1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 
31 #include "enum.h"
32 #include "bitfield.h"
33 
34 /**************************************************************************
35  *
36  * Build definitions
37  *
38  **************************************************************************/
39 
40 #define EFX_DRIVER_VERSION	"3.2"
41 
42 #ifdef DEBUG
43 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
44 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
45 #else
46 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
47 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
48 #endif
49 
50 /**************************************************************************
51  *
52  * Efx data structures
53  *
54  **************************************************************************/
55 
56 #define EFX_MAX_CHANNELS 32U
57 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
58 #define EFX_EXTRA_CHANNEL_IOV	0
59 #define EFX_EXTRA_CHANNEL_PTP	1
60 #define EFX_MAX_EXTRA_CHANNELS	2U
61 
62 /* Checksum generation is a per-queue option in hardware, so each
63  * queue visible to the networking core is backed by two hardware TX
64  * queues. */
65 #define EFX_MAX_TX_TC		2
66 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
67 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
68 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
69 #define EFX_TXQ_TYPES		4
70 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
71 
72 /* Forward declare Precision Time Protocol (PTP) support structure. */
73 struct efx_ptp_data;
74 
75 struct efx_self_tests;
76 
77 /**
78  * struct efx_special_buffer - An Efx special buffer
79  * @addr: CPU base address of the buffer
80  * @dma_addr: DMA base address of the buffer
81  * @len: Buffer length, in bytes
82  * @index: Buffer index within controller;s buffer table
83  * @entries: Number of buffer table entries
84  *
85  * Special buffers are used for the event queues and the TX and RX
86  * descriptor queues for each channel.  They are *not* used for the
87  * actual transmit and receive buffers.
88  */
89 struct efx_special_buffer {
90 	void *addr;
91 	dma_addr_t dma_addr;
92 	unsigned int len;
93 	unsigned int index;
94 	unsigned int entries;
95 };
96 
97 /**
98  * struct efx_tx_buffer - buffer state for a TX descriptor
99  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
100  *	freed when descriptor completes
101  * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
102  *	freed when descriptor completes.
103  * @dma_addr: DMA address of the fragment.
104  * @flags: Flags for allocation and DMA mapping type
105  * @len: Length of this fragment.
106  *	This field is zero when the queue slot is empty.
107  * @unmap_len: Length of this fragment to unmap
108  */
109 struct efx_tx_buffer {
110 	union {
111 		const struct sk_buff *skb;
112 		void *heap_buf;
113 	};
114 	dma_addr_t dma_addr;
115 	unsigned short flags;
116 	unsigned short len;
117 	unsigned short unmap_len;
118 };
119 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
120 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
121 #define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
122 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
123 
124 /**
125  * struct efx_tx_queue - An Efx TX queue
126  *
127  * This is a ring buffer of TX fragments.
128  * Since the TX completion path always executes on the same
129  * CPU and the xmit path can operate on different CPUs,
130  * performance is increased by ensuring that the completion
131  * path and the xmit path operate on different cache lines.
132  * This is particularly important if the xmit path is always
133  * executing on one CPU which is different from the completion
134  * path.  There is also a cache line for members which are
135  * read but not written on the fast path.
136  *
137  * @efx: The associated Efx NIC
138  * @queue: DMA queue number
139  * @channel: The associated channel
140  * @core_txq: The networking core TX queue structure
141  * @buffer: The software buffer ring
142  * @tsoh_page: Array of pages of TSO header buffers
143  * @txd: The hardware descriptor ring
144  * @ptr_mask: The size of the ring minus 1.
145  * @initialised: Has hardware queue been initialised?
146  * @read_count: Current read pointer.
147  *	This is the number of buffers that have been removed from both rings.
148  * @old_write_count: The value of @write_count when last checked.
149  *	This is here for performance reasons.  The xmit path will
150  *	only get the up-to-date value of @write_count if this
151  *	variable indicates that the queue is empty.  This is to
152  *	avoid cache-line ping-pong between the xmit path and the
153  *	completion path.
154  * @insert_count: Current insert pointer
155  *	This is the number of buffers that have been added to the
156  *	software ring.
157  * @write_count: Current write pointer
158  *	This is the number of buffers that have been added to the
159  *	hardware ring.
160  * @old_read_count: The value of read_count when last checked.
161  *	This is here for performance reasons.  The xmit path will
162  *	only get the up-to-date value of read_count if this
163  *	variable indicates that the queue is full.  This is to
164  *	avoid cache-line ping-pong between the xmit path and the
165  *	completion path.
