1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 /* Common definitions for all Efx net driver code */ 12 13 #ifndef EFX_NET_DRIVER_H 14 #define EFX_NET_DRIVER_H 15 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/ethtool.h> 19 #include <linux/if_vlan.h> 20 #include <linux/timer.h> 21 #include <linux/mdio.h> 22 #include <linux/list.h> 23 #include <linux/pci.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/workqueue.h> 27 #include <linux/mutex.h> 28 #include <linux/rwsem.h> 29 #include <linux/vmalloc.h> 30 #include <linux/i2c.h> 31 #include <linux/mtd/mtd.h> 32 #include <net/busy_poll.h> 33 34 #include "enum.h" 35 #include "bitfield.h" 36 #include "filter.h" 37 38 /************************************************************************** 39 * 40 * Build definitions 41 * 42 **************************************************************************/ 43 44 #define EFX_DRIVER_VERSION "4.0" 45 46 #ifdef DEBUG 47 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x) 48 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 49 #else 50 #define EFX_BUG_ON_PARANOID(x) do {} while (0) 51 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 52 #endif 53 54 /************************************************************************** 55 * 56 * Efx data structures 57 * 58 **************************************************************************/ 59 60 #define EFX_MAX_CHANNELS 32U 61 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 62 #define EFX_EXTRA_CHANNEL_IOV 0 63 #define EFX_EXTRA_CHANNEL_PTP 1 64 #define EFX_MAX_EXTRA_CHANNELS 2U 65 66 /* Checksum generation is a per-queue option in hardware, so each 67 * queue visible to the networking core is backed by two hardware TX 68 * queues. */ 69 #define EFX_MAX_TX_TC 2 70 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 71 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */ 72 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */ 73 #define EFX_TXQ_TYPES 4 74 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS) 75 76 /* Maximum possible MTU the driver supports */ 77 #define EFX_MAX_MTU (9 * 1024) 78 79 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 80 * and should be a multiple of the cache line size. 81 */ 82 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 83 84 /* If possible, we should ensure cache line alignment at start and end 85 * of every buffer. Otherwise, we just need to ensure 4-byte 86 * alignment of the network header. 87 */ 88 #if NET_IP_ALIGN == 0 89 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 90 #else 91 #define EFX_RX_BUF_ALIGNMENT 4 92 #endif 93 94 /* Forward declare Precision Time Protocol (PTP) support structure. */ 95 struct efx_ptp_data; 96 struct hwtstamp_config; 97 98 struct efx_self_tests; 99 100 /** 101 * struct efx_buffer - A general-purpose DMA buffer 102 * @addr: host base address of the buffer 103 * @dma_addr: DMA base address of the buffer 104 * @len: Buffer length, in bytes 105 * 106 * The NIC uses these buffers for its interrupt status registers and 107 * MAC stats dumps. 108 */ 109 struct efx_buffer { 110 void *addr; 111 dma_addr_t dma_addr; 112 unsigned int len; 113 }; 114 115 /** 116 * struct efx_special_buffer - DMA buffer entered into buffer table 117 * @buf: Standard &struct efx_buffer 118 * @index: Buffer index within controller;s buffer table 119 * @entries: Number of buffer table entries 120 * 121 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 122 * Event and descriptor rings are addressed via one or more buffer 123 * table entries (and so can be physically non-contiguous, although we 124 * currently do not take advantage of that). On Falcon and Siena we 125 * have to take care of allocating and initialising the entries 126 * ourselves. On later hardware this is managed by the firmware and 127 * @index and @entries are left as 0. 128 */ 129 struct efx_special_buffer { 130 struct efx_buffer buf; 131 unsigned int index; 132 unsigned int entries; 133 }; 134 135 /** 136 * struct efx_tx_buffer - buffer state for a TX descriptor 137 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 138 * freed when descriptor completes 139 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be 140 * freed when descriptor completes. 141 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor. 142 * @dma_addr: DMA address of the fragment. 143 * @flags: Flags for allocation and DMA mapping type 144 * @len: Length of this fragment. 145 * This field is zero when the queue slot is empty. 146 * @unmap_len: Length of this fragment to unmap 147 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 148 * Only valid if @unmap_len != 0. 149 */ 150 struct efx_tx_buffer { 151 union { 152 const struct sk_buff *skb; 153 void *heap_buf; 154 }; 155 union { 156 efx_qword_t option; 157 dma_addr_t dma_addr; 158 }; 159 unsigned short flags; 160 unsigned short len; 161 unsigned short unmap_len; 162 unsigned short dma_offset; 163 }; 164 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 165 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 166 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */ 167 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 168 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 169 170 /** 171 * struct efx_tx_queue - An Efx TX queue 172 * 173 * This is a ring buffer of TX fragments. 174 * Since the TX completion path always executes on the same 175 * CPU and the xmit path can operate on different CPUs, 176 * performance is increased by ensuring that the completion 177 * path and the xmit path operate on different cache lines. 178 * This is particularly important if the xmit path is always 179 * executing on one CPU which is different from the completion 180 * path. There is also a cache line for members which are 181 * read but not written on the fast path. 182 * 183 * @efx: The associated Efx NIC 184 * @queue: DMA queue number 185 * @tso_version: Version of TSO in use for this queue. 186 * @channel: The associated channel 187 * @core_txq: The networking core TX queue structure 188 * @buffer: The software buffer ring 189 * @tsoh_page: Array of pages of TSO header buffers 190 * @txd: The hardware descriptor ring 191 * @ptr_mask: The size of the ring minus 1. 192 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 193 * Size of the region is efx_piobuf_size. 194 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 195 * @initialised: Has hardware queue been initialised? 196 * @read_count: Current read pointer. 197 * This is the number of buffers that have been removed from both rings. 198 * @old_write_count: The value of @write_count when last checked. 199 * This is here for performance reasons. The xmit path will 200 * only get the up-to-date value of @write_count if this 201 * variable indicates that the queue is empty. This is to 202 * avoid cache-line ping-pong between the xmit path and the 203 * completion path. 204 * @merge_events: Number of TX merged completion events 205 * @insert_count: Current insert pointer 206 * This is the number of buffers that have been added to the 207 * software ring. 208 * @write_count: Current write pointer 209 * This is the number of buffers that have been added to the 210 * hardware ring. 211 * @old_read_count: The value of read_count when last checked. 