1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2008-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/moduleparam.h> 12 #include <asm/cmpxchg.h> 13 #include "net_driver.h" 14 #include "nic.h" 15 #include "io.h" 16 #include "farch_regs.h" 17 #include "mcdi_pcol.h" 18 #include "phy.h" 19 20 /************************************************************************** 21 * 22 * Management-Controller-to-Driver Interface 23 * 24 ************************************************************************** 25 */ 26 27 #define MCDI_RPC_TIMEOUT (10 * HZ) 28 29 /* A reboot/assertion causes the MCDI status word to be set after the 30 * command word is set or a REBOOT event is sent. If we notice a reboot 31 * via these mechanisms then wait 250ms for the status word to be set. 32 */ 33 #define MCDI_STATUS_DELAY_US 100 34 #define MCDI_STATUS_DELAY_COUNT 2500 35 #define MCDI_STATUS_SLEEP_MS \ 36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 37 38 #define SEQ_MASK \ 39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 40 41 struct efx_mcdi_async_param { 42 struct list_head list; 43 unsigned int cmd; 44 size_t inlen; 45 size_t outlen; 46 bool quiet; 47 efx_mcdi_async_completer *complete; 48 unsigned long cookie; 49 /* followed by request/response buffer */ 50 }; 51 52 static void efx_mcdi_timeout_async(unsigned long context); 53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 54 bool *was_attached_out); 55 static bool efx_mcdi_poll_once(struct efx_nic *efx); 56 static void efx_mcdi_abandon(struct efx_nic *efx); 57 58 #ifdef CONFIG_SFC_MCDI_LOGGING 59 static bool mcdi_logging_default; 60 module_param(mcdi_logging_default, bool, 0644); 61 MODULE_PARM_DESC(mcdi_logging_default, 62 "Enable MCDI logging on newly-probed functions"); 63 #endif 64 65 int efx_mcdi_init(struct efx_nic *efx) 66 { 67 struct efx_mcdi_iface *mcdi; 68 bool already_attached; 69 int rc = -ENOMEM; 70 71 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 72 if (!efx->mcdi) 73 goto fail; 74 75 mcdi = efx_mcdi(efx); 76 mcdi->efx = efx; 77 #ifdef CONFIG_SFC_MCDI_LOGGING 78 /* consuming code assumes buffer is page-sized */ 79 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 80 if (!mcdi->logging_buffer) 81 goto fail1; 82 mcdi->logging_enabled = mcdi_logging_default; 83 #endif 84 init_waitqueue_head(&mcdi->wq); 85 spin_lock_init(&mcdi->iface_lock); 86 mcdi->state = MCDI_STATE_QUIESCENT; 87 mcdi->mode = MCDI_MODE_POLL; 88 spin_lock_init(&mcdi->async_lock); 89 INIT_LIST_HEAD(&mcdi->async_list); 90 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, 91 (unsigned long)mcdi); 92 93 (void) efx_mcdi_poll_reboot(efx); 94 mcdi->new_epoch = true; 95 96 /* Recover from a failed assertion before probing */ 97 rc = efx_mcdi_handle_assertion(efx); 98 if (rc) 99 goto fail2; 100 101 /* Let the MC (and BMC, if this is a LOM) know that the driver 102 * is loaded. We should do this before we reset the NIC. 103 */ 104 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 105 if (rc) { 106 netif_err(efx, probe, efx->net_dev, 107 "Unable to register driver with MCPU\n"); 108 goto fail2; 109 } 110 if (already_attached) 111 /* Not a fatal error */ 112 netif_err(efx, probe, efx->net_dev, 113 "Host already registered with MCPU\n"); 114 115 if (efx->mcdi->fn_flags & 116 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 117 efx->primary = efx; 118 119 return 0; 120 fail2: 121 #ifdef CONFIG_SFC_MCDI_LOGGING 122 free_page((unsigned long)mcdi->logging_buffer); 123 fail1: 124 #endif 125 kfree(efx->mcdi); 126 efx->mcdi = NULL; 127 fail: 128 return rc; 129 } 130 131 void efx_mcdi_fini(struct efx_nic *efx) 132 { 133 if (!efx->mcdi) 134 return; 135 136 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 137 138 /* Relinquish the device (back to the BMC, if this is a LOM) */ 139 efx_mcdi_drv_attach(efx, false, NULL); 140 141 #ifdef CONFIG_SFC_MCDI_LOGGING 142 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 143 #endif 144 145 kfree(efx->mcdi); 146 } 147 148 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 149 const efx_dword_t *inbuf, size_t inlen) 150 { 151 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 152 #ifdef CONFIG_SFC_MCDI_LOGGING 153 char *buf = mcdi->logging_buffer; /* page-sized */ 154 #endif 155 efx_dword_t hdr[2]; 156 size_t hdr_len; 157 u32 xflags, seqno; 158 159 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 160 161 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 162 spin_lock_bh(&mcdi->iface_lock); 163 ++mcdi->seqno; 164 spin_unlock_bh(&mcdi->iface_lock); 165 166 seqno = mcdi->seqno & SEQ_MASK; 167 xflags = 0; 168 if (mcdi->mode == MCDI_MODE_EVENTS) 169 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 170 171 if (efx->type->mcdi_max_ver == 1) { 172 /* MCDI v1 */ 173 EFX_POPULATE_DWORD_7(hdr[0], 174 MCDI_HEADER_RESPONSE, 0, 175 MCDI_HEADER_RESYNC, 1, 176 MCDI_HEADER_CODE, cmd, 177 MCDI_HEADER_DATALEN, inlen, 178 MCDI_HEADER_SEQ, seqno, 179 MCDI_HEADER_XFLAGS, xflags, 180 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 181 hdr_len = 4; 182 } else { 183 /* MCDI v2 */ 184 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 185 EFX_POPULATE_DWORD_7(hdr[0], 186 MCDI_HEADER_RESPONSE, 0, 187 MCDI_HEADER_RESYNC, 1, 188 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 189 MCDI_HEADER_DATALEN, 0, 190 MCDI_HEADER_SEQ, seqno, 191 MCDI_HEADER_XFLAGS, xflags, 192 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 193 EFX_POPULATE_DWORD_2(hdr[1], 194 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 195 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 196 hdr_len = 8; 197 } 198 199 #ifdef CONFIG_SFC_MCDI_LOGGING 200 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 201 int bytes = 0; 202 int i; 203 /* Lengths should always be a whole number of dwords, so scream 204 * if they're not. 205 */ 206 WARN_ON_ONCE(hdr_len % 4); 207 WARN_ON_ONCE(inlen % 4); 208 209 /* We own the logging buffer, as only one MCDI can be in 210 * progress on a NIC at any one time. So no need for locking. 