166  * @tso_bursts: Number of times TSO xmit invoked by kernel
167  * @tso_long_headers: Number of packets with headers too long for standard
168  *	blocks
169  * @tso_packets: Number of packets via the TSO xmit path
170  * @pushes: Number of times the TX push feature has been used
171  * @empty_read_count: If the completion path has seen the queue as empty
172  *	and the transmission path has not yet checked this, the value of
173  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
174  */
175 struct efx_tx_queue {
176 	/* Members which don't change on the fast path */
177 	struct efx_nic *efx ____cacheline_aligned_in_smp;
178 	unsigned queue;
179 	struct efx_channel *channel;
180 	struct netdev_queue *core_txq;
181 	struct efx_tx_buffer *buffer;
182 	struct efx_buffer *tsoh_page;
183 	struct efx_special_buffer txd;
184 	unsigned int ptr_mask;
185 	bool initialised;
186 
187 	/* Members used mainly on the completion path */
188 	unsigned int read_count ____cacheline_aligned_in_smp;
189 	unsigned int old_write_count;
190 
191 	/* Members used only on the xmit path */
192 	unsigned int insert_count ____cacheline_aligned_in_smp;
193 	unsigned int write_count;
194 	unsigned int old_read_count;
195 	unsigned int tso_bursts;
196 	unsigned int tso_long_headers;
197 	unsigned int tso_packets;
198 	unsigned int pushes;
199 
200 	/* Members shared between paths and sometimes updated */
201 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
202 #define EFX_EMPTY_COUNT_VALID 0x80000000
203 };
204 
205 /**
206  * struct efx_rx_buffer - An Efx RX data buffer
207  * @dma_addr: DMA base address of the buffer
208  * @skb: The associated socket buffer. Valid iff !(@flags & %EFX_RX_BUF_PAGE).
209  *	Will be %NULL if the buffer slot is currently free.
210  * @page: The associated page buffer. Valif iff @flags & %EFX_RX_BUF_PAGE.
211  *	Will be %NULL if the buffer slot is currently free.
212  * @len: Buffer length, in bytes.
213  * @flags: Flags for buffer and packet state.
214  */
215 struct efx_rx_buffer {
216 	dma_addr_t dma_addr;
217 	union {
218 		struct sk_buff *skb;
219 		struct page *page;
220 	} u;
221 	unsigned int len;
222 	u16 flags;
223 };
224 #define EFX_RX_BUF_PAGE		0x0001
225 #define EFX_RX_PKT_CSUMMED	0x0002
226 #define EFX_RX_PKT_DISCARD	0x0004
227 
228 /**
229  * struct efx_rx_page_state - Page-based rx buffer state
230  *
231  * Inserted at the start of every page allocated for receive buffers.
232  * Used to facilitate sharing dma mappings between recycled rx buffers
233  * and those passed up to the kernel.
234  *
235  * @refcnt: Number of struct efx_rx_buffer's referencing this page.
236  *	When refcnt falls to zero, the page is unmapped for dma
237  * @dma_addr: The dma address of this page.
238  */
239 struct efx_rx_page_state {
240 	unsigned refcnt;
241 	dma_addr_t dma_addr;
242 
243 	unsigned int __pad[0] ____cacheline_aligned;
244 };
245 
246 /**
247  * struct efx_rx_queue - An Efx RX queue
248  * @efx: The associated Efx NIC
249  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
250  *	is associated with a real RX queue.
251  * @buffer: The software buffer ring
252  * @rxd: The hardware descriptor ring
253  * @ptr_mask: The size of the ring minus 1.
254  * @enabled: Receive queue enabled indicator.
255  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
256  *	@rxq_flush_pending.
257  * @added_count: Number of buffers added to the receive queue.
258  * @notified_count: Number of buffers given to NIC (<= @added_count).
259  * @removed_count: Number of buffers removed from the receive queue.
260  * @max_fill: RX descriptor maximum fill level (<= ring size)
261  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
262  *	(<= @max_fill)
263  * @min_fill: RX descriptor minimum non-zero fill level.
264  *	This records the minimum fill level observed when a ring
265  *	refill was triggered.
266  * @alloc_page_count: RX allocation strategy counter.
267  * @alloc_skb_count: RX allocation strategy counter.
268  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
269  */
270 struct efx_rx_queue {
271 	struct efx_nic *efx;
272 	int core_index;
273 	struct efx_rx_buffer *buffer;
274 	struct efx_special_buffer rxd;
275 	unsigned int ptr_mask;
276 	bool enabled;
277 	bool flush_pending;
278 
279 	int added_count;
280 	int notified_count;
281 	int removed_count;
282 	unsigned int max_fill;
283 	unsigned int fast_fill_trigger;
284 	unsigned int min_fill;
285 	unsigned int min_overfill;
286 	unsigned int alloc_page_count;
287 	unsigned int alloc_skb_count;
288 	struct timer_list slow_fill;
289 	unsigned int slow_fill_count;
290 };
291 
292 /**
293  * struct efx_buffer - An Efx general-purpose buffer
294  * @addr: host base address of the buffer
295  * @dma_addr: DMA base address of the buffer
296  * @len: Buffer length, in bytes
297  *
298  * The NIC uses these buffers for its interrupt status registers and
299  * MAC stats dumps.
300  */
301 struct efx_buffer {
302 	void *addr;
303 	dma_addr_t dma_addr;
304 	unsigned int len;
305 };
306 
307 
308 enum efx_rx_alloc_method {
309 	RX_ALLOC_METHOD_AUTO = 0,
310 	RX_ALLOC_METHOD_SKB = 1,
311 	RX_ALLOC_METHOD_PAGE = 2,
312 };
313 
314 /**
315  * struct efx_channel - An Efx channel
316  *
317  * A channel comprises an event queue, at least one TX queue, at least
318  * one RX queue, and an associated tasklet for processing the event
319  * queue.