212 * This is here for performance reasons. The xmit path will 213 * only get the up-to-date value of read_count if this 214 * variable indicates that the queue is full. This is to 215 * avoid cache-line ping-pong between the xmit path and the 216 * completion path. 217 * @tso_bursts: Number of times TSO xmit invoked by kernel 218 * @tso_long_headers: Number of packets with headers too long for standard 219 * blocks 220 * @tso_packets: Number of packets via the TSO xmit path 221 * @pushes: Number of times the TX push feature has been used 222 * @pio_packets: Number of times the TX PIO feature has been used 223 * @xmit_more_available: Are any packets waiting to be pushed to the NIC 224 * @empty_read_count: If the completion path has seen the queue as empty 225 * and the transmission path has not yet checked this, the value of 226 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 227 */ 228 struct efx_tx_queue { 229 /* Members which don't change on the fast path */ 230 struct efx_nic *efx ____cacheline_aligned_in_smp; 231 unsigned queue; 232 unsigned int tso_version; 233 struct efx_channel *channel; 234 struct netdev_queue *core_txq; 235 struct efx_tx_buffer *buffer; 236 struct efx_buffer *tsoh_page; 237 struct efx_special_buffer txd; 238 unsigned int ptr_mask; 239 void __iomem *piobuf; 240 unsigned int piobuf_offset; 241 bool initialised; 242 243 /* Members used mainly on the completion path */ 244 unsigned int read_count ____cacheline_aligned_in_smp; 245 unsigned int old_write_count; 246 unsigned int merge_events; 247 unsigned int bytes_compl; 248 unsigned int pkts_compl; 249 250 /* Members used only on the xmit path */ 251 unsigned int insert_count ____cacheline_aligned_in_smp; 252 unsigned int write_count; 253 unsigned int old_read_count; 254 unsigned int tso_bursts; 255 unsigned int tso_long_headers; 256 unsigned int tso_packets; 257 unsigned int pushes; 258 unsigned int pio_packets; 259 bool xmit_more_available; 260 /* Statistics to supplement MAC stats */ 261 unsigned long tx_packets; 262 263 /* Members shared between paths and sometimes updated */ 264 unsigned int empty_read_count ____cacheline_aligned_in_smp; 265 #define EFX_EMPTY_COUNT_VALID 0x80000000 266 atomic_t flush_outstanding; 267 }; 268 269 /** 270 * struct efx_rx_buffer - An Efx RX data buffer 271 * @dma_addr: DMA base address of the buffer 272 * @page: The associated page buffer. 273 * Will be %NULL if the buffer slot is currently free. 274 * @page_offset: If pending: offset in @page of DMA base address. 275 * If completed: offset in @page of Ethernet header. 276 * @len: If pending: length for DMA descriptor. 277 * If completed: received length, excluding hash prefix. 278 * @flags: Flags for buffer and packet state. These are only set on the 279 * first buffer of a scattered packet. 280 */ 281 struct efx_rx_buffer { 282 dma_addr_t dma_addr; 283 struct page *page; 284 u16 page_offset; 285 u16 len; 286 u16 flags; 287 }; 288 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 289 #define EFX_RX_PKT_CSUMMED 0x0002 290 #define EFX_RX_PKT_DISCARD 0x0004 291 #define EFX_RX_PKT_TCP 0x0040 292 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 293 294 /** 295 * struct efx_rx_page_state - Page-based rx buffer state 296 * 297 * Inserted at the start of every page allocated for receive buffers. 298 * Used to facilitate sharing dma mappings between recycled rx buffers 299 * and those passed up to the kernel. 300 * 301 * @dma_addr: The dma address of this page. 302 */ 303 struct efx_rx_page_state { 304 dma_addr_t dma_addr; 305 306 unsigned int __pad[0] ____cacheline_aligned; 307 }; 308 309 /** 310 * struct efx_rx_queue - An Efx RX queue 311 * @efx: The associated Efx NIC 312 * @core_index: Index of network core RX queue. Will be >= 0 iff this 313 * is associated with a real RX queue. 314 * @buffer: The software buffer ring 315 * @rxd: The hardware descriptor ring 316 * @ptr_mask: The size of the ring minus 1. 317 * @refill_enabled: Enable refill whenever fill level is low 318 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 319 * @rxq_flush_pending. 320 * @added_count: Number of buffers added to the receive queue. 321 * @notified_count: Number of buffers given to NIC (<= @added_count). 322 * @removed_count: Number of buffers removed from the receive queue. 323 * @scatter_n: Used by NIC specific receive code. 324 * @scatter_len: Used by NIC specific receive code. 325 * @page_ring: The ring to store DMA mapped pages for reuse. 326 * @page_add: Counter to calculate the write pointer for the recycle ring. 327 * @page_remove: Counter to calculate the read pointer for the recycle ring. 328 * @page_recycle_count: The number of pages that have been recycled. 329 * @page_recycle_failed: The number of pages that couldn't be recycled because 330 * the kernel still held a reference to them. 331 * @page_recycle_full: The number of pages that were released because the 332 * recycle ring was full. 333 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 334 * @max_fill: RX descriptor maximum fill level (<= ring size) 335 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 336 * (<= @max_fill) 337 * @min_fill: RX descriptor minimum non-zero fill level. 338 * This records the minimum fill level observed when a ring 339 * refill was triggered. 340 * @recycle_count: RX buffer recycle counter. 341 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 342 */ 343 struct efx_rx_queue { 344 struct efx_nic *efx; 345 int core_index; 346 struct efx_rx_buffer *buffer; 347 struct efx_special_buffer rxd; 348 unsigned int ptr_mask; 349 bool refill_enabled; 350 bool flush_pending; 351 352 unsigned int added_count; 353 unsigned int notified_count; 354 unsigned int removed_count; 355 unsigned int scatter_n; 356 unsigned int scatter_len; 357 struct page **page_ring; 358 unsigned int page_add; 359 unsigned int page_remove; 360 unsigned int page_recycle_count; 361 unsigned int page_recycle_failed; 362 unsigned int page_recycle_full; 363 unsigned int page_ptr_mask; 364 unsigned int max_fill; 365 unsigned int fast_fill_trigger; 366 unsigned int min_fill; 367 unsigned int min_overfill; 368 unsigned int recycle_count; 369 struct timer_list slow_fill; 370 unsigned int slow_fill_count; 371 /* Statistics to supplement MAC stats */ 372 unsigned long rx_packets; 373 }; 374 375 enum efx_sync_events_state { 376 SYNC_EVENTS_DISABLED = 0, 377 SYNC_EVENTS_QUIESCENT, 378 SYNC_EVENTS_REQUESTED, 379 SYNC_EVENTS_VALID, 380 }; 381 382 /** 383 * struct efx_channel - An Efx channel 384 * 385 * A channel comprises an event queue, at least one TX queue, at least 386 * one RX queue, and an associated tasklet for processing the event 387 * queue. 