211 */ 212 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 213 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 214 " %08x", le32_to_cpu(hdr[i].u32[0])); 215 216 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 217 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 218 " %08x", le32_to_cpu(inbuf[i].u32[0])); 219 220 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 221 } 222 #endif 223 224 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 225 226 mcdi->new_epoch = false; 227 } 228 229 static int efx_mcdi_errno(unsigned int mcdi_err) 230 { 231 switch (mcdi_err) { 232 case 0: 233 return 0; 234 #define TRANSLATE_ERROR(name) \ 235 case MC_CMD_ERR_ ## name: \ 236 return -name; 237 TRANSLATE_ERROR(EPERM); 238 TRANSLATE_ERROR(ENOENT); 239 TRANSLATE_ERROR(EINTR); 240 TRANSLATE_ERROR(EAGAIN); 241 TRANSLATE_ERROR(EACCES); 242 TRANSLATE_ERROR(EBUSY); 243 TRANSLATE_ERROR(EINVAL); 244 TRANSLATE_ERROR(EDEADLK); 245 TRANSLATE_ERROR(ENOSYS); 246 TRANSLATE_ERROR(ETIME); 247 TRANSLATE_ERROR(EALREADY); 248 TRANSLATE_ERROR(ENOSPC); 249 #undef TRANSLATE_ERROR 250 case MC_CMD_ERR_ENOTSUP: 251 return -EOPNOTSUPP; 252 case MC_CMD_ERR_ALLOC_FAIL: 253 return -ENOBUFS; 254 case MC_CMD_ERR_MAC_EXIST: 255 return -EADDRINUSE; 256 default: 257 return -EPROTO; 258 } 259 } 260 261 static void efx_mcdi_read_response_header(struct efx_nic *efx) 262 { 263 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 264 unsigned int respseq, respcmd, error; 265 #ifdef CONFIG_SFC_MCDI_LOGGING 266 char *buf = mcdi->logging_buffer; /* page-sized */ 267 #endif 268 efx_dword_t hdr; 269 270 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 271 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 272 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 273 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 274 275 if (respcmd != MC_CMD_V2_EXTN) { 276 mcdi->resp_hdr_len = 4; 277 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 278 } else { 279 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 280 mcdi->resp_hdr_len = 8; 281 mcdi->resp_data_len = 282 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 283 } 284 285 #ifdef CONFIG_SFC_MCDI_LOGGING 286 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 287 size_t hdr_len, data_len; 288 int bytes = 0; 289 int i; 290 291 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 292 hdr_len = mcdi->resp_hdr_len / 4; 293 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 294 * to dword size, and the MCDI buffer is always dword size 295 */ 296 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 297 298 /* We own the logging buffer, as only one MCDI can be in 299 * progress on a NIC at any one time. So no need for locking. 300 */ 301 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 302 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 303 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 304 " %08x", le32_to_cpu(hdr.u32[0])); 305 } 306 307 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 308 efx->type->mcdi_read_response(efx, &hdr, 309 mcdi->resp_hdr_len + (i * 4), 4); 310 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 311 " %08x", le32_to_cpu(hdr.u32[0])); 312 } 313 314 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 315 } 316 #endif 317 318 if (error && mcdi->resp_data_len == 0) { 319 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 320 mcdi->resprc = -EIO; 321 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 322 netif_err(efx, hw, efx->net_dev, 323 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 324 respseq, mcdi->seqno); 325 mcdi->resprc = -EIO; 326 } else if (error) { 327 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 328 mcdi->resprc = 329 efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0)); 330 } else { 331 mcdi->resprc = 0; 332 } 333 } 334 335 static bool efx_mcdi_poll_once(struct efx_nic *efx) 336 { 337 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 338 339 rmb(); 340 if (!efx->type->mcdi_poll_response(efx)) 341 return false; 342 343 spin_lock_bh(&mcdi->iface_lock); 344 efx_mcdi_read_response_header(efx); 345 spin_unlock_bh(&mcdi->iface_lock); 346 347 return true; 348 } 349 350 static int efx_mcdi_poll(struct efx_nic *efx) 351 { 352 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 353 unsigned long time, finish; 354 unsigned int spins; 355 int rc; 356 357 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 358 rc = efx_mcdi_poll_reboot(efx); 359 if (rc) { 360 spin_lock_bh(&mcdi->iface_lock); 361 mcdi->resprc = rc; 362 mcdi->resp_hdr_len = 0; 363 mcdi->resp_data_len = 0; 364 spin_unlock_bh(&mcdi->iface_lock); 365 return 0; 366 } 367 368 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 369 * because generally mcdi responses are fast. After that, back off 370 * and poll once a jiffy (approximately) 371 */ 372 spins = TICK_USEC; 373 finish = jiffies + MCDI_RPC_TIMEOUT; 374 375 while (1) { 376 if (spins != 0) { 377 --spins; 378 udelay(1); 379 } else { 380 schedule_timeout_uninterruptible(1); 381 } 382 383 time = jiffies; 384 385 if (efx_mcdi_poll_once(efx)) 386 break; 387 388 if (time_after(time, finish)) 389 return -ETIMEDOUT; 390 } 391 392 /* Return rc=0 like wait_event_timeout() */ 393 return 0; 394 } 395 396 /* Test and clear MC-rebooted flag for this port/function; reset 397 * software state as necessary. 