1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 /* Common definitions for all Efx net driver code */ 9 10 #ifndef EFX_NET_DRIVER_H 11 #define EFX_NET_DRIVER_H 12 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/ethtool.h> 16 #include <linux/if_vlan.h> 17 #include <linux/timer.h> 18 #include <linux/mdio.h> 19 #include <linux/list.h> 20 #include <linux/pci.h> 21 #include <linux/device.h> 22 #include <linux/highmem.h> 23 #include <linux/workqueue.h> 24 #include <linux/mutex.h> 25 #include <linux/rwsem.h> 26 #include <linux/vmalloc.h> 27 #include <linux/mtd/mtd.h> 28 #include <net/busy_poll.h> 29 #include <net/xdp.h> 30 31 #include "enum.h" 32 #include "bitfield.h" 33 #include "filter.h" 34 35 /************************************************************************** 36 * 37 * Build definitions 38 * 39 **************************************************************************/ 40 41 #define EFX_DRIVER_VERSION "4.1" 42 43 #ifdef DEBUG 44 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x) 45 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 46 #else 47 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0) 48 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 49 #endif 50 51 /************************************************************************** 52 * 53 * Efx data structures 54 * 55 **************************************************************************/ 56 57 #define EFX_MAX_CHANNELS 32U 58 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 59 #define EFX_EXTRA_CHANNEL_IOV 0 60 #define EFX_EXTRA_CHANNEL_PTP 1 61 #define EFX_MAX_EXTRA_CHANNELS 2U 62 63 /* Checksum generation is a per-queue option in hardware, so each 64 * queue visible to the networking core is backed by two hardware TX 65 * queues. */ 66 #define EFX_MAX_TX_TC 2 67 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 68 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */ 69 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */ 70 #define EFX_TXQ_TYPES 4 71 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS) 72 73 /* Maximum possible MTU the driver supports */ 74 #define EFX_MAX_MTU (9 * 1024) 75 76 /* Minimum MTU, from RFC791 (IP) */ 77 #define EFX_MIN_MTU 68 78 79 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 80 * and should be a multiple of the cache line size. 81 */ 82 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 83 84 /* If possible, we should ensure cache line alignment at start and end 85 * of every buffer. Otherwise, we just need to ensure 4-byte 86 * alignment of the network header. 87 */ 88 #if NET_IP_ALIGN == 0 89 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 90 #else 91 #define EFX_RX_BUF_ALIGNMENT 4 92 #endif 93 94 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and 95 * still fit two standard MTU size packets into a single 4K page. 96 */ 97 #define EFX_XDP_HEADROOM 128 98 #define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) 99 100 /* Forward declare Precision Time Protocol (PTP) support structure. */ 101 struct efx_ptp_data; 102 struct hwtstamp_config; 103 104 struct efx_self_tests; 105 106 /** 107 * struct efx_buffer - A general-purpose DMA buffer 108 * @addr: host base address of the buffer 109 * @dma_addr: DMA base address of the buffer 110 * @len: Buffer length, in bytes 111 * 112 * The NIC uses these buffers for its interrupt status registers and 113 * MAC stats dumps. 114 */ 115 struct efx_buffer { 116 void *addr; 117 dma_addr_t dma_addr; 118 unsigned int len; 119 }; 120 121 /** 122 * struct efx_special_buffer - DMA buffer entered into buffer table 123 * @buf: Standard &struct efx_buffer 124 * @index: Buffer index within controller;s buffer table 125 * @entries: Number of buffer table entries 126 * 127 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 128 * Event and descriptor rings are addressed via one or more buffer 129 * table entries (and so can be physically non-contiguous, although we 130 * currently do not take advantage of that). On Falcon and Siena we 131 * have to take care of allocating and initialising the entries 132 * ourselves. On later hardware this is managed by the firmware and 133 * @index and @entries are left as 0. 134 */ 135 struct efx_special_buffer { 136 struct efx_buffer buf; 137 unsigned int index; 138 unsigned int entries; 139 }; 140 141 /** 142 * struct efx_tx_buffer - buffer state for a TX descriptor 143 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 144 * freed when descriptor completes 145 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data 146 * member is the associated buffer to drop a page reference on. 147 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option 148 * descriptor. 149 * @dma_addr: DMA address of the fragment. 150 * @flags: Flags for allocation and DMA mapping type 151 * @len: Length of this fragment. 152 * This field is zero when the queue slot is empty. 153 * @unmap_len: Length of this fragment to unmap 154 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 155 * Only valid if @unmap_len != 0. 156 */ 157 struct efx_tx_buffer { 158 union { 159 const struct sk_buff *skb; 160 struct xdp_frame *xdpf; 161 }; 162 union { 163 efx_qword_t option; /* EF10 */ 164 dma_addr_t dma_addr; 165 }; 166 unsigned short flags; 167 unsigned short len; 168 unsigned short unmap_len; 169 unsigned short dma_offset; 170 }; 171 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 172 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 173 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 174 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 175 #define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */ 176 #define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */ 177 178 /** 179 * struct efx_tx_queue - An Efx TX queue 180 * 181 * This is a ring buffer of TX fragments. 182 * Since the TX completion path always executes on the same 183 * CPU and the xmit path can operate on different CPUs, 184 * performance is increased by ensuring that the completion 185 * path and the xmit path operate on different cache lines. 186 * This is particularly important if the xmit path is always 187 * executing on one CPU which is different from the completion 188 * path. There is also a cache line for members which are 189 * read but not written on the fast path. 190 * 191 * @efx: The associated Efx NIC 192 * @queue: DMA queue number 193 * @label: Label for TX completion events. 194 * Is our index within @channel->tx_queue array. 195 * @tso_version: Version of TSO in use for this queue. 196 * @channel: The associated channel 197 * @core_txq: The networking core TX queue structure 198 * @buffer: The software buffer ring 199 * @cb_page: Array of pages of copy buffers. Carved up according to 200 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks. 201 * @txd: The hardware descriptor ring 202 * @ptr_mask: The size of the ring minus 1. 203 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 204 * Size of the region is efx_piobuf_size. 205 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 206 * @initialised: Has hardware queue been initialised? 207 * @timestamping: Is timestamping enabled for this channel? 208 * @xdp_tx: Is this an XDP tx queue? 209 * @handle_tso: TSO xmit preparation handler. Sets up the TSO metadata and 210 * may also map tx data, depending on the nature of the TSO implementation. 211 * @read_count: Current read pointer. 212 * This is the number of buffers that have been removed from both rings. 213 * @old_write_count: The value of @write_count when last checked. 214 * This is here for performance reasons. The xmit path will 215 * only get the up-to-date value of @write_count if this 216 * variable indicates that the queue is empty. This is to 217 * avoid cache-line ping-pong between the xmit path and the 218 * completion path. 219 * @merge_events: Number of TX merged completion events 220 * @completed_timestamp_major: Top part of the most recent tx timestamp. 221 * @completed_timestamp_minor: Low part of the most recent tx timestamp. 222 * @insert_count: Current insert pointer 223 * This is the number of buffers that have been added to the 224 * software ring. 225 * @write_count: Current write pointer 226 * This is the number of buffers that have been added to the 227 * hardware ring. 228 * @packet_write_count: Completable write pointer 229 * This is the write pointer of the last packet written. 230 * Normally this will equal @write_count, but as option descriptors 231 * don't produce completion events, they won't update this. 232 * Filled in iff @efx->type->option_descriptors; only used for PIO. 233 * Thus, this is written and used on EF10, and neither on farch. 