1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 
31 #include "enum.h"
32 #include "bitfield.h"
33 
34 /**************************************************************************
35  *
36  * Build definitions
37  *
38  **************************************************************************/
39 
40 #define EFX_DRIVER_VERSION	"3.1"
41 
42 #ifdef DEBUG
43 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
44 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
45 #else
46 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
47 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
48 #endif
49 
50 /**************************************************************************
51  *
52  * Efx data structures
53  *
54  **************************************************************************/
55 
56 #define EFX_MAX_CHANNELS 32U
57 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
58 #define EFX_EXTRA_CHANNEL_IOV	0
59 #define EFX_MAX_EXTRA_CHANNELS	1U
60 
61 /* Checksum generation is a per-queue option in hardware, so each
62  * queue visible to the networking core is backed by two hardware TX
63  * queues. */
64 #define EFX_MAX_TX_TC		2
65 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
66 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
67 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
68 #define EFX_TXQ_TYPES		4
69 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
70 
71 /**
72  * struct efx_special_buffer - An Efx special buffer
73  * @addr: CPU base address of the buffer
74  * @dma_addr: DMA base address of the buffer
75  * @len: Buffer length, in bytes
76  * @index: Buffer index within controller;s buffer table
77  * @entries: Number of buffer table entries
78  *
79  * Special buffers are used for the event queues and the TX and RX
80  * descriptor queues for each channel.  They are *not* used for the
81  * actual transmit and receive buffers.
82  */
83 struct efx_special_buffer {
84 	void *addr;
85 	dma_addr_t dma_addr;
86 	unsigned int len;
87 	unsigned int index;
88 	unsigned int entries;
89 };
90 
91 /**
92  * struct efx_tx_buffer - An Efx TX buffer
93  * @skb: The associated socket buffer.
94  *	Set only on the final fragment of a packet; %NULL for all other
95  *	fragments.  When this fragment completes, then we can free this
96  *	skb.
97  * @tsoh: The associated TSO header structure, or %NULL if this
98  *	buffer is not a TSO header.
99  * @dma_addr: DMA address of the fragment.
100  * @len: Length of this fragment.
101  *	This field is zero when the queue slot is empty.
102  * @continuation: True if this fragment is not the end of a packet.
103  * @unmap_single: True if pci_unmap_single should be used.
104  * @unmap_len: Length of this fragment to unmap
105  */
106 struct efx_tx_buffer {
107 	const struct sk_buff *skb;
108 	struct efx_tso_header *tsoh;
109 	dma_addr_t dma_addr;
110 	unsigned short len;
111 	bool continuation;
112 	bool unmap_single;
113 	unsigned short unmap_len;
114 };
115 
116 /**
117  * struct efx_tx_queue - An Efx TX queue
118  *
119  * This is a ring buffer of TX fragments.
120  * Since the TX completion path always executes on the same
121  * CPU and the xmit path can operate on different CPUs,
122  * performance is increased by ensuring that the completion
123  * path and the xmit path operate on different cache lines.
124  * This is particularly important if the xmit path is always
125  * executing on one CPU which is different from the completion
126  * path.  There is also a cache line for members which are
127  * read but not written on the fast path.
128  *
129  * @efx: The associated Efx NIC
130  * @queue: DMA queue number
131  * @channel: The associated channel
132  * @core_txq: The networking core TX queue structure
133  * @buffer: The software buffer ring
134  * @txd: The hardware descriptor ring
135  * @ptr_mask: The size of the ring minus 1.
136  * @initialised: Has hardware queue been initialised?
137  * @read_count: Current read pointer.
138  *	This is the number of buffers that have been removed from both rings.
139  * @old_write_count: The value of @write_count when last checked.
140  *	This is here for performance reasons.  The xmit path will
141  *	only get the up-to-date value of @write_count if this
142  *	variable indicates that the queue is empty.  This is to
143  *	avoid cache-line ping-pong between the xmit path and the
144  *	completion path.
145  * @insert_count: Current insert pointer
146  *	This is the number of buffers that have been added to the
147  *	software ring.
148  * @write_count: Current write pointer
149  *	This is the number of buffers that have been added to the
150  *	hardware ring.
151  * @old_read_count: The value of read_count when last checked.
152  *	This is here for performance reasons.  The xmit path will
153  *	only get the up-to-date value of read_count if this
154  *	variable indicates that the queue is full.  This is to
155  *	avoid cache-line ping-pong between the xmit path and the
156  *	completion path.
157  * @tso_headers_free: A list of TSO headers allocated for this TX queue
158  *	that are not in use, and so available for new TSO sends. The list
159  *	is protected by the TX queue lock.