388 * 389 * @efx: Associated Efx NIC 390 * @channel: Channel instance number 391 * @type: Channel type definition 392 * @eventq_init: Event queue initialised flag 393 * @enabled: Channel enabled indicator 394 * @irq: IRQ number (MSI and MSI-X only) 395 * @irq_moderation: IRQ moderation value (in hardware ticks) 396 * @napi_dev: Net device used with NAPI 397 * @napi_str: NAPI control structure 398 * @state: state for NAPI vs busy polling 399 * @state_lock: lock protecting @state 400 * @eventq: Event queue buffer 401 * @eventq_mask: Event queue pointer mask 402 * @eventq_read_ptr: Event queue read pointer 403 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 404 * @irq_count: Number of IRQs since last adaptive moderation decision 405 * @irq_mod_score: IRQ moderation score 406 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 407 * indexed by filter ID 408 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 409 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 410 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 411 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 412 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 413 * @n_rx_overlength: Count of RX_OVERLENGTH errors 414 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 415 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 416 * lack of descriptors 417 * @n_rx_merge_events: Number of RX merged completion events 418 * @n_rx_merge_packets: Number of RX packets completed by merged events 419 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 420 * __efx_rx_packet(), or zero if there is none 421 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 422 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 423 * @rx_queue: RX queue for this channel 424 * @tx_queue: TX queues for this channel 425 * @sync_events_state: Current state of sync events on this channel 426 * @sync_timestamp_major: Major part of the last ptp sync event 427 * @sync_timestamp_minor: Minor part of the last ptp sync event 428 */ 429 struct efx_channel { 430 struct efx_nic *efx; 431 int channel; 432 const struct efx_channel_type *type; 433 bool eventq_init; 434 bool enabled; 435 int irq; 436 unsigned int irq_moderation; 437 struct net_device *napi_dev; 438 struct napi_struct napi_str; 439 #ifdef CONFIG_NET_RX_BUSY_POLL 440 unsigned long busy_poll_state; 441 #endif 442 struct efx_special_buffer eventq; 443 unsigned int eventq_mask; 444 unsigned int eventq_read_ptr; 445 int event_test_cpu; 446 447 unsigned int irq_count; 448 unsigned int irq_mod_score; 449 #ifdef CONFIG_RFS_ACCEL 450 unsigned int rfs_filters_added; 451 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF 452 u32 *rps_flow_id; 453 #endif 454 455 unsigned n_rx_tobe_disc; 456 unsigned n_rx_ip_hdr_chksum_err; 457 unsigned n_rx_tcp_udp_chksum_err; 458 unsigned n_rx_mcast_mismatch; 459 unsigned n_rx_frm_trunc; 460 unsigned n_rx_overlength; 461 unsigned n_skbuff_leaks; 462 unsigned int n_rx_nodesc_trunc; 463 unsigned int n_rx_merge_events; 464 unsigned int n_rx_merge_packets; 465 466 unsigned int rx_pkt_n_frags; 467 unsigned int rx_pkt_index; 468 469 struct efx_rx_queue rx_queue; 470 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; 471 472 enum efx_sync_events_state sync_events_state; 473 u32 sync_timestamp_major; 474 u32 sync_timestamp_minor; 475 }; 476 477 #ifdef CONFIG_NET_RX_BUSY_POLL 478 enum efx_channel_busy_poll_state { 479 EFX_CHANNEL_STATE_IDLE = 0, 480 EFX_CHANNEL_STATE_NAPI = BIT(0), 481 EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1, 482 EFX_CHANNEL_STATE_NAPI_REQ = BIT(1), 483 EFX_CHANNEL_STATE_POLL_BIT = 2, 484 EFX_CHANNEL_STATE_POLL = BIT(2), 485 EFX_CHANNEL_STATE_DISABLE_BIT = 3, 486 }; 487 488 static inline void efx_channel_busy_poll_init(struct efx_channel *channel) 489 { 490 WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE); 491 } 492 493 /* Called from the device poll routine to get ownership of a channel. */ 494 static inline bool efx_channel_lock_napi(struct efx_channel *channel) 495 { 496 unsigned long prev, old = READ_ONCE(channel->busy_poll_state); 497 498 while (1) { 499 switch (old) { 500 case EFX_CHANNEL_STATE_POLL: 501 /* Ensure efx_channel_try_lock_poll() wont starve us */ 502 set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT, 503 &channel->busy_poll_state); 504 /* fallthrough */ 505 case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ: 506 return false; 507 default: 508 break; 509 } 510 prev = cmpxchg(&channel->busy_poll_state, old, 511 EFX_CHANNEL_STATE_NAPI); 512 if (unlikely(prev != old)) { 513 /* This is likely to mean we've just entered polling 514 * state. Go back round to set the REQ bit. 515 */ 516 old = prev; 517 continue; 518 } 519 return true; 520 } 521 } 522 523 static inline void efx_channel_unlock_napi(struct efx_channel *channel) 524 { 525 /* Make sure write has completed from efx_channel_lock_napi() */ 526 smp_wmb(); 527 WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE); 528 } 529 530 /* Called from efx_busy_poll(). */ 531 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel) 532 { 533 return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE, 534 EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE; 535 } 536 537 static inline void efx_channel_unlock_poll(struct efx_channel *channel) 538 { 539 clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state); 540 } 541 542 static inline bool efx_channel_busy_polling(struct efx_channel *channel) 543 { 544 return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state); 545 } 546 547 static inline void efx_channel_enable(struct efx_channel *channel) 548 { 549 clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT, 550 &channel->busy_poll_state); 551 } 552 553 /* Stop further polling or napi access. 554 * Returns false if the channel is currently busy polling. 555 */ 556 static inline bool efx_channel_disable(struct efx_channel *channel) 557 { 558 set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state); 559 /* Implicit barrier in efx_channel_busy_polling() */ 560 return !efx_channel_busy_polling(channel); 561 } 562 563 #else /* CONFIG_NET_RX_BUSY_POLL */ 564 565 static inline void efx_channel_busy_poll_init(struct efx_channel *channel) 566 { 567 } 568 569 static inline bool efx_channel_lock_napi(struct efx_channel *channel) 570 { 571 return true; 572 } 573 574 static inline void efx_channel_unlock_napi(struct efx_channel *channel) 575 { 576 } 577 578 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel) 579 { 580 return false; 581 } 582 583 static inline void efx_channel_unlock_poll(struct efx_channel *channel) 584 { 585 } 586 587 static inline bool efx_channel_busy_polling(struct efx_channel *channel) 588 { 589 return false; 590 } 591 592 static inline void efx_channel_enable(struct efx_channel *channel) 593 { 594 } 595 596 static inline bool efx_channel_disable(struct efx_channel *channel) 597 { 598 return true; 599 } 600 #endif /* CONFIG_NET_RX_BUSY_POLL */ 601 602 /** 603 * struct efx_msi_context - Context for each MSI 604 * @efx: The associated NIC 605 * @index: Index of the channel/IRQ 606 * @name: Name of the channel/IRQ 607 * 608 * Unlike &struct efx_channel, this is never reallocated and is always 609 * safe for the IRQ handler to access. 610 */ 611 struct efx_msi_context { 612 struct efx_nic *efx; 613 unsigned int index; 614 char name[IFNAMSIZ + 6]; 615 }; 616 617 /** 618 * struct efx_channel_type - distinguishes traffic and extra channels 619 * @handle_no_channel: Handle failure to allocate an extra channel 620 * @pre_probe: Set up extra state prior to initialisation 621 * @post_remove: Tear down extra state after finalisation, if allocated. 622 * May be called on channels that have not been probed. 623 * @get_name: Generate the channel's name (used for its IRQ handler) 624 * @copy: Copy the channel state prior to reallocation. May be %NULL if 625 * reallocation is not supported. 