320  *
321  * @efx: Associated Efx NIC
322  * @channel: Channel instance number
323  * @type: Channel type definition
324  * @enabled: Channel enabled indicator
325  * @irq: IRQ number (MSI and MSI-X only)
326  * @irq_moderation: IRQ moderation value (in hardware ticks)
327  * @napi_dev: Net device used with NAPI
328  * @napi_str: NAPI control structure
329  * @work_pending: Is work pending via NAPI?
330  * @eventq: Event queue buffer
331  * @eventq_mask: Event queue pointer mask
332  * @eventq_read_ptr: Event queue read pointer
333  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
334  * @irq_count: Number of IRQs since last adaptive moderation decision
335  * @irq_mod_score: IRQ moderation score
336  * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
337  *	and diagnostic counters
338  * @rx_alloc_push_pages: RX allocation method currently in use for pushing
339  *	descriptors
340  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
341  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
342  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
343  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
344  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
345  * @n_rx_overlength: Count of RX_OVERLENGTH errors
346  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
347  * @rx_queue: RX queue for this channel
348  * @tx_queue: TX queues for this channel
349  */
350 struct efx_channel {
351 	struct efx_nic *efx;
352 	int channel;
353 	const struct efx_channel_type *type;
354 	bool enabled;
355 	int irq;
356 	unsigned int irq_moderation;
357 	struct net_device *napi_dev;
358 	struct napi_struct napi_str;
359 	bool work_pending;
360 	struct efx_special_buffer eventq;
361 	unsigned int eventq_mask;
362 	unsigned int eventq_read_ptr;
363 	int event_test_cpu;
364 
365 	unsigned int irq_count;
366 	unsigned int irq_mod_score;
367 #ifdef CONFIG_RFS_ACCEL
368 	unsigned int rfs_filters_added;
369 #endif
370 
371 	int rx_alloc_level;
372 	int rx_alloc_push_pages;
373 
374 	unsigned n_rx_tobe_disc;
375 	unsigned n_rx_ip_hdr_chksum_err;
376 	unsigned n_rx_tcp_udp_chksum_err;
377 	unsigned n_rx_mcast_mismatch;
378 	unsigned n_rx_frm_trunc;
379 	unsigned n_rx_overlength;
380 	unsigned n_skbuff_leaks;
381 
382 	/* Used to pipeline received packets in order to optimise memory
383 	 * access with prefetches.
384 	 */
385 	struct efx_rx_buffer *rx_pkt;
386 
387 	struct efx_rx_queue rx_queue;
388 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
389 };
390 
391 /**
392  * struct efx_channel_type - distinguishes traffic and extra channels
393  * @handle_no_channel: Handle failure to allocate an extra channel
394  * @pre_probe: Set up extra state prior to initialisation
395  * @post_remove: Tear down extra state after finalisation, if allocated.
396  *	May be called on channels that have not been probed.
397  * @get_name: Generate the channel's name (used for its IRQ handler)
398  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
399  *	reallocation is not supported.
400  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
401  * @keep_eventq: Flag for whether event queue should be kept initialised
402  *	while the device is stopped
403  */
404 struct efx_channel_type {
405 	void (*handle_no_channel)(struct efx_nic *);
406 	int (*pre_probe)(struct efx_channel *);
407 	void (*post_remove)(struct efx_channel *);
408 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
409 	struct efx_channel *(*copy)(const struct efx_channel *);
410 	void (*receive_skb)(struct efx_channel *, struct sk_buff *);
411 	bool keep_eventq;
412 };
413 
414 enum efx_led_mode {
415 	EFX_LED_OFF	= 0,
416 	EFX_LED_ON	= 1,
417 	EFX_LED_DEFAULT	= 2
418 };
419 
420 #define STRING_TABLE_LOOKUP(val, member) \
421 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
422 
423 extern const char *const efx_loopback_mode_names[];
424 extern const unsigned int efx_loopback_mode_max;
425 #define LOOPBACK_MODE(efx) \
426 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
427 
428 extern const char *const efx_reset_type_names[];
429 extern const unsigned int efx_reset_type_max;
430 #define RESET_TYPE(type) \
431 	STRING_TABLE_LOOKUP(type, efx_reset_type)
432 
433 enum efx_int_mode {
434 	/* Be careful if altering to correct macro below */
435 	EFX_INT_MODE_MSIX = 0,
436 	EFX_INT_MODE_MSI = 1,
437 	EFX_INT_MODE_LEGACY = 2,
438 	EFX_INT_MODE_MAX	/* Insert any new items before this */
439 };
440 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
441 
442 enum nic_state {
443 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
444 	STATE_READY = 1,	/* hardware ready and netdev registered */
445 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
446 };
447 
448 /*
449  * Alignment of page-allocated RX buffers
450  *
451  * Controls the number of bytes inserted at the start of an RX buffer.
452  * This is the equivalent of NET_IP_ALIGN [which controls the alignment
453  * of the skb->head for hardware DMA].