160  * @tso_bursts: Number of times TSO xmit invoked by kernel
161  * @tso_long_headers: Number of packets with headers too long for standard
162  *	blocks
163  * @tso_packets: Number of packets via the TSO xmit path
164  * @pushes: Number of times the TX push feature has been used
165  * @empty_read_count: If the completion path has seen the queue as empty
166  *	and the transmission path has not yet checked this, the value of
167  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
168  */
169 struct efx_tx_queue {
170 	/* Members which don't change on the fast path */
171 	struct efx_nic *efx ____cacheline_aligned_in_smp;
172 	unsigned queue;
173 	struct efx_channel *channel;
174 	struct netdev_queue *core_txq;
175 	struct efx_tx_buffer *buffer;
176 	struct efx_special_buffer txd;
177 	unsigned int ptr_mask;
178 	bool initialised;
179 
180 	/* Members used mainly on the completion path */
181 	unsigned int read_count ____cacheline_aligned_in_smp;
182 	unsigned int old_write_count;
183 
184 	/* Members used only on the xmit path */
185 	unsigned int insert_count ____cacheline_aligned_in_smp;
186 	unsigned int write_count;
187 	unsigned int old_read_count;
188 	struct efx_tso_header *tso_headers_free;
189 	unsigned int tso_bursts;
190 	unsigned int tso_long_headers;
191 	unsigned int tso_packets;
192 	unsigned int pushes;
193 
194 	/* Members shared between paths and sometimes updated */
195 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
196 #define EFX_EMPTY_COUNT_VALID 0x80000000
197 };
198 
199 /**
200  * struct efx_rx_buffer - An Efx RX data buffer
201  * @dma_addr: DMA base address of the buffer
202  * @skb: The associated socket buffer. Valid iff !(@flags & %EFX_RX_BUF_PAGE).
203  *	Will be %NULL if the buffer slot is currently free.
204  * @page: The associated page buffer. Valif iff @flags & %EFX_RX_BUF_PAGE.
205  *	Will be %NULL if the buffer slot is currently free.
206  * @len: Buffer length, in bytes.
207  * @flags: Flags for buffer and packet state.
208  */
209 struct efx_rx_buffer {
210 	dma_addr_t dma_addr;
211 	union {
212 		struct sk_buff *skb;
213 		struct page *page;
214 	} u;
215 	unsigned int len;
216 	u16 flags;
217 };
218 #define EFX_RX_BUF_PAGE		0x0001
219 #define EFX_RX_PKT_CSUMMED	0x0002
220 #define EFX_RX_PKT_DISCARD	0x0004
221 
222 /**
223  * struct efx_rx_page_state - Page-based rx buffer state
224  *
225  * Inserted at the start of every page allocated for receive buffers.
226  * Used to facilitate sharing dma mappings between recycled rx buffers
227  * and those passed up to the kernel.
228  *
229  * @refcnt: Number of struct efx_rx_buffer's referencing this page.
230  *	When refcnt falls to zero, the page is unmapped for dma
231  * @dma_addr: The dma address of this page.
232  */
233 struct efx_rx_page_state {
234 	unsigned refcnt;
235 	dma_addr_t dma_addr;
236 
237 	unsigned int __pad[0] ____cacheline_aligned;
238 };
239 
240 /**
241  * struct efx_rx_queue - An Efx RX queue
242  * @efx: The associated Efx NIC
243  * @buffer: The software buffer ring
244  * @rxd: The hardware descriptor ring
245  * @ptr_mask: The size of the ring minus 1.
246  * @enabled: Receive queue enabled indicator.
247  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
248  *	@rxq_flush_pending.
249  * @added_count: Number of buffers added to the receive queue.
250  * @notified_count: Number of buffers given to NIC (<= @added_count).
251  * @removed_count: Number of buffers removed from the receive queue.
252  * @max_fill: RX descriptor maximum fill level (<= ring size)
253  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
254  *	(<= @max_fill)
255  * @fast_fill_limit: The level to which a fast fill will fill
256  *	(@fast_fill_trigger <= @fast_fill_limit <= @max_fill)
257  * @min_fill: RX descriptor minimum non-zero fill level.
258  *	This records the minimum fill level observed when a ring
259  *	refill was triggered.
260  * @alloc_page_count: RX allocation strategy counter.
261  * @alloc_skb_count: RX allocation strategy counter.
262  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
263  */
264 struct efx_rx_queue {
265 	struct efx_nic *efx;
266 	struct efx_rx_buffer *buffer;
267 	struct efx_special_buffer rxd;
268 	unsigned int ptr_mask;
269 	bool enabled;
270 	bool flush_pending;
271 
272 	int added_count;
273 	int notified_count;
274 	int removed_count;
275 	unsigned int max_fill;
276 	unsigned int fast_fill_trigger;
277 	unsigned int fast_fill_limit;
278 	unsigned int min_fill;
279 	unsigned int min_overfill;
280 	unsigned int alloc_page_count;
281 	unsigned int alloc_skb_count;
282 	struct timer_list slow_fill;
283 	unsigned int slow_fill_count;
284 };
285 
286 /**
287  * struct efx_buffer - An Efx general-purpose buffer
288  * @addr: host base address of the buffer
289  * @dma_addr: DMA base address of the buffer
290  * @len: Buffer length, in bytes
291  *
292  * The NIC uses these buffers for its interrupt status registers and
293  * MAC stats dumps.