626 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 627 * @keep_eventq: Flag for whether event queue should be kept initialised 628 * while the device is stopped 629 */ 630 struct efx_channel_type { 631 void (*handle_no_channel)(struct efx_nic *); 632 int (*pre_probe)(struct efx_channel *); 633 void (*post_remove)(struct efx_channel *); 634 void (*get_name)(struct efx_channel *, char *buf, size_t len); 635 struct efx_channel *(*copy)(const struct efx_channel *); 636 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 637 bool keep_eventq; 638 }; 639 640 enum efx_led_mode { 641 EFX_LED_OFF = 0, 642 EFX_LED_ON = 1, 643 EFX_LED_DEFAULT = 2 644 }; 645 646 #define STRING_TABLE_LOOKUP(val, member) \ 647 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 648 649 extern const char *const efx_loopback_mode_names[]; 650 extern const unsigned int efx_loopback_mode_max; 651 #define LOOPBACK_MODE(efx) \ 652 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 653 654 extern const char *const efx_reset_type_names[]; 655 extern const unsigned int efx_reset_type_max; 656 #define RESET_TYPE(type) \ 657 STRING_TABLE_LOOKUP(type, efx_reset_type) 658 659 enum efx_int_mode { 660 /* Be careful if altering to correct macro below */ 661 EFX_INT_MODE_MSIX = 0, 662 EFX_INT_MODE_MSI = 1, 663 EFX_INT_MODE_LEGACY = 2, 664 EFX_INT_MODE_MAX /* Insert any new items before this */ 665 }; 666 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 667 668 enum nic_state { 669 STATE_UNINIT = 0, /* device being probed/removed or is frozen */ 670 STATE_READY = 1, /* hardware ready and netdev registered */ 671 STATE_DISABLED = 2, /* device disabled due to hardware errors */ 672 STATE_RECOVERY = 3, /* device recovering from PCI error */ 673 }; 674 675 /* Forward declaration */ 676 struct efx_nic; 677 678 /* Pseudo bit-mask flow control field */ 679 #define EFX_FC_RX FLOW_CTRL_RX 680 #define EFX_FC_TX FLOW_CTRL_TX 681 #define EFX_FC_AUTO 4 682 683 /** 684 * struct efx_link_state - Current state of the link 685 * @up: Link is up 686 * @fd: Link is full-duplex 687 * @fc: Actual flow control flags 688 * @speed: Link speed (Mbps) 689 */ 690 struct efx_link_state { 691 bool up; 692 bool fd; 693 u8 fc; 694 unsigned int speed; 695 }; 696 697 static inline bool efx_link_state_equal(const struct efx_link_state *left, 698 const struct efx_link_state *right) 699 { 700 return left->up == right->up && left->fd == right->fd && 701 left->fc == right->fc && left->speed == right->speed; 702 } 703 704 /** 705 * struct efx_phy_operations - Efx PHY operations table 706 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, 707 * efx->loopback_modes. 708 * @init: Initialise PHY 709 * @fini: Shut down PHY 710 * @reconfigure: Reconfigure PHY (e.g. for new link parameters) 711 * @poll: Update @link_state and report whether it changed. 712 * Serialised by the mac_lock. 713 * @get_settings: Get ethtool settings. Serialised by the mac_lock. 714 * @set_settings: Set ethtool settings. Serialised by the mac_lock. 715 * @set_npage_adv: Set abilities advertised in (Extended) Next Page 716 * (only needed where AN bit is set in mmds) 717 * @test_alive: Test that PHY is 'alive' (online) 718 * @test_name: Get the name of a PHY-specific test/result 719 * @run_tests: Run tests and record results as appropriate (offline). 720 * Flags are the ethtool tests flags. 721 */ 722 struct efx_phy_operations { 723 int (*probe) (struct efx_nic *efx); 724 int (*init) (struct efx_nic *efx); 725 void (*fini) (struct efx_nic *efx); 726 void (*remove) (struct efx_nic *efx); 727 int (*reconfigure) (struct efx_nic *efx); 728 bool (*poll) (struct efx_nic *efx); 729 void (*get_settings) (struct efx_nic *efx, 730 struct ethtool_cmd *ecmd); 731 int (*set_settings) (struct efx_nic *efx, 732 struct ethtool_cmd *ecmd); 733 void (*set_npage_adv) (struct efx_nic *efx, u32); 734 int (*test_alive) (struct efx_nic *efx); 735 const char *(*test_name) (struct efx_nic *efx, unsigned int index); 736 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); 737 int (*get_module_eeprom) (struct efx_nic *efx, 738 struct ethtool_eeprom *ee, 739 u8 *data); 740 int (*get_module_info) (struct efx_nic *efx, 741 struct ethtool_modinfo *modinfo); 742 }; 743 744 /** 745 * enum efx_phy_mode - PHY operating mode flags 746 * @PHY_MODE_NORMAL: on and should pass traffic 747 * @PHY_MODE_TX_DISABLED: on with TX disabled 748 * @PHY_MODE_LOW_POWER: set to low power through MDIO 749 * @PHY_MODE_OFF: switched off through external control 750 * @PHY_MODE_SPECIAL: on but will not pass traffic 751 */ 752 enum efx_phy_mode { 753 PHY_MODE_NORMAL = 0, 754 PHY_MODE_TX_DISABLED = 1, 755 PHY_MODE_LOW_POWER = 2, 756 PHY_MODE_OFF = 4, 757 PHY_MODE_SPECIAL = 8, 758 }; 759 760 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 761 { 762 return !!(mode & ~PHY_MODE_TX_DISABLED); 763 } 764 765 /** 766 * struct efx_hw_stat_desc - Description of a hardware statistic 767 * @name: Name of the statistic as visible through ethtool, or %NULL if 768 * it should not be exposed 769 * @dma_width: Width in bits (0 for non-DMA statistics) 770 * @offset: Offset within stats (ignored for non-DMA statistics) 771 */ 772 struct efx_hw_stat_desc { 773 const char *name; 774 u16 dma_width; 775 u16 offset; 776 }; 777 778 /* Number of bits used in a multicast filter hash address */ 779 #define EFX_MCAST_HASH_BITS 8 780 781 /* Number of (single-bit) entries in a multicast filter hash */ 782 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 783 784 /* An Efx multicast filter hash */ 785 union efx_multicast_hash { 786 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 787 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 788 }; 789 790 struct vfdi_status; 791 792 /** 793 * struct efx_nic - an Efx NIC 794 * @name: Device name (net device name or bus id before net device registered) 795 * @pci_dev: The PCI device 796 * @node: List node for maintaning primary/secondary function lists 797 * @primary: &struct efx_nic instance for the primary function of this 798 * controller. May be the same structure, and may be %NULL if no 799 * primary function is bound. Serialised by rtnl_lock. 800 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 801 * functions of the controller, if this is for the primary function. 802 * Serialised by rtnl_lock. 803 * @type: Controller type attributes 804 * @legacy_irq: IRQ number 805 * @workqueue: Workqueue for port reconfigures and the HW monitor. 