234 * @old_read_count: The value of read_count when last checked. 235 * This is here for performance reasons. The xmit path will 236 * only get the up-to-date value of read_count if this 237 * variable indicates that the queue is full. This is to 238 * avoid cache-line ping-pong between the xmit path and the 239 * completion path. 240 * @tso_bursts: Number of times TSO xmit invoked by kernel 241 * @tso_long_headers: Number of packets with headers too long for standard 242 * blocks 243 * @tso_packets: Number of packets via the TSO xmit path 244 * @tso_fallbacks: Number of times TSO fallback used 245 * @pushes: Number of times the TX push feature has been used 246 * @pio_packets: Number of times the TX PIO feature has been used 247 * @xmit_more_available: Are any packets waiting to be pushed to the NIC 248 * @cb_packets: Number of times the TX copybreak feature has been used 249 * @notify_count: Count of notified descriptors to the NIC 250 * @empty_read_count: If the completion path has seen the queue as empty 251 * and the transmission path has not yet checked this, the value of 252 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 253 */ 254 struct efx_tx_queue { 255 /* Members which don't change on the fast path */ 256 struct efx_nic *efx ____cacheline_aligned_in_smp; 257 unsigned int queue; 258 unsigned int label; 259 unsigned int tso_version; 260 struct efx_channel *channel; 261 struct netdev_queue *core_txq; 262 struct efx_tx_buffer *buffer; 263 struct efx_buffer *cb_page; 264 struct efx_special_buffer txd; 265 unsigned int ptr_mask; 266 void __iomem *piobuf; 267 unsigned int piobuf_offset; 268 bool initialised; 269 bool timestamping; 270 bool xdp_tx; 271 272 /* Function pointers used in the fast path. */ 273 int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *); 274 275 /* Members used mainly on the completion path */ 276 unsigned int read_count ____cacheline_aligned_in_smp; 277 unsigned int old_write_count; 278 unsigned int merge_events; 279 unsigned int bytes_compl; 280 unsigned int pkts_compl; 281 u32 completed_timestamp_major; 282 u32 completed_timestamp_minor; 283 284 /* Members used only on the xmit path */ 285 unsigned int insert_count ____cacheline_aligned_in_smp; 286 unsigned int write_count; 287 unsigned int packet_write_count; 288 unsigned int old_read_count; 289 unsigned int tso_bursts; 290 unsigned int tso_long_headers; 291 unsigned int tso_packets; 292 unsigned int tso_fallbacks; 293 unsigned int pushes; 294 unsigned int pio_packets; 295 bool xmit_more_available; 296 unsigned int cb_packets; 297 unsigned int notify_count; 298 /* Statistics to supplement MAC stats */ 299 unsigned long tx_packets; 300 301 /* Members shared between paths and sometimes updated */ 302 unsigned int empty_read_count ____cacheline_aligned_in_smp; 303 #define EFX_EMPTY_COUNT_VALID 0x80000000 304 atomic_t flush_outstanding; 305 }; 306 307 #define EFX_TX_CB_ORDER 7 308 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN 309 310 /** 311 * struct efx_rx_buffer - An Efx RX data buffer 312 * @dma_addr: DMA base address of the buffer 313 * @page: The associated page buffer. 314 * Will be %NULL if the buffer slot is currently free. 315 * @page_offset: If pending: offset in @page of DMA base address. 316 * If completed: offset in @page of Ethernet header. 317 * @len: If pending: length for DMA descriptor. 318 * If completed: received length, excluding hash prefix. 319 * @flags: Flags for buffer and packet state. These are only set on the 320 * first buffer of a scattered packet. 321 */ 322 struct efx_rx_buffer { 323 dma_addr_t dma_addr; 324 struct page *page; 325 u16 page_offset; 326 u16 len; 327 u16 flags; 328 }; 329 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 330 #define EFX_RX_PKT_CSUMMED 0x0002 331 #define EFX_RX_PKT_DISCARD 0x0004 332 #define EFX_RX_PKT_TCP 0x0040 333 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 334 #define EFX_RX_PKT_CSUM_LEVEL 0x0200 335 336 /** 337 * struct efx_rx_page_state - Page-based rx buffer state 338 * 339 * Inserted at the start of every page allocated for receive buffers. 340 * Used to facilitate sharing dma mappings between recycled rx buffers 341 * and those passed up to the kernel. 342 * 343 * @dma_addr: The dma address of this page. 344 */ 345 struct efx_rx_page_state { 346 dma_addr_t dma_addr; 347 348 unsigned int __pad[] ____cacheline_aligned; 349 }; 350 351 /** 352 * struct efx_rx_queue - An Efx RX queue 353 * @efx: The associated Efx NIC 354 * @core_index: Index of network core RX queue. Will be >= 0 iff this 355 * is associated with a real RX queue. 356 * @buffer: The software buffer ring 357 * @rxd: The hardware descriptor ring 358 * @ptr_mask: The size of the ring minus 1. 359 * @refill_enabled: Enable refill whenever fill level is low 360 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 361 * @rxq_flush_pending. 362 * @added_count: Number of buffers added to the receive queue. 363 * @notified_count: Number of buffers given to NIC (<= @added_count). 364 * @removed_count: Number of buffers removed from the receive queue. 365 * @scatter_n: Used by NIC specific receive code. 366 * @scatter_len: Used by NIC specific receive code. 367 * @page_ring: The ring to store DMA mapped pages for reuse. 368 * @page_add: Counter to calculate the write pointer for the recycle ring. 369 * @page_remove: Counter to calculate the read pointer for the recycle ring. 370 * @page_recycle_count: The number of pages that have been recycled. 371 * @page_recycle_failed: The number of pages that couldn't be recycled because 372 * the kernel still held a reference to them. 373 * @page_recycle_full: The number of pages that were released because the 374 * recycle ring was full. 375 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 376 * @max_fill: RX descriptor maximum fill level (<= ring size) 377 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 378 * (<= @max_fill) 379 * @min_fill: RX descriptor minimum non-zero fill level. 380 * This records the minimum fill level observed when a ring 381 * refill was triggered. 382 * @recycle_count: RX buffer recycle counter. 383 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 384 * @xdp_rxq_info: XDP specific RX queue information. 385 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?. 386 */ 387 struct efx_rx_queue { 388 struct efx_nic *efx; 389 int core_index; 390 struct efx_rx_buffer *buffer; 391 struct efx_special_buffer rxd; 392 unsigned int ptr_mask; 393 bool refill_enabled; 394 bool flush_pending; 395 396 unsigned int added_count; 397 unsigned int notified_count; 398 unsigned int removed_count; 399 unsigned int scatter_n; 400 unsigned int scatter_len; 401 struct page **page_ring; 402 unsigned int page_add; 403 unsigned int page_remove; 404 unsigned int page_recycle_count; 405 unsigned int page_recycle_failed; 406 unsigned int page_recycle_full; 407 unsigned int page_ptr_mask; 408 unsigned int max_fill; 409 unsigned int fast_fill_trigger; 410 unsigned int min_fill; 411 unsigned int min_overfill; 412 unsigned int recycle_count; 413 struct timer_list slow_fill; 414 unsigned int slow_fill_count; 415 /* Statistics to supplement MAC stats */ 416 unsigned long rx_packets; 417 struct xdp_rxq_info xdp_rxq_info; 418 bool xdp_rxq_info_valid; 419 }; 420 421 enum efx_sync_events_state { 422 SYNC_EVENTS_DISABLED = 0, 423 SYNC_EVENTS_QUIESCENT, 424 SYNC_EVENTS_REQUESTED, 425 SYNC_EVENTS_VALID, 426 }; 427 428 /** 429 * struct efx_channel - An Efx channel 430 * 431 * A channel comprises an event queue, at least one TX queue, at least 432 * one RX queue, and an associated tasklet for processing the event 433 * queue. 