xref: /openbmc/linux/drivers/net/ethernet/sfc/net_driver.h (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 /* Common definitions for all Efx net driver code */
9 
10 #ifndef EFX_NET_DRIVER_H
11 #define EFX_NET_DRIVER_H
12 
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/if_vlan.h>
17 #include <linux/timer.h>
18 #include <linux/mdio.h>
19 #include <linux/list.h>
20 #include <linux/pci.h>
21 #include <linux/device.h>
22 #include <linux/highmem.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/mtd/mtd.h>
28 #include <net/busy_poll.h>
29 #include <net/xdp.h>
30 
31 #include "enum.h"
32 #include "bitfield.h"
33 #include "filter.h"
34 
35 /**************************************************************************
36  *
37  * Build definitions
38  *
39  **************************************************************************/
40 
41 #ifdef DEBUG
42 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
43 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
44 #else
45 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
46 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
47 #endif
48 
49 /**************************************************************************
50  *
51  * Efx data structures
52  *
53  **************************************************************************/
54 
55 #define EFX_MAX_CHANNELS 32U
56 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
57 #define EFX_EXTRA_CHANNEL_IOV	0
58 #define EFX_EXTRA_CHANNEL_PTP	1
59 #define EFX_MAX_EXTRA_CHANNELS	2U
60 
61 /* Checksum generation is a per-queue option in hardware, so each
62  * queue visible to the networking core is backed by two hardware TX
63  * queues. */
64 #define EFX_MAX_TX_TC		2
65 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
66 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
67 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
68 #define EFX_TXQ_TYPES		4
69 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
70 
71 /* Maximum possible MTU the driver supports */
72 #define EFX_MAX_MTU (9 * 1024)
73 
74 /* Minimum MTU, from RFC791 (IP) */
75 #define EFX_MIN_MTU 68
76 
77 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
78  * and should be a multiple of the cache line size.
79  */
80 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
81 
82 /* If possible, we should ensure cache line alignment at start and end
83  * of every buffer.  Otherwise, we just need to ensure 4-byte
84  * alignment of the network header.
85  */
86 #if NET_IP_ALIGN == 0
87 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
88 #else
89 #define EFX_RX_BUF_ALIGNMENT	4
90 #endif
91 
92 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
93  * still fit two standard MTU size packets into a single 4K page.
94  */
95 #define EFX_XDP_HEADROOM	128
96 #define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
97 
98 /* Forward declare Precision Time Protocol (PTP) support structure. */
99 struct efx_ptp_data;
100 struct hwtstamp_config;
101 
102 struct efx_self_tests;
103 
104 /**
105  * struct efx_buffer - A general-purpose DMA buffer
106  * @addr: host base address of the buffer
107  * @dma_addr: DMA base address of the buffer
108  * @len: Buffer length, in bytes
109  *
110  * The NIC uses these buffers for its interrupt status registers and
111  * MAC stats dumps.
112  */
113 struct efx_buffer {
114 	void *addr;
115 	dma_addr_t dma_addr;
116 	unsigned int len;
117 };
118 
119 /**
120  * struct efx_special_buffer - DMA buffer entered into buffer table
121  * @buf: Standard &struct efx_buffer
122  * @index: Buffer index within controller;s buffer table
123  * @entries: Number of buffer table entries
124  *
125  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
126  * Event and descriptor rings are addressed via one or more buffer
127  * table entries (and so can be physically non-contiguous, although we
128  * currently do not take advantage of that).  On Falcon and Siena we
129  * have to take care of allocating and initialising the entries
130  * ourselves.  On later hardware this is managed by the firmware and
131  * @index and @entries are left as 0.
132  */
133 struct efx_special_buffer {
134 	struct efx_buffer buf;
135 	unsigned int index;
136 	unsigned int entries;
137 };
138 
139 /**
140  * struct efx_tx_buffer - buffer state for a TX descriptor
141  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
142  *	freed when descriptor completes
143  * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
144  *	member is the associated buffer to drop a page reference on.
145  * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
146  *	descriptor.
147  * @dma_addr: DMA address of the fragment.
148  * @flags: Flags for allocation and DMA mapping type
149  * @len: Length of this fragment.
150  *	This field is zero when the queue slot is empty.
151  * @unmap_len: Length of this fragment to unmap
152  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
153  * Only valid if @unmap_len != 0.
154  */
155 struct efx_tx_buffer {
156 	union {
157 		const struct sk_buff *skb;
158 		struct xdp_frame *xdpf;
159 	};
160 	union {
161 		efx_qword_t option;    /* EF10 */
162 		dma_addr_t dma_addr;
163 	};
164 	unsigned short flags;
165 	unsigned short len;
166 	unsigned short unmap_len;
167 	unsigned short dma_offset;
168 };
169 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
170 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
171 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
172 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
173 #define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
174 #define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
175 
176 /**
177  * struct efx_tx_queue - An Efx TX queue
178  *
179  * This is a ring buffer of TX fragments.
180  * Since the TX completion path always executes on the same
181  * CPU and the xmit path can operate on different CPUs,
182  * performance is increased by ensuring that the completion
183  * path and the xmit path operate on different cache lines.
184  * This is particularly important if the xmit path is always
185  * executing on one CPU which is different from the completion
186  * path.  There is also a cache line for members which are
187  * read but not written on the fast path.
188  *
189  * @efx: The associated Efx NIC
190  * @queue: DMA queue number
191  * @label: Label for TX completion events.
192  *	Is our index within @channel->tx_queue array.
193  * @tso_version: Version of TSO in use for this queue.
194  * @channel: The associated channel
195  * @core_txq: The networking core TX queue structure
196  * @buffer: The software buffer ring
197  * @cb_page: Array of pages of copy buffers.  Carved up according to
198  *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
199  * @txd: The hardware descriptor ring
200  * @ptr_mask: The size of the ring minus 1.
201  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
202  *	Size of the region is efx_piobuf_size.
203  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
204  * @initialised: Has hardware queue been initialised?
205  * @timestamping: Is timestamping enabled for this channel?
206  * @xdp_tx: Is this an XDP tx queue?
207  * @handle_tso: TSO xmit preparation handler.  Sets up the TSO metadata and
208  *	may also map tx data, depending on the nature of the TSO implementation.
209  * @read_count: Current read pointer.
210  *	This is the number of buffers that have been removed from both rings.
211  * @old_write_count: The value of @write_count when last checked.
212  *	This is here for performance reasons.  The xmit path will
213  *	only get the up-to-date value of @write_count if this
214  *	variable indicates that the queue is empty.  This is to
215  *	avoid cache-line ping-pong between the xmit path and the
216  *	completion path.
217  * @merge_events: Number of TX merged completion events
218  * @completed_timestamp_major: Top part of the most recent tx timestamp.
219  * @completed_timestamp_minor: Low part of the most recent tx timestamp.
220  * @insert_count: Current insert pointer
221  *	This is the number of buffers that have been added to the
222  *	software ring.
223  * @write_count: Current write pointer
224  *	This is the number of buffers that have been added to the
225  *	hardware ring.
226  * @packet_write_count: Completable write pointer
227  *	This is the write pointer of the last packet written.
228  *	Normally this will equal @write_count, but as option descriptors
229  *	don't produce completion events, they won't update this.
230  *	Filled in iff @efx->type->option_descriptors; only used for PIO.
231  *	Thus, this is written and used on EF10, and neither on farch.
232  * @old_read_count: The value of read_count when last checked.
233  *	This is here for performance reasons.  The xmit path will
234  *	only get the up-to-date value of read_count if this
235  *	variable indicates that the queue is full.  This is to
236  *	avoid cache-line ping-pong between the xmit path and the
237  *	completion path.