806 * Work items do not hold and must not acquire RTNL. 807 * @workqueue_name: Name of workqueue 808 * @reset_work: Scheduled reset workitem 809 * @membase_phys: Memory BAR value as physical address 810 * @membase: Memory BAR value 811 * @interrupt_mode: Interrupt mode 812 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 813 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 814 * @irq_rx_moderation: IRQ moderation time for RX event queues 815 * @msg_enable: Log message enable flags 816 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 817 * @reset_pending: Bitmask for pending resets 818 * @tx_queue: TX DMA queues 819 * @rx_queue: RX DMA queues 820 * @channel: Channels 821 * @msi_context: Context for each MSI 822 * @extra_channel_types: Types of extra (non-traffic) channels that 823 * should be allocated for this NIC 824 * @rxq_entries: Size of receive queues requested by user. 825 * @txq_entries: Size of transmit queues requested by user. 826 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 827 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 828 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 829 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 830 * @sram_lim_qw: Qword address limit of SRAM 831 * @next_buffer_table: First available buffer table id 832 * @n_channels: Number of channels in use 833 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 834 * @n_tx_channels: Number of channels used for TX 835 * @rx_ip_align: RX DMA address offset to have IP header aligned in 836 * in accordance with NET_IP_ALIGN 837 * @rx_dma_len: Current maximum RX DMA length 838 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 839 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 840 * for use in sk_buff::truesize 841 * @rx_prefix_size: Size of RX prefix before packet data 842 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 843 * (valid only if @rx_prefix_size != 0; always negative) 844 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 845 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 846 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 847 * (valid only if channel->sync_timestamps_enabled; always negative) 848 * @rx_hash_key: Toeplitz hash key for RSS 849 * @rx_indir_table: Indirection table for RSS 850 * @rx_scatter: Scatter mode enabled for receives 851 * @int_error_count: Number of internal errors seen recently 852 * @int_error_expire: Time at which error count will be expired 853 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 854 * acknowledge but do nothing else. 855 * @irq_status: Interrupt status buffer 856 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 857 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 858 * @selftest_work: Work item for asynchronous self-test 859 * @mtd_list: List of MTDs attached to the NIC 860 * @nic_data: Hardware dependent state 861 * @mcdi: Management-Controller-to-Driver Interface state 862 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 863 * efx_monitor() and efx_reconfigure_port() 864 * @port_enabled: Port enabled indicator. 865 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 866 * efx_mac_work() with kernel interfaces. Safe to read under any 867 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 868 * be held to modify it. 869 * @port_initialized: Port initialized? 870 * @net_dev: Operating system network device. Consider holding the rtnl lock 871 * @stats_buffer: DMA buffer for statistics 872 * @phy_type: PHY type 873 * @phy_op: PHY interface 874 * @phy_data: PHY private data (including PHY-specific stats) 875 * @mdio: PHY MDIO interface 876 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 877 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 878 * @link_advertising: Autonegotiation advertising flags 879 * @link_state: Current state of the link 880 * @n_link_state_changes: Number of times the link has changed state 881 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 882 * Protected by @mac_lock. 883 * @multicast_hash: Multicast hash table for Falcon-arch. 884 * Protected by @mac_lock. 885 * @wanted_fc: Wanted flow control flags 886 * @fc_disable: When non-zero flow control is disabled. Typically used to 887 * ensure that network back pressure doesn't delay dma queue flushes. 888 * Serialised by the rtnl lock. 889 * @mac_work: Work item for changing MAC promiscuity and multicast hash 890 * @loopback_mode: Loopback status 891 * @loopback_modes: Supported loopback mode bitmask 892 * @loopback_selftest: Offline self-test private state 893 * @filter_sem: Filter table rw_semaphore, for freeing the table 894 * @filter_lock: Filter table lock, for mere content changes 895 * @filter_state: Architecture-dependent filter table state 896 * @rps_expire_channel: Next channel to check for expiry 897 * @rps_expire_index: Next index to check for expiry in 898 * @rps_expire_channel's @rps_flow_id 899 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 900 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 901 * Decremented when the efx_flush_rx_queue() is called. 902 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 903 * completed (either success or failure). Not used when MCDI is used to 904 * flush receive queues. 905 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 906 * @vf_count: Number of VFs intended to be enabled. 907 * @vf_init_count: Number of VFs that have been fully initialised. 908 * @vi_scale: log2 number of vnics per VF. 909 * @ptp_data: PTP state data 910 * @vpd_sn: Serial number read from VPD 911 * @monitor_work: Hardware monitor workitem 912 * @biu_lock: BIU (bus interface unit) lock 913 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 914 * field is used by efx_test_interrupts() to verify that an 915 * interrupt has occurred. 916 * @stats_lock: Statistics update lock. Must be held when calling 917 * efx_nic_type::{update,start,stop}_stats. 918 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb 919 * @mc_promisc: Whether in multicast promiscuous mode when last changed 920 * 921 * This is stored in the private area of the &struct net_device. 922 */ 923 struct efx_nic { 924 /* The following fields should be written very rarely */ 925 926 char name[IFNAMSIZ]; 927 struct list_head node; 928 struct efx_nic *primary; 929 struct list_head secondary_list; 930 struct pci_dev *pci_dev; 931 unsigned int port_num; 932 const struct efx_nic_type *type; 933 int legacy_irq; 934 bool eeh_disabled_legacy_irq; 935 struct workqueue_struct *workqueue; 936 char workqueue_name[16]; 937 struct work_struct reset_work; 938 resource_size_t membase_phys; 939 void __iomem *membase; 940 941 enum efx_int_mode interrupt_mode; 942 unsigned int timer_quantum_ns; 943 bool irq_rx_adaptive; 944 unsigned int irq_rx_moderation; 945 u32 msg_enable; 946 947 enum nic_state state; 948 unsigned long reset_pending; 949 950 struct efx_channel *channel[EFX_MAX_CHANNELS]; 951 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 952 const struct efx_channel_type * 953 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 954 955 unsigned rxq_entries; 956 unsigned txq_entries; 957 unsigned int txq_stop_thresh; 958 unsigned int txq_wake_thresh; 959 960 unsigned tx_dc_base; 961 unsigned rx_dc_base; 962 unsigned sram_lim_qw; 963 unsigned next_buffer_table; 964 965 unsigned int max_channels; 966 unsigned int max_tx_channels; 967 unsigned n_channels; 968 unsigned n_rx_channels; 969 unsigned rss_spread; 970 unsigned tx_channel_offset; 971 unsigned n_tx_channels; 972 unsigned int rx_ip_align; 973 unsigned int rx_dma_len; 974 unsigned int rx_buffer_order; 975 unsigned int rx_buffer_truesize; 976 unsigned int rx_page_buf_step; 977 unsigned int rx_bufs_per_page; 978 unsigned int rx_pages_per_batch; 979 unsigned int rx_prefix_size; 980 int rx_packet_hash_offset; 981 int rx_packet_len_offset; 982 int rx_packet_ts_offset; 983 u8 rx_hash_key[40]; 984 u32 rx_indir_table[128]; 985 bool rx_scatter; 986 987 unsigned int_error_count; 988 unsigned long int_error_expire; 989 990 bool irq_soft_enabled; 991 struct efx_buffer irq_status; 992 unsigned irq_zero_count; 993 unsigned irq_level; 994 struct