294  */
295 struct efx_buffer {
296 	void *addr;
297 	dma_addr_t dma_addr;
298 	unsigned int len;
299 };
300 
301 
302 enum efx_rx_alloc_method {
303 	RX_ALLOC_METHOD_AUTO = 0,
304 	RX_ALLOC_METHOD_SKB = 1,
305 	RX_ALLOC_METHOD_PAGE = 2,
306 };
307 
308 /**
309  * struct efx_channel - An Efx channel
310  *
311  * A channel comprises an event queue, at least one TX queue, at least
312  * one RX queue, and an associated tasklet for processing the event
313  * queue.
314  *
315  * @efx: Associated Efx NIC
316  * @channel: Channel instance number
317  * @type: Channel type definition
318  * @enabled: Channel enabled indicator
319  * @irq: IRQ number (MSI and MSI-X only)
320  * @irq_moderation: IRQ moderation value (in hardware ticks)
321  * @napi_dev: Net device used with NAPI
322  * @napi_str: NAPI control structure
323  * @work_pending: Is work pending via NAPI?
324  * @eventq: Event queue buffer
325  * @eventq_mask: Event queue pointer mask
326  * @eventq_read_ptr: Event queue read pointer
327  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
328  * @irq_count: Number of IRQs since last adaptive moderation decision
329  * @irq_mod_score: IRQ moderation score
330  * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
331  *	and diagnostic counters
332  * @rx_alloc_push_pages: RX allocation method currently in use for pushing
333  *	descriptors
334  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
335  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
336  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
337  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
338  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
339  * @n_rx_overlength: Count of RX_OVERLENGTH errors
340  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
341  * @rx_queue: RX queue for this channel
342  * @tx_queue: TX queues for this channel
343  */
344 struct efx_channel {
345 	struct efx_nic *efx;
346 	int channel;
347 	const struct efx_channel_type *type;
348 	bool enabled;
349 	int irq;
350 	unsigned int irq_moderation;
351 	struct net_device *napi_dev;
352 	struct napi_struct napi_str;
353 	bool work_pending;
354 	struct efx_special_buffer eventq;
355 	unsigned int eventq_mask;
356 	unsigned int eventq_read_ptr;
357 	int event_test_cpu;
358 
359 	unsigned int irq_count;
360 	unsigned int irq_mod_score;
361 #ifdef CONFIG_RFS_ACCEL
362 	unsigned int rfs_filters_added;
363 #endif
364 
365 	int rx_alloc_level;
366 	int rx_alloc_push_pages;
367 
368 	unsigned n_rx_tobe_disc;
369 	unsigned n_rx_ip_hdr_chksum_err;
370 	unsigned n_rx_tcp_udp_chksum_err;
371 	unsigned n_rx_mcast_mismatch;
372 	unsigned n_rx_frm_trunc;
373 	unsigned n_rx_overlength;
374 	unsigned n_skbuff_leaks;
375 
376 	/* Used to pipeline received packets in order to optimise memory
377 	 * access with prefetches.
378 	 */
379 	struct efx_rx_buffer *rx_pkt;
380 
381 	struct efx_rx_queue rx_queue;
382 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
383 };
384 
385 /**
386  * struct efx_channel_type - distinguishes traffic and extra channels
387  * @handle_no_channel: Handle failure to allocate an extra channel
388  * @pre_probe: Set up extra state prior to initialisation
389  * @post_remove: Tear down extra state after finalisation, if allocated.
390  *	May be called on channels that have not been probed.
391  * @get_name: Generate the channel's name (used for its IRQ handler)
392  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
393  *	reallocation is not supported.
394  * @keep_eventq: Flag for whether event queue should be kept initialised
395  *	while the device is stopped
396  */
397 struct efx_channel_type {
398 	void (*handle_no_channel)(struct efx_nic *);
399 	int (*pre_probe)(struct efx_channel *);
400 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
401 	struct efx_channel *(*copy)(const struct efx_channel *);
402 	bool keep_eventq;
403 };
404 
405 enum efx_led_mode {
406 	EFX_LED_OFF	= 0,
407 	EFX_LED_ON	= 1,
408 	EFX_LED_DEFAULT	= 2
409 };
410 
411 #define STRING_TABLE_LOOKUP(val, member) \
412 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
413 
414 extern const char *const efx_loopback_mode_names[];
415 extern const unsigned int efx_loopback_mode_max;
416 #define LOOPBACK_MODE(efx) \
417 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
418 
419 extern const char *const efx_reset_type_names[];
420 extern const unsigned int efx_reset_type_max;
421 #define RESET_TYPE(type) \
422 	STRING_TABLE_LOOKUP(type, efx_reset_type)
423 
424 enum efx_int_mode {
425 	/* Be careful if altering to correct macro below */
426 	EFX_INT_MODE_MSIX = 0,
427 	EFX_INT_MODE_MSI = 1,
428 	EFX_INT_MODE_LEGACY = 2,
429 	EFX_INT_MODE_MAX	/* Insert any new items before this */
430 };
431 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
432 
433 enum nic_state {
434 	STATE_INIT = 0,
435 	STATE_RUNNING = 1,
436 	STATE_FINI = 2,
437 	STATE_DISABLED = 3,
438 	STATE_MAX,
439 };
440 
441 /*
442  * Alignment of page-allocated RX buffers
443  *
444  * Controls the number of bytes inserted at the start of an RX buffer.