238  * @tso_bursts: Number of times TSO xmit invoked by kernel
239  * @tso_long_headers: Number of packets with headers too long for standard
240  *	blocks
241  * @tso_packets: Number of packets via the TSO xmit path
242  * @tso_fallbacks: Number of times TSO fallback used
243  * @pushes: Number of times the TX push feature has been used
244  * @pio_packets: Number of times the TX PIO feature has been used
245  * @xmit_pending: Are any packets waiting to be pushed to the NIC
246  * @cb_packets: Number of times the TX copybreak feature has been used
247  * @notify_count: Count of notified descriptors to the NIC
248  * @empty_read_count: If the completion path has seen the queue as empty
249  *	and the transmission path has not yet checked this, the value of
250  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
251  */
252 struct efx_tx_queue {
253 	/* Members which don't change on the fast path */
254 	struct efx_nic *efx ____cacheline_aligned_in_smp;
255 	unsigned int queue;
256 	unsigned int label;
257 	unsigned int tso_version;
258 	struct efx_channel *channel;
259 	struct netdev_queue *core_txq;
260 	struct efx_tx_buffer *buffer;
261 	struct efx_buffer *cb_page;
262 	struct efx_special_buffer txd;
263 	unsigned int ptr_mask;
264 	void __iomem *piobuf;
265 	unsigned int piobuf_offset;
266 	bool initialised;
267 	bool timestamping;
268 	bool xdp_tx;
269 
270 	/* Function pointers used in the fast path. */
271 	int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
272 
273 	/* Members used mainly on the completion path */
274 	unsigned int read_count ____cacheline_aligned_in_smp;
275 	unsigned int old_write_count;
276 	unsigned int merge_events;
277 	unsigned int bytes_compl;
278 	unsigned int pkts_compl;
279 	u32 completed_timestamp_major;
280 	u32 completed_timestamp_minor;
281 
282 	/* Members used only on the xmit path */
283 	unsigned int insert_count ____cacheline_aligned_in_smp;
284 	unsigned int write_count;
285 	unsigned int packet_write_count;
286 	unsigned int old_read_count;
287 	unsigned int tso_bursts;
288 	unsigned int tso_long_headers;
289 	unsigned int tso_packets;
290 	unsigned int tso_fallbacks;
291 	unsigned int pushes;
292 	unsigned int pio_packets;
293 	bool xmit_pending;
294 	unsigned int cb_packets;
295 	unsigned int notify_count;
296 	/* Statistics to supplement MAC stats */
297 	unsigned long tx_packets;
298 
299 	/* Members shared between paths and sometimes updated */
300 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
301 #define EFX_EMPTY_COUNT_VALID 0x80000000
302 	atomic_t flush_outstanding;
303 };
304 
305 #define EFX_TX_CB_ORDER	7
306 #define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
307 
308 /**
309  * struct efx_rx_buffer - An Efx RX data buffer
310  * @dma_addr: DMA base address of the buffer
311  * @page: The associated page buffer.
312  *	Will be %NULL if the buffer slot is currently free.
313  * @page_offset: If pending: offset in @page of DMA base address.
314  *	If completed: offset in @page of Ethernet header.
315  * @len: If pending: length for DMA descriptor.
316  *	If completed: received length, excluding hash prefix.
317  * @flags: Flags for buffer and packet state.  These are only set on the
318  *	first buffer of a scattered packet.
319  */
320 struct efx_rx_buffer {
321 	dma_addr_t dma_addr;
322 	struct page *page;
323 	u16 page_offset;
324 	u16 len;
325 	u16 flags;
326 };
327 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
328 #define EFX_RX_PKT_CSUMMED	0x0002
329 #define EFX_RX_PKT_DISCARD	0x0004
330 #define EFX_RX_PKT_TCP		0x0040
331 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
332 #define EFX_RX_PKT_CSUM_LEVEL	0x0200
333 
334 /**
335  * struct efx_rx_page_state - Page-based rx buffer state
336  *
337  * Inserted at the start of every page allocated for receive buffers.
338  * Used to facilitate sharing dma mappings between recycled rx buffers
339  * and those passed up to the kernel.
340  *
341  * @dma_addr: The dma address of this page.
342  */
343 struct efx_rx_page_state {
344 	dma_addr_t dma_addr;
345 
346 	unsigned int __pad[] ____cacheline_aligned;
347 };
348 
349 /**
350  * struct efx_rx_queue - An Efx RX queue
351  * @efx: The associated Efx NIC
352  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
353  *	is associated with a real RX queue.
354  * @buffer: The software buffer ring
355  * @rxd: The hardware descriptor ring
356  * @ptr_mask: The size of the ring minus 1.
357  * @refill_enabled: Enable refill whenever fill level is low
358  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
359  *	@rxq_flush_pending.
360  * @added_count: Number of buffers added to the receive queue.
361  * @notified_count: Number of buffers given to NIC (<= @added_count).
362  * @removed_count: Number of buffers removed from the receive queue.
363  * @scatter_n: Used by NIC specific receive code.
364  * @scatter_len: Used by NIC specific receive code.
365  * @page_ring: The ring to store DMA mapped pages for reuse.
366  * @page_add: Counter to calculate the write pointer for the recycle ring.
367  * @page_remove: Counter to calculate the read pointer for the recycle ring.
368  * @page_recycle_count: The number of pages that have been recycled.
369  * @page_recycle_failed: The number of pages that couldn't be recycled because
370  *      the kernel still held a reference to them.
371  * @page_recycle_full: The number of pages that were released because the
372  *      recycle ring was full.
373  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
374  * @max_fill: RX descriptor maximum fill level (<= ring size)
375  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
376  *	(<= @max_fill)
377  * @min_fill: RX descriptor minimum non-zero fill level.
378  *	This records the minimum fill level observed when a ring
379  *	refill was triggered.
380  * @recycle_count: RX buffer recycle counter.
381  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
382  * @xdp_rxq_info: XDP specific RX queue information.
383  * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
384  */
385 struct efx_rx_queue {
386 	struct efx_nic *efx;
387 	int core_index;
388 	struct efx_rx_buffer *buffer;
389 	struct efx_special_buffer rxd;
390 	unsigned int ptr_mask;
391 	bool refill_enabled;
392 	bool flush_pending;
393 
394 	unsigned int added_count;
395 	unsigned int notified_count;
396 	unsigned int removed_count;
397 	unsigned int scatter_n;
398 	unsigned int scatter_len;
399 	struct page **page_ring;
400 	unsigned int page_add;
401 	unsigned int page_remove;
402 	unsigned int page_recycle_count;
403 	unsigned int page_recycle_failed;
404 	unsigned int page_recycle_full;
405 	unsigned int page_ptr_mask;
406 	unsigned int max_fill;
407 	unsigned int fast_fill_trigger;
408 	unsigned int min_fill;
409 	unsigned int min_overfill;
410 	unsigned int recycle_count;
411 	struct timer_list slow_fill;
412 	unsigned int slow_fill_count;
413 	/* Statistics to supplement MAC stats */
414 	unsigned long rx_packets;
415 	struct xdp_rxq_info xdp_rxq_info;
416 	bool xdp_rxq_info_valid;
417 };
418 
419 enum efx_sync_events_state {
420 	SYNC_EVENTS_DISABLED = 0,
421 	SYNC_EVENTS_QUIESCENT,
422 	SYNC_EVENTS_REQUESTED,
423 	SYNC_EVENTS_VALID,
424 };
425 
426 /**
427  * struct efx_channel - An Efx channel
428  *
429  * A channel comprises an event queue, at least one TX queue, at least
430  * one RX queue, and an associated tasklet for processing the event
431  * queue.