434 * 435 * @efx: Associated Efx NIC 436 * @channel: Channel instance number 437 * @type: Channel type definition 438 * @eventq_init: Event queue initialised flag 439 * @enabled: Channel enabled indicator 440 * @irq: IRQ number (MSI and MSI-X only) 441 * @irq_moderation_us: IRQ moderation value (in microseconds) 442 * @napi_dev: Net device used with NAPI 443 * @napi_str: NAPI control structure 444 * @state: state for NAPI vs busy polling 445 * @state_lock: lock protecting @state 446 * @eventq: Event queue buffer 447 * @eventq_mask: Event queue pointer mask 448 * @eventq_read_ptr: Event queue read pointer 449 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 450 * @irq_count: Number of IRQs since last adaptive moderation decision 451 * @irq_mod_score: IRQ moderation score 452 * @rfs_filter_count: number of accelerated RFS filters currently in place; 453 * equals the count of @rps_flow_id slots filled 454 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters 455 * were checked for expiry 456 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry 457 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions 458 * @n_rfs_failed; number of failed accelerated RFS filter insertions 459 * @filter_work: Work item for efx_filter_rfs_expire() 460 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 461 * indexed by filter ID 462 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 463 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 464 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 465 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 466 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 467 * @n_rx_overlength: Count of RX_OVERLENGTH errors 468 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 469 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 470 * lack of descriptors 471 * @n_rx_merge_events: Number of RX merged completion events 472 * @n_rx_merge_packets: Number of RX packets completed by merged events 473 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP 474 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors 475 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP 476 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP 477 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 478 * __efx_rx_packet(), or zero if there is none 479 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 480 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 481 * @rx_list: list of SKBs from current RX, awaiting processing 482 * @rx_queue: RX queue for this channel 483 * @tx_queue: TX queues for this channel 484 * @sync_events_state: Current state of sync events on this channel 485 * @sync_timestamp_major: Major part of the last ptp sync event 486 * @sync_timestamp_minor: Minor part of the last ptp sync event 487 */ 488 struct efx_channel { 489 struct efx_nic *efx; 490 int channel; 491 const struct efx_channel_type *type; 492 bool eventq_init; 493 bool enabled; 494 int irq; 495 unsigned int irq_moderation_us; 496 struct net_device *napi_dev; 497 struct napi_struct napi_str; 498 #ifdef CONFIG_NET_RX_BUSY_POLL 499 unsigned long busy_poll_state; 500 #endif 501 struct efx_special_buffer eventq; 502 unsigned int eventq_mask; 503 unsigned int eventq_read_ptr; 504 int event_test_cpu; 505 506 unsigned int irq_count; 507 unsigned int irq_mod_score; 508 #ifdef CONFIG_RFS_ACCEL 509 unsigned int rfs_filter_count; 510 unsigned int rfs_last_expiry; 511 unsigned int rfs_expire_index; 512 unsigned int n_rfs_succeeded; 513 unsigned int n_rfs_failed; 514 struct delayed_work filter_work; 515 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF 516 u32 *rps_flow_id; 517 #endif 518 519 unsigned int n_rx_tobe_disc; 520 unsigned int n_rx_ip_hdr_chksum_err; 521 unsigned int n_rx_tcp_udp_chksum_err; 522 unsigned int n_rx_outer_ip_hdr_chksum_err; 523 unsigned int n_rx_outer_tcp_udp_chksum_err; 524 unsigned int n_rx_inner_ip_hdr_chksum_err; 525 unsigned int n_rx_inner_tcp_udp_chksum_err; 526 unsigned int n_rx_eth_crc_err; 527 unsigned int n_rx_mcast_mismatch; 528 unsigned int n_rx_frm_trunc; 529 unsigned int n_rx_overlength; 530 unsigned int n_skbuff_leaks; 531 unsigned int n_rx_nodesc_trunc; 532 unsigned int n_rx_merge_events; 533 unsigned int n_rx_merge_packets; 534 unsigned int n_rx_xdp_drops; 535 unsigned int n_rx_xdp_bad_drops; 536 unsigned int n_rx_xdp_tx; 537 unsigned int n_rx_xdp_redirect; 538 539 unsigned int rx_pkt_n_frags; 540 unsigned int rx_pkt_index; 541 542 struct list_head *rx_list; 543 544 struct efx_rx_queue rx_queue; 545 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; 546 547 enum efx_sync_events_state sync_events_state; 548 u32 sync_timestamp_major; 549 u32 sync_timestamp_minor; 550 }; 551 552 /** 553 * struct efx_msi_context - Context for each MSI 554 * @efx: The associated NIC 555 * @index: Index of the channel/IRQ 556 * @name: Name of the channel/IRQ 557 * 558 * Unlike &struct efx_channel, this is never reallocated and is always 559 * safe for the IRQ handler to access. 560 */ 561 struct efx_msi_context { 562 struct efx_nic *efx; 563 unsigned int index; 564 char name[IFNAMSIZ + 6]; 565 }; 566 567 /** 568 * struct efx_channel_type - distinguishes traffic and extra channels 569 * @handle_no_channel: Handle failure to allocate an extra channel 570 * @pre_probe: Set up extra state prior to initialisation 571 * @post_remove: Tear down extra state after finalisation, if allocated. 572 * May be called on channels that have not been probed. 573 * @get_name: Generate the channel's name (used for its IRQ handler) 574 * @copy: Copy the channel state prior to reallocation. May be %NULL if 575 * reallocation is not supported. 576 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 577 * @want_txqs: Determine whether this channel should have TX queues 578 * created. If %NULL, TX queues are not created. 579 * @keep_eventq: Flag for whether event queue should be kept initialised 580 * while the device is stopped 581 * @want_pio: Flag for whether PIO buffers should be linked to this 582 * channel's TX queues. 583 */ 584 struct efx_channel_type { 585 void (*handle_no_channel)(struct efx_nic *); 586 int (*pre_probe)(struct efx_channel *); 587 void (*post_remove)(struct efx_channel *); 588 void (*get_name)(struct efx_channel *, char *buf, size_t len); 589 struct efx_channel *(*copy)(const struct efx_channel *); 590 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 591 bool (*want_txqs)(struct efx_channel *); 592 bool keep_eventq; 593 bool want_pio; 594 }; 595 596 enum efx_led_mode { 597 EFX_LED_OFF = 0, 598 EFX_LED_ON = 1, 599 EFX_LED_DEFAULT = 2 600 }; 601 602 #define STRING_TABLE_LOOKUP(val, member) \ 603 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 604 605 extern const char *const efx_loopback_mode_names[]; 606 extern const unsigned int efx_loopback_mode_max; 607 #define LOOPBACK_MODE(efx) \ 608 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 609 610 extern const char *const efx_reset_type_names[]; 611 extern const unsigned int efx_reset_type_max; 612 #define RESET_TYPE(type) \ 613 STRING_TABLE_LOOKUP(type, efx_reset_type) 614 615 enum efx_int_mode { 616 /* Be careful if altering to correct macro below */ 617 EFX_INT_MODE_MSIX = 0, 618 EFX_INT_MODE_MSI = 1, 619 EFX_INT_MODE_LEGACY = 2, 620 EFX_INT_MODE_MAX /* Insert any new items before this */ 621 }; 622 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 623 624 enum nic_state { 625 STATE_UNINIT = 0, /* device being probed/removed or is frozen */ 626 STATE_READY = 1, /* hardware ready and netdev registered */ 627 STATE_DISABLED = 2, /* device disabled due to hardware errors */ 628 STATE_RECOVERY = 3, /* device recovering from PCI error */ 629 }; 630 631 /* Forward declaration */ 632 struct efx_nic; 633 634 /* Pseudo bit-mask flow control field */ 635 #define EFX_FC_RX FLOW_CTRL_RX 636 #define EFX_FC_TX FLOW_CTRL_TX 637 #define EFX_FC_AUTO 4 638 639 /** 640 * struct efx_link_state - Current state of the link 641 * @up: Link is up 642 * @fd: Link is full-duplex 643 * @fc: Actual flow control flags 644 * @speed: Link speed (Mbps) 645 */ 646 struct efx_link_state { 647 bool up; 648 bool fd; 649 u8 fc; 650 unsigned int speed; 651 }; 652 653 static inline bool efx_link_state_equal(const struct efx_link_state *left, 654 const struct efx_link_state *right) 655 { 656 return left->up == right->up && left->fd == right->fd && 657 left->fc == right->fc && left->speed == right->speed; 658 } 659 660 /** 661 * struct efx_phy_operations - Efx PHY operations table 662 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, 663 * efx->loopback_modes. 664 * @init: Initialise PHY 665 * @fini: Shut down PHY 666 * @reconfigure: Reconfigure PHY (e.g. for new link parameters) 667 * @poll: Update @link_state and report whether it changed. 668 * Serialised by the mac_lock. 669 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock. 670 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock. 671 * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock. 672 * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock. 673 * @set_npage_adv: Set abilities advertised in (Extended) Next Page 674 * (only needed where AN bit is set in mmds) 675 * @test_alive: Test that PHY is 'alive' (online) 676 * @test_name: Get the name of a PHY-specific test/result 677 * @run_tests: Run tests and record results as appropriate (offline). 678 * Flags are the ethtool tests flags. 