454  */
455 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
456 #define EFX_PAGE_IP_ALIGN 0
457 #else
458 #define EFX_PAGE_IP_ALIGN NET_IP_ALIGN
459 #endif
460 
461 /*
462  * Alignment of the skb->head which wraps a page-allocated RX buffer
463  *
464  * The skb allocated to wrap an rx_buffer can have this alignment. Since
465  * the data is memcpy'd from the rx_buf, it does not need to be equal to
466  * EFX_PAGE_IP_ALIGN.
467  */
468 #define EFX_PAGE_SKB_ALIGN 2
469 
470 /* Forward declaration */
471 struct efx_nic;
472 
473 /* Pseudo bit-mask flow control field */
474 #define EFX_FC_RX	FLOW_CTRL_RX
475 #define EFX_FC_TX	FLOW_CTRL_TX
476 #define EFX_FC_AUTO	4
477 
478 /**
479  * struct efx_link_state - Current state of the link
480  * @up: Link is up
481  * @fd: Link is full-duplex
482  * @fc: Actual flow control flags
483  * @speed: Link speed (Mbps)
484  */
485 struct efx_link_state {
486 	bool up;
487 	bool fd;
488 	u8 fc;
489 	unsigned int speed;
490 };
491 
492 static inline bool efx_link_state_equal(const struct efx_link_state *left,
493 					const struct efx_link_state *right)
494 {
495 	return left->up == right->up && left->fd == right->fd &&
496 		left->fc == right->fc && left->speed == right->speed;
497 }
498 
499 /**
500  * struct efx_phy_operations - Efx PHY operations table
501  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
502  *	efx->loopback_modes.
503  * @init: Initialise PHY
504  * @fini: Shut down PHY
505  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
506  * @poll: Update @link_state and report whether it changed.
507  *	Serialised by the mac_lock.
508  * @get_settings: Get ethtool settings. Serialised by the mac_lock.
509  * @set_settings: Set ethtool settings. Serialised by the mac_lock.
510  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
511  *	(only needed where AN bit is set in mmds)
512  * @test_alive: Test that PHY is 'alive' (online)
513  * @test_name: Get the name of a PHY-specific test/result
514  * @run_tests: Run tests and record results as appropriate (offline).
515  *	Flags are the ethtool tests flags.
516  */
517 struct efx_phy_operations {
518 	int (*probe) (struct efx_nic *efx);
519 	int (*init) (struct efx_nic *efx);
520 	void (*fini) (struct efx_nic *efx);
521 	void (*remove) (struct efx_nic *efx);
522 	int (*reconfigure) (struct efx_nic *efx);
523 	bool (*poll) (struct efx_nic *efx);
524 	void (*get_settings) (struct efx_nic *efx,
525 			      struct ethtool_cmd *ecmd);
526 	int (*set_settings) (struct efx_nic *efx,
527 			     struct ethtool_cmd *ecmd);
528 	void (*set_npage_adv) (struct efx_nic *efx, u32);
529 	int (*test_alive) (struct efx_nic *efx);
530 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
531 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
532 	int (*get_module_eeprom) (struct efx_nic *efx,
533 			       struct ethtool_eeprom *ee,
534 			       u8 *data);
535 	int (*get_module_info) (struct efx_nic *efx,
536 				struct ethtool_modinfo *modinfo);
537 };
538 
539 /**
540  * enum efx_phy_mode - PHY operating mode flags
541  * @PHY_MODE_NORMAL: on and should pass traffic
542  * @PHY_MODE_TX_DISABLED: on with TX disabled
543  * @PHY_MODE_LOW_POWER: set to low power through MDIO
544  * @PHY_MODE_OFF: switched off through external control
545  * @PHY_MODE_SPECIAL: on but will not pass traffic
546  */
547 enum efx_phy_mode {
548 	PHY_MODE_NORMAL		= 0,
549 	PHY_MODE_TX_DISABLED	= 1,
550 	PHY_MODE_LOW_POWER	= 2,
551 	PHY_MODE_OFF		= 4,
552 	PHY_MODE_SPECIAL	= 8,
553 };
554 
555 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
556 {
557 	return !!(mode & ~PHY_MODE_TX_DISABLED);
558 }
559 
560 /*
561  * Efx extended statistics
562  *
563  * Not all statistics are provided by all supported MACs.  The purpose
564  * is this structure is to contain the raw statistics provided by each
565  * MAC.
