 * request; otherwise return 0. 1163 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1164 * be separately enabled after this. 1165 * @irq_test_generate: Generate a test IRQ 1166 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1167 * queue must be separately disabled before this. 1168 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1169 * a pointer to the &struct efx_msi_context for the channel. 1170 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1171 * is a pointer to the &struct efx_nic. 1172 * @tx_probe: Allocate resources for TX queue 1173 * @tx_init: Initialise TX queue on the NIC 1174 * @tx_remove: Free resources for TX queue 1175 * @tx_write: Write TX descriptors and doorbell 1176 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC 1177 * @rx_probe: Allocate resources for RX queue 1178 * @rx_init: Initialise RX queue on the NIC 1179 * @rx_remove: Free resources for RX queue 1180 * @rx_write: Write RX descriptors and doorbell 1181 * @rx_defer_refill: Generate a refill reminder event 1182 * @ev_probe: Allocate resources for event queue 1183 * @ev_init: Initialise event queue on the NIC 1184 * @ev_fini: Deinitialise event queue on the NIC 1185 * @ev_remove: Free resources for event queue 1186 * @ev_process: Process events for a queue, up to the given NAPI quota 1187 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1188 * @ev_test_generate: Generate a test event 1189 * @filter_table_probe: Probe filter capabilities and set up filter software state 1190 * @filter_table_restore: Restore filters removed from hardware 1191 * @filter_table_remove: Remove filters from hardware and tear down software state 1192 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1193 * @filter_insert: add or replace a filter 1194 * @filter_remove_safe: remove a filter by ID, carefully 1195 * @filter_get_safe: retrieve a filter by ID, carefully 1196 * @filter_clear_rx: Remove all RX filters whose priority is less than or 1197 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO 1198 * @filter_count_rx_used: Get the number of filters in use at a given priority 1199 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1200 * @filter_get_rx_ids: Get list of RX filters at a given priority 1201 * @filter_rfs_insert: Add or replace a filter for RFS. This must be 1202 * atomic. The hardware change may be asynchronous but should 1203 * not be delayed for long. It may fail if this can't be done 1204 * atomically. 1205 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1206 * This must check whether the specified table entry is used by RFS 1207 * and that rps_may_expire_flow() returns true for it. 1208 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1209 * using efx_mtd_add() 1210 * @mtd_rename: Set an MTD partition name using the net device name 1211 * @mtd_read: Read from an MTD partition 1212 * @mtd_erase: Erase part of an MTD partition 1213 * @mtd_write: Write to an MTD partition 1214 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1215 * also notifies the driver that a writer has finished using this 1216 * partition. 1217 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1218 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1219 * timestamping, possibly only temporarily for the purposes of a reset. 1220 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1221 * and tx_type will already have been validated but this operation 1222 * must validate and update rx_filter. 1223 * @set_mac_address: Set the MAC address of the device 1224 * @tso_versions: Returns mask of firmware-assisted TSO versions supported. 1225 * If %NULL, then device does not support any TSO version. 1226 * @revision: Hardware architecture revision 1227 * @txd_ptr_tbl_base: TX descriptor ring base address 1228 * @rxd_ptr_tbl_base: RX descriptor ring base address 1229 * @buf_tbl_base: Buffer table base address 1230 * @evq_ptr_tbl_base: Event queue pointer table base address 1231 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1232 * @max_dma_mask: Maximum possible DMA mask 1233 * @rx_prefix_size: Size of RX prefix before packet data 1234 * @rx_hash_offset: Offset of RX flow hash within prefix 1235 * @rx_ts_offset: Offset of timestamp within prefix 1236 * @rx_buffer_padding: Size of padding at end of RX packet 1237 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1238 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1239 * @max_interrupt_mode: Highest capability interrupt mode supported 1240 * from &enum efx_init_mode. 1241 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1242 * @offload_features: net_device feature flags for protocol offload 1243 * features implemented in hardware 1244 * @mcdi_max_ver: Maximum MCDI version supported 1245 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1246 */ 1247 struct efx_nic_type { 1248 bool is_vf; 1249 unsigned int mem_bar; 1250 unsigned int (*mem_map_size)(struct efx_nic *efx); 1251 int (*probe)(struct efx_nic *efx); 1252 void (*remove)(struct efx_nic *efx); 1253 int (*init)(struct efx_nic *efx); 1254 int (*dimension_resources)(struct efx_nic *efx); 1255 void (*fini)(struct efx_nic *efx); 1256 void (*monitor)(struct efx_nic *efx); 1257 enum reset_type (*map_reset_reason)(enum reset_type reason); 1258 int (*map_reset_flags)(u32 *flags); 1259 int (*reset)(struct efx_nic *efx, enum reset_type method); 1260 int (*probe_port)(struct efx_nic *efx); 1261 void (*remove_port)(struct efx_nic *efx); 1262 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1263 int (*fini_dmaq)(struct efx_nic *efx); 1264 void (*prepare_flush)(struct efx_nic *efx); 1265 void (*finish_flush)(struct efx_nic *efx); 1266 void (*prepare_flr)(struct efx_nic *efx); 1267 void (*finish_flr)(struct efx_nic *efx); 1268 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1269 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1270 struct rtnl_link_stats64 *core_stats); 1271 void (*start_stats)(struct efx_nic *efx); 1272 void (*pull_stats)(struct efx_nic *efx); 1273 void (*stop_stats)(struct efx_nic *efx); 1274 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); 1275 void (*push_irq_moderation)(struct efx_channel *channel); 1276 int (*reconfigure_port)(struct efx_nic *efx); 1277 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1278 int (*reconfigure_mac)(struct efx_nic *efx); 1279 bool (*check_mac_fault)(struct efx_nic *efx); 1280 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1281 int (*set_wol)(struct efx_nic *efx, u32 type); 1282 void (*resume_wol)(struct efx_nic *efx); 1283 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1284 int (*test_nvram)(struct efx_nic *efx); 1285 void (*mcdi_request)(struct efx_nic *efx, 1286 const efx_dword_t *hdr, size_t hdr_len, 1287 const efx_dword_t *sdu, size_t sdu_len); 1288 bool (*mcdi_poll_response)(struct efx_nic *efx); 1289 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1290 size_t pdu_offset, size_t pdu_len); 1291 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1292 void (*mcdi_reboot_detected)(struct efx_nic *efx); 1293 void (*irq_enable_master)(struct efx_nic *efx); 1294 int (*irq_test_generate)(struct efx_nic *efx); 1295 void (*irq_disable_non_ev)(struct efx_nic *efx); 1296 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1297 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1298 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1299 void (*tx_init)(struct efx_tx_queue *tx_queue); 1300 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1301 void (*tx_write)(struct efx_tx_queue *tx_queue); 1302 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue, 1303 dma_addr_t dma_addr, unsigned int len); 1304 int (*rx_push_rss_config)(struct efx_nic *efx, bool user, 1305 const u32 *rx_indir_table); 1306 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1307 void (*rx_init)(struct efx_rx_queue *rx_queue); 1308 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1309 void (*rx_write)(struct efx_rx_queue *rx_queue); 1310 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1311 int (*ev_probe)(struct efx_channel *channel); 1312 int (*ev_init)(struct efx_channel *channel); 1313 void (*ev_fini)(struct efx_channel *channel); 1314 void (*ev_remove)(struct efx_channel *channel); 1315 int (*ev_process)(struct efx_channel *channel, int quota); 1316 void (*ev_read_ack)(struct efx_channel *channel); 1317 void (*ev_test_generate)(struct efx_channel *channel); 1318 int (*filter_table_probe)(struct efx_nic *efx); 1319 void (*filter_table_restore)(struct efx_nic *efx); 1320 void (*filter_table_remove)(struct efx_nic *efx); 1321 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1322 s32 (*filter_insert)(struct efx_nic *efx, 1323 struct efx_filter_spec *spec, bool replace); 1324 int (*filter_remove_safe)(struct efx_nic *efx, 1325 enum efx_filter_priority priority, 1326 u32 filter_id); 1327 int (*filter_get_safe)(struct efx_nic *efx, 1328 enum efx_filter_priority priority, 1329 u32 filter_id, struct efx_filter_spec *); 1330 int (*filter_clear_rx)(struct efx_nic *efx, 1331 enum efx_filter_priority priority); 1332 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1333 enum efx_filter_priority