445  * This is the equivalent of NET_IP_ALIGN [which controls the alignment
446  * of the skb->head for hardware DMA].
447  */
448 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
449 #define EFX_PAGE_IP_ALIGN 0
450 #else
451 #define EFX_PAGE_IP_ALIGN NET_IP_ALIGN
452 #endif
453 
454 /*
455  * Alignment of the skb->head which wraps a page-allocated RX buffer
456  *
457  * The skb allocated to wrap an rx_buffer can have this alignment. Since
458  * the data is memcpy'd from the rx_buf, it does not need to be equal to
459  * EFX_PAGE_IP_ALIGN.
460  */
461 #define EFX_PAGE_SKB_ALIGN 2
462 
463 /* Forward declaration */
464 struct efx_nic;
465 
466 /* Pseudo bit-mask flow control field */
467 #define EFX_FC_RX	FLOW_CTRL_RX
468 #define EFX_FC_TX	FLOW_CTRL_TX
469 #define EFX_FC_AUTO	4
470 
471 /**
472  * struct efx_link_state - Current state of the link
473  * @up: Link is up
474  * @fd: Link is full-duplex
475  * @fc: Actual flow control flags
476  * @speed: Link speed (Mbps)
477  */
478 struct efx_link_state {
479 	bool up;
480 	bool fd;
481 	u8 fc;
482 	unsigned int speed;
483 };
484 
485 static inline bool efx_link_state_equal(const struct efx_link_state *left,
486 					const struct efx_link_state *right)
487 {
488 	return left->up == right->up && left->fd == right->fd &&
489 		left->fc == right->fc && left->speed == right->speed;
490 }
491 
492 /**
493  * struct efx_phy_operations - Efx PHY operations table
494  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
495  *	efx->loopback_modes.
496  * @init: Initialise PHY
497  * @fini: Shut down PHY
498  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
499  * @poll: Update @link_state and report whether it changed.
500  *	Serialised by the mac_lock.
501  * @get_settings: Get ethtool settings. Serialised by the mac_lock.
502  * @set_settings: Set ethtool settings. Serialised by the mac_lock.
503  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
504  *	(only needed where AN bit is set in mmds)
505  * @test_alive: Test that PHY is 'alive' (online)
506  * @test_name: Get the name of a PHY-specific test/result
507  * @run_tests: Run tests and record results as appropriate (offline).
508  *	Flags are the ethtool tests flags.
509  */
510 struct efx_phy_operations {
511 	int (*probe) (struct efx_nic *efx);
512 	int (*init) (struct efx_nic *efx);
513 	void (*fini) (struct efx_nic *efx);
514 	void (*remove) (struct efx_nic *efx);
515 	int (*reconfigure) (struct efx_nic *efx);
516 	bool (*poll) (struct efx_nic *efx);
517 	void (*get_settings) (struct efx_nic *efx,
518 			      struct ethtool_cmd *ecmd);
519 	int (*set_settings) (struct efx_nic *efx,
520 			     struct ethtool_cmd *ecmd);
521 	void (*set_npage_adv) (struct efx_nic *efx, u32);
522 	int (*test_alive) (struct efx_nic *efx);
523 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
524 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
525 };
526 
527 /**
528  * @enum efx_phy_mode - PHY operating mode flags
529  * @PHY_MODE_NORMAL: on and should pass traffic
530  * @PHY_MODE_TX_DISABLED: on with TX disabled
531  * @PHY_MODE_LOW_POWER: set to low power through MDIO
532  * @PHY_MODE_OFF: switched off through external control
533  * @PHY_MODE_SPECIAL: on but will not pass traffic
534  */
535 enum efx_phy_mode {
536 	PHY_MODE_NORMAL		= 0,
537 	PHY_MODE_TX_DISABLED	= 1,
538 	PHY_MODE_LOW_POWER	= 2,
539 	PHY_MODE_OFF		= 4,
540 	PHY_MODE_SPECIAL	= 8,
541 };
542 
543 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
544 {
545 	return !!(mode & ~PHY_MODE_TX_DISABLED);
546 }
547 
548 /*
549  * Efx extended statistics
550  *
551  * Not all statistics are provided by all supported MACs.  The purpose
552  * is this structure is to contain the raw statistics provided by each
553  * MAC.