432  *
433  * @efx: Associated Efx NIC
434  * @channel: Channel instance number
435  * @type: Channel type definition
436  * @eventq_init: Event queue initialised flag
437  * @enabled: Channel enabled indicator
438  * @irq: IRQ number (MSI and MSI-X only)
439  * @irq_moderation_us: IRQ moderation value (in microseconds)
440  * @napi_dev: Net device used with NAPI
441  * @napi_str: NAPI control structure
442  * @state: state for NAPI vs busy polling
443  * @state_lock: lock protecting @state
444  * @eventq: Event queue buffer
445  * @eventq_mask: Event queue pointer mask
446  * @eventq_read_ptr: Event queue read pointer
447  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
448  * @irq_count: Number of IRQs since last adaptive moderation decision
449  * @irq_mod_score: IRQ moderation score
450  * @rfs_filter_count: number of accelerated RFS filters currently in place;
451  *	equals the count of @rps_flow_id slots filled
452  * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
453  *	were checked for expiry
454  * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
455  * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
456  * @n_rfs_failed; number of failed accelerated RFS filter insertions
457  * @filter_work: Work item for efx_filter_rfs_expire()
458  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
459  *      indexed by filter ID
460  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
461  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
462  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
463  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
464  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
465  * @n_rx_overlength: Count of RX_OVERLENGTH errors
466  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
467  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
468  *	lack of descriptors
469  * @n_rx_merge_events: Number of RX merged completion events
470  * @n_rx_merge_packets: Number of RX packets completed by merged events
471  * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
472  * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
473  * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
474  * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
475  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
476  *	__efx_rx_packet(), or zero if there is none
477  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
478  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
479  * @rx_list: list of SKBs from current RX, awaiting processing
480  * @rx_queue: RX queue for this channel
481  * @tx_queue: TX queues for this channel
482  * @sync_events_state: Current state of sync events on this channel
483  * @sync_timestamp_major: Major part of the last ptp sync event
484  * @sync_timestamp_minor: Minor part of the last ptp sync event
485  */
486 struct efx_channel {
487 	struct efx_nic *efx;
488 	int channel;
489 	const struct efx_channel_type *type;
490 	bool eventq_init;
491 	bool enabled;
492 	int irq;
493 	unsigned int irq_moderation_us;
494 	struct net_device *napi_dev;
495 	struct napi_struct napi_str;
496 #ifdef CONFIG_NET_RX_BUSY_POLL
497 	unsigned long busy_poll_state;
498 #endif
499 	struct efx_special_buffer eventq;
500 	unsigned int eventq_mask;
501 	unsigned int eventq_read_ptr;
502 	int event_test_cpu;
503 
504 	unsigned int irq_count;
505 	unsigned int irq_mod_score;
506 #ifdef CONFIG_RFS_ACCEL
507 	unsigned int rfs_filter_count;
508 	unsigned int rfs_last_expiry;
509 	unsigned int rfs_expire_index;
510 	unsigned int n_rfs_succeeded;
511 	unsigned int n_rfs_failed;
512 	struct delayed_work filter_work;
513 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
514 	u32 *rps_flow_id;
515 #endif
516 
517 	unsigned int n_rx_tobe_disc;
518 	unsigned int n_rx_ip_hdr_chksum_err;
519 	unsigned int n_rx_tcp_udp_chksum_err;
520 	unsigned int n_rx_outer_ip_hdr_chksum_err;
521 	unsigned int n_rx_outer_tcp_udp_chksum_err;
522 	unsigned int n_rx_inner_ip_hdr_chksum_err;
523 	unsigned int n_rx_inner_tcp_udp_chksum_err;
524 	unsigned int n_rx_eth_crc_err;
525 	unsigned int n_rx_mcast_mismatch;
526 	unsigned int n_rx_frm_trunc;
527 	unsigned int n_rx_overlength;
528 	unsigned int n_skbuff_leaks;
529 	unsigned int n_rx_nodesc_trunc;
530 	unsigned int n_rx_merge_events;
531 	unsigned int n_rx_merge_packets;
532 	unsigned int n_rx_xdp_drops;
533 	unsigned int n_rx_xdp_bad_drops;
534 	unsigned int n_rx_xdp_tx;
535 	unsigned int n_rx_xdp_redirect;
536 
537 	unsigned int rx_pkt_n_frags;
538 	unsigned int rx_pkt_index;
539 
540 	struct list_head *rx_list;
541 
542 	struct efx_rx_queue rx_queue;
543 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
544 
545 	enum efx_sync_events_state sync_events_state;
546 	u32 sync_timestamp_major;
547 	u32 sync_timestamp_minor;
548 };
549 
550 /**
551  * struct efx_msi_context - Context for each MSI
552  * @efx: The associated NIC
553  * @index: Index of the channel/IRQ
554  * @name: Name of the channel/IRQ
555  *
556  * Unlike &struct efx_channel, this is never reallocated and is always
557  * safe for the IRQ handler to access.
558  */
559 struct efx_msi_context {
560 	struct efx_nic *efx;
561 	unsigned int index;
562 	char name[IFNAMSIZ + 6];
563 };
564 
565 /**
566  * struct efx_channel_type - distinguishes traffic and extra channels
567  * @handle_no_channel: Handle failure to allocate an extra channel
568  * @pre_probe: Set up extra state prior to initialisation
569  * @post_remove: Tear down extra state after finalisation, if allocated.
570  *	May be called on channels that have not been probed.
571  * @get_name: Generate the channel's name (used for its IRQ handler)
572  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
573  *	reallocation is not supported.
574  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
575  * @want_txqs: Determine whether this channel should have TX queues
576  *	created.  If %NULL, TX queues are not created.
577  * @keep_eventq: Flag for whether event queue should be kept initialised
578  *	while the device is stopped
579  * @want_pio: Flag for whether PIO buffers should be linked to this
580  *	channel's TX queues.