delayed_work selftest_work; 995 996 #ifdef CONFIG_SFC_MTD 997 struct list_head mtd_list; 998 #endif 999 1000 void *nic_data; 1001 struct efx_mcdi_data *mcdi; 1002 1003 struct mutex mac_lock; 1004 struct work_struct mac_work; 1005 bool port_enabled; 1006 1007 bool mc_bist_for_other_fn; 1008 bool port_initialized; 1009 struct net_device *net_dev; 1010 1011 struct efx_buffer stats_buffer; 1012 u64 rx_nodesc_drops_total; 1013 u64 rx_nodesc_drops_while_down; 1014 bool rx_nodesc_drops_prev_state; 1015 1016 unsigned int phy_type; 1017 const struct efx_phy_operations *phy_op; 1018 void *phy_data; 1019 struct mdio_if_info mdio; 1020 unsigned int mdio_bus; 1021 enum efx_phy_mode phy_mode; 1022 1023 u32 link_advertising; 1024 struct efx_link_state link_state; 1025 unsigned int n_link_state_changes; 1026 1027 bool unicast_filter; 1028 union efx_multicast_hash multicast_hash; 1029 u8 wanted_fc; 1030 unsigned fc_disable; 1031 1032 atomic_t rx_reset; 1033 enum efx_loopback_mode loopback_mode; 1034 u64 loopback_modes; 1035 1036 void *loopback_selftest; 1037 1038 struct rw_semaphore filter_sem; 1039 spinlock_t filter_lock; 1040 void *filter_state; 1041 #ifdef CONFIG_RFS_ACCEL 1042 unsigned int rps_expire_channel; 1043 unsigned int rps_expire_index; 1044 #endif 1045 1046 atomic_t active_queues; 1047 atomic_t rxq_flush_pending; 1048 atomic_t rxq_flush_outstanding; 1049 wait_queue_head_t flush_wq; 1050 1051 #ifdef CONFIG_SFC_SRIOV 1052 unsigned vf_count; 1053 unsigned vf_init_count; 1054 unsigned vi_scale; 1055 #endif 1056 1057 struct efx_ptp_data *ptp_data; 1058 1059 char *vpd_sn; 1060 1061 /* The following fields may be written more often */ 1062 1063 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 1064 spinlock_t biu_lock; 1065 int last_irq_cpu; 1066 spinlock_t stats_lock; 1067 atomic_t n_rx_noskb_drops; 1068 bool mc_promisc; 1069 }; 1070 1071 static inline int efx_dev_registered(struct efx_nic *efx) 1072 { 1073 return efx->net_dev->reg_state == NETREG_REGISTERED; 1074 } 1075 1076 static inline unsigned int efx_port_num(struct efx_nic *efx) 1077 { 1078 return efx->port_num; 1079 } 1080 1081 struct efx_mtd_partition { 1082 struct list_head node; 1083 struct mtd_info mtd; 1084 const char *dev_type_name; 1085 const char *type_name; 1086 char name[IFNAMSIZ + 20]; 1087 }; 1088 1089 /** 1090 * struct efx_nic_type - Efx device type definition 1091 * @mem_bar: Get the memory BAR 1092 * @mem_map_size: Get memory BAR mapped size 1093 * @probe: Probe the controller 1094 * @remove: Free resources allocated by probe() 1095 * @init: Initialise the controller 1096 * @dimension_resources: Dimension controller resources (buffer table, 1097 * and VIs once the available interrupt resources are clear) 1098 * @fini: Shut down the controller 1099 * @monitor: Periodic function for polling link state and hardware monitor 1100 * @map_reset_reason: Map ethtool reset reason to a reset method 1101 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 1102 * @reset: Reset the controller hardware and possibly the PHY. This will 1103 * be called while the controller is uninitialised. 1104 * @probe_port: Probe the MAC and PHY 1105 * @remove_port: Free resources allocated by probe_port() 1106 * @handle_global_event: Handle a "global" event (may be %NULL) 1107 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 1108 * @prepare_flush: Prepare the hardware for flushing the DMA queues 1109 * (for Falcon architecture) 1110 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 1111 * architecture) 1112 * @prepare_flr: Prepare for an FLR 1113 * @finish_flr: Clean up after an FLR 1114 * @describe_stats: Describe statistics for ethtool 1115 * @update_stats: Update statistics not provided by event handling. 1116 * Either argument may be %NULL. 1117 * @start_stats: Start the regular fetching of statistics 1118 * @pull_stats: Pull stats from the NIC and wait until they arrive. 1119 * @stop_stats: Stop the regular fetching of statistics 1120 * @set_id_led: Set state of identifying LED or revert to automatic function 1121 * @push_irq_moderation: Apply interrupt moderation value 1122 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 1123 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 1124 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 1125 * to the hardware. Serialised by the mac_lock. 1126 * @check_mac_fault: Check MAC fault state. True if fault present. 1127 * @get_wol: Get WoL configuration from driver state 1128 * @set_wol: Push WoL configuration to the NIC 1129 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1130 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 1131 * expected to reset the NIC. 1132 * @test_nvram: Test validity of NVRAM contents 1133 * @mcdi_request: Send an MCDI request with the given header and SDU. 1134 * The SDU length may be any value from 0 up to the protocol- 1135 * defined maximum, but its buffer will be padded to a multiple 1136 * of 4 bytes. 1137 * @mcdi_poll_response: Test whether an MCDI response is available. 1138 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1139 * be a multiple of 4. The length may not be, but the buffer 1140 * will be padded so it is safe to round up. 1141 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1142 * return an appropriate error code for aborting any current 1143 * request; otherwise return 0. 1144 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1145 * be separately enabled after this. 1146 * @irq_test_generate: Generate a test IRQ 1147 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1148 * queue must be separately disabled before this. 1149 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1150 * a pointer to the &struct efx_msi_context for the channel. 1151 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1152 * is a pointer to the &struct efx_nic. 1153 * @tx_probe: Allocate resources for TX queue 1154 * @tx_init: Initialise TX queue on the NIC 1155 * @tx_remove: Free resources for TX queue 1156 * @tx_write: Write TX descriptors and doorbell 1157 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC 1158 * @rx_probe: Allocate resources for RX queue 1159 * @rx_init: Initialise RX queue on the NIC 1160 * @rx_remove: Free resources for RX queue 1161 * @rx_write: Write RX descriptors and doorbell 1162 * @rx_defer_refill: Generate a refill reminder event 1163 * @ev_probe: Allocate resources for event queue 1164 * @ev_init: Initialise event queue on the NIC 1165 * @ev_fini: Deinitialise event queue on the NIC 1166 * @ev_remove: Free resources for event queue 1167 * @ev_process: Process events for a queue, up to the given NAPI quota 1168 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1169 * @ev_test_generate: Generate a test event 1170 * @filter_table_probe: Probe filter capabilities and set up filter software state 1171 * @filter_table_restore: Restore filters removed from hardware 1172 * @filter_table_remove: Remove filters from hardware and tear down software state 1173 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1174 * @filter_insert: add or replace a filter 1175 * @filter_remove_safe: remove a filter by ID, carefully 1176 * @filter_get_safe: retrieve a filter by ID, carefully 1177 * @filter_clear_rx: Remove all RX filters whose priority is less than or 1178 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO 1179 * @filter_count_rx_used: Get the number of filters in use at a given priority 1180 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1181 * @filter_get_rx_ids: Get list of RX filters at a given priority 1182 * @filter_rfs_insert: Add or replace a filter for RFS. This must be 1183 * atomic. The hardware change may be asynchronous but should 1184 * not be delayed for long. It may fail if this can't be done 1185 * atomically. 