554  */
555 struct efx_mac_stats {
556 	u64 tx_bytes;
557 	u64 tx_good_bytes;
558 	u64 tx_bad_bytes;
559 	u64 tx_packets;
560 	u64 tx_bad;
561 	u64 tx_pause;
562 	u64 tx_control;
563 	u64 tx_unicast;
564 	u64 tx_multicast;
565 	u64 tx_broadcast;
566 	u64 tx_lt64;
567 	u64 tx_64;
568 	u64 tx_65_to_127;
569 	u64 tx_128_to_255;
570 	u64 tx_256_to_511;
571 	u64 tx_512_to_1023;
572 	u64 tx_1024_to_15xx;
573 	u64 tx_15xx_to_jumbo;
574 	u64 tx_gtjumbo;
575 	u64 tx_collision;
576 	u64 tx_single_collision;
577 	u64 tx_multiple_collision;
578 	u64 tx_excessive_collision;
579 	u64 tx_deferred;
580 	u64 tx_late_collision;
581 	u64 tx_excessive_deferred;
582 	u64 tx_non_tcpudp;
583 	u64 tx_mac_src_error;
584 	u64 tx_ip_src_error;
585 	u64 rx_bytes;
586 	u64 rx_good_bytes;
587 	u64 rx_bad_bytes;
588 	u64 rx_packets;
589 	u64 rx_good;
590 	u64 rx_bad;
591 	u64 rx_pause;
592 	u64 rx_control;
593 	u64 rx_unicast;
594 	u64 rx_multicast;
595 	u64 rx_broadcast;
596 	u64 rx_lt64;
597 	u64 rx_64;
598 	u64 rx_65_to_127;
599 	u64 rx_128_to_255;
600 	u64 rx_256_to_511;
601 	u64 rx_512_to_1023;
602 	u64 rx_1024_to_15xx;
603 	u64 rx_15xx_to_jumbo;
604 	u64 rx_gtjumbo;
605 	u64 rx_bad_lt64;
606 	u64 rx_bad_64_to_15xx;
607 	u64 rx_bad_15xx_to_jumbo;
608 	u64 rx_bad_gtjumbo;
609 	u64 rx_overflow;
610 	u64 rx_missed;
611 	u64 rx_false_carrier;
612 	u64 rx_symbol_error;
613 	u64 rx_align_error;
614 	u64 rx_length_error;
615 	u64 rx_internal_error;
616 	u64 rx_good_lt64;
617 };
618 
619 /* Number of bits used in a multicast filter hash address */
620 #define EFX_MCAST_HASH_BITS 8
621 
622 /* Number of (single-bit) entries in a multicast filter hash */
623 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
624 
625 /* An Efx multicast filter hash */
626 union efx_multicast_hash {
627 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
628 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
629 };
630 
631 struct efx_filter_state;
632 struct efx_vf;
633 struct vfdi_status;
634 
635 /**
636  * struct efx_nic - an Efx NIC
637  * @name: Device name (net device name or bus id before net device registered)
638  * @pci_dev: The PCI device
639  * @type: Controller type attributes
640  * @legacy_irq: IRQ number
641  * @legacy_irq_enabled: Are IRQs enabled on NIC (INT_EN_KER register)?
642  * @workqueue: Workqueue for port reconfigures and the HW monitor.
643  *	Work items do not hold and must not acquire RTNL.
644  * @workqueue_name: Name of workqueue
645  * @reset_work: Scheduled reset workitem
646  * @membase_phys: Memory BAR value as physical address
647  * @membase: Memory BAR value
648  * @interrupt_mode: Interrupt mode
649  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
650  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
651  * @irq_rx_moderation: IRQ moderation time for RX event queues
652  * @msg_enable: Log message enable flags
653  * @state: Device state flag. Serialised by the rtnl_lock.
654  * @reset_pending: Bitmask for pending resets
655  * @tx_queue: TX DMA queues
656  * @rx_queue: RX DMA queues
657  * @channel: Channels
658  * @channel_name: Names for channels and their IRQs
659  * @extra_channel_types: Types of extra (non-traffic) channels that
660  *	should be allocated for this NIC
661  * @rxq_entries: Size of receive queues requested by user.
662  * @txq_entries: Size of transmit queues requested by user.
663  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
664  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
665  * @sram_lim_qw: Qword address limit of SRAM
666  * @next_buffer_table: First available buffer table id
667  * @n_channels: Number of channels in use
668  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
669  * @n_tx_channels: Number of channels used for TX
670  * @rx_buffer_len: RX buffer length
671  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
672  * @rx_hash_key: Toeplitz hash key for RSS
673  * @rx_indir_table: Indirection table for RSS
674  * @int_error_count: Number of internal errors seen recently
675  * @int_error_expire: Time at which error count will be expired
676  * @irq_status: Interrupt status buffer
677  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
678  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
679  * @selftest_work: Work item for asynchronous self-test
680  * @mtd_list: List of MTDs attached to the NIC
681  * @nic_data: Hardware dependent state
682  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
683  *	efx_monitor() and efx_reconfigure_port()
684  * @port_enabled: Port enabled indicator.
685  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
686  *	efx_mac_work() with kernel interfaces. Safe to read under any
687  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
688  *	be held to modify it.
689  * @port_initialized: Port initialized?
690  * @net_dev: Operating system network device. Consider holding the rtnl lock
691  * @stats_buffer: DMA buffer for statistics
692  * @phy_type: PHY type
693  * @phy_op: PHY interface
694  * @phy_data: PHY private data (including PHY-specific stats)
695  * @mdio: PHY MDIO interface
696  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
697  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
698  * @link_advertising: Autonegotiation advertising flags
699  * @link_state: Current state of the link
700  * @n_link_state_changes: Number of times the link has changed state
701  * @promiscuous: Promiscuous flag. Protected by netif_tx_lock.
702  * @multicast_hash: Multicast hash table
703  * @wanted_fc: Wanted flow control flags
704  * @fc_disable: When non-zero flow control is disabled. Typically used to
705  *	ensure that network back pressure doesn't delay dma queue flushes.