398 */ 399 int efx_mcdi_poll_reboot(struct efx_nic *efx) 400 { 401 if (!efx->mcdi) 402 return 0; 403 404 return efx->type->mcdi_poll_reboot(efx); 405 } 406 407 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 408 { 409 return cmpxchg(&mcdi->state, 410 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 411 MCDI_STATE_QUIESCENT; 412 } 413 414 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 415 { 416 /* Wait until the interface becomes QUIESCENT and we win the race 417 * to mark it RUNNING_SYNC. 418 */ 419 wait_event(mcdi->wq, 420 cmpxchg(&mcdi->state, 421 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 422 MCDI_STATE_QUIESCENT); 423 } 424 425 static int efx_mcdi_await_completion(struct efx_nic *efx) 426 { 427 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 428 429 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 430 MCDI_RPC_TIMEOUT) == 0) 431 return -ETIMEDOUT; 432 433 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 434 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 435 * completed the request first, then we'll just end up completing the 436 * request again, which is safe. 437 * 438 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 439 * wait_event_timeout() implicitly provides. 440 */ 441 if (mcdi->mode == MCDI_MODE_POLL) 442 return efx_mcdi_poll(efx); 443 444 return 0; 445 } 446 447 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 448 * requester. Return whether this was done. Does not take any locks. 449 */ 450 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 451 { 452 if (cmpxchg(&mcdi->state, 453 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 454 MCDI_STATE_RUNNING_SYNC) { 455 wake_up(&mcdi->wq); 456 return true; 457 } 458 459 return false; 460 } 461 462 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 463 { 464 if (mcdi->mode == MCDI_MODE_EVENTS) { 465 struct efx_mcdi_async_param *async; 466 struct efx_nic *efx = mcdi->efx; 467 468 /* Process the asynchronous request queue */ 469 spin_lock_bh(&mcdi->async_lock); 470 async = list_first_entry_or_null( 471 &mcdi->async_list, struct efx_mcdi_async_param, list); 472 if (async) { 473 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 474 efx_mcdi_send_request(efx, async->cmd, 475 (const efx_dword_t *)(async + 1), 476 async->inlen); 477 mod_timer(&mcdi->async_timer, 478 jiffies + MCDI_RPC_TIMEOUT); 479 } 480 spin_unlock_bh(&mcdi->async_lock); 481 482 if (async) 483 return; 484 } 485 486 mcdi->state = MCDI_STATE_QUIESCENT; 487 wake_up(&mcdi->wq); 488 } 489 490 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 491 * asynchronous completion function, and release the interface. 492 * Return whether this was done. Must be called in bh-disabled 493 * context. Will take iface_lock and async_lock. 494 */ 495 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 496 { 497 struct efx_nic *efx = mcdi->efx; 498 struct efx_mcdi_async_param *async; 499 size_t hdr_len, data_len, err_len; 500 efx_dword_t *outbuf; 501 MCDI_DECLARE_BUF_ERR(errbuf); 502 int rc; 503 504 if (cmpxchg(&mcdi->state, 505 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 506 MCDI_STATE_RUNNING_ASYNC) 507 return false; 508 509 spin_lock(&mcdi->iface_lock); 510 if (timeout) { 511 /* Ensure that if the completion event arrives later, 512 * the seqno check in efx_mcdi_ev_cpl() will fail 513 */ 514 ++mcdi->seqno; 515 ++mcdi->credits; 516 rc = -ETIMEDOUT; 517 hdr_len = 0; 518 data_len = 0; 519 } else { 520 rc = mcdi->resprc; 521 hdr_len = mcdi->resp_hdr_len; 522 data_len = mcdi->resp_data_len; 523 } 524 spin_unlock(&mcdi->iface_lock); 525 526 /* Stop the timer. In case the timer function is running, we 527 * must wait for it to return so that there is no possibility 528 * of it aborting the next request. 529 */ 530 if (!timeout) 531 del_timer_sync(&mcdi->async_timer); 532 533 spin_lock(&mcdi->async_lock); 534 async = list_first_entry(&mcdi->async_list, 535 struct efx_mcdi_async_param, list); 536 list_del(&async->list); 537 spin_unlock(&mcdi->async_lock); 538 539 outbuf = (efx_dword_t *)(async + 1); 540 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 541 min(async->outlen, data_len)); 542 if (!timeout && rc && !async->quiet) { 543 err_len = min(sizeof(errbuf), data_len); 544 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 545 sizeof(errbuf)); 546 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 547 err_len, rc); 548 } 549 async->complete(efx, async->cookie, rc, outbuf, data_len); 550 kfree(async); 551 552 efx_mcdi_release(mcdi); 553 554 return true; 555 } 556 557 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 558 unsigned int datalen, unsigned int mcdi_err) 559 { 560 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 561 bool wake = false; 562 563 spin_lock(&mcdi->iface_lock); 564 565 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 566 if (mcdi->credits) 567 /* The request has been cancelled */ 568 --mcdi->credits; 569 else 570 netif_err(efx, hw, efx->net_dev, 571 "MC response mismatch tx seq 0x%x rx " 572 "seq 0x%x\n", seqno, mcdi->seqno); 573 } else { 574 if (efx->type->mcdi_max_ver >= 2) { 575 /* MCDI v2 responses don't fit in an event */ 576 efx_mcdi_read_response_header(efx); 577 } else { 578 mcdi->resprc = efx_mcdi_errno(mcdi_err); 579 mcdi->resp_hdr_len = 4; 580 mcdi->resp_data_len = datalen; 581 } 582 583 wake = true; 584 } 585 586 spin_unlock(&mcdi->iface_lock); 587 588 if (wake) { 589 if (!efx_mcdi_complete_async(mcdi, false)) 590 (void) efx_mcdi_complete_sync(mcdi); 591 592 /* If the interface isn't RUNNING_ASYNC or 593 * RUNNING_SYNC then we've received a duplicate 594 * completion after we've already transitioned back to 595 * QUIESCENT. [A subsequent invocation would increment 596 * seqno, so would have failed the seqno check]. 