581  */
582 struct efx_channel_type {
583 	void (*handle_no_channel)(struct efx_nic *);
584 	int (*pre_probe)(struct efx_channel *);
585 	void (*post_remove)(struct efx_channel *);
586 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
587 	struct efx_channel *(*copy)(const struct efx_channel *);
588 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
589 	bool (*want_txqs)(struct efx_channel *);
590 	bool keep_eventq;
591 	bool want_pio;
592 };
593 
594 enum efx_led_mode {
595 	EFX_LED_OFF	= 0,
596 	EFX_LED_ON	= 1,
597 	EFX_LED_DEFAULT	= 2
598 };
599 
600 #define STRING_TABLE_LOOKUP(val, member) \
601 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
602 
603 extern const char *const efx_loopback_mode_names[];
604 extern const unsigned int efx_loopback_mode_max;
605 #define LOOPBACK_MODE(efx) \
606 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
607 
608 extern const char *const efx_reset_type_names[];
609 extern const unsigned int efx_reset_type_max;
610 #define RESET_TYPE(type) \
611 	STRING_TABLE_LOOKUP(type, efx_reset_type)
612 
613 enum efx_int_mode {
614 	/* Be careful if altering to correct macro below */
615 	EFX_INT_MODE_MSIX = 0,
616 	EFX_INT_MODE_MSI = 1,
617 	EFX_INT_MODE_LEGACY = 2,
618 	EFX_INT_MODE_MAX	/* Insert any new items before this */
619 };
620 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
621 
622 enum nic_state {
623 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
624 	STATE_READY = 1,	/* hardware ready and netdev registered */
625 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
626 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
627 };
628 
629 /* Forward declaration */
630 struct efx_nic;
631 
632 /* Pseudo bit-mask flow control field */
633 #define EFX_FC_RX	FLOW_CTRL_RX
634 #define EFX_FC_TX	FLOW_CTRL_TX
635 #define EFX_FC_AUTO	4
636 
637 /**
638  * struct efx_link_state - Current state of the link
639  * @up: Link is up
640  * @fd: Link is full-duplex
641  * @fc: Actual flow control flags
642  * @speed: Link speed (Mbps)
643  */
644 struct efx_link_state {
645 	bool up;
646 	bool fd;
647 	u8 fc;
648 	unsigned int speed;
649 };
650 
651 static inline bool efx_link_state_equal(const struct efx_link_state *left,
652 					const struct efx_link_state *right)
653 {
654 	return left->up == right->up && left->fd == right->fd &&
655 		left->fc == right->fc && left->speed == right->speed;
656 }
657 
658 /**
659  * enum efx_phy_mode - PHY operating mode flags
660  * @PHY_MODE_NORMAL: on and should pass traffic
661  * @PHY_MODE_TX_DISABLED: on with TX disabled
662  * @PHY_MODE_LOW_POWER: set to low power through MDIO
663  * @PHY_MODE_OFF: switched off through external control
664  * @PHY_MODE_SPECIAL: on but will not pass traffic
665  */
666 enum efx_phy_mode {
667 	PHY_MODE_NORMAL		= 0,
668 	PHY_MODE_TX_DISABLED	= 1,
669 	PHY_MODE_LOW_POWER	= 2,
670 	PHY_MODE_OFF		= 4,
671 	PHY_MODE_SPECIAL	= 8,
672 };
673 
674 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
675 {
676 	return !!(mode & ~PHY_MODE_TX_DISABLED);
677 }
678 
679 /**
680  * struct efx_hw_stat_desc - Description of a hardware statistic
681  * @name: Name of the statistic as visible through ethtool, or %NULL if
682  *	it should not be exposed
683  * @dma_width: Width in bits (0 for non-DMA statistics)
684  * @offset: Offset within stats (ignored for non-DMA statistics)
685  */
686 struct efx_hw_stat_desc {
687 	const char *name;
688 	u16 dma_width;
689 	u16 offset;
690 };
691 
692 /* Number of bits used in a multicast filter hash address */
693 #define EFX_MCAST_HASH_BITS 8
694 
695 /* Number of (single-bit) entries in a multicast filter hash */
696 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
697 
698 /* An Efx multicast filter hash */
699 union efx_multicast_hash {
700 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
701 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
702 };
703 
704 struct vfdi_status;
705 
706 /* The reserved RSS context value */
707 #define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
708 /**
709  * struct efx_rss_context - A user-defined RSS context for filtering
710  * @list: node of linked list on which this struct is stored
711  * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
712  *	%EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
713  *	For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
714  * @user_id: the rss_context ID exposed to userspace over ethtool.
715  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
716  * @rx_hash_key: Toeplitz hash key for this RSS context
717  * @indir_table: Indirection table for this RSS context
718  */
719 struct efx_rss_context {
720 	struct list_head list;
721 	u32 context_id;
722 	u32 user_id;
723 	bool rx_hash_udp_4tuple;
724 	u8 rx_hash_key[40];
725 	u32 rx_indir_table[128];
726 };
727 
728 #ifdef CONFIG_RFS_ACCEL
729 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
730  * is used to test if filter does or will exist.
731  */
732 #define EFX_ARFS_FILTER_ID_PENDING	-1
733 #define EFX_ARFS_FILTER_ID_ERROR	-2
734 #define EFX_ARFS_FILTER_ID_REMOVING	-3
735 /**
736  * struct efx_arfs_rule - record of an ARFS filter and its IDs
737  * @node: linkage into hash table
738  * @spec: details of the filter (used as key for hash table).  Use efx->type to
739  *	determine which member to use.
740  * @rxq_index: channel to which the filter will steer traffic.
741  * @arfs_id: filter ID which was returned to ARFS
742  * @filter_id: index in software filter table.  May be
743  *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
744  *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
745  *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
746  */
747 struct efx_arfs_rule {
748 	struct hlist_node node;
749 	struct efx_filter_spec spec;
750 	u16 rxq_index;
751 	u16 arfs_id;
752 	s32 filter_id;
753 };
754 
755 /* Size chosen so that the table is one page (4kB) */
756 #define EFX_ARFS_HASH_TABLE_SIZE	512
757 
758 /**
759  * struct efx_async_filter_insertion - Request to asynchronously insert a filter
760  * @net_dev: Reference to the netdevice
761  * @spec: The filter to insert
762  * @work: Workitem for this request
763  * @rxq_index: Identifies the channel for which this request was made
764  * @flow_id: Identifies the kernel-side flow for which this request was made
765  */
766 struct efx_async_filter_insertion {
767 	struct net_device *net_dev;
768 	struct efx_filter_spec spec;
769 	struct work_struct work;
770 	u16 rxq_index;
771 	u32 flow_id;
772 };
773 
774 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
775 #define EFX_RPS_MAX_IN_FLIGHT	8
776 #endif /* CONFIG_RFS_ACCEL */
777 
778 /**
779  * struct efx_nic - an Efx NIC
780  * @name: Device name (net device name or bus id before net device registered)
781  * @pci_dev: The PCI device
782  * @node: List node for maintaning primary/secondary function lists
783  * @primary: &struct efx_nic instance for the primary function of this
784  *	controller.  May be the same structure, and may be %NULL if no
785  *	primary function is bound.  Serialised by rtnl_lock.
786  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
787  *	functions of the controller, if this is for the primary function.
788  *	Serialised by rtnl_lock.
789  * @type: Controller type attributes
790  * @legacy_irq: IRQ number
791  * @workqueue: Workqueue for port reconfigures and the HW monitor.
792  *	Work items do not hold and must not acquire RTNL.
793  * @workqueue_name: Name of workqueue
794  * @reset_work: Scheduled reset workitem
795  * @membase_phys: Memory BAR value as physical address
796  * @membase: Memory BAR value
797  * @vi_stride: step between per-VI registers / memory regions
798  * @interrupt_mode: Interrupt mode
799  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
800  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
801  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
802  * @irqs_hooked: Channel interrupts are hooked
803  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
804  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
805  * @msg_enable: Log message enable flags
806  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
807  * @reset_pending: Bitmask for pending resets
808  * @tx_queue: TX DMA queues
809  * @rx_queue: RX DMA queues
810  * @channel: Channels
811  * @msi_context: Context for each MSI
812  * @extra_channel_types: Types of extra (non-traffic) channels that
813  *	should be allocated for this NIC
814  * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
815  * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
816  * @rxq_entries: Size of receive queues requested by user.
817  * @txq_entries: Size of transmit queues requested by user.
818  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
819  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
820  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
821  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
822  * @sram_lim_qw: Qword address limit of SRAM
823  * @next_buffer_table: First available buffer table id
824  * @n_channels: Number of channels in use
825  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
826  * @n_tx_channels: Number of channels used for TX
827  * @n_extra_tx_channels: Number of extra channels with TX queues
828  * @tx_queues_per_channel: number of TX queues probed on each channel
829  * @n_xdp_channels: Number of channels used for XDP TX
830  * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
831  * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
832  * @rx_ip_align: RX DMA address offset to have IP header aligned in
833  *	in accordance with NET_IP_ALIGN
834  * @rx_dma_len: Current maximum RX DMA length
835  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
836  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
837  *	for use in sk_buff::truesize
838  * @rx_prefix_size: Size of RX prefix before packet data
839  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
840  *	(valid only if @rx_prefix_size != 0; always negative)
841  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
842  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
843  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
844  *	(valid only if channel->sync_timestamps_enabled; always negative)
845  * @rx_scatter: Scatter mode enabled for receives
846  * @rss_context: Main RSS context.  Its @list member is the head of the list of
847  *	RSS contexts created by user requests
848  * @rss_lock: Protects custom RSS context software state in @rss_context.list
849  * @vport_id: The function's vport ID, only relevant for PFs
850  * @int_error_count: Number of internal errors seen recently
851  * @int_error_expire: Time at which error count will be expired
852  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
853  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
854  *	acknowledge but do nothing else.