566  */
567 struct efx_mac_stats {
568 	u64 tx_bytes;
569 	u64 tx_good_bytes;
570 	u64 tx_bad_bytes;
571 	u64 tx_packets;
572 	u64 tx_bad;
573 	u64 tx_pause;
574 	u64 tx_control;
575 	u64 tx_unicast;
576 	u64 tx_multicast;
577 	u64 tx_broadcast;
578 	u64 tx_lt64;
579 	u64 tx_64;
580 	u64 tx_65_to_127;
581 	u64 tx_128_to_255;
582 	u64 tx_256_to_511;
583 	u64 tx_512_to_1023;
584 	u64 tx_1024_to_15xx;
585 	u64 tx_15xx_to_jumbo;
586 	u64 tx_gtjumbo;
587 	u64 tx_collision;
588 	u64 tx_single_collision;
589 	u64 tx_multiple_collision;
590 	u64 tx_excessive_collision;
591 	u64 tx_deferred;
592 	u64 tx_late_collision;
593 	u64 tx_excessive_deferred;
594 	u64 tx_non_tcpudp;
595 	u64 tx_mac_src_error;
596 	u64 tx_ip_src_error;
597 	u64 rx_bytes;
598 	u64 rx_good_bytes;
599 	u64 rx_bad_bytes;
600 	u64 rx_packets;
601 	u64 rx_good;
602 	u64 rx_bad;
603 	u64 rx_pause;
604 	u64 rx_control;
605 	u64 rx_unicast;
606 	u64 rx_multicast;
607 	u64 rx_broadcast;
608 	u64 rx_lt64;
609 	u64 rx_64;
610 	u64 rx_65_to_127;
611 	u64 rx_128_to_255;
612 	u64 rx_256_to_511;
613 	u64 rx_512_to_1023;
614 	u64 rx_1024_to_15xx;
615 	u64 rx_15xx_to_jumbo;
616 	u64 rx_gtjumbo;
617 	u64 rx_bad_lt64;
618 	u64 rx_bad_64_to_15xx;
619 	u64 rx_bad_15xx_to_jumbo;
620 	u64 rx_bad_gtjumbo;
621 	u64 rx_overflow;
622 	u64 rx_missed;
623 	u64 rx_false_carrier;
624 	u64 rx_symbol_error;
625 	u64 rx_align_error;
626 	u64 rx_length_error;
627 	u64 rx_internal_error;
628 	u64 rx_good_lt64;
629 };
630 
631 /* Number of bits used in a multicast filter hash address */
632 #define EFX_MCAST_HASH_BITS 8
633 
634 /* Number of (single-bit) entries in a multicast filter hash */
635 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
636 
637 /* An Efx multicast filter hash */
638 union efx_multicast_hash {
639 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
640 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
641 };
642 
643 struct efx_filter_state;
644 struct efx_vf;
645 struct vfdi_status;
646 
647 /**
648  * struct efx_nic - an Efx NIC
649  * @name: Device name (net device name or bus id before net device registered)
650  * @pci_dev: The PCI device
651  * @type: Controller type attributes
652  * @legacy_irq: IRQ number
653  * @legacy_irq_enabled: Are IRQs enabled on NIC (INT_EN_KER register)?
654  * @workqueue: Workqueue for port reconfigures and the HW monitor.
655  *	Work items do not hold and must not acquire RTNL.
656  * @workqueue_name: Name of workqueue
657  * @reset_work: Scheduled reset workitem
658  * @membase_phys: Memory BAR value as physical address
659  * @membase: Memory BAR value
660  * @interrupt_mode: Interrupt mode
661  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
662  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
663  * @irq_rx_moderation: IRQ moderation time for RX event queues
664  * @msg_enable: Log message enable flags
665  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
666  * @reset_pending: Bitmask for pending resets
667  * @tx_queue: TX DMA queues
668  * @rx_queue: RX DMA queues
669  * @channel: Channels
670  * @channel_name: Names for channels and their IRQs
671  * @extra_channel_types: Types of extra (non-traffic) channels that
672  *	should be allocated for this NIC
673  * @rxq_entries: Size of receive queues requested by user.
674  * @txq_entries: Size of transmit queues requested by user.
675  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
676  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
677  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
678  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
679  * @sram_lim_qw: Qword address limit of SRAM
680  * @next_buffer_table: First available buffer table id
681  * @n_channels: Number of channels in use
682  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
683  * @n_tx_channels: Number of channels used for TX
684  * @rx_buffer_len: RX buffer length
685  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
686  * @rx_hash_key: Toeplitz hash key for RSS
687  * @rx_indir_table: Indirection table for RSS
688  * @int_error_count: Number of internal errors seen recently
689  * @int_error_expire: Time at which error count will be expired
690  * @irq_status: Interrupt status buffer
691  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
692  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
693  * @selftest_work: Work item for asynchronous self-test
694  * @mtd_list: List of MTDs attached to the NIC
695  * @nic_data: Hardware dependent state
696  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
697  *	efx_monitor() and efx_reconfigure_port()
698  * @port_enabled: Port enabled indicator.
699  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
700  *	efx_mac_work() with kernel interfaces. Safe to read under any
701  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
702  *	be held to modify it.
703  * @port_initialized: Port initialized?
704  * @net_dev: Operating system network device. Consider holding the rtnl lock
705  * @stats_buffer: DMA buffer for statistics
706  * @phy_type: PHY type
707  * @phy_op: PHY interface
708  * @phy_data: PHY private data (including PHY-specific stats)
709  * @mdio: PHY MDIO interface
710  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
711  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
712  * @link_advertising: Autonegotiation advertising flags
713  * @link_state: Current state of the link
714  * @n_link_state_changes: Number of times the link has changed state
715  * @promiscuous: Promiscuous flag. Protected by netif_tx_lock.
716  * @multicast_hash: Multicast hash table
717  * @wanted_fc: Wanted flow control flags
718  * @fc_disable: When non-zero flow control is disabled. Typically used to
719  *	ensure that network back pressure doesn't delay dma queue flushes.