706  *	Serialised by the rtnl lock.
707  * @mac_work: Work item for changing MAC promiscuity and multicast hash
708  * @loopback_mode: Loopback status
709  * @loopback_modes: Supported loopback mode bitmask
710  * @loopback_selftest: Offline self-test private state
711  * @drain_pending: Count of RX and TX queues that haven't been flushed and drained.
712  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
713  *	Decremented when the efx_flush_rx_queue() is called.
714  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
715  *	completed (either success or failure). Not used when MCDI is used to
716  *	flush receive queues.
717  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
718  * @vf: Array of &struct efx_vf objects.
719  * @vf_count: Number of VFs intended to be enabled.
720  * @vf_init_count: Number of VFs that have been fully initialised.
721  * @vi_scale: log2 number of vnics per VF.
722  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
723  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
724  * @local_addr_list: List of local addresses. Protected by %local_lock.
725  * @local_page_list: List of DMA addressable pages used to broadcast
726  *	%local_addr_list. Protected by %local_lock.
727  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
728  * @peer_work: Work item to broadcast peer addresses to VMs.
729  * @monitor_work: Hardware monitor workitem
730  * @biu_lock: BIU (bus interface unit) lock
731  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
732  *	field is used by efx_test_interrupts() to verify that an
733  *	interrupt has occurred.
734  * @n_rx_nodesc_drop_cnt: RX no descriptor drop count
735  * @mac_stats: MAC statistics. These include all statistics the MACs
736  *	can provide.  Generic code converts these into a standard
737  *	&struct net_device_stats.
738  * @stats_lock: Statistics update lock. Serialises statistics fetches
739  *	and access to @mac_stats.
740  *
741  * This is stored in the private area of the &struct net_device.
742  */
743 struct efx_nic {
744 	/* The following fields should be written very rarely */
745 
746 	char name[IFNAMSIZ];
747 	struct pci_dev *pci_dev;
748 	const struct efx_nic_type *type;
749 	int legacy_irq;
750 	bool legacy_irq_enabled;
751 	struct workqueue_struct *workqueue;
752 	char workqueue_name[16];
753 	struct work_struct reset_work;
754 	resource_size_t membase_phys;
755 	void __iomem *membase;
756 
757 	enum efx_int_mode interrupt_mode;
758 	unsigned int timer_quantum_ns;
759 	bool irq_rx_adaptive;
760 	unsigned int irq_rx_moderation;
761 	u32 msg_enable;
762 
763 	enum nic_state state;
764 	unsigned long reset_pending;
765 
766 	struct efx_channel *channel[EFX_MAX_CHANNELS];
767 	char channel_name[EFX_MAX_CHANNELS][IFNAMSIZ + 6];
768 	const struct efx_channel_type *
769 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
770 
771 	unsigned rxq_entries;
772 	unsigned txq_entries;
773 	unsigned tx_dc_base;
774 	unsigned rx_dc_base;
775 	unsigned sram_lim_qw;
776 	unsigned next_buffer_table;
777 	unsigned n_channels;
778 	unsigned n_rx_channels;
779 	unsigned rss_spread;
780 	unsigned tx_channel_offset;
781 	unsigned n_tx_channels;
782 	unsigned int rx_buffer_len;
783 	unsigned int rx_buffer_order;
784 	u8 rx_hash_key[40];
785 	u32 rx_indir_table[128];
786 
787 	unsigned int_error_count;
788 	unsigned long int_error_expire;
789 
790 	struct efx_buffer irq_status;
791 	unsigned irq_zero_count;
792 	unsigned irq_level;
793 	struct delayed_work selftest_work;
794 
795 #ifdef CONFIG_SFC_MTD
796 	struct list_head mtd_list;
797 #endif
798 
799 	void *nic_data;
800 
801 	struct mutex mac_lock;
802 	struct work_struct mac_work;
803 	bool port_enabled;
804 
805 	bool port_initialized;
806 	struct net_device *net_dev;
807 
808 	struct efx_buffer stats_buffer;
809 
810 	unsigned int phy_type;
811 	const struct efx_phy_operations *phy_op;
812 	void *phy_data;
813 	struct mdio_if_info mdio;
814 	unsigned int mdio_bus;
815 	enum efx_phy_mode phy_mode;
816 
817 	u32 link_advertising;
818 	struct efx_link_state link_state;
819 	unsigned int n_link_state_changes;
820 
821 	bool promiscuous;
822 	union efx_multicast_hash multicast_hash;
823 	u8 wanted_fc;
824 	unsigned fc_disable;
825 
826 	atomic_t rx_reset;
827 	enum efx_loopback_mode loopback_mode;
828 	u64 loopback_modes;
829 
830 	void *loopback_selftest;
831 
832 	struct efx_filter_state *filter_state;
833 
834 	atomic_t drain_pending;
835 	atomic_t rxq_flush_pending;
836 	atomic_t rxq_flush_outstanding;
837 	wait_queue_head_t flush_wq;
838 
839 #ifdef CONFIG_SFC_SRIOV
840 	struct efx_channel *vfdi_channel;
841 	struct efx_vf *vf;
842 	unsigned vf_count;
843 	unsigned vf_init_count;
844 	unsigned vi_scale;
845 	unsigned vf_buftbl_base;
846 	struct efx_buffer vfdi_status;
847 	struct list_head local_addr_list;
848 	struct list_head local_page_list;
849 	struct mutex local_lock;
850 	struct work_struct peer_work;
851 #endif
852 
853 	/* The following fields may be written more often */
854 
855 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
856 	spinlock_t biu_lock;