679 */ 680 struct efx_phy_operations { 681 int (*probe) (struct efx_nic *efx); 682 int (*init) (struct efx_nic *efx); 683 void (*fini) (struct efx_nic *efx); 684 void (*remove) (struct efx_nic *efx); 685 int (*reconfigure) (struct efx_nic *efx); 686 bool (*poll) (struct efx_nic *efx); 687 void (*get_link_ksettings)(struct efx_nic *efx, 688 struct ethtool_link_ksettings *cmd); 689 int (*set_link_ksettings)(struct efx_nic *efx, 690 const struct ethtool_link_ksettings *cmd); 691 int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec); 692 int (*set_fecparam)(struct efx_nic *efx, 693 const struct ethtool_fecparam *fec); 694 void (*set_npage_adv) (struct efx_nic *efx, u32); 695 int (*test_alive) (struct efx_nic *efx); 696 const char *(*test_name) (struct efx_nic *efx, unsigned int index); 697 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); 698 int (*get_module_eeprom) (struct efx_nic *efx, 699 struct ethtool_eeprom *ee, 700 u8 *data); 701 int (*get_module_info) (struct efx_nic *efx, 702 struct ethtool_modinfo *modinfo); 703 }; 704 705 /** 706 * enum efx_phy_mode - PHY operating mode flags 707 * @PHY_MODE_NORMAL: on and should pass traffic 708 * @PHY_MODE_TX_DISABLED: on with TX disabled 709 * @PHY_MODE_LOW_POWER: set to low power through MDIO 710 * @PHY_MODE_OFF: switched off through external control 711 * @PHY_MODE_SPECIAL: on but will not pass traffic 712 */ 713 enum efx_phy_mode { 714 PHY_MODE_NORMAL = 0, 715 PHY_MODE_TX_DISABLED = 1, 716 PHY_MODE_LOW_POWER = 2, 717 PHY_MODE_OFF = 4, 718 PHY_MODE_SPECIAL = 8, 719 }; 720 721 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 722 { 723 return !!(mode & ~PHY_MODE_TX_DISABLED); 724 } 725 726 /** 727 * struct efx_hw_stat_desc - Description of a hardware statistic 728 * @name: Name of the statistic as visible through ethtool, or %NULL if 729 * it should not be exposed 730 * @dma_width: Width in bits (0 for non-DMA statistics) 731 * @offset: Offset within stats (ignored for non-DMA statistics) 732 */ 733 struct efx_hw_stat_desc { 734 const char *name; 735 u16 dma_width; 736 u16 offset; 737 }; 738 739 /* Number of bits used in a multicast filter hash address */ 740 #define EFX_MCAST_HASH_BITS 8 741 742 /* Number of (single-bit) entries in a multicast filter hash */ 743 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 744 745 /* An Efx multicast filter hash */ 746 union efx_multicast_hash { 747 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 748 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 749 }; 750 751 struct vfdi_status; 752 753 /* The reserved RSS context value */ 754 #define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff 755 /** 756 * struct efx_rss_context - A user-defined RSS context for filtering 757 * @list: node of linked list on which this struct is stored 758 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or 759 * %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC. 760 * For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID. 761 * @user_id: the rss_context ID exposed to userspace over ethtool. 762 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled 763 * @rx_hash_key: Toeplitz hash key for this RSS context 764 * @indir_table: Indirection table for this RSS context 765 */ 766 struct efx_rss_context { 767 struct list_head list; 768 u32 context_id; 769 u32 user_id; 770 bool rx_hash_udp_4tuple; 771 u8 rx_hash_key[40]; 772 u32 rx_indir_table[128]; 773 }; 774 775 #ifdef CONFIG_RFS_ACCEL 776 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING 777 * is used to test if filter does or will exist. 778 */ 779 #define EFX_ARFS_FILTER_ID_PENDING -1 780 #define EFX_ARFS_FILTER_ID_ERROR -2 781 #define EFX_ARFS_FILTER_ID_REMOVING -3 782 /** 783 * struct efx_arfs_rule - record of an ARFS filter and its IDs 784 * @node: linkage into hash table 785 * @spec: details of the filter (used as key for hash table). Use efx->type to 786 * determine which member to use. 787 * @rxq_index: channel to which the filter will steer traffic. 788 * @arfs_id: filter ID which was returned to ARFS 789 * @filter_id: index in software filter table. May be 790 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet, 791 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or 792 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter. 793 */ 794 struct efx_arfs_rule { 795 struct hlist_node node; 796 struct efx_filter_spec spec; 797 u16 rxq_index; 798 u16 arfs_id; 799 s32 filter_id; 800 }; 801 802 /* Size chosen so that the table is one page (4kB) */ 803 #define EFX_ARFS_HASH_TABLE_SIZE 512 804 805 /** 806 * struct efx_async_filter_insertion - Request to asynchronously insert a filter 807 * @net_dev: Reference to the netdevice 808 * @spec: The filter to insert 809 * @work: Workitem for this request 810 * @rxq_index: Identifies the channel for which this request was made 811 * @flow_id: Identifies the kernel-side flow for which this request was made 812 */ 813 struct efx_async_filter_insertion { 814 struct net_device *net_dev; 815 struct efx_filter_spec spec; 816 struct work_struct work; 817 u16 rxq_index; 818 u32 flow_id; 819 }; 820 821 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */ 822 #define EFX_RPS_MAX_IN_FLIGHT 8 823 #endif /* CONFIG_RFS_ACCEL */ 824 825 /** 826 * struct efx_nic - an Efx NIC 827 * @name: Device name (net device name or bus id before net device registered) 828 * @pci_dev: The PCI device 829 * @node: List node for maintaning primary/secondary function lists 830 * @primary: &struct efx_nic instance for the primary function of this 831 * controller. May be the same structure, and may be %NULL if no 832 * primary function is bound. Serialised by rtnl_lock. 833 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 834 * functions of the controller, if this is for the primary function. 835 * Serialised by rtnl_lock. 836 * @type: Controller type attributes 837 * @legacy_irq: IRQ number 838 * @workqueue: Workqueue for port reconfigures and the HW monitor. 839 * Work items do not hold and must not acquire RTNL. 840 * @workqueue_name: Name of workqueue 841 * @reset_work: Scheduled reset workitem 842 * @membase_phys: Memory BAR value as physical address 843 * @membase: Memory BAR value 844 * @vi_stride: step between per-VI registers / memory regions 845 * @interrupt_mode: Interrupt mode 846 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 847 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds 848 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 849 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues 850 * @irq_rx_moderation_us: IRQ moderation time for RX event queues 851 * @msg_enable: Log message enable flags 852 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 853 * @reset_pending: Bitmask for pending resets 854 * @tx_queue: TX DMA queues 855 * @rx_queue: RX DMA queues 856 * @channel: Channels 857 * @msi_context: Context for each MSI 858 * @extra_channel_types: Types of extra (non-traffic) channels that 859 * should be allocated for this NIC 860 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues. 861 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit. 862 * @rxq_entries: Size of receive queues requested by user. 863 * @txq_entries: Size of transmit queues requested by user. 864 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 865 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 866 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 867 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 868 * @sram_lim_qw: Qword address limit of SRAM 869 * @next_buffer_table: First available buffer table id 870 * @n_channels: Number of channels in use 871 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 872 * @n_tx_channels: Number of channels used for TX 873 * @n_extra_tx_channels: Number of extra channels with TX queues 874 * @tx_queues_per_channel: number of TX queues probed on each channel 875 * @n_xdp_channels: Number of channels used for XDP TX 876 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX. 877 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel. 878 * @rx_ip_align: RX DMA address offset to have IP header aligned in 879 * in accordance with NET_IP_ALIGN 880 * @rx_dma_len: Current maximum RX DMA length 881 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 882 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 883 * for use in sk_buff::truesize 884 * @rx_prefix_size: Size of RX prefix before packet data 885 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 886 * (valid only if @rx_prefix_size != 0; always negative) 887 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 888 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 889 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 890 * (valid only if channel->sync_timestamps_enabled; always negative) 891 * @rx_scatter: Scatter mode enabled for receives 892 * @rss_context: Main RSS context. Its @list member is the head of the list of 893 * RSS contexts created by user requests 894 * @rss_lock: Protects custom RSS context software state in @rss_context.list 895 * @vport_id: The function's vport ID, only relevant for PFs 896 * @int_error_count: Number of internal errors seen recently 897 * @int_error_expire: Time at which error count will be expired 898 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot 899 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 900 * acknowledge but do nothing else. 901 * @irq_status: Interrupt status buffer 902 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 903 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 904 * @selftest_work: Work item for asynchronous self-test 905 * @mtd_list: List of MTDs attached to the NIC 906 * @nic_data: Hardware dependent state 907 * @mcdi: Management-Controller-to-Driver Interface state 908 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 909 * efx_monitor() and efx_reconfigure_port() 910 * @port_enabled: Port enabled indicator. 