720  *	Serialised by the rtnl lock.
721  * @mac_work: Work item for changing MAC promiscuity and multicast hash
722  * @loopback_mode: Loopback status
723  * @loopback_modes: Supported loopback mode bitmask
724  * @loopback_selftest: Offline self-test private state
725  * @drain_pending: Count of RX and TX queues that haven't been flushed and drained.
726  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
727  *	Decremented when the efx_flush_rx_queue() is called.
728  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
729  *	completed (either success or failure). Not used when MCDI is used to
730  *	flush receive queues.
731  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
732  * @vf: Array of &struct efx_vf objects.
733  * @vf_count: Number of VFs intended to be enabled.
734  * @vf_init_count: Number of VFs that have been fully initialised.
735  * @vi_scale: log2 number of vnics per VF.
736  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
737  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
738  * @local_addr_list: List of local addresses. Protected by %local_lock.
739  * @local_page_list: List of DMA addressable pages used to broadcast
740  *	%local_addr_list. Protected by %local_lock.
741  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
742  * @peer_work: Work item to broadcast peer addresses to VMs.
743  * @ptp_data: PTP state data
744  * @monitor_work: Hardware monitor workitem
745  * @biu_lock: BIU (bus interface unit) lock
746  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
747  *	field is used by efx_test_interrupts() to verify that an
748  *	interrupt has occurred.
749  * @n_rx_nodesc_drop_cnt: RX no descriptor drop count
750  * @mac_stats: MAC statistics. These include all statistics the MACs
751  *	can provide.  Generic code converts these into a standard
752  *	&struct net_device_stats.
753  * @stats_lock: Statistics update lock. Serialises statistics fetches
754  *	and access to @mac_stats.
755  *
756  * This is stored in the private area of the &struct net_device.
757  */
758 struct efx_nic {
759 	/* The following fields should be written very rarely */
760 
761 	char name[IFNAMSIZ];
762 	struct pci_dev *pci_dev;
763 	const struct efx_nic_type *type;
764 	int legacy_irq;
765 	bool legacy_irq_enabled;
766 	struct workqueue_struct *workqueue;
767 	char workqueue_name[16];
768 	struct work_struct reset_work;
769 	resource_size_t membase_phys;
770 	void __iomem *membase;
771 
772 	enum efx_int_mode interrupt_mode;
773 	unsigned int timer_quantum_ns;
774 	bool irq_rx_adaptive;
775 	unsigned int irq_rx_moderation;
776 	u32 msg_enable;
777 
778 	enum nic_state state;
779 	unsigned long reset_pending;
780 
781 	struct efx_channel *channel[EFX_MAX_CHANNELS];
782 	char channel_name[EFX_MAX_CHANNELS][IFNAMSIZ + 6];
783 	const struct efx_channel_type *
784 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
785 
786 	unsigned rxq_entries;
787 	unsigned txq_entries;
788 	unsigned int txq_stop_thresh;
789 	unsigned int txq_wake_thresh;
790 
791 	unsigned tx_dc_base;
792 	unsigned rx_dc_base;
793 	unsigned sram_lim_qw;
794 	unsigned next_buffer_table;
795 	unsigned n_channels;
796 	unsigned n_rx_channels;
797 	unsigned rss_spread;
798 	unsigned tx_channel_offset;
799 	unsigned n_tx_channels;
800 	unsigned int rx_buffer_len;
801 	unsigned int rx_buffer_order;
802 	u8 rx_hash_key[40];
803 	u32 rx_indir_table[128];
804 
805 	unsigned int_error_count;
806 	unsigned long int_error_expire;
807 
808 	struct efx_buffer irq_status;
809 	unsigned irq_zero_count;
810 	unsigned irq_level;
811 	struct delayed_work selftest_work;
812 
813 #ifdef CONFIG_SFC_MTD
814 	struct list_head mtd_list;
815 #endif
816 
817 	void *nic_data;
818 
819 	struct mutex mac_lock;
820 	struct work_struct mac_work;
821 	bool port_enabled;
822 
823 	bool port_initialized;
824 	struct net_device *net_dev;
825 
826 	struct efx_buffer stats_buffer;
827 
828 	unsigned int phy_type;
829 	const struct efx_phy_operations *phy_op;
830 	void *phy_data;
831 	struct mdio_if_info mdio;
832 	unsigned int mdio_bus;
833 	enum efx_phy_mode phy_mode;