597 */ 598 } 599 } 600 601 static void efx_mcdi_timeout_async(unsigned long context) 602 { 603 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; 604 605 efx_mcdi_complete_async(mcdi, true); 606 } 607 608 static int 609 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 610 { 611 if (efx->type->mcdi_max_ver < 0 || 612 (efx->type->mcdi_max_ver < 2 && 613 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 614 return -EINVAL; 615 616 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 617 (efx->type->mcdi_max_ver < 2 && 618 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 619 return -EMSGSIZE; 620 621 return 0; 622 } 623 624 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 625 efx_dword_t *outbuf, size_t outlen, 626 size_t *outlen_actual, bool quiet) 627 { 628 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 629 MCDI_DECLARE_BUF_ERR(errbuf); 630 int rc; 631 632 if (mcdi->mode == MCDI_MODE_POLL) 633 rc = efx_mcdi_poll(efx); 634 else 635 rc = efx_mcdi_await_completion(efx); 636 637 if (rc != 0) { 638 netif_err(efx, hw, efx->net_dev, 639 "MC command 0x%x inlen %d mode %d timed out\n", 640 cmd, (int)inlen, mcdi->mode); 641 642 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 643 netif_err(efx, hw, efx->net_dev, 644 "MCDI request was completed without an event\n"); 645 rc = 0; 646 } 647 648 efx_mcdi_abandon(efx); 649 650 /* Close the race with efx_mcdi_ev_cpl() executing just too late 651 * and completing a request we've just cancelled, by ensuring 652 * that the seqno check therein fails. 653 */ 654 spin_lock_bh(&mcdi->iface_lock); 655 ++mcdi->seqno; 656 ++mcdi->credits; 657 spin_unlock_bh(&mcdi->iface_lock); 658 } 659 660 if (rc != 0) { 661 if (outlen_actual) 662 *outlen_actual = 0; 663 } else { 664 size_t hdr_len, data_len, err_len; 665 666 /* At the very least we need a memory barrier here to ensure 667 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 668 * a spurious efx_mcdi_ev_cpl() running concurrently by 669 * acquiring the iface_lock. */ 670 spin_lock_bh(&mcdi->iface_lock); 671 rc = mcdi->resprc; 672 hdr_len = mcdi->resp_hdr_len; 673 data_len = mcdi->resp_data_len; 674 err_len = min(sizeof(errbuf), data_len); 675 spin_unlock_bh(&mcdi->iface_lock); 676 677 BUG_ON(rc > 0); 678 679 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 680 min(outlen, data_len)); 681 if (outlen_actual) 682 *outlen_actual = data_len; 683 684 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 685 686 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 687 /* Don't reset if MC_CMD_REBOOT returns EIO */ 688 } else if (rc == -EIO || rc == -EINTR) { 689 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", 690 -rc); 691 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 692 } else if (rc && !quiet) { 693 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 694 rc); 695 } 696 697 if (rc == -EIO || rc == -EINTR) { 698 msleep(MCDI_STATUS_SLEEP_MS); 699 efx_mcdi_poll_reboot(efx); 700 mcdi->new_epoch = true; 701 } 702 } 703 704 efx_mcdi_release(mcdi); 705 return rc; 706 } 707 708 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 709 const efx_dword_t *inbuf, size_t inlen, 710 efx_dword_t *outbuf, size_t outlen, 711 size_t *outlen_actual, bool quiet) 712 { 713 int rc; 714 715 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 716 if (rc) { 717 if (outlen_actual) 718 *outlen_actual = 0; 719 return rc; 720 } 721 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 722 outlen_actual, quiet); 723 } 724 725 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 726 const efx_dword_t *inbuf, size_t inlen, 727 efx_dword_t *outbuf, size_t outlen, 728 size_t *outlen_actual) 729 { 730 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, 731 outlen_actual, false); 732 } 733 734 /* Normally, on receiving an error code in the MCDI response, 735 * efx_mcdi_rpc will log an error message containing (among other 736 * things) the raw error code, by means of efx_mcdi_display_error. 737 * This _quiet version suppresses that; if the caller wishes to log 738 * the error conditionally on the return code, it should call this 739 * function and is then responsible for calling efx_mcdi_display_error 740 * as needed. 741 */ 742 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 743 const efx_dword_t *inbuf, size_t inlen, 744 efx_dword_t *outbuf, size_t outlen, 745 size_t *outlen_actual) 746 { 747 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, 748 outlen_actual, true); 749 } 750 751 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 752 const efx_dword_t *inbuf, size_t inlen) 753 { 754 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 755 int rc; 756 757 rc = efx_mcdi_check_supported(efx, cmd, inlen); 758 if (rc) 759 return rc; 760 761 if (efx->mc_bist_for_other_fn) 762 return -ENETDOWN; 763 764 if (mcdi->mode == MCDI_MODE_FAIL) 765 return -ENETDOWN; 766 767 efx_mcdi_acquire_sync(mcdi); 768 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 769 return 0; 770 } 771 772 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 773 const efx_dword_t *inbuf, size_t inlen, 774 size_t outlen, 775 efx_mcdi_async_completer *complete, 776 unsigned long cookie, bool quiet) 777 { 778 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 779 struct efx_mcdi_async_param *async; 780 int rc; 781 782 rc = efx_mcdi_check_supported(efx, cmd, inlen); 783 if (rc) 784 return rc; 785 786 if (efx->mc_bist_for_other_fn) 787 return -ENETDOWN; 788 789 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 790 GFP_ATOMIC); 791 if (!async) 792 return -ENOMEM; 793 794 async->cmd = cmd; 795 async->inlen = inlen; 796 async->outlen = outlen; 797 async->quiet = quiet; 798 async->complete = complete; 799 async->cookie = cookie; 800 memcpy(async + 1, inbuf, inlen); 801 802 spin_lock_bh(&mcdi->async_lock); 803 804 if (mcdi->mode == MCDI_MODE_EVENTS) { 805 list_add_tail(&async->list, &mcdi->async_list); 806 807 /* If this is at the front of the queue, try to start it 808 * immediately 809 */ 810 if (mcdi->async_list.next == &async->list && 811 efx_mcdi_acquire_async(mcdi)) { 812 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 813 mod_timer(&mcdi->async_timer, 814 jiffies + MCDI_RPC_TIMEOUT); 815 } 816 } else { 817 kfree(async); 818 rc = -ENETDOWN; 819 } 820 821 spin_unlock_bh(&mcdi->async_lock); 822 823 return rc; 824 } 825 826 /** 827 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 828 * @efx: NIC through which to issue the command 829 * @cmd: Command type number 830 * @inbuf: Command parameters 831 * @inlen: Length of command parameters, in bytes 832 * @outlen: Length to allocate for response buffer, in bytes 833 * @complete: Function to be called on completion or cancellation. 