911 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 912 * efx_mac_work() with kernel interfaces. Safe to read under any 913 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 914 * be held to modify it. 915 * @port_initialized: Port initialized? 916 * @net_dev: Operating system network device. Consider holding the rtnl lock 917 * @fixed_features: Features which cannot be turned off 918 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS 919 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS) 920 * @stats_buffer: DMA buffer for statistics 921 * @phy_type: PHY type 922 * @phy_op: PHY interface 923 * @phy_data: PHY private data (including PHY-specific stats) 924 * @mdio: PHY MDIO interface 925 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 926 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 927 * @link_advertising: Autonegotiation advertising flags 928 * @fec_config: Forward Error Correction configuration flags. For bit positions 929 * see &enum ethtool_fec_config_bits. 930 * @link_state: Current state of the link 931 * @n_link_state_changes: Number of times the link has changed state 932 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 933 * Protected by @mac_lock. 934 * @multicast_hash: Multicast hash table for Falcon-arch. 935 * Protected by @mac_lock. 936 * @wanted_fc: Wanted flow control flags 937 * @fc_disable: When non-zero flow control is disabled. Typically used to 938 * ensure that network back pressure doesn't delay dma queue flushes. 939 * Serialised by the rtnl lock. 940 * @mac_work: Work item for changing MAC promiscuity and multicast hash 941 * @loopback_mode: Loopback status 942 * @loopback_modes: Supported loopback mode bitmask 943 * @loopback_selftest: Offline self-test private state 944 * @xdp_prog: Current XDP programme for this interface 945 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state 946 * @filter_state: Architecture-dependent filter table state 947 * @rps_mutex: Protects RPS state of all channels 948 * @rps_slot_map: bitmap of in-flight entries in @rps_slot 949 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work() 950 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and 951 * @rps_next_id). 952 * @rps_hash_table: Mapping between ARFS filters and their various IDs 953 * @rps_next_id: next arfs_id for an ARFS filter 954 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 955 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 956 * Decremented when the efx_flush_rx_queue() is called. 957 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 958 * completed (either success or failure). Not used when MCDI is used to 959 * flush receive queues. 960 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 961 * @vf_count: Number of VFs intended to be enabled. 962 * @vf_init_count: Number of VFs that have been fully initialised. 963 * @vi_scale: log2 number of vnics per VF. 964 * @ptp_data: PTP state data 965 * @ptp_warned: has this NIC seen and warned about unexpected PTP events? 966 * @vpd_sn: Serial number read from VPD 967 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their 968 * xdp_rxq_info structures? 969 * @netdev_notifier: Netdevice notifier. 970 * @mem_bar: The BAR that is mapped into membase. 971 * @reg_base: Offset from the start of the bar to the function control window. 972 * @monitor_work: Hardware monitor workitem 973 * @biu_lock: BIU (bus interface unit) lock 974 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 975 * field is used by efx_test_interrupts() to verify that an 976 * interrupt has occurred. 977 * @stats_lock: Statistics update lock. Must be held when calling 978 * efx_nic_type::{update,start,stop}_stats. 979 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb 980 * 981 * This is stored in the private area of the &struct net_device. 982 */ 983 struct efx_nic { 984 /* The following fields should be written very rarely */ 985 986 char name[IFNAMSIZ]; 987 struct list_head node; 988 struct efx_nic *primary; 989 struct list_head secondary_list; 990 struct pci_dev *pci_dev; 991 unsigned int port_num; 992 const struct efx_nic_type *type; 993 int legacy_irq; 994 bool eeh_disabled_legacy_irq; 995 struct workqueue_struct *workqueue; 996 char workqueue_name[16]; 997 struct work_struct reset_work; 998 resource_size_t membase_phys; 999 void __iomem *membase; 1000 1001 unsigned int vi_stride; 1002 1003 enum efx_int_mode interrupt_mode; 1004 unsigned int timer_quantum_ns; 1005 unsigned int timer_max_ns; 1006 bool irq_rx_adaptive; 1007 unsigned int irq_mod_step_us; 1008 unsigned int irq_rx_moderation_us; 1009 u32 msg_enable; 1010 1011 enum nic_state state; 1012 unsigned long reset_pending; 1013 1014 struct efx_channel *channel[EFX_MAX_CHANNELS]; 1015 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 1016 const struct efx_channel_type * 1017 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 1018 1019 unsigned int xdp_tx_queue_count; 1020 struct efx_tx_queue **xdp_tx_queues; 1021 1022 unsigned rxq_entries; 1023 unsigned txq_entries; 1024 unsigned int txq_stop_thresh; 1025 unsigned int txq_wake_thresh; 1026 1027 unsigned tx_dc_base; 1028 unsigned rx_dc_base; 1029 unsigned sram_lim_qw; 1030 unsigned next_buffer_table; 1031 1032 unsigned int max_channels; 1033 unsigned int max_vis; 1034 unsigned int max_tx_channels; 1035 unsigned n_channels; 1036 unsigned n_rx_channels; 1037 unsigned rss_spread; 1038 unsigned tx_channel_offset; 1039 unsigned n_tx_channels; 1040 unsigned n_extra_tx_channels; 1041 unsigned int tx_queues_per_channel; 1042 unsigned int n_xdp_channels; 1043 unsigned int xdp_channel_offset; 1044 unsigned int xdp_tx_per_channel; 1045 unsigned int rx_ip_align; 1046 unsigned int rx_dma_len; 1047 unsigned int rx_buffer_order; 1048 unsigned int rx_buffer_truesize; 1049 unsigned int rx_page_buf_step; 1050 unsigned int rx_bufs_per_page; 1051 unsigned int rx_pages_per_batch; 1052 unsigned int rx_prefix_size; 1053 int rx_packet_hash_offset; 1054 int rx_packet_len_offset; 1055 int rx_packet_ts_offset; 1056 bool rx_scatter; 1057 struct efx_rss_context rss_context; 1058 struct mutex rss_lock; 1059 u32 vport_id; 1060 1061 unsigned int_error_count; 1062 unsigned long int_error_expire; 1063 1064 bool must_realloc_vis; 1065 bool irq_soft_enabled; 1066 struct efx_buffer irq_status; 1067 unsigned irq_zero_count; 1068 unsigned irq_level; 1069 struct delayed_work selftest_work; 1070 1071 #ifdef CONFIG_SFC_MTD 1072 struct list_head mtd_list; 1073 #endif 1074 1075 void *nic_data; 1076 struct efx_mcdi_data *mcdi; 1077 1078 struct mutex mac_lock; 1079 struct work_struct mac_work; 1080 bool port_enabled; 1081 1082 bool mc_bist_for_other_fn; 1083 bool port_initialized; 1084 struct net_device *net_dev; 1085 1086 netdev_features_t fixed_features; 1087 1088 u16 num_mac_stats; 1089 struct efx_buffer stats_buffer; 1090 u64 rx_nodesc_drops_total; 1091 u64 rx_nodesc_drops_while_down; 1092 bool rx_nodesc_drops_prev_state; 1093 1094 unsigned int phy_type; 1095 const struct efx_phy_operations *phy_op; 1096 void *phy_data; 1097 struct mdio_if_info mdio; 1098 unsigned int mdio_bus; 1099 enum efx_phy_mode phy_mode; 1100 1101 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising); 1102 u32 fec_config; 1103 struct efx_link_state link_state; 1104 unsigned int n_link_state_changes; 1105 1106 bool unicast_filter; 1107 union efx_multicast_hash multicast_hash; 1108 u8 wanted_fc; 1109 unsigned fc_disable; 1110 1111 atomic_t rx_reset; 1112 enum efx_loopback_mode loopback_mode; 1113 u64 loopback_modes; 1114 1115 void *loopback_selftest; 1116 /* We access loopback_selftest immediately before running XDP, 1117 * so we want them next to each other. 