855  * @irq_status: Interrupt status buffer
856  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
857  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
858  * @selftest_work: Work item for asynchronous self-test
859  * @mtd_list: List of MTDs attached to the NIC
860  * @nic_data: Hardware dependent state
861  * @mcdi: Management-Controller-to-Driver Interface state
862  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
863  *	efx_monitor() and efx_reconfigure_port()
864  * @port_enabled: Port enabled indicator.
865  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
866  *	efx_mac_work() with kernel interfaces. Safe to read under any
867  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
868  *	be held to modify it.
869  * @port_initialized: Port initialized?
870  * @net_dev: Operating system network device. Consider holding the rtnl lock
871  * @fixed_features: Features which cannot be turned off
872  * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
873  *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
874  * @stats_buffer: DMA buffer for statistics
875  * @phy_type: PHY type
876  * @phy_data: PHY private data (including PHY-specific stats)
877  * @mdio: PHY MDIO interface
878  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
879  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
880  * @link_advertising: Autonegotiation advertising flags
881  * @fec_config: Forward Error Correction configuration flags.  For bit positions
882  *	see &enum ethtool_fec_config_bits.
883  * @link_state: Current state of the link
884  * @n_link_state_changes: Number of times the link has changed state
885  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
886  *	Protected by @mac_lock.
887  * @multicast_hash: Multicast hash table for Falcon-arch.
888  *	Protected by @mac_lock.
889  * @wanted_fc: Wanted flow control flags
890  * @fc_disable: When non-zero flow control is disabled. Typically used to
891  *	ensure that network back pressure doesn't delay dma queue flushes.
892  *	Serialised by the rtnl lock.
893  * @mac_work: Work item for changing MAC promiscuity and multicast hash
894  * @loopback_mode: Loopback status
895  * @loopback_modes: Supported loopback mode bitmask
896  * @loopback_selftest: Offline self-test private state
897  * @xdp_prog: Current XDP programme for this interface
898  * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
899  * @filter_state: Architecture-dependent filter table state
900  * @rps_mutex: Protects RPS state of all channels
901  * @rps_slot_map: bitmap of in-flight entries in @rps_slot
902  * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
903  * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
904  *	@rps_next_id).
905  * @rps_hash_table: Mapping between ARFS filters and their various IDs
906  * @rps_next_id: next arfs_id for an ARFS filter
907  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
908  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
909  *	Decremented when the efx_flush_rx_queue() is called.
910  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
911  *	completed (either success or failure). Not used when MCDI is used to
912  *	flush receive queues.
913  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
914  * @vf_count: Number of VFs intended to be enabled.
915  * @vf_init_count: Number of VFs that have been fully initialised.
916  * @vi_scale: log2 number of vnics per VF.
917  * @ptp_data: PTP state data
918  * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
919  * @vpd_sn: Serial number read from VPD
920  * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
921  *      xdp_rxq_info structures?
922  * @netdev_notifier: Netdevice notifier.
923  * @mem_bar: The BAR that is mapped into membase.
924  * @reg_base: Offset from the start of the bar to the function control window.
925  * @monitor_work: Hardware monitor workitem
926  * @biu_lock: BIU (bus interface unit) lock
927  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
928  *	field is used by efx_test_interrupts() to verify that an
929  *	interrupt has occurred.
930  * @stats_lock: Statistics update lock. Must be held when calling
931  *	efx_nic_type::{update,start,stop}_stats.
932  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
933  *
934  * This is stored in the private area of the &struct net_device.
935  */
936 struct efx_nic {
937 	/* The following fields should be written very rarely */
938 
939 	char name[IFNAMSIZ];
940 	struct list_head node;
941 	struct efx_nic *primary;
942 	struct list_head secondary_list;
943 	struct pci_dev *pci_dev;
944 	unsigned int port_num;
945 	const struct efx_nic_type *type;
946 	int legacy_irq;
947 	bool eeh_disabled_legacy_irq;
948 	struct workqueue_struct *workqueue;
949 	char workqueue_name[16];
950 	struct work_struct reset_work;
951 	resource_size_t membase_phys;
952 	void __iomem *membase;
953 
954 	unsigned int vi_stride;
955 
956 	enum efx_int_mode interrupt_mode;
957 	unsigned int timer_quantum_ns;
958 	unsigned int timer_max_ns;
959 	bool irq_rx_adaptive;
960 	bool irqs_hooked;
961 	unsigned int irq_mod_step_us;
962 	unsigned int irq_rx_moderation_us;
963 	u32 msg_enable;
964 
965 	enum nic_state state;
966 	unsigned long reset_pending;
967 
968 	struct efx_channel *channel[EFX_MAX_CHANNELS];
969 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
970 	const struct efx_channel_type *
971 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
972 
973 	unsigned int xdp_tx_queue_count;
974 	struct efx_tx_queue **xdp_tx_queues;
975 
976 	unsigned rxq_entries;
977 	unsigned txq_entries;
978 	unsigned int txq_stop_thresh;
979 	unsigned int txq_wake_thresh;
980 
981 	unsigned tx_dc_base;
982 	unsigned rx_dc_base;
983 	unsigned sram_lim_qw;
984 	unsigned next_buffer_table;
985 
986 	unsigned int max_channels;
987 	unsigned int max_vis;
988 	unsigned int max_tx_channels;
989 	unsigned n_channels;
990 	unsigned n_rx_channels;
991 	unsigned rss_spread;
992 	unsigned tx_channel_offset;
993 	unsigned n_tx_channels;
994 	unsigned n_extra_tx_channels;
995 	unsigned int tx_queues_per_channel;
996 	unsigned int n_xdp_channels;
997 	unsigned int xdp_channel_offset;
998 	unsigned int xdp_tx_per_channel;
999 	unsigned int rx_ip_align;
1000 	unsigned int rx_dma_len;
1001 	unsigned int rx_buffer_order;
1002 	unsigned int rx_buffer_truesize;
1003 	unsigned int rx_page_buf_step;
1004 	unsigned int rx_bufs_per_page;
1005 	unsigned int rx_pages_per_batch;
1006 	unsigned int rx_prefix_size;
1007 	int rx_packet_hash_offset;
1008 	int rx_packet_len_offset;
1009 	int rx_packet_ts_offset;
1010 	bool rx_scatter;
1011 	struct efx_rss_context rss_context;
1012 	struct mutex rss_lock;
1013 	u32 vport_id;
1014 
1015 	unsigned int_error_count;
1016 	unsigned long int_error_expire;
1017 
1018 	bool must_realloc_vis;
1019 	bool irq_soft_enabled;
1020 	struct efx_buffer irq_status;
1021 	unsigned irq_zero_count;
1022 	unsigned irq_level;
1023 	struct delayed_work selftest_work;
1024 
1025 #ifdef CONFIG_SFC_MTD
1026 	struct list_head mtd_list;
1027 #endif
1028 
1029 	void *nic_data;
1030 	struct efx_mcdi_data *mcdi;
1031 
1032 	struct mutex mac_lock;
1033 	struct work_struct mac_work;
1034 	bool port_enabled;
1035 
1036 	bool mc_bist_for_other_fn;
1037 	bool port_initialized;
1038 	struct net_device *net_dev;
1039 
1040 	netdev_features_t fixed_features;
1041 
1042 	u16 num_mac_stats;
1043 	struct efx_buffer stats_buffer;
1044 	u64 rx_nodesc_drops_total;
1045 	u64 rx_nodesc_drops_while_down;
1046 	bool rx_nodesc_drops_prev_state;
1047 
1048 	unsigned int phy_type;
1049 	void *phy_data;
1050 	struct mdio_if_info mdio;
1051 	unsigned int mdio_bus;
1052 	enum efx_phy_mode phy_mode;
1053 
1054 	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1055 	u32 fec_config;
1056 	struct efx_link_state link_state;
1057 	unsigned int n_link_state_changes;
1058 
1059 	bool unicast_filter;
1060 	union efx_multicast_hash multicast_hash;
1061 	u8 wanted_fc;
1062 	unsigned fc_disable;
1063 
1064 	atomic_t rx_reset;
1065 	enum efx_loopback_mode loopback_mode;
1066 	u64 loopback_modes;
1067 
1068 	void *loopback_selftest;
1069 	/* We access loopback_selftest immediately before running XDP,
1070 	 * so we want them next to each other.