834 
835 	u32 link_advertising;
836 	struct efx_link_state link_state;
837 	unsigned int n_link_state_changes;
838 
839 	bool promiscuous;
840 	union efx_multicast_hash multicast_hash;
841 	u8 wanted_fc;
842 	unsigned fc_disable;
843 
844 	atomic_t rx_reset;
845 	enum efx_loopback_mode loopback_mode;
846 	u64 loopback_modes;
847 
848 	void *loopback_selftest;
849 
850 	struct efx_filter_state *filter_state;
851 
852 	atomic_t drain_pending;
853 	atomic_t rxq_flush_pending;
854 	atomic_t rxq_flush_outstanding;
855 	wait_queue_head_t flush_wq;
856 
857 #ifdef CONFIG_SFC_SRIOV
858 	struct efx_channel *vfdi_channel;
859 	struct efx_vf *vf;
860 	unsigned vf_count;
861 	unsigned vf_init_count;
862 	unsigned vi_scale;
863 	unsigned vf_buftbl_base;
864 	struct efx_buffer vfdi_status;
865 	struct list_head local_addr_list;
866 	struct list_head local_page_list;
867 	struct mutex local_lock;
868 	struct work_struct peer_work;
869 #endif
870 
871 #ifdef CONFIG_SFC_PTP
872 	struct efx_ptp_data *ptp_data;
873 #endif
874 
875 	/* The following fields may be written more often */
876 
877 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
878 	spinlock_t biu_lock;
879 	int last_irq_cpu;
880 	unsigned n_rx_nodesc_drop_cnt;
881 	struct efx_mac_stats mac_stats;
882 	spinlock_t stats_lock;
883 };
884 
885 static inline int efx_dev_registered(struct efx_nic *efx)
886 {
887 	return efx->net_dev->reg_state == NETREG_REGISTERED;
888 }
889 
890 static inline unsigned int efx_port_num(struct efx_nic *efx)
891 {
892 	return efx->net_dev->dev_id;
893 }
894 
895 /**
896  * struct efx_nic_type - Efx device type definition
897  * @probe: Probe the controller
898  * @remove: Free resources allocated by probe()
899  * @init: Initialise the controller
900  * @dimension_resources: Dimension controller resources (buffer table,
901  *	and VIs once the available interrupt resources are clear)
902  * @fini: Shut down the controller
903  * @monitor: Periodic function for polling link state and hardware monitor
904  * @map_reset_reason: Map ethtool reset reason to a reset method
905  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
906  * @reset: Reset the controller hardware and possibly the PHY.  This will
907  *	be called while the controller is uninitialised.
908  * @probe_port: Probe the MAC and PHY
909  * @remove_port: Free resources allocated by probe_port()
910  * @handle_global_event: Handle a "global" event (may be %NULL)
911  * @prepare_flush: Prepare the hardware for flushing the DMA queues
912  * @update_stats: Update statistics not provided by event handling
913  * @start_stats: Start the regular fetching of statistics
914  * @stop_stats: Stop the regular fetching of statistics
915  * @set_id_led: Set state of identifying LED or revert to automatic function
916  * @push_irq_moderation: Apply interrupt moderation value
917  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
918  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
919  *	to the hardware.  Serialised by the mac_lock.
920  * @check_mac_fault: Check MAC fault state. True if fault present.
921  * @get_wol: Get WoL configuration from driver state
922  * @set_wol: Push WoL configuration to the NIC
923  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
924  * @test_chip: Test registers.  Should use efx_nic_test_registers(), and is
925  *	expected to reset the NIC.
926  * @test_nvram: Test validity of NVRAM contents
927  * @revision: Hardware architecture revision
928  * @mem_map_size: Memory BAR mapped size
929  * @txd_ptr_tbl_base: TX descriptor ring base address
930  * @rxd_ptr_tbl_base: RX descriptor ring base address
931  * @buf_tbl_base: Buffer table base address
932  * @evq_ptr_tbl_base: Event queue pointer table base address
933  * @evq_rptr_tbl_base: Event queue read-pointer table base address
934  * @max_dma_mask: Maximum possible DMA mask
935  * @rx_buffer_hash_size: Size of hash at start of RX buffer
936  * @rx_buffer_padding: Size of padding at end of RX buffer
937  * @max_interrupt_mode: Highest capability interrupt mode supported
938  *	from &enum efx_init_mode.