857 	int last_irq_cpu;
858 	unsigned n_rx_nodesc_drop_cnt;
859 	struct efx_mac_stats mac_stats;
860 	spinlock_t stats_lock;
861 };
862 
863 static inline int efx_dev_registered(struct efx_nic *efx)
864 {
865 	return efx->net_dev->reg_state == NETREG_REGISTERED;
866 }
867 
868 static inline unsigned int efx_port_num(struct efx_nic *efx)
869 {
870 	return efx->net_dev->dev_id;
871 }
872 
873 /**
874  * struct efx_nic_type - Efx device type definition
875  * @probe: Probe the controller
876  * @remove: Free resources allocated by probe()
877  * @init: Initialise the controller
878  * @dimension_resources: Dimension controller resources (buffer table,
879  *	and VIs once the available interrupt resources are clear)
880  * @fini: Shut down the controller
881  * @monitor: Periodic function for polling link state and hardware monitor
882  * @map_reset_reason: Map ethtool reset reason to a reset method
883  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
884  * @reset: Reset the controller hardware and possibly the PHY.  This will
885  *	be called while the controller is uninitialised.
886  * @probe_port: Probe the MAC and PHY
887  * @remove_port: Free resources allocated by probe_port()
888  * @handle_global_event: Handle a "global" event (may be %NULL)
889  * @prepare_flush: Prepare the hardware for flushing the DMA queues
890  * @update_stats: Update statistics not provided by event handling
891  * @start_stats: Start the regular fetching of statistics
892  * @stop_stats: Stop the regular fetching of statistics
893  * @set_id_led: Set state of identifying LED or revert to automatic function
894  * @push_irq_moderation: Apply interrupt moderation value
895  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
896  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
897  *	to the hardware.  Serialised by the mac_lock.
898  * @check_mac_fault: Check MAC fault state. True if fault present.
899  * @get_wol: Get WoL configuration from driver state
900  * @set_wol: Push WoL configuration to the NIC
901  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
902  * @test_registers: Test read/write functionality of control registers
903  * @test_nvram: Test validity of NVRAM contents
904  * @revision: Hardware architecture revision
905  * @mem_map_size: Memory BAR mapped size
906  * @txd_ptr_tbl_base: TX descriptor ring base address
907  * @rxd_ptr_tbl_base: RX descriptor ring base address
908  * @buf_tbl_base: Buffer table base address
909  * @evq_ptr_tbl_base: Event queue pointer table base address
910  * @evq_rptr_tbl_base: Event queue read-pointer table base address
911  * @max_dma_mask: Maximum possible DMA mask
912  * @rx_buffer_hash_size: Size of hash at start of RX buffer
913  * @rx_buffer_padding: Size of padding at end of RX buffer
914  * @max_interrupt_mode: Highest capability interrupt mode supported
915  *	from &enum efx_init_mode.
916  * @phys_addr_channels: Number of channels with physically addressed
917  *	descriptors
918  * @timer_period_max: Maximum period of interrupt timer (in ticks)
919  * @offload_features: net_device feature flags for protocol offload
920  *	features implemented in hardware
921  */
922 struct efx_nic_type {
923 	int (*probe)(struct efx_nic *efx);
924 	void (*remove)(struct efx_nic *efx);
925 	int (*init)(struct efx_nic *efx);
926 	void (*dimension_resources)(struct efx_nic *efx);
927 	void (*fini)(struct efx_nic *efx);
928 	void (*monitor)(struct efx_nic *efx);
929 	enum reset_type (*map_reset_reason)(enum reset_type reason);
930 	int (*map_reset_flags)(u32 *flags);
931 	int (*reset)(struct efx_nic *efx, enum reset_type method);
932 	int (*probe_port)(struct efx_nic *efx);
933 	void (*remove_port)(struct efx_nic *efx);
934 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
935 	void (*prepare_flush)(struct efx_nic *efx);
936 	void (*update_stats)(struct efx_nic *efx);
937 	void (*start_stats)(struct efx_nic *efx);
938 	void (*stop_stats)(struct efx_nic *efx);
939 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
940 	void (*push_irq_moderation)(struct efx_channel *channel);
941 	int (*reconfigure_port)(struct efx_nic *efx);
942 	int (*reconfigure_mac)(struct efx_nic *efx);
943 	bool (*check_mac_fault)(struct efx_nic *efx);
944 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
945 	int (*set_wol)(struct efx_nic *efx, u32 type);
946 	void (*resume_wol)(struct efx_nic *efx);
947 	int (*test_registers)(struct efx_nic *efx);
948 	int (*test_nvram)(struct efx_nic *efx);
949 
950 	int revision;
951 	unsigned int mem_map_size;
952 	unsigned int txd_ptr_tbl_base;
953 	unsigned int rxd_ptr_tbl_base;
954 	unsigned int buf_tbl_base;
955 	unsigned int evq_ptr_tbl_base;
956 	unsigned int evq_rptr_tbl_base;
957 	u64 max_dma_mask;
958 	unsigned int rx_buffer_hash_size;
959 	unsigned int rx_buffer_padding;
960 	unsigned int max_interrupt_mode;
961 	unsigned int phys_addr_channels;
962 	unsigned int timer_period_max;
963 	netdev_features_t offload_features;
964 };
965 
966 /**************************************************************************
967  *