834 * @cookie: Arbitrary value to be passed to @complete. 835 * 836 * This function does not sleep and therefore may be called in atomic 837 * context. It will fail if event queues are disabled or if MCDI 838 * event completions have been disabled due to an error. 839 * 840 * If it succeeds, the @complete function will be called exactly once 841 * in atomic context, when one of the following occurs: 842 * (a) the completion event is received (in NAPI context) 843 * (b) event queues are disabled (in the process that disables them) 844 * (c) the request times-out (in timer context) 845 */ 846 int 847 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 848 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 849 efx_mcdi_async_completer *complete, unsigned long cookie) 850 { 851 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 852 cookie, false); 853 } 854 855 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 856 const efx_dword_t *inbuf, size_t inlen, 857 size_t outlen, efx_mcdi_async_completer *complete, 858 unsigned long cookie) 859 { 860 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 861 cookie, true); 862 } 863 864 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 865 efx_dword_t *outbuf, size_t outlen, 866 size_t *outlen_actual) 867 { 868 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 869 outlen_actual, false); 870 } 871 872 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 873 efx_dword_t *outbuf, size_t outlen, 874 size_t *outlen_actual) 875 { 876 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 877 outlen_actual, true); 878 } 879 880 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 881 size_t inlen, efx_dword_t *outbuf, 882 size_t outlen, int rc) 883 { 884 int code = 0, err_arg = 0; 885 886 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 887 code = MCDI_DWORD(outbuf, ERR_CODE); 888 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 889 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 890 netif_err(efx, hw, efx->net_dev, 891 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n", 892 cmd, (int)inlen, rc, code, err_arg); 893 } 894 895 /* Switch to polled MCDI completions. This can be called in various 896 * error conditions with various locks held, so it must be lockless. 897 * Caller is responsible for flushing asynchronous requests later. 898 */ 899 void efx_mcdi_mode_poll(struct efx_nic *efx) 900 { 901 struct efx_mcdi_iface *mcdi; 902 903 if (!efx->mcdi) 904 return; 905 906 mcdi = efx_mcdi(efx); 907 /* If already in polling mode, nothing to do. 908 * If in fail-fast state, don't switch to polled completion. 909 * FLR recovery will do that later. 910 */ 911 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 912 return; 913 914 /* We can switch from event completion to polled completion, because 915 * mcdi requests are always completed in shared memory. We do this by 916 * switching the mode to POLL'd then completing the request. 917 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 918 * 919 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 920 * which efx_mcdi_complete_sync() provides for us. 921 */ 922 mcdi->mode = MCDI_MODE_POLL; 923 924 efx_mcdi_complete_sync(mcdi); 925 } 926 927 /* Flush any running or queued asynchronous requests, after event processing 928 * is stopped 929 */ 930 void efx_mcdi_flush_async(struct efx_nic *efx) 931 { 932 struct efx_mcdi_async_param *async, *next; 933 struct efx_mcdi_iface *mcdi; 934 935 if (!efx->mcdi) 936 return; 937 938 mcdi = efx_mcdi(efx); 939 940 /* We must be in poll or fail mode so no more requests can be queued */ 941 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 942 943 del_timer_sync(&mcdi->async_timer); 944 945 /* If a request is still running, make sure we give the MC 946 * time to complete it so that the response won't overwrite our 947 * next request. 948 */ 949 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 950 efx_mcdi_poll(efx); 951 mcdi->state = MCDI_STATE_QUIESCENT; 952 } 953 954 /* Nothing else will access the async list now, so it is safe 955 * to walk it without holding async_lock. If we hold it while 956 * calling a completer then lockdep may warn that we have 957 * acquired locks in the wrong order. 958 */ 959 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 960 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 961 list_del(&async->list); 962 kfree(async); 963 } 964 } 965 966 void efx_mcdi_mode_event(struct efx_nic *efx) 967 { 968 struct efx_mcdi_iface *mcdi; 969 970 if (!efx->mcdi) 971 return; 972 973 mcdi = efx_mcdi(efx); 974 /* If already in event completion mode, nothing to do. 975 * If in fail-fast state, don't switch to event completion. FLR 976 * recovery will do that later. 977 */ 978 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 979 return; 980 981 /* We can't switch from polled to event completion in the middle of a 982 * request, because the completion method is specified in the request. 983 * So acquire the interface to serialise the requestors. We don't need 984 * to acquire the iface_lock to change the mode here, but we do need a 985 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 986 * efx_mcdi_acquire() provides. 