939  * @phys_addr_channels: Number of channels with physically addressed
940  *	descriptors
941  * @timer_period_max: Maximum period of interrupt timer (in ticks)
942  * @offload_features: net_device feature flags for protocol offload
943  *	features implemented in hardware
944  */
945 struct efx_nic_type {
946 	int (*probe)(struct efx_nic *efx);
947 	void (*remove)(struct efx_nic *efx);
948 	int (*init)(struct efx_nic *efx);
949 	void (*dimension_resources)(struct efx_nic *efx);
950 	void (*fini)(struct efx_nic *efx);
951 	void (*monitor)(struct efx_nic *efx);
952 	enum reset_type (*map_reset_reason)(enum reset_type reason);
953 	int (*map_reset_flags)(u32 *flags);
954 	int (*reset)(struct efx_nic *efx, enum reset_type method);
955 	int (*probe_port)(struct efx_nic *efx);
956 	void (*remove_port)(struct efx_nic *efx);
957 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
958 	void (*prepare_flush)(struct efx_nic *efx);
959 	void (*update_stats)(struct efx_nic *efx);
960 	void (*start_stats)(struct efx_nic *efx);
961 	void (*stop_stats)(struct efx_nic *efx);
962 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
963 	void (*push_irq_moderation)(struct efx_channel *channel);
964 	int (*reconfigure_port)(struct efx_nic *efx);
965 	int (*reconfigure_mac)(struct efx_nic *efx);
966 	bool (*check_mac_fault)(struct efx_nic *efx);
967 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
968 	int (*set_wol)(struct efx_nic *efx, u32 type);
969 	void (*resume_wol)(struct efx_nic *efx);
970 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
971 	int (*test_nvram)(struct efx_nic *efx);
972 
973 	int revision;
974 	unsigned int mem_map_size;
975 	unsigned int txd_ptr_tbl_base;
976 	unsigned int rxd_ptr_tbl_base;
977 	unsigned int buf_tbl_base;
978 	unsigned int evq_ptr_tbl_base;
979 	unsigned int evq_rptr_tbl_base;
980 	u64 max_dma_mask;
981 	unsigned int rx_buffer_hash_size;
982 	unsigned int rx_buffer_padding;
983 	unsigned int max_interrupt_mode;
984 	unsigned int phys_addr_channels;
985 	unsigned int timer_period_max;
986 	netdev_features_t offload_features;
987 };
988 
989 /**************************************************************************
990  *
991  * Prototypes and inline functions
992  *
993  *************************************************************************/
994 
995 static inline struct efx_channel *
996 efx_get_channel(struct efx_nic *efx, unsigned index)
997 {
998 	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
999 	return efx->channel[index];
1000 }
1001 
1002 /* Iterate over all used channels */
1003 #define efx_for_each_channel(_channel, _efx)				\
1004 	for (_channel = (_efx)->channel[0];				\
1005 	     _channel;							\
1006 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1007 		     (_efx)->channel[_channel->channel + 1] : NULL)
1008 
1009 /* Iterate over all used channels in reverse */
1010 #define efx_for_each_channel_rev(_channel, _efx)			\
1011 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1012 	     _channel;							\
1013 	     _channel = _channel->channel ?				\
1014 		     (_efx)->channel[_channel->channel - 1] : NULL)
1015 
1016 static inline struct efx_tx_queue *
1017 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1018 {
1019 	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1020 			    type >= EFX_TXQ_TYPES);
1021 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1022 }
1023 
1024 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1025 {
1026 	return channel->channel - channel->efx->tx_channel_offset <
1027 		channel->efx->n_tx_channels;
1028 }
1029 
1030 static inline struct efx_tx_queue *
1031 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1032 {
1033 	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1034 			    type >= EFX_TXQ_TYPES);
1035 	return &channel->tx_queue[type];
1036 }
1037 
1038 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1039 {
1040 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1041 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1042 }
1043 
1044 /* Iterate over all TX queues belonging to a channel */
1045 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1046 	if (!efx_channel_has_tx_queues(_channel))			\
1047 		;							\
1048 	else								\
1049 		for (_tx_queue = (_channel)->tx_queue;			\
1050 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1051 			     efx_tx_queue_used(_tx_queue);		\
1052 		     _tx_queue++)
1053 
1054 /* Iterate over all possible TX queues belonging to a channel */
1055 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1056 	if (!efx_channel_has_tx_queues(_channel))			\
1057 		;							\
1058 	else								\
1059 		for (_tx_queue = (_channel)->tx_queue;			\
1060 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1061 		     _tx_queue++)
1062 
1063 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1064 {
1065 	return channel->rx_queue.core_index >= 0;
1066 }
1067 
1068 static inline struct efx_rx_queue *
1069 efx_channel_get_rx_queue(struct efx_channel *channel)
1070 {
1071 	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1072 	return &channel->rx_queue;
1073 }
1074 
1075 /* Iterate over all RX queues belonging to a channel */
1076 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1077 	if (!efx_channel_has_rx_queue(_channel))			\
1078 		;							\
1079 	else								\
1080 		for (_rx_queue = &(_channel)->rx_queue;			\
1081 		     _rx_queue;						\
1082 		     _rx_queue = NULL)
1083 
1084 static inline struct efx_channel *
1085 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1086 {
1087 	return container_of(rx_queue, struct efx_channel, rx_queue);
1088 }
1089 
1090 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1091 {
1092 	return efx_rx_queue_channel(rx_queue)->channel;
1093 }
1094 
1095 /* Returns a pointer to the specified receive buffer in the RX
1096  * descriptor queue.
1097  */
1098 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1099 						  unsigned int index)
1100 {
1101 	return &rx_queue->buffer[index];
1102 }
1103 
1104 
1105 /**
1106  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1107  *
1108  * This calculates the maximum frame length that will be used for a
1109  * given MTU.  The frame length will be equal to the MTU plus a
1110  * constant amount of header space and padding.  This is the quantity
1111  * that the net driver will program into the MAC as the maximum frame
1112  * length.
1113  *
1114  * The 10G MAC requires 8-byte alignment on the frame
1115  * length, so we round up to the nearest 8.
1116  *
1117  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1118  * XGMII cycle).  If the frame length reaches the maximum value in the
1119  * same cycle, the XMAC can miss the IPG altogether.  We work around
1120  * this by adding a further 16 bytes.
1121  */
1122 #define EFX_MAX_FRAME_LEN(mtu) \
1123 	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1124 
1125 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1126 {
1127 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1128 }
1129 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1130 {
1131 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1132 }
1133 
1134 #endif /* EFX_NET_DRIVER_H */
1135