968  * Prototypes and inline functions
969  *
970  *************************************************************************/
971 
972 static inline struct efx_channel *
973 efx_get_channel(struct efx_nic *efx, unsigned index)
974 {
975 	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
976 	return efx->channel[index];
977 }
978 
979 /* Iterate over all used channels */
980 #define efx_for_each_channel(_channel, _efx)				\
981 	for (_channel = (_efx)->channel[0];				\
982 	     _channel;							\
983 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
984 		     (_efx)->channel[_channel->channel + 1] : NULL)
985 
986 /* Iterate over all used channels in reverse */
987 #define efx_for_each_channel_rev(_channel, _efx)			\
988 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
989 	     _channel;							\
990 	     _channel = _channel->channel ?				\
991 		     (_efx)->channel[_channel->channel - 1] : NULL)
992 
993 static inline struct efx_tx_queue *
994 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
995 {
996 	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
997 			    type >= EFX_TXQ_TYPES);
998 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
999 }
1000 
1001 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1002 {
1003 	return channel->channel - channel->efx->tx_channel_offset <
1004 		channel->efx->n_tx_channels;
1005 }
1006 
1007 static inline struct efx_tx_queue *
1008 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1009 {
1010 	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1011 			    type >= EFX_TXQ_TYPES);
1012 	return &channel->tx_queue[type];
1013 }
1014 
1015 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1016 {
1017 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1018 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1019 }
1020 
1021 /* Iterate over all TX queues belonging to a channel */
1022 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1023 	if (!efx_channel_has_tx_queues(_channel))			\
1024 		;							\
1025 	else								\
1026 		for (_tx_queue = (_channel)->tx_queue;			\
1027 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1028 			     efx_tx_queue_used(_tx_queue);		\
1029 		     _tx_queue++)
1030 
1031 /* Iterate over all possible TX queues belonging to a channel */
1032 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1033 	if (!efx_channel_has_tx_queues(_channel))			\
1034 		;							\
1035 	else								\
1036 		for (_tx_queue = (_channel)->tx_queue;			\
1037 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1038 		     _tx_queue++)
1039 
1040 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1041 {
1042 	return channel->channel < channel->efx->n_rx_channels;
1043 }
1044 
1045 static inline struct efx_rx_queue *
1046 efx_channel_get_rx_queue(struct efx_channel *channel)
1047 {
1048 	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1049 	return &channel->rx_queue;
1050 }
1051 
1052 /* Iterate over all RX queues belonging to a channel */
1053 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1054 	if (!efx_channel_has_rx_queue(_channel))			\
1055 		;							\
1056 	else								\
1057 		for (_rx_queue = &(_channel)->rx_queue;			\
1058 		     _rx_queue;						\
1059 		     _rx_queue = NULL)
1060 
1061 static inline struct efx_channel *
1062 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1063 {
1064 	return container_of(rx_queue, struct efx_channel, rx_queue);
1065 }
1066 
1067 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1068 {
1069 	return efx_rx_queue_channel(rx_queue)->channel;
1070 }
1071 
1072 /* Returns a pointer to the specified receive buffer in the RX
1073  * descriptor queue.
1074  */
1075 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1076 						  unsigned int index)
1077 {
1078 	return &rx_queue->buffer[index];
1079 }
1080 
1081 /* Set bit in a little-endian bitfield */
1082 static inline void set_bit_le(unsigned nr, unsigned char *addr)
1083 {
1084 	addr[nr / 8] |= (1 << (nr % 8));
1085 }
1086 
1087 /* Clear bit in a little-endian bitfield */
1088 static inline void clear_bit_le(unsigned nr, unsigned char *addr)
1089 {
1090 	addr[nr / 8] &= ~(1 << (nr % 8));
1091 }
1092 
1093 
1094 /**
1095  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1096  *
1097  * This calculates the maximum frame length that will be used for a
1098  * given MTU.  The frame length will be equal to the MTU plus a
1099  * constant amount of header space and padding.  This is the quantity
1100  * that the net driver will program into the MAC as the maximum frame
1101  * length.
1102  *
1103  * The 10G MAC requires 8-byte alignment on the frame
1104  * length, so we round up to the nearest 8.
1105  *
1106  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1107  * XGMII cycle).  If the frame length reaches the maximum value in the
1108  * same cycle, the XMAC can miss the IPG altogether.  We work around
1109  * this by adding a further 16 bytes.
1110  */
1111 #define EFX_MAX_FRAME_LEN(mtu) \
1112 	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1113 
1114 
1115 #endif /* EFX_NET_DRIVER_H */
1116