1186 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1187 * This must check whether the specified table entry is used by RFS 1188 * and that rps_may_expire_flow() returns true for it. 1189 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1190 * using efx_mtd_add() 1191 * @mtd_rename: Set an MTD partition name using the net device name 1192 * @mtd_read: Read from an MTD partition 1193 * @mtd_erase: Erase part of an MTD partition 1194 * @mtd_write: Write to an MTD partition 1195 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1196 * also notifies the driver that a writer has finished using this 1197 * partition. 1198 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1199 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1200 * timestamping, possibly only temporarily for the purposes of a reset. 1201 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1202 * and tx_type will already have been validated but this operation 1203 * must validate and update rx_filter. 1204 * @set_mac_address: Set the MAC address of the device 1205 * @revision: Hardware architecture revision 1206 * @txd_ptr_tbl_base: TX descriptor ring base address 1207 * @rxd_ptr_tbl_base: RX descriptor ring base address 1208 * @buf_tbl_base: Buffer table base address 1209 * @evq_ptr_tbl_base: Event queue pointer table base address 1210 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1211 * @max_dma_mask: Maximum possible DMA mask 1212 * @rx_prefix_size: Size of RX prefix before packet data 1213 * @rx_hash_offset: Offset of RX flow hash within prefix 1214 * @rx_ts_offset: Offset of timestamp within prefix 1215 * @rx_buffer_padding: Size of padding at end of RX packet 1216 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1217 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1218 * @max_interrupt_mode: Highest capability interrupt mode supported 1219 * from &enum efx_init_mode. 1220 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1221 * @offload_features: net_device feature flags for protocol offload 1222 * features implemented in hardware 1223 * @mcdi_max_ver: Maximum MCDI version supported 1224 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1225 */ 1226 struct efx_nic_type { 1227 bool is_vf; 1228 unsigned int mem_bar; 1229 unsigned int (*mem_map_size)(struct efx_nic *efx); 1230 int (*probe)(struct efx_nic *efx); 1231 void (*remove)(struct efx_nic *efx); 1232 int (*init)(struct efx_nic *efx); 1233 int (*dimension_resources)(struct efx_nic *efx); 1234 void (*fini)(struct efx_nic *efx); 1235 void (*monitor)(struct efx_nic *efx); 1236 enum reset_type (*map_reset_reason)(enum reset_type reason); 1237 int (*map_reset_flags)(u32 *flags); 1238 int (*reset)(struct efx_nic *efx, enum reset_type method); 1239 int (*probe_port)(struct efx_nic *efx); 1240 void (*remove_port)(struct efx_nic *efx); 1241 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1242 int (*fini_dmaq)(struct efx_nic *efx); 1243 void (*prepare_flush)(struct efx_nic *efx); 1244 void (*finish_flush)(struct efx_nic *efx); 1245 void (*prepare_flr)(struct efx_nic *efx); 1246 void (*finish_flr)(struct efx_nic *efx); 1247 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1248 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1249 struct rtnl_link_stats64 *core_stats); 1250 void (*start_stats)(struct efx_nic *efx); 1251 void (*pull_stats)(struct efx_nic *efx); 1252 void (*stop_stats)(struct efx_nic *efx); 1253 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); 1254 void (*push_irq_moderation)(struct efx_channel *channel); 1255 int (*reconfigure_port)(struct efx_nic *efx); 1256 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1257 int (*reconfigure_mac)(struct efx_nic *efx); 1258 bool (*check_mac_fault)(struct efx_nic *efx); 1259 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1260 int (*set_wol)(struct efx_nic *efx, u32 type); 1261 void (*resume_wol)(struct efx_nic *efx); 1262 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1263 int (*test_nvram)(struct efx_nic *efx); 1264 void (*mcdi_request)(struct efx_nic *efx, 1265 const efx_dword_t *hdr, size_t hdr_len, 1266 const efx_dword_t *sdu, size_t sdu_len); 1267 bool (*mcdi_poll_response)(struct efx_nic *efx); 1268 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1269 size_t pdu_offset, size_t pdu_len); 1270 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1271 void (*mcdi_reboot_detected)(struct efx_nic *efx); 1272 void (*irq_enable_master)(struct efx_nic *efx); 1273 void (*irq_test_generate)(struct efx_nic *efx); 1274 void (*irq_disable_non_ev)(struct efx_nic *efx); 1275 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1276 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1277 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1278 void (*tx_init)(struct efx_tx_queue *tx_queue); 1279 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1280 void (*tx_write)(struct efx_tx_queue *tx_queue); 1281 int (*rx_push_rss_config)(struct efx_nic *efx, bool user, 1282 const u32 *rx_indir_table); 1283 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1284 void (*rx_init)(struct efx_rx_queue *rx_queue); 1285 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1286 void (*rx_write)(struct efx_rx_queue *rx_queue); 1287 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1288 int (*ev_probe)(struct efx_channel *channel); 1289 int (*ev_init)(struct efx_channel *channel); 1290 void (*ev_fini)(struct efx_channel *channel); 1291 void (*ev_remove)(struct efx_channel *channel); 1292 int (*ev_process)(struct efx_channel *channel, int quota); 1293 void (*ev_read_ack)(struct efx_channel *channel); 1294 void (*ev_test_generate)(struct efx_channel *channel); 1295 int (*filter_table_probe)(struct efx_nic *efx); 1296 void (*filter_table_restore)(struct efx_nic *efx); 1297 void (*filter_table_remove)(struct efx_nic *efx); 1298 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1299 s32 (*filter_insert)(struct efx_nic *efx, 1300 struct efx_filter_spec *spec, bool replace); 1301 int (*filter_remove_safe)(struct efx_nic *efx, 1302 enum efx_filter_priority priority, 1303 u32 filter_id); 1304 int (*filter_get_safe)(struct efx_nic *efx, 1305 enum efx_filter_priority priority, 1306 u32 filter_id, struct efx_filter_spec *); 1307 int (*filter_clear_rx)(struct efx_nic *efx, 1308 enum efx_filter_priority priority); 1309 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1310 enum efx_filter_priority priority); 1311 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1312 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1313 enum efx_filter_priority priority, 1314 u32 *buf, u32 size); 1315 #ifdef CONFIG_RFS_ACCEL 1316 s32 (*filter_rfs_insert)(struct efx_nic *efx, 1317 struct efx_filter_spec *spec); 1318 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1319 unsigned