1118 */ 1119 struct bpf_prog __rcu *xdp_prog; 1120 1121 struct rw_semaphore filter_sem; 1122 void *filter_state; 1123 #ifdef CONFIG_RFS_ACCEL 1124 struct mutex rps_mutex; 1125 unsigned long rps_slot_map; 1126 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT]; 1127 spinlock_t rps_hash_lock; 1128 struct hlist_head *rps_hash_table; 1129 u32 rps_next_id; 1130 #endif 1131 1132 atomic_t active_queues; 1133 atomic_t rxq_flush_pending; 1134 atomic_t rxq_flush_outstanding; 1135 wait_queue_head_t flush_wq; 1136 1137 #ifdef CONFIG_SFC_SRIOV 1138 unsigned vf_count; 1139 unsigned vf_init_count; 1140 unsigned vi_scale; 1141 #endif 1142 1143 struct efx_ptp_data *ptp_data; 1144 bool ptp_warned; 1145 1146 char *vpd_sn; 1147 bool xdp_rxq_info_failed; 1148 1149 struct notifier_block netdev_notifier; 1150 1151 unsigned int mem_bar; 1152 u32 reg_base; 1153 1154 /* The following fields may be written more often */ 1155 1156 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 1157 spinlock_t biu_lock; 1158 int last_irq_cpu; 1159 spinlock_t stats_lock; 1160 atomic_t n_rx_noskb_drops; 1161 }; 1162 1163 static inline int efx_dev_registered(struct efx_nic *efx) 1164 { 1165 return efx->net_dev->reg_state == NETREG_REGISTERED; 1166 } 1167 1168 static inline unsigned int efx_port_num(struct efx_nic *efx) 1169 { 1170 return efx->port_num; 1171 } 1172 1173 struct efx_mtd_partition { 1174 struct list_head node; 1175 struct mtd_info mtd; 1176 const char *dev_type_name; 1177 const char *type_name; 1178 char name[IFNAMSIZ + 20]; 1179 }; 1180 1181 struct efx_udp_tunnel { 1182 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff 1183 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */ 1184 __be16 port; 1185 }; 1186 1187 /** 1188 * struct efx_nic_type - Efx device type definition 1189 * @mem_bar: Get the memory BAR 1190 * @mem_map_size: Get memory BAR mapped size 1191 * @probe: Probe the controller 1192 * @remove: Free resources allocated by probe() 1193 * @init: Initialise the controller 1194 * @dimension_resources: Dimension controller resources (buffer table, 1195 * and VIs once the available interrupt resources are clear) 1196 * @fini: Shut down the controller 1197 * @monitor: Periodic function for polling link state and hardware monitor 1198 * @map_reset_reason: Map ethtool reset reason to a reset method 1199 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 1200 * @reset: Reset the controller hardware and possibly the PHY. This will 1201 * be called while the controller is uninitialised. 1202 * @probe_port: Probe the MAC and PHY 1203 * @remove_port: Free resources allocated by probe_port() 1204 * @handle_global_event: Handle a "global" event (may be %NULL) 1205 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 1206 * @prepare_flush: Prepare the hardware for flushing the DMA queues 1207 * (for Falcon architecture) 1208 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 1209 * architecture) 1210 * @prepare_flr: Prepare for an FLR 1211 * @finish_flr: Clean up after an FLR 1212 * @describe_stats: Describe statistics for ethtool 1213 * @update_stats: Update statistics not provided by event handling. 1214 * Either argument may be %NULL. 1215 * @start_stats: Start the regular fetching of statistics 1216 * @pull_stats: Pull stats from the NIC and wait until they arrive. 1217 * @stop_stats: Stop the regular fetching of statistics 1218 * @set_id_led: Set state of identifying LED or revert to automatic function 1219 * @push_irq_moderation: Apply interrupt moderation value 1220 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 1221 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 1222 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 1223 * to the hardware. Serialised by the mac_lock. 1224 * @check_mac_fault: Check MAC fault state. True if fault present. 1225 * @get_wol: Get WoL configuration from driver state 1226 * @set_wol: Push WoL configuration to the NIC 1227 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1228 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 1229 * expected to reset the NIC. 1230 * @test_nvram: Test validity of NVRAM contents 1231 * @mcdi_request: Send an MCDI request with the given header and SDU. 1232 * The SDU length may be any value from 0 up to the protocol- 1233 * defined maximum, but its buffer will be padded to a multiple 1234 * of 4 bytes. 1235 * @mcdi_poll_response: Test whether an MCDI response is available. 1236 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1237 * be a multiple of 4. The length may not be, but the buffer 1238 * will be padded so it is safe to round up. 1239 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1240 * return an appropriate error code for aborting any current 1241 * request; otherwise return 0. 1242 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1243 * be separately enabled after this. 1244 * @irq_test_generate: Generate a test IRQ 1245 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1246 * queue must be separately disabled before this. 1247 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1248 * a pointer to the &struct efx_msi_context for the channel. 1249 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1250 * is a pointer to the &struct efx_nic. 1251 * @tx_probe: Allocate resources for TX queue 1252 * @tx_init: Initialise TX queue on the NIC 1253 * @tx_remove: Free resources for TX queue 1254 * @tx_write: Write TX descriptors and doorbell 1255 * @tx_enqueue: Add an SKB to TX queue 1256 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC 1257 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC 1258 * @rx_push_rss_context_config: Write RSS hash key and indirection table for 1259 * user RSS context to the NIC 1260 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user 1261 * RSS context back from the NIC 1262 * @rx_probe: Allocate resources for RX queue 1263 * @rx_init: Initialise RX queue on the NIC 1264 * @rx_remove: Free resources for RX queue 1265 * @rx_write: Write RX descriptors and doorbell 1266 * @rx_defer_refill: Generate a refill reminder event 1267 * @rx_packet: Receive the queued RX buffer on a channel 1268 * @ev_probe: Allocate resources for event queue 1269 * @ev_init: Initialise event queue on the NIC 1270 * @ev_fini: Deinitialise event queue on the NIC 1271 * @ev_remove: Free resources for event queue 1272 * @ev_process: Process events for a queue, up to the given NAPI quota 1273 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1274 * @ev_test_generate: Generate a test event 1275 * @filter_table_probe: Probe filter capabilities and set up filter software state 1276 * @filter_table_restore: Restore filters removed from hardware 1277 * @filter_table_remove: Remove filters from hardware and tear down software state 1278 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1279 * @filter_insert: add or replace a filter 1280 * @filter_remove_safe: remove a filter by ID, carefully 1281 * @filter_get_safe: retrieve a filter by ID, carefully 1282 * @filter_clear_rx: Remove all RX filters whose priority is less than or 1283 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO 1284 * @filter_count_rx_used: Get the number of filters in use at a given priority 1285 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1286 * @filter_get_rx_ids: Get list of RX filters at a given priority 1287 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1288 * This must check whether the specified table entry is used by RFS 1289 * and that rps_may_expire_flow() returns true for it. 1290 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1291 * using efx_mtd_add() 1292 * @mtd_rename: Set an MTD partition name using the net device name 1293 * @mtd_read: Read from an MTD partition 1294 * @mtd_erase: Erase part of an MTD partition 1295 * @mtd_write: Write to an MTD partition 1296 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1297 * also notifies the driver that a writer has finished using this 1298 * partition. 1299 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1300 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1301 * timestamping, possibly only temporarily for the purposes of a reset. 1302 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1303 * and tx_type will already have been validated but this operation 1304 * must validate and update rx_filter. 