987 */ 988 efx_mcdi_acquire_sync(mcdi); 989 mcdi->mode = MCDI_MODE_EVENTS; 990 efx_mcdi_release(mcdi); 991 } 992 993 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 994 { 995 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 996 997 /* If there is an outstanding MCDI request, it has been terminated 998 * either by a BADASSERT or REBOOT event. If the mcdi interface is 999 * in polled mode, then do nothing because the MC reboot handler will 1000 * set the header correctly. However, if the mcdi interface is waiting 1001 * for a CMDDONE event it won't receive it [and since all MCDI events 1002 * are sent to the same queue, we can't be racing with 1003 * efx_mcdi_ev_cpl()] 1004 * 1005 * If there is an outstanding asynchronous request, we can't 1006 * complete it now (efx_mcdi_complete() would deadlock). The 1007 * reset process will take care of this. 1008 * 1009 * There's a race here with efx_mcdi_send_request(), because 1010 * we might receive a REBOOT event *before* the request has 1011 * been copied out. In polled mode (during startup) this is 1012 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1013 * event mode, this condition is just an edge-case of 1014 * receiving a REBOOT event after posting the MCDI 1015 * request. Did the mc reboot before or after the copyout? The 1016 * best we can do always is just return failure. 1017 */ 1018 spin_lock(&mcdi->iface_lock); 1019 if (efx_mcdi_complete_sync(mcdi)) { 1020 if (mcdi->mode == MCDI_MODE_EVENTS) { 1021 mcdi->resprc = rc; 1022 mcdi->resp_hdr_len = 0; 1023 mcdi->resp_data_len = 0; 1024 ++mcdi->credits; 1025 } 1026 } else { 1027 int count; 1028 1029 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1030 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1031 if (efx_mcdi_poll_reboot(efx)) 1032 break; 1033 udelay(MCDI_STATUS_DELAY_US); 1034 } 1035 mcdi->new_epoch = true; 1036 1037 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1038 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1039 } 1040 1041 spin_unlock(&mcdi->iface_lock); 1042 } 1043 1044 /* The MC is going down in to BIST mode. set the BIST flag to block 1045 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 1046 * (which doesn't actually execute a reset, it waits for the controlling 1047 * function to reset it). 1048 */ 1049 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1050 { 1051 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1052 1053 spin_lock(&mcdi->iface_lock); 1054 efx->mc_bist_for_other_fn = true; 1055 if (efx_mcdi_complete_sync(mcdi)) { 1056 if (mcdi->mode == MCDI_MODE_EVENTS) { 1057 mcdi->resprc = -EIO; 1058 mcdi->resp_hdr_len = 0; 1059 mcdi->resp_data_len = 0; 1060 ++mcdi->credits; 1061 } 1062 } 1063 mcdi->new_epoch = true; 1064 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1065 spin_unlock(&mcdi->iface_lock); 1066 } 1067 1068 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1069 * to recover. 1070 */ 1071 static void efx_mcdi_abandon(struct efx_nic *efx) 1072 { 1073 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1074 1075 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1076 return; /* it had already been done */ 1077 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1078 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1079 } 1080 1081 /* Called from falcon_process_eventq for MCDI events */ 1082 void efx_mcdi_process_event(struct efx_channel *channel, 1083 efx_qword_t *event) 1084 { 1085 struct efx_nic *efx = channel->efx; 1086 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1087 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1088 1089 switch (code) { 1090 case MCDI_EVENT_CODE_BADSSERT: 1091 netif_err(efx, hw, efx->net_dev, 1092 "MC watchdog or assertion failure at 0x%x\n", data); 1093 efx_mcdi_ev_death(efx, -EINTR); 1094 break; 1095 1096 case MCDI_EVENT_CODE_PMNOTICE: 1097 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1098 break; 1099 1100 case MCDI_EVENT_CODE_CMDDONE: 1101 efx_mcdi_ev_cpl(efx, 1102 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1103 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1104 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1105 break; 1106 1107 case MCDI_EVENT_CODE_LINKCHANGE: 1108 efx_mcdi_process_link_change(efx, event); 1109 break; 1110 case MCDI_EVENT_CODE_SENSOREVT: 1111 efx_mcdi_sensor_event(efx, event); 1112 break; 1113 case MCDI_EVENT_CODE_SCHEDERR: 1114 netif_dbg(efx, hw, efx->net_dev, 1115 "MC Scheduler alert (0x%x)\n", data); 1116 break; 1117 case MCDI_EVENT_CODE_REBOOT: 1118 case MCDI_EVENT_CODE_MC_REBOOT: 1119 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1120 efx_mcdi_ev_death(efx, -EIO); 1121 break; 1122 case MCDI_EVENT_CODE_MC_BIST: 1123 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1124 efx_mcdi_ev_bist(efx); 1125 break; 1126 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1127 /* MAC stats are gather lazily. We can ignore this. */ 1128 break; 1129 case MCDI_EVENT_CODE_FLR: 1130 if (efx->type->sriov_flr) 1131 efx->type->sriov_flr(efx, 1132 MCDI_EVENT_FIELD(*event, FLR_VF)); 1133 break; 1134 case MCDI_EVENT_CODE_PTP_RX: 1135 case MCDI_EVENT_CODE_PTP_FAULT: 1136 case MCDI_EVENT_CODE_PTP_PPS: 1137 efx_ptp_event(efx, event); 1138 break; 1139 case MCDI_EVENT_CODE_PTP_TIME: 1140 efx_time_sync_event(channel, event); 1141 break; 1142 case MCDI_EVENT_CODE_TX_FLUSH: 1143 case MCDI_EVENT_CODE_RX_FLUSH: 1144 /* Two flush events will be sent: one to the same event 1145 * queue as completions, and one to event queue 0. 1146 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1147 * flag will be set, and we should ignore the event 1148 * because we want to wait for all completions. 