1071 	 */
1072 	struct bpf_prog __rcu *xdp_prog;
1073 
1074 	struct rw_semaphore filter_sem;
1075 	void *filter_state;
1076 #ifdef CONFIG_RFS_ACCEL
1077 	struct mutex rps_mutex;
1078 	unsigned long rps_slot_map;
1079 	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1080 	spinlock_t rps_hash_lock;
1081 	struct hlist_head *rps_hash_table;
1082 	u32 rps_next_id;
1083 #endif
1084 
1085 	atomic_t active_queues;
1086 	atomic_t rxq_flush_pending;
1087 	atomic_t rxq_flush_outstanding;
1088 	wait_queue_head_t flush_wq;
1089 
1090 #ifdef CONFIG_SFC_SRIOV
1091 	unsigned vf_count;
1092 	unsigned vf_init_count;
1093 	unsigned vi_scale;
1094 #endif
1095 
1096 	struct efx_ptp_data *ptp_data;
1097 	bool ptp_warned;
1098 
1099 	char *vpd_sn;
1100 	bool xdp_rxq_info_failed;
1101 
1102 	struct notifier_block netdev_notifier;
1103 
1104 	unsigned int mem_bar;
1105 	u32 reg_base;
1106 
1107 	/* The following fields may be written more often */
1108 
1109 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1110 	spinlock_t biu_lock;
1111 	int last_irq_cpu;
1112 	spinlock_t stats_lock;
1113 	atomic_t n_rx_noskb_drops;
1114 };
1115 
1116 static inline int efx_dev_registered(struct efx_nic *efx)
1117 {
1118 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1119 }
1120 
1121 static inline unsigned int efx_port_num(struct efx_nic *efx)
1122 {
1123 	return efx->port_num;
1124 }
1125 
1126 struct efx_mtd_partition {
1127 	struct list_head node;
1128 	struct mtd_info mtd;
1129 	const char *dev_type_name;
1130 	const char *type_name;
1131 	char name[IFNAMSIZ + 20];
1132 };
1133 
1134 struct efx_udp_tunnel {
1135 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1136 	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1137 	__be16 port;
1138 };
1139 
1140 /**
1141  * struct efx_nic_type - Efx device type definition
1142  * @mem_bar: Get the memory BAR
1143  * @mem_map_size: Get memory BAR mapped size
1144  * @probe: Probe the controller
1145  * @remove: Free resources allocated by probe()
1146  * @init: Initialise the controller
1147  * @dimension_resources: Dimension controller resources (buffer table,
1148  *	and VIs once the available interrupt resources are clear)
1149  * @fini: Shut down the controller
1150  * @monitor: Periodic function for polling link state and hardware monitor
1151  * @map_reset_reason: Map ethtool reset reason to a reset method
1152  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1153  * @reset: Reset the controller hardware and possibly the PHY.  This will
1154  *	be called while the controller is uninitialised.
1155  * @probe_port: Probe the MAC and PHY
1156  * @remove_port: Free resources allocated by probe_port()
1157  * @handle_global_event: Handle a "global" event (may be %NULL)
1158  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1159  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1160  *	(for Falcon architecture)
1161  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1162  *	architecture)
1163  * @prepare_flr: Prepare for an FLR
1164  * @finish_flr: Clean up after an FLR
1165  * @describe_stats: Describe statistics for ethtool
1166  * @update_stats: Update statistics not provided by event handling.
1167  *	Either argument may be %NULL.
1168  * @start_stats: Start the regular fetching of statistics
1169  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1170  * @stop_stats: Stop the regular fetching of statistics
1171  * @push_irq_moderation: Apply interrupt moderation value
1172  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1173  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1174  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1175  *	to the hardware.  Serialised by the mac_lock.
1176  * @check_mac_fault: Check MAC fault state. True if fault present.
1177  * @get_wol: Get WoL configuration from driver state
1178  * @set_wol: Push WoL configuration to the NIC
1179  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1180  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1181  *	expected to reset the NIC.
1182  * @test_nvram: Test validity of NVRAM contents
1183  * @mcdi_request: Send an MCDI request with the given header and SDU.
1184  *	The SDU length may be any value from 0 up to the protocol-
1185  *	defined maximum, but its buffer will be padded to a multiple
1186  *	of 4 bytes.
1187  * @mcdi_poll_response: Test whether an MCDI response is available.
1188  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1189  *	be a multiple of 4.  The length may not be, but the buffer
1190  *	will be padded so it is safe to round up.
1191  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1192  *	return an appropriate error code for aborting any current
1193  *	request; otherwise return 0.
1194  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1195  *	be separately enabled after this.
1196  * @irq_test_generate: Generate a test IRQ
1197  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1198  *	queue must be separately disabled before this.
1199  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1200  *	a pointer to the &struct efx_msi_context for the channel.
1201  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1202  *	is a pointer to the &struct efx_nic.
1203  * @tx_probe: Allocate resources for TX queue
1204  * @tx_init: Initialise TX queue on the NIC
1205  * @tx_remove: Free resources for TX queue
1206  * @tx_write: Write TX descriptors and doorbell
1207  * @tx_enqueue: Add an SKB to TX queue
1208  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1209  * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1210  * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1211  *	user RSS context to the NIC
1212  * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1213  *	RSS context back from the NIC
1214  * @rx_probe: Allocate resources for RX queue
1215  * @rx_init: Initialise RX queue on the NIC
1216  * @rx_remove: Free resources for RX queue
1217  * @rx_write: Write RX descriptors and doorbell
1218  * @rx_defer_refill: Generate a refill reminder event
1219  * @rx_packet: Receive the queued RX buffer on a channel
1220  * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1221  * @ev_probe: Allocate resources for event queue
1222  * @ev_init: Initialise event queue on the NIC
1223  * @ev_fini: Deinitialise event queue on the NIC
1224  * @ev_remove: Free resources for event queue
1225  * @ev_process: Process events for a queue, up to the given NAPI quota
1226  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1227  * @ev_test_generate: Generate a test event
1228  * @filter_table_probe: Probe filter capabilities and set up filter software state
1229  * @filter_table_restore: Restore filters removed from hardware
1230  * @filter_table_remove: Remove filters from hardware and tear down software state
1231  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1232  * @filter_insert: add or replace a filter
1233  * @filter_remove_safe: remove a filter by ID, carefully
1234  * @filter_get_safe: retrieve a filter by ID, carefully
1235  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1236  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1237  * @filter_count_rx_used: Get the number of filters in use at a given priority
1238  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1239  * @filter_get_rx_ids: Get list of RX filters at a given priority
1240  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1241  *	This must check whether the specified table entry is used by RFS
1242  *	and that rps_may_expire_flow() returns true for it.
1243  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1244  *	 using efx_mtd_add()
1245  * @mtd_rename: Set an MTD partition name using the net device name
1246  * @mtd_read: Read from an MTD partition
1247  * @mtd_erase: Erase part of an MTD partition
1248  * @mtd_write: Write to an MTD partition
1249  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1250  *	also notifies the driver that a writer has finished using this
1251  *	partition.
1252  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1253  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1254  *	timestamping, possibly only temporarily for the purposes of a reset.
1255  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1256  *	and tx_type will already have been validated but this operation
1257  *	must validate and update rx_filter.