1305 * @get_phys_port_id: Get the underlying physical port id. 1306 * @set_mac_address: Set the MAC address of the device 1307 * @tso_versions: Returns mask of firmware-assisted TSO versions supported. 1308 * If %NULL, then device does not support any TSO version. 1309 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required. 1310 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel 1311 * @print_additional_fwver: Dump NIC-specific additional FW version info 1312 * @sensor_event: Handle a sensor event from MCDI 1313 * @revision: Hardware architecture revision 1314 * @txd_ptr_tbl_base: TX descriptor ring base address 1315 * @rxd_ptr_tbl_base: RX descriptor ring base address 1316 * @buf_tbl_base: Buffer table base address 1317 * @evq_ptr_tbl_base: Event queue pointer table base address 1318 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1319 * @max_dma_mask: Maximum possible DMA mask 1320 * @rx_prefix_size: Size of RX prefix before packet data 1321 * @rx_hash_offset: Offset of RX flow hash within prefix 1322 * @rx_ts_offset: Offset of timestamp within prefix 1323 * @rx_buffer_padding: Size of padding at end of RX packet 1324 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1325 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1326 * @option_descriptors: NIC supports TX option descriptors 1327 * @min_interrupt_mode: Lowest capability interrupt mode supported 1328 * from &enum efx_int_mode. 1329 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1330 * @offload_features: net_device feature flags for protocol offload 1331 * features implemented in hardware 1332 * @mcdi_max_ver: Maximum MCDI version supported 1333 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1334 */ 1335 struct efx_nic_type { 1336 bool is_vf; 1337 unsigned int (*mem_bar)(struct efx_nic *efx); 1338 unsigned int (*mem_map_size)(struct efx_nic *efx); 1339 int (*probe)(struct efx_nic *efx); 1340 void (*remove)(struct efx_nic *efx); 1341 int (*init)(struct efx_nic *efx); 1342 int (*dimension_resources)(struct efx_nic *efx); 1343 void (*fini)(struct efx_nic *efx); 1344 void (*monitor)(struct efx_nic *efx); 1345 enum reset_type (*map_reset_reason)(enum reset_type reason); 1346 int (*map_reset_flags)(u32 *flags); 1347 int (*reset)(struct efx_nic *efx, enum reset_type method); 1348 int (*probe_port)(struct efx_nic *efx); 1349 void (*remove_port)(struct efx_nic *efx); 1350 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1351 int (*fini_dmaq)(struct efx_nic *efx); 1352 void (*prepare_flush)(struct efx_nic *efx); 1353 void (*finish_flush)(struct efx_nic *efx); 1354 void (*prepare_flr)(struct efx_nic *efx); 1355 void (*finish_flr)(struct efx_nic *efx); 1356 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1357 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1358 struct rtnl_link_stats64 *core_stats); 1359 void (*start_stats)(struct efx_nic *efx); 1360 void (*pull_stats)(struct efx_nic *efx); 1361 void (*stop_stats)(struct efx_nic *efx); 1362 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); 1363 void (*push_irq_moderation)(struct efx_channel *channel); 1364 int (*reconfigure_port)(struct efx_nic *efx); 1365 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1366 int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only); 1367 bool (*check_mac_fault)(struct efx_nic *efx); 1368 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1369 int (*set_wol)(struct efx_nic *efx, u32 type); 1370 void (*resume_wol)(struct efx_nic *efx); 1371 unsigned int (*check_caps)(const struct efx_nic *efx, 1372 u8 flag, 1373 u32 offset); 1374 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1375 int (*test_nvram)(struct efx_nic *efx); 1376 void (*mcdi_request)(struct efx_nic *efx, 1377 const efx_dword_t *hdr, size_t hdr_len, 1378 const efx_dword_t *sdu, size_t sdu_len); 1379 bool (*mcdi_poll_response)(struct efx_nic *efx); 1380 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1381 size_t pdu_offset, size_t pdu_len); 1382 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1383 void (*mcdi_reboot_detected)(struct efx_nic *efx); 1384 void (*irq_enable_master)(struct efx_nic *efx); 1385 int (*irq_test_generate)(struct efx_nic *efx); 1386 void (*irq_disable_non_ev)(struct efx_nic *efx); 1387 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1388 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1389 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1390 void (*tx_init)(struct efx_tx_queue *tx_queue); 1391 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1392 void (*tx_write)(struct efx_tx_queue *tx_queue); 1393 netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb); 1394 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue, 1395 dma_addr_t dma_addr, unsigned int len); 1396 int (*rx_push_rss_config)(struct efx_nic *efx, bool user, 1397 const u32 *rx_indir_table, const u8 *key); 1398 int (*rx_pull_rss_config)(struct efx_nic *efx); 1399 int (*rx_push_rss_context_config)(struct efx_nic *efx, 1400 struct efx_rss_context *ctx, 1401 const u32 *rx_indir_table, 1402 const u8 *key); 1403 int (*rx_pull_rss_context_config)(struct efx_nic *efx, 1404 struct efx_rss_context *ctx); 1405 void (*rx_restore_rss_contexts)(struct efx_nic *efx); 1406 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1407 void (*rx_init)(struct efx_rx_queue *rx_queue); 1408 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1409 void (*rx_write)(struct efx_rx_queue *rx_queue); 1410 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1411 void (*rx_packet)(struct efx_channel *channel); 1412 int (*ev_probe)(struct efx_channel *channel); 1413 int (*ev_init)(struct efx_channel *channel); 1414 void (*ev_fini)(struct efx_channel *channel); 1415 void (*ev_remove)(struct efx_channel *channel); 1416 int (*ev_process)(struct efx_channel *channel, int quota); 1417 void (*ev_read_ack)(struct efx_channel *channel); 1418 void (*ev_test_generate)(struct efx_channel *channel); 1419 int (*filter_table_probe)(struct efx_nic *efx); 1420 void (*filter_table_restore)(struct efx_nic *efx); 1421 void (*filter_table_remove)(struct efx_nic *efx); 1422 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1423 s32 (*filter_insert)(struct efx_nic *efx, 1424 struct efx_filter_spec *spec, bool replace); 1425 int (*filter_remove_safe)(struct efx_nic *efx, 1426 enum efx_filter_priority priority, 1427 u32 filter_id); 1428 int (*filter_get_safe)(struct efx_nic *efx, 1429 enum efx_filter_priority priority, 1430 u32 filter_id, struct efx_filter_spec *); 1431 int (*filter_clear_rx)(struct efx_nic *efx, 1432 enum efx_filter_priority priority); 1433 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1434 enum efx_filter_priority priority); 1435 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1436 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1437 enum efx_filter_priority priority, 1438 u32 *buf, u32 size); 1439 #ifdef CONFIG_RFS_ACCEL 1440 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1441 unsigned int index); 1442 #endif 1443 #ifdef CONFIG_SFC_MTD 1444 int (*mtd_probe)(struct efx_nic *efx); 1445 void (*mtd_rename)(struct efx_mtd_partition *part); 1446 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1447 size_t *retlen, u8 *buffer); 1448 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1449 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1450 size_t *retlen, const u8 *buffer); 1451 int (*mtd_sync)(struct mtd_info *mtd); 1452 #endif 1453 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1454 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1455 int (*ptp_set_ts_config)(struct efx_nic *efx, 1456 struct hwtstamp_config *init); 1457 int (*sriov_configure)(struct efx_nic *efx, int num_vfs); 1458 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1459 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1460 int (*get_phys_port_id)(struct efx_nic *efx, 1461 struct netdev_phys_item_id *ppid); 1462 int (*sriov_init)(struct efx_nic *efx); 1463 void (*sriov_fini)(struct efx_nic *efx); 1464 bool (*sriov_wanted)(struct efx_nic *efx); 1465 void (*sriov_reset)(struct efx_nic *efx); 1466 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i); 1467 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac); 1468 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan, 1469 u8 qos); 1470 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i, 1471 bool spoofchk); 1472 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i, 1473 struct ifla_vf_info *ivi); 1474 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i, 1475 int link_state); 1476 int (*vswitching_probe)(struct