1149 */ 1150 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1151 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1152 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1153 efx_ef10_handle_drain_event(efx); 1154 break; 1155 case MCDI_EVENT_CODE_TX_ERR: 1156 case MCDI_EVENT_CODE_RX_ERR: 1157 netif_err(efx, hw, efx->net_dev, 1158 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1159 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1160 EFX_QWORD_VAL(*event)); 1161 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1162 break; 1163 default: 1164 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", 1165 code); 1166 } 1167 } 1168 1169 /************************************************************************** 1170 * 1171 * Specific request functions 1172 * 1173 ************************************************************************** 1174 */ 1175 1176 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1177 { 1178 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1179 size_t outlength; 1180 const __le16 *ver_words; 1181 size_t offset; 1182 int rc; 1183 1184 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1185 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1186 outbuf, sizeof(outbuf), &outlength); 1187 if (rc) 1188 goto fail; 1189 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1190 rc = -EIO; 1191 goto fail; 1192 } 1193 1194 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1195 offset = snprintf(buf, len, "%u.%u.%u.%u", 1196 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 1197 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 1198 1199 /* EF10 may have multiple datapath firmware variants within a 1200 * single version. Report which variants are running. 1201 */ 1202 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1203 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1204 1205 offset += snprintf(buf + offset, len - offset, " rx%x tx%x", 1206 nic_data->rx_dpcpu_fw_id, 1207 nic_data->tx_dpcpu_fw_id); 1208 1209 /* It's theoretically possible for the string to exceed 31 1210 * characters, though in practice the first three version 1211 * components are short enough that this doesn't happen. 1212 */ 1213 if (WARN_ON(offset >= len)) 1214 buf[0] = 0; 1215 } 1216 1217 return; 1218 1219 fail: 1220 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1221 buf[0] = 0; 1222 } 1223 1224 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1225 bool *was_attached) 1226 { 1227 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1228 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1229 size_t outlen; 1230 int rc; 1231 1232 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1233 driver_operating ? 1 : 0); 1234 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1235 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1236 1237 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1238 outbuf, sizeof(outbuf), &outlen); 1239 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1240 * specified will fail with EPERM, and we have to tell the MC we don't 1241 * care what firmware we get. 1242 */ 1243 if (rc == -EPERM) { 1244 netif_dbg(efx, probe, efx->net_dev, 1245 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); 1246 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1247 MC_CMD_FW_DONT_CARE); 1248 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1249 sizeof(inbuf), outbuf, sizeof(outbuf), 1250 &outlen); 1251 } 1252 if (rc) { 1253 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1254 outbuf, outlen, rc); 1255 goto fail; 1256 } 1257 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1258 rc = -EIO; 1259 goto fail; 1260 } 1261 1262 if (driver_operating) { 1263 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1264 efx->mcdi->fn_flags = 1265 MCDI_DWORD(outbuf, 1266 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1267 } else { 1268 /* Synthesise flags for Siena */ 1269 efx->mcdi->fn_flags = 1270 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1271 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1272 (efx_port_num(efx) == 0) << 1273 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1274 } 1275 } 1276 1277 /* We currently assume we have control of the external link 1278 * and are completely trusted by firmware. Abort probing 1279 * if that's not true for this function. 1280 */ 1281 1282 if (was_attached != NULL) 1283 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1284 return 0; 1285 1286 fail: 1287 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1288 return rc; 1289 } 1290 1291 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1292 u16 *fw_subtype_list, u32 *capabilities) 1293 { 1294 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1295 size_t outlen, i; 1296 int port_num = efx_port_num(efx); 1297 int rc; 1298 1299 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1300 /* we need __aligned(2) for ether_addr_copy */ 1301 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1302 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1303 1304 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1305 outbuf, sizeof(outbuf), &outlen); 1306 if (rc) 1307 goto fail; 1308 1309 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1310 rc = -EIO; 1311 goto fail; 1312 } 1313 1314 if (mac_address) 1315 ether_addr_copy(mac_address, 1316 port_num ? 1317 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1318 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1319 if (fw_subtype_list) { 1320 for (i = 0; 1321 i < MCDI_VAR_ARRAY_LEN(outlen, 1322 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1323 i++) 1324 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1325 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1326 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1327 fw_subtype_list[i] = 0; 1328 } 1329 if (capabilities) { 1330 if (port_num) 1331 *capabilities = MCDI_DWORD(outbuf, 1332 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1333 else 1334 *capabilities = MCDI_DWORD(outbuf, 1335 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1336 } 1337 1338 return 0; 1339 1340 fail: 1341 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1342 __func__, rc, (int)outlen); 1343 1344 return rc; 1345 } 1346 1347 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1348 { 1349 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1350 u32 dest = 0; 1351 int rc; 1352 1353 if (uart) 1354 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1355 if (evq) 1356 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1357 1358 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1359 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1360 1361 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1362 1363 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1364 NULL, 0, NULL); 1365 return rc; 1366 } 1367 1368 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1369 { 1370 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1371 size_t outlen; 1372 int rc; 1373 1374 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1375 1376 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1377 outbuf, sizeof(outbuf), &outlen); 1378 if (rc) 1379 goto fail; 1380 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1381 rc = -EIO; 1382 goto fail; 1383 } 1384 1385 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1386 return 0; 1387 1388 fail: 1389 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1390 __func__, rc); 1391 return rc; 1392 } 1393 1394 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1395 size_t *size_out, size_t *erase_size_out, 1396 bool *protected_out) 1397 { 1398 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1399 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1400 size_t outlen; 1401 int rc; 1402 1403 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1404 1405 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1406 outbuf, sizeof(outbuf), &outlen); 1407 if (rc) 1408 goto fail; 1409 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1410 rc = -EIO; 1411 goto fail; 1412 } 1413 1414 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1415 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1416 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1417 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1418 return 0; 1419 1420 fail: 1421 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1422 return rc; 1423 } 1424 1425 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1426 { 1427 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1428 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1429 int rc; 1430 1431 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1432 1433 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1434 outbuf, sizeof(outbuf), NULL); 1435 if (rc) 1436 return rc; 1437 1438 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1439 case MC_CMD_NVRAM_TEST_PASS: 1440 case MC_CMD_NVRAM_TEST_NOTSUPP: 1441 return 0; 1442 default: 1443 return -EIO; 1444 } 1445 } 1446 1447 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1448 { 1449 u32 nvram_types; 1450 unsigned int type; 1451 int rc; 1452 1453 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1454 if (rc) 1455 goto fail1; 1456 1457 type = 0; 1458 while (nvram_types != 0) { 1459 if (nvram_types & 1) { 1460 rc = efx_mcdi_nvram_test(efx, type); 1461 if (rc) 1462 goto fail2; 1463 } 1464 type++; 1465 nvram_types >>= 1; 1466 } 1467 1468 return 0; 1469 1470 fail2: 1471 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1472 __func__, type); 1473 fail1: 1474 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1475 return rc; 1476 } 1477 1478 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1479 * negative on error. 1480 */ 1481 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1482 { 1483 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1484 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1485 unsigned int flags, index; 1486 const char *reason; 1487 size_t outlen; 1488 int retry; 1489 int rc; 1490 1491 /* Attempt to read any stored assertion state before we reboot 1492 * the mcfw out of the assertion handler. Retry twice, once 1493 * because a boot-time assertion might cause this command to fail 1494 * with EINTR. And once again because GET_ASSERTS can race with 1495 * MC_CMD_REBOOT running on the other port. */ 1496 retry = 2; 1497 do { 1498 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1499 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1500 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1501 outbuf, sizeof(outbuf), &outlen); 1502 if (rc == -EPERM) 1503 return 0; 1504 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1505 1506 if (rc) { 1507 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1508 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1509 outlen, rc); 1510 return rc; 1511 } 1512 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1513 return -EIO; 1514 1515 /* Print out any recorded assertion state */ 1516 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1517 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1518 return 0; 1519 1520 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1521 ? "system-level assertion" 1522 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1523 ? "thread-level assertion" 1524 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1525 ? "watchdog reset" 1526 : "unknown assertion"; 1527 netif_err(efx, hw, efx->net_dev, 1528 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1529 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1530 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1531 1532 /* Print out the registers */ 1533 for (index = 0; 1534 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1535 index++) 1536 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1537 1 + index, 1538 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1539 index)); 1540 1541 return 1; 1542 } 1543 1544 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1545 { 1546 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1547 int rc; 1548 1549 /* If the MC is running debug firmware, it might now be 1550 * waiting for a debugger to attach, but we just want it to 1551 * reboot. We set a flag that makes the command a no-op if it 1552 * has already done so. 1553 * The MCDI will thus return either 0 or -EIO. 1554 */ 1