1258  * @get_phys_port_id: Get the underlying physical port id.
1259  * @set_mac_address: Set the MAC address of the device
1260  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1261  *	If %NULL, then device does not support any TSO version.
1262  * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1263  * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1264  * @print_additional_fwver: Dump NIC-specific additional FW version info
1265  * @sensor_event: Handle a sensor event from MCDI
1266  * @revision: Hardware architecture revision
1267  * @txd_ptr_tbl_base: TX descriptor ring base address
1268  * @rxd_ptr_tbl_base: RX descriptor ring base address
1269  * @buf_tbl_base: Buffer table base address
1270  * @evq_ptr_tbl_base: Event queue pointer table base address
1271  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1272  * @max_dma_mask: Maximum possible DMA mask
1273  * @rx_prefix_size: Size of RX prefix before packet data
1274  * @rx_hash_offset: Offset of RX flow hash within prefix
1275  * @rx_ts_offset: Offset of timestamp within prefix
1276  * @rx_buffer_padding: Size of padding at end of RX packet
1277  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1278  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1279  * @option_descriptors: NIC supports TX option descriptors
1280  * @min_interrupt_mode: Lowest capability interrupt mode supported
1281  *	from &enum efx_int_mode.
1282  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1283  * @offload_features: net_device feature flags for protocol offload
1284  *	features implemented in hardware
1285  * @mcdi_max_ver: Maximum MCDI version supported
1286  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1287  */
1288 struct efx_nic_type {
1289 	bool is_vf;
1290 	unsigned int (*mem_bar)(struct efx_nic *efx);
1291 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1292 	int (*probe)(struct efx_nic *efx);
1293 	void (*remove)(struct efx_nic *efx);
1294 	int (*init)(struct efx_nic *efx);
1295 	int (*dimension_resources)(struct efx_nic *efx);
1296 	void (*fini)(struct efx_nic *efx);
1297 	void (*monitor)(struct efx_nic *efx);
1298 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1299 	int (*map_reset_flags)(u32 *flags);
1300 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1301 	int (*probe_port)(struct efx_nic *efx);
1302 	void (*remove_port)(struct efx_nic *efx);
1303 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1304 	int (*fini_dmaq)(struct efx_nic *efx);
1305 	void (*prepare_flush)(struct efx_nic *efx);
1306 	void (*finish_flush)(struct efx_nic *efx);
1307 	void (*prepare_flr)(struct efx_nic *efx);
1308 	void (*finish_flr)(struct efx_nic *efx);
1309 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1310 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1311 			       struct rtnl_link_stats64 *core_stats);
1312 	void (*start_stats)(struct efx_nic *efx);
1313 	void (*pull_stats)(struct efx_nic *efx);
1314 	void (*stop_stats)(struct efx_nic *efx);
1315 	void (*push_irq_moderation)(struct efx_channel *channel);
1316 	int (*reconfigure_port)(struct efx_nic *efx);
1317 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1318 	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1319 	bool (*check_mac_fault)(struct efx_nic *efx);
1320 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1321 	int (*set_wol)(struct efx_nic *efx, u32 type);
1322 	void (*resume_wol)(struct efx_nic *efx);
1323 	unsigned int (*check_caps)(const struct efx_nic *efx,
1324 				   u8 flag,
1325 				   u32 offset);
1326 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1327 	int (*test_nvram)(struct efx_nic *efx);
1328 	void (*mcdi_request)(struct efx_nic *efx,
1329 			     const efx_dword_t *hdr, size_t hdr_len,
1330 			     const efx_dword_t *sdu, size_t sdu_len);
1331 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1332 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1333 				   size_t pdu_offset, size_t pdu_len);
1334 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1335 	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1336 	void (*irq_enable_master)(struct efx_nic *efx);
1337 	int (*irq_test_generate)(struct efx_nic *efx);
1338 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1339 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1340 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1341 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1342 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1343 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1344 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1345 	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1346 	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1347 				     dma_addr_t dma_addr, unsigned int len);
1348 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1349 				  const u32 *rx_indir_table, const u8 *key);
1350 	int (*rx_pull_rss_config)(struct efx_nic *efx);
1351 	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1352 					  struct efx_rss_context *ctx,
1353 					  const u32 *rx_indir_table,
1354 					  const u8 *key);
1355 	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1356 					  struct efx_rss_context *ctx);
1357 	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1358 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1359 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1360 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1361 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1362 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1363 	void (*rx_packet)(struct efx_channel *channel);
1364 	bool (*rx_buf_hash_valid)(const u8 *prefix);
1365 	int (*ev_probe)(struct efx_channel *channel);
1366 	int (*ev_init)(struct efx_channel *channel);
1367 	void (*ev_fini)(struct efx_channel *channel);
1368 	void (*ev_remove)(struct efx_channel *channel);
1369 	int (*ev_process)(struct efx_channel *channel, int quota);
1370 	void (*ev_read_ack)(struct efx_channel *channel);
1371 	void (*ev_test_generate)(struct efx_channel *channel);
1372 	int (*filter_table_probe)(struct efx_nic *efx);
1373 	void (*filter_table_restore)(struct efx_nic *efx);
1374 	void (*filter_table_remove)(struct efx_nic *efx);
1375 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1376 	s32 (*filter_insert)(struct efx_nic *efx,
1377 			     struct efx_filter_spec *spec, bool replace);
1378 	int (*filter_remove_safe)(struct efx_nic *efx,
1379 				  enum efx_filter_priority priority,
1380 				  u32 filter_id);
1381 	int (*filter_get_safe)(struct efx_nic *efx,
1382 			       enum efx_filter_priority priority,
1383 			       u32 filter_id, struct efx_filter_spec *);
1384 	int (*filter_clear_rx)(struct efx_nic *efx,
1385 			       enum efx_filter_priority priority);
1386 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1387 				    enum efx_filter_priority priority);
1388 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1389 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1390 				 enum efx_filter_priority priority,
1391 				 u32 *buf, u32 size);
1392 #ifdef CONFIG_RFS_ACCEL
1393 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1394 				      unsigned int index);
1395 #endif
1396 #ifdef CONFIG_SFC_MTD
1397 	int (*mtd_probe)(struct efx_nic *efx);
1398 	void (*mtd_rename)(struct efx_mtd_partition *part);
1399 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1400 			size_t *retlen, u8 *buffer);
1401 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1402 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1403 			 size_t *retlen, const u8 *buffer);
1404 	int (*mtd_sync)(struct mtd_info *mtd);
1405 #endif
1406 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1407 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1408 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1409 				 struct hwtstamp_config *init);
1410 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1411 	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1412 	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1413 	int (*get_phys_port_id)(struct efx_nic *efx,
1414 				struct netdev_phys_item_id *ppid);
1415 	int (*sriov_init)(struct efx_nic *efx);
1416 	void (*sriov_fini)(struct efx_nic *efx);
1417 	bool (*sriov_wanted)(struct efx_nic *efx);
1418 	void (*sriov_reset)(struct efx_nic *efx);
1419 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1420 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1421 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1422 				 u8 qos);
1423 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1424 				     bool spoofchk);
1425 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1426 				   struct ifla_vf_info *ivi);
1427 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1428 				       int link_state);
1429 	int (*vswitching_probe)(struct efx_nic *efx);
1430 	int (*vswitching_restore)(struct efx_nic *efx);
1431 	void (*vswitching_remove)(struct efx_nic *efx);