efx_nic *efx); 1477 int (*vswitching_restore)(struct efx_nic *efx); 1478 void (*vswitching_remove)(struct efx_nic *efx); 1479 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr); 1480 int (*set_mac_address)(struct efx_nic *efx); 1481 u32 (*tso_versions)(struct efx_nic *efx); 1482 int (*udp_tnl_push_ports)(struct efx_nic *efx); 1483 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port); 1484 size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf, 1485 size_t len); 1486 void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev); 1487 1488 int revision; 1489 unsigned int txd_ptr_tbl_base; 1490 unsigned int rxd_ptr_tbl_base; 1491 unsigned int buf_tbl_base; 1492 unsigned int evq_ptr_tbl_base; 1493 unsigned int evq_rptr_tbl_base; 1494 u64 max_dma_mask; 1495 unsigned int rx_prefix_size; 1496 unsigned int rx_hash_offset; 1497 unsigned int rx_ts_offset; 1498 unsigned int rx_buffer_padding; 1499 bool can_rx_scatter; 1500 bool always_rx_scatter; 1501 bool option_descriptors; 1502 unsigned int min_interrupt_mode; 1503 unsigned int timer_period_max; 1504 netdev_features_t offload_features; 1505 int mcdi_max_ver; 1506 unsigned int max_rx_ip_filters; 1507 u32 hwtstamp_filters; 1508 unsigned int rx_hash_key_size; 1509 }; 1510 1511 /************************************************************************** 1512 * 1513 * Prototypes and inline functions 1514 * 1515 *************************************************************************/ 1516 1517 static inline struct efx_channel * 1518 efx_get_channel(struct efx_nic *efx, unsigned index) 1519 { 1520 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels); 1521 return efx->channel[index]; 1522 } 1523 1524 /* Iterate over all used channels */ 1525 #define efx_for_each_channel(_channel, _efx) \ 1526 for (_channel = (_efx)->channel[0]; \ 1527 _channel; \ 1528 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1529 (_efx)->channel[_channel->channel + 1] : NULL) 1530 1531 /* Iterate over all used channels in reverse */ 1532 #define efx_for_each_channel_rev(_channel, _efx) \ 1533 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1534 _channel; \ 1535 _channel = _channel->channel ? \ 1536 (_efx)->channel[_channel->channel - 1] : NULL) 1537 1538 static inline struct efx_channel * 1539 efx_get_tx_channel(struct efx_nic *efx, unsigned int index) 1540 { 1541 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels); 1542 return efx->channel[efx->tx_channel_offset + index]; 1543 } 1544 1545 static inline struct efx_tx_queue * 1546 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type) 1547 { 1548 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels || 1549 type >= efx->tx_queues_per_channel); 1550 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type]; 1551 } 1552 1553 static inline struct efx_channel * 1554 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index) 1555 { 1556 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels); 1557 return efx->channel[efx->xdp_channel_offset + index]; 1558 } 1559 1560 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel) 1561 { 1562 return channel->channel - channel->efx->xdp_channel_offset < 1563 channel->efx->n_xdp_channels; 1564 } 1565 1566 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1567 { 1568 return true; 1569 } 1570 1571 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel) 1572 { 1573 if (efx_channel_is_xdp_tx(channel)) 1574 return channel->efx->xdp_tx_per_channel; 1575 return channel->efx->tx_queues_per_channel; 1576 } 1577 1578 static inline struct efx_tx_queue * 1579 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type) 1580 { 1581 EFX_WARN_ON_ONCE_PARANOID(type >= efx_channel_num_tx_queues(channel)); 1582 return &channel->tx_queue[type]; 1583 } 1584 1585 /* Iterate over all TX queues belonging to a channel */ 1586 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1587 if (!efx_channel_has_tx_queues(_channel)) \ 1588 ; \ 1589 else \ 1590 for (_tx_queue = (_channel)->tx_queue; \ 1591 _tx_queue < (_channel)->tx_queue + \ 1592 efx_channel_num_tx_queues(_channel); \ 1593 _tx_queue++) 1594 1595 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1596 { 1597 return channel->rx_queue.core_index >= 0; 1598 } 1599 1600 static inline struct efx_rx_queue * 1601 efx_channel_get_rx_queue(struct efx_channel *channel) 1602 { 1603 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel)); 1604 return &channel->rx_queue; 1605 } 1606 1607 /* Iterate over all RX queues belonging to a channel */ 1608 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1609 if (!efx_channel_has_rx_queue(_channel)) \ 1610 ; \ 1611 else \ 1612 for (_rx_queue = &(_channel)->rx_queue; \ 1613 _rx_queue; \ 1614 _rx_queue = NULL) 1615 1616 static inline struct efx_channel * 1617 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1618 { 1619 return container_of(rx_queue, struct efx_channel, rx_queue); 1620 } 1621 1622 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1623 { 1624 return efx_rx_queue_channel(rx_queue)->channel; 1625 } 1626 1627 /* Returns a pointer to the specified receive buffer in the RX 1628 * descriptor queue. 1629 */ 1630 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1631 unsigned int index) 1632 { 1633 return &rx_queue->buffer[index]; 1634 } 1635 1636 static inline struct efx_rx_buffer * 1637 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 1638 { 1639 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 1640 return efx_rx_buffer(rx_queue, 0); 1641 else 1642 return rx_buf + 1; 1643 } 1644 1645 /** 1646 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1647 * 1648 * This calculates the maximum frame length that will be used for a 1649 * given MTU. The frame length will be equal to the MTU plus a 1650 * constant amount of header space and padding. This is the quantity 1651 * that the net driver will program into the MAC as the maximum frame 1652 * length. 1653 * 1654 * The 10G MAC requires 8-byte alignment on the frame 1655 * length, so we round up to the nearest 8. 1656 * 1657 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1658 * XGMII cycle). If the frame length reaches the maximum value in the 1659 * same cycle, the XMAC can miss the IPG altogether. We work around 1660 * this by adding a further 16 bytes. 1661 */ 1662 #define EFX_FRAME_PAD 16 1663 #define EFX_MAX_FRAME_LEN(mtu) \ 1664 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8)) 1665 1666 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1667 { 1668 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1669 } 1670 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1671 { 1672 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1673 } 1674 1675 /* Get the max fill level of the TX queues on this channel */ 1676 static inline unsigned int 1677 efx_channel_tx_fill_level(struct efx_channel *channel) 1678 { 1679 struct efx_tx_queue *tx_queue; 1680 unsigned int fill_level = 0; 1681 1682 /* This function is currently only used by EF100, which maybe 1683 * could do something simpler and just compute the fill level 1684 * of the single TXQ that's really in use. 1685 */ 1686 efx_for_each_channel_tx_queue(tx_queue, channel) 1687 fill_level = max(fill_level, 1688 tx_queue->insert_count - tx_queue->read_count); 1689 1690 return fill_level; 1691 } 1692 1693 /* Get all supported features. 1694 * If a feature is not fixed, it is present in hw_features. 1695 * If a feature is fixed, it does not present in hw_features, but 1696 * always in features. 1697 */ 1698 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx) 1699 { 1700 const struct net_device *net_dev = efx->net_dev; 1701 1702 return net_dev->features | net_dev->hw_features; 1703 } 1704 1705 /* Get the current TX queue insert index. */ 1706 static inline unsigned int 1707 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue) 1708 { 1709 return tx_queue->insert_count & tx_queue->ptr_mask; 1710 } 1711 1712 /* Get a TX buffer. */ 1713 static inline struct efx_tx_buffer * 1714 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1715 { 1716 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)]; 1717 } 1718 1719 /* Get a TX buffer, checking it's not currently in use. */ 1720 static inline struct efx_tx_buffer * 1721 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1722 { 1723 struct efx_tx_buffer *buffer = 1724 __efx_tx_queue_get_insert_buffer(tx_queue); 1725 1726 EFX_WARN_ON_ONCE_PARANOID(buffer->len); 1727 EFX_WARN_ON_ONCE_PARANOID(buffer->flags); 1728 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len); 1729 1730 return buffer; 1731 } 1732 1733 #endif /* EFX_NET_DRIVER_H */ 1734