priority); 1334 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1335 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1336 enum efx_filter_priority priority, 1337 u32 *buf, u32 size); 1338 #ifdef CONFIG_RFS_ACCEL 1339 s32 (*filter_rfs_insert)(struct efx_nic *efx, 1340 struct efx_filter_spec *spec); 1341 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1342 unsigned int index); 1343 #endif 1344 #ifdef CONFIG_SFC_MTD 1345 int (*mtd_probe)(struct efx_nic *efx); 1346 void (*mtd_rename)(struct efx_mtd_partition *part); 1347 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1348 size_t *retlen, u8 *buffer); 1349 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1350 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1351 size_t *retlen, const u8 *buffer); 1352 int (*mtd_sync)(struct mtd_info *mtd); 1353 #endif 1354 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1355 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1356 int (*ptp_set_ts_config)(struct efx_nic *efx, 1357 struct hwtstamp_config *init); 1358 int (*sriov_configure)(struct efx_nic *efx, int num_vfs); 1359 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1360 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1361 int (*sriov_init)(struct efx_nic *efx); 1362 void (*sriov_fini)(struct efx_nic *efx); 1363 bool (*sriov_wanted)(struct efx_nic *efx); 1364 void (*sriov_reset)(struct efx_nic *efx); 1365 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i); 1366 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac); 1367 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan, 1368 u8 qos); 1369 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i, 1370 bool spoofchk); 1371 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i, 1372 struct ifla_vf_info *ivi); 1373 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i, 1374 int link_state); 1375 int (*sriov_get_phys_port_id)(struct efx_nic *efx, 1376 struct netdev_phys_item_id *ppid); 1377 int (*vswitching_probe)(struct efx_nic *efx); 1378 int (*vswitching_restore)(struct efx_nic *efx); 1379 void (*vswitching_remove)(struct efx_nic *efx); 1380 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr); 1381 int (*set_mac_address)(struct efx_nic *efx); 1382 u32 (*tso_versions)(struct efx_nic *efx); 1383 1384 int revision; 1385 unsigned int txd_ptr_tbl_base; 1386 unsigned int rxd_ptr_tbl_base; 1387 unsigned int buf_tbl_base; 1388 unsigned int evq_ptr_tbl_base; 1389 unsigned int evq_rptr_tbl_base; 1390 u64 max_dma_mask; 1391 unsigned int rx_prefix_size; 1392 unsigned int rx_hash_offset; 1393 unsigned int rx_ts_offset; 1394 unsigned int rx_buffer_padding; 1395 bool can_rx_scatter; 1396 bool always_rx_scatter; 1397 unsigned int max_interrupt_mode; 1398 unsigned int timer_period_max; 1399 netdev_features_t offload_features; 1400 int mcdi_max_ver; 1401 unsigned int max_rx_ip_filters; 1402 u32 hwtstamp_filters; 1403 }; 1404 1405 /************************************************************************** 1406 * 1407 * Prototypes and inline functions 1408 * 1409 *************************************************************************/ 1410 1411 static inline struct efx_channel * 1412 efx_get_channel(struct efx_nic *efx, unsigned index) 1413 { 1414 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels); 1415 return efx->channel[index]; 1416 } 1417 1418 /* Iterate over all used channels */ 1419 #define efx_for_each_channel(_channel, _efx) \ 1420 for (_channel = (_efx)->channel[0]; \ 1421 _channel; \ 1422 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1423 (_efx)->channel[_channel->channel + 1] : NULL) 1424 1425 /* Iterate over all used channels in reverse */ 1426 #define efx_for_each_channel_rev(_channel, _efx) \ 1427 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1428 _channel; \ 1429 _channel = _channel->channel ? \ 1430 (_efx)->channel[_channel->channel - 1] : NULL) 1431 1432 static inline struct efx_tx_queue * 1433 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type) 1434 { 1435 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels || 1436 type >= EFX_TXQ_TYPES); 1437 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type]; 1438 } 1439 1440 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1441 { 1442 return channel->channel - channel->efx->tx_channel_offset < 1443 channel->efx->n_tx_channels; 1444 } 1445 1446 static inline struct efx_tx_queue * 1447 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type) 1448 { 1449 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_tx_queues(channel) || 1450 type >= EFX_TXQ_TYPES); 1451 return &channel->tx_queue[type]; 1452 } 1453 1454 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue) 1455 { 1456 return !