1432 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1433 	int (*set_mac_address)(struct efx_nic *efx);
1434 	u32 (*tso_versions)(struct efx_nic *efx);
1435 	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1436 	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1437 	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1438 					 size_t len);
1439 	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1440 
1441 	int revision;
1442 	unsigned int txd_ptr_tbl_base;
1443 	unsigned int rxd_ptr_tbl_base;
1444 	unsigned int buf_tbl_base;
1445 	unsigned int evq_ptr_tbl_base;
1446 	unsigned int evq_rptr_tbl_base;
1447 	u64 max_dma_mask;
1448 	unsigned int rx_prefix_size;
1449 	unsigned int rx_hash_offset;
1450 	unsigned int rx_ts_offset;
1451 	unsigned int rx_buffer_padding;
1452 	bool can_rx_scatter;
1453 	bool always_rx_scatter;
1454 	bool option_descriptors;
1455 	unsigned int min_interrupt_mode;
1456 	unsigned int timer_period_max;
1457 	netdev_features_t offload_features;
1458 	int mcdi_max_ver;
1459 	unsigned int max_rx_ip_filters;
1460 	u32 hwtstamp_filters;
1461 	unsigned int rx_hash_key_size;
1462 };
1463 
1464 /**************************************************************************
1465  *
1466  * Prototypes and inline functions
1467  *
1468  *************************************************************************/
1469 
1470 static inline struct efx_channel *
1471 efx_get_channel(struct efx_nic *efx, unsigned index)
1472 {
1473 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1474 	return efx->channel[index];
1475 }
1476 
1477 /* Iterate over all used channels */
1478 #define efx_for_each_channel(_channel, _efx)				\
1479 	for (_channel = (_efx)->channel[0];				\
1480 	     _channel;							\
1481 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1482 		     (_efx)->channel[_channel->channel + 1] : NULL)
1483 
1484 /* Iterate over all used channels in reverse */
1485 #define efx_for_each_channel_rev(_channel, _efx)			\
1486 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1487 	     _channel;							\
1488 	     _channel = _channel->channel ?				\
1489 		     (_efx)->channel[_channel->channel - 1] : NULL)
1490 
1491 static inline struct efx_channel *
1492 efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1493 {
1494 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1495 	return efx->channel[efx->tx_channel_offset + index];
1496 }
1497 
1498 static inline struct efx_tx_queue *
1499 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1500 {
1501 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1502 				  type >= efx->tx_queues_per_channel);
1503 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1504 }
1505 
1506 static inline struct efx_channel *
1507 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1508 {
1509 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1510 	return efx->channel[efx->xdp_channel_offset + index];
1511 }
1512 
1513 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1514 {
1515 	return channel->channel - channel->efx->xdp_channel_offset <
1516 	       channel->efx->n_xdp_channels;
1517 }
1518 
1519 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1520 {
1521 	return true;
1522 }
1523 
1524 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1525 {
1526 	if (efx_channel_is_xdp_tx(channel))
1527 		return channel->efx->xdp_tx_per_channel;
1528 	return channel->efx->tx_queues_per_channel;
1529 }
1530 
1531 static inline struct efx_tx_queue *
1532 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1533 {
1534 	EFX_WARN_ON_ONCE_PARANOID(type >= efx_channel_num_tx_queues(channel));
1535 	return &channel->tx_queue[type];
1536 }
1537 
1538 /* Iterate over all TX queues belonging to a channel */
1539 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1540 	if (!efx_channel_has_tx_queues(_channel))			\
1541 		;							\
1542 	else								\
1543 		for (_tx_queue = (_channel)->tx_queue;			\
1544 		     _tx_queue < (_channel)->tx_queue +			\
1545 				 efx_channel_num_tx_queues(_channel);		\
1546 		     _tx_queue++)
1547 
1548 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1549 {
1550 	return channel->rx_queue.core_index >= 0;
1551 }
1552 
1553 static inline struct efx_rx_queue *
1554 efx_channel_get_rx_queue(struct efx_channel *channel)
1555 {
1556 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1557 	return &channel->rx_queue;
1558 }
1559 
1560 /* Iterate over all RX queues belonging to a channel */
1561 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1562 	if (!efx_channel_has_rx_queue(_channel))			\
1563 		;							\
1564 	else								\
1565 		for (_rx_queue = &(_channel)->rx_queue;			\
1566 		     _rx_queue;						\
1567 		     _rx_queue = NULL)
1568 
1569 static inline struct efx_channel *
1570 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1571 {
1572 	return container_of(rx_queue, struct efx_channel, rx_queue);
1573 }
1574 
1575 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1576 {
1577 	return efx_rx_queue_channel(rx_queue)->channel;
1578 }
1579 
1580 /* Returns a pointer to the specified receive buffer in the RX
1581  * descriptor queue.
1582  */
1583 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1584 						  unsigned int index)
1585 {
1586 	return &rx_queue->buffer[index];
1587 }
1588 
1589 static inline struct efx_rx_buffer *
1590 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1591 {
1592 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1593 		return efx_rx_buffer(rx_queue, 0);
1594 	else
1595 		return rx_buf + 1;
1596 }
1597 
1598 /**
1599  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1600  *
1601  * This calculates the maximum frame length that will be used for a
1602  * given MTU.  The frame length will be equal to the MTU plus a
1603  * constant amount of header space and padding.  This is the quantity
1604  * that the net driver will program into the MAC as the maximum frame
1605  * length.
1606  *
1607  * The 10G MAC requires 8-byte alignment on the frame
1608  * length, so we round up to the nearest 8.
1609  *
1610  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1611  * XGMII cycle).  If the frame length reaches the maximum value in the
1612  * same cycle, the XMAC can miss the IPG altogether.  We work around
1613  * this by adding a further 16 bytes.
1614  */
1615 #define EFX_FRAME_PAD	16
1616 #define EFX_MAX_FRAME_LEN(mtu) \
1617 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1618 
1619 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1620 {
1621 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1622 }
1623 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1624 {
1625 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1626 }
1627 
1628 /* Get the max fill level of the TX queues on this channel */
1629 static inline unsigned int
1630 efx_channel_tx_fill_level(struct efx_channel *channel)
1631 {
1632 	struct efx_tx_queue *tx_queue;
1633 	unsigned int fill_level = 0;
1634 
1635 	efx_for_each_channel_tx_queue(tx_queue, channel)
1636 		fill_level = max(fill_level,
1637 				 tx_queue->insert_count - tx_queue->read_count);
1638 
1639 	return fill_level;
1640 }
1641 
1642 /* Conservative approximation of efx_channel_tx_fill_level using cached value */
1643 static inline unsigned int
1644 efx_channel_tx_old_fill_level(struct efx_channel *channel)
1645 {
1646 	struct efx_tx_queue *tx_queue;
1647 	unsigned int fill_level = 0;
1648 
1649 	efx_for_each_channel_tx_queue(tx_queue, channel)
1650 		fill_level = max(fill_level,
1651 				 tx_queue->insert_count - tx_queue->old_read_count);
1652 
1653 	return fill_level;
1654 }
1655 
1656 /* Get all supported features.
1657  * If a feature is not fixed, it is present in hw_features.
1658  * If a feature is fixed, it does not present in hw_features, but
1659  * always in features.
1660  */
1661 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1662 {
1663 	const struct net_device *net_dev = efx->net_dev;
1664 
1665 	return net_dev->features | net_dev->hw_features;
1666 }
1667 
1668 /* Get the current TX queue insert index. */
1669 static inline unsigned int
1670 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1671 {
1672 	return tx_queue->insert_count & tx_queue->ptr_mask;
1673 }
1674 
1675 /* Get a TX buffer. */
1676 static inline struct efx_tx_buffer *
1677 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1678 {
1679 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1680 }
1681 
1682 /* Get a TX buffer, checking it's not currently in use. */
1683 static inline struct efx_tx_buffer *
1684 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1685 {
1686 	struct efx_tx_buffer *buffer =
1687 		__efx_tx_queue_get_insert_buffer(tx_queue);
1688 
1689 	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1690 	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1691 	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1692 
1693 	return buffer;
1694 }
1695 
1696 #endif /* EFX_NET_DRIVER_H */
1697