int index); 1320 #endif 1321 #ifdef CONFIG_SFC_MTD 1322 int (*mtd_probe)(struct efx_nic *efx); 1323 void (*mtd_rename)(struct efx_mtd_partition *part); 1324 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1325 size_t *retlen, u8 *buffer); 1326 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1327 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1328 size_t *retlen, const u8 *buffer); 1329 int (*mtd_sync)(struct mtd_info *mtd); 1330 #endif 1331 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1332 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1333 int (*ptp_set_ts_config)(struct efx_nic *efx, 1334 struct hwtstamp_config *init); 1335 int (*sriov_configure)(struct efx_nic *efx, int num_vfs); 1336 int (*sriov_init)(struct efx_nic *efx); 1337 void (*sriov_fini)(struct efx_nic *efx); 1338 bool (*sriov_wanted)(struct efx_nic *efx); 1339 void (*sriov_reset)(struct efx_nic *efx); 1340 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i); 1341 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac); 1342 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan, 1343 u8 qos); 1344 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i, 1345 bool spoofchk); 1346 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i, 1347 struct ifla_vf_info *ivi); 1348 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i, 1349 int link_state); 1350 int (*sriov_get_phys_port_id)(struct efx_nic *efx, 1351 struct netdev_phys_item_id *ppid); 1352 int (*vswitching_probe)(struct efx_nic *efx); 1353 int (*vswitching_restore)(struct efx_nic *efx); 1354 void (*vswitching_remove)(struct efx_nic *efx); 1355 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr); 1356 int (*set_mac_address)(struct efx_nic *efx); 1357 1358 int revision; 1359 unsigned int txd_ptr_tbl_base; 1360 unsigned int rxd_ptr_tbl_base; 1361 unsigned int buf_tbl_base; 1362 unsigned int evq_ptr_tbl_base; 1363 unsigned int evq_rptr_tbl_base; 1364 u64 max_dma_mask; 1365 unsigned int rx_prefix_size; 1366 unsigned int rx_hash_offset; 1367 unsigned int rx_ts_offset; 1368 unsigned int rx_buffer_padding; 1369 bool can_rx_scatter; 1370 bool always_rx_scatter; 1371 unsigned int max_interrupt_mode; 1372 unsigned int timer_period_max; 1373 netdev_features_t offload_features; 1374 int mcdi_max_ver; 1375 unsigned int max_rx_ip_filters; 1376 u32 hwtstamp_filters; 1377 }; 1378 1379 /************************************************************************** 1380 * 1381 * Prototypes and inline functions 1382 * 1383 *************************************************************************/ 1384 1385 static inline struct efx_channel * 1386 efx_get_channel(struct efx_nic *efx, unsigned index) 1387 { 1388 EFX_BUG_ON_PARANOID(index >= efx->n_channels); 1389 return efx->channel[index]; 1390 } 1391 1392 /* Iterate over all used channels */ 1393 #define efx_for_each_channel(_channel, _efx) \ 1394 for (_channel = (_efx)->channel[0]; \ 1395 _channel; \ 1396 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1397 (_efx)->channel[_channel->channel + 1] : NULL) 1398 1399 /* Iterate over all used channels in reverse */ 1400 #define efx_for_each_channel_rev(_channel, _efx) \ 1401 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1402 _channel; \ 1403 _channel = _channel->channel ? \ 1404 (_efx)->channel[_channel->channel - 1] : NULL) 1405 1406 static inline struct efx_tx_queue * 1407 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type) 1408 { 1409 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels || 1410 type >= EFX_TXQ_TYPES); 1411 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type]; 1412 } 1413 1414 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1415 { 1416 return channel->channel - channel->efx->tx_channel_offset < 1417 channel->efx->n_tx_channels; 1418 } 1419 1420 static inline struct efx_tx_queue * 1421 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type) 1422 { 1423 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) || 1424 type >= EFX_TXQ_TYPES); 1425 return &channel->tx_queue[type]; 1426 } 1427 1428 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue) 1429 { 1430 return !(tx_queue->efx->net_dev->num_tc < 2 && 1431 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI); 1432 } 1433 1434 /* Iterate over all TX queues belonging to a channel */ 1435 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1436 if (!efx_channel_has_tx_queues(_channel)) \ 1437 ; \ 1438 else \ 1439 for (_tx_queue = (_channel)->tx_queue; \ 1440 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \ 1441 efx_tx_queue_used(_tx_queue); \ 1442 _tx_queue++) 1443 1444 /* Iterate over all possible TX queues belonging to a channel */ 1445 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \ 1446 if (!efx_channel_has_tx_queues(_channel)) \ 1447 ; \ 1448 else \ 1449 for (_tx_queue = (_channel)->tx_queue; \ 1450 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \ 1451 _tx_queue++) 1452 1453 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1454 { 1455 return channel->rx_queue.core_index >= 0; 1456 } 1457 1458 static inline struct efx_rx_queue * 1459 efx_channel_get_rx_queue(struct efx_channel *channel) 1460 { 1461 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel)); 1462 return &channel->rx_queue; 1463 } 1464 1465 /* Iterate over all RX queues belonging to a channel */ 1466 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1467 if (!efx_channel_has_rx_queue(_channel)) \ 1468 ; \ 1469 else \ 1470 for (_rx_queue = &(_channel)->rx_queue; \ 1471 _rx_queue; \ 1472 _rx_queue = NULL) 1473 1474 static inline struct efx_channel * 1475 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1476 { 1477 return container_of(rx_queue, struct efx_channel, rx_queue); 1478 } 1479 1480 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1481 { 1482 return efx_rx_queue_channel(rx_queue)->channel; 1483 } 1484 1485 /* Returns a pointer to the specified receive buffer in the RX 1486 * descriptor queue. 1487 */ 1488 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1489 unsigned int index) 1490 { 1491 return &rx_queue->buffer[index]; 1492 } 1493 1494 /** 1495 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1496 * 1497 * This calculates the maximum frame length that will be used for a 1498 * given MTU. The frame length will be equal to the MTU plus a 1499 * constant amount of header space and padding. This is the quantity 1500 * that the net driver will program into the MAC as the maximum frame 1501 * length. 1502 * 1503 * The 10G MAC requires 8-byte alignment on the frame 1504 * length, so we round up to the nearest 8. 1505 * 1506 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1507 * XGMII cycle). If the frame length reaches the maximum value in the 1508 * same cycle, the XMAC can miss the IPG altogether. We work around 1509 * this by adding a further 16 bytes. 1510 */ 1511 #define EFX_FRAME_PAD 16 1512 #define EFX_MAX_FRAME_LEN(mtu) \ 1513 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8)) 1514 1515 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1516 { 1517 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1518 } 1519 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1520 { 1521 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1522 } 1523 1524 #endif /* EFX_NET_DRIVER_H */ 1525