(tx_queue->efx->net_dev->num_tc < 2 && 1457 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI); 1458 } 1459 1460 /* Iterate over all TX queues belonging to a channel */ 1461 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1462 if (!efx_channel_has_tx_queues(_channel)) \ 1463 ; \ 1464 else \ 1465 for (_tx_queue = (_channel)->tx_queue; \ 1466 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \ 1467 efx_tx_queue_used(_tx_queue); \ 1468 _tx_queue++) 1469 1470 /* Iterate over all possible TX queues belonging to a channel */ 1471 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \ 1472 if (!efx_channel_has_tx_queues(_channel)) \ 1473 ; \ 1474 else \ 1475 for (_tx_queue = (_channel)->tx_queue; \ 1476 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \ 1477 _tx_queue++) 1478 1479 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1480 { 1481 return channel->rx_queue.core_index >= 0; 1482 } 1483 1484 static inline struct efx_rx_queue * 1485 efx_channel_get_rx_queue(struct efx_channel *channel) 1486 { 1487 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel)); 1488 return &channel->rx_queue; 1489 } 1490 1491 /* Iterate over all RX queues belonging to a channel */ 1492 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1493 if (!efx_channel_has_rx_queue(_channel)) \ 1494 ; \ 1495 else \ 1496 for (_rx_queue = &(_channel)->rx_queue; \ 1497 _rx_queue; \ 1498 _rx_queue = NULL) 1499 1500 static inline struct efx_channel * 1501 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1502 { 1503 return container_of(rx_queue, struct efx_channel, rx_queue); 1504 } 1505 1506 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1507 { 1508 return efx_rx_queue_channel(rx_queue)->channel; 1509 } 1510 1511 /* Returns a pointer to the specified receive buffer in the RX 1512 * descriptor queue. 1513 */ 1514 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1515 unsigned int index) 1516 { 1517 return &rx_queue->buffer[index]; 1518 } 1519 1520 /** 1521 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1522 * 1523 * This calculates the maximum frame length that will be used for a 1524 * given MTU. The frame length will be equal to the MTU plus a 1525 * constant amount of header space and padding. This is the quantity 1526 * that the net driver will program into the MAC as the maximum frame 1527 * length. 1528 * 1529 * The 10G MAC requires 8-byte alignment on the frame 1530 * length, so we round up to the nearest 8. 1531 * 1532 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1533 * XGMII cycle). If the frame length reaches the maximum value in the 1534 * same cycle, the XMAC can miss the IPG altogether. We work around 1535 * this by adding a further 16 bytes. 1536 */ 1537 #define EFX_FRAME_PAD 16 1538 #define EFX_MAX_FRAME_LEN(mtu) \ 1539 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8)) 1540 1541 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1542 { 1543 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1544 } 1545 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1546 { 1547 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1548 } 1549 1550 /* Get all supported features. 1551 * If a feature is not fixed, it is present in hw_features. 1552 * If a feature is fixed, it does not present in hw_features, but 1553 * always in features. 1554 */ 1555 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx) 1556 { 1557 const struct net_device *net_dev = efx->net_dev; 1558 1559 return net_dev->features | net_dev->hw_features; 1560 } 1561 1562 /* Get the current TX queue insert index. */ 1563 static inline unsigned int 1564 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue) 1565 { 1566 return tx_queue->insert_count & tx_queue->ptr_mask; 1567 } 1568 1569 /* Get a TX buffer. */ 1570 static inline struct efx_tx_buffer * 1571 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1572 { 1573 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)]; 1574 } 1575 1576 /* Get a TX buffer, checking it's not currently in use. */ 1577 static inline struct efx_tx_buffer * 1578 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1579 { 1580 struct efx_tx_buffer *buffer = 1581 __efx_tx_queue_get_insert_buffer(tx_queue); 1582 1583 EFX_WARN_ON_ONCE_PARANOID(buffer->len); 1584 EFX_WARN_ON_ONCE_PARANOID(buffer->flags); 1585 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len); 1586 1587 return buffer; 1588 } 1589 1590 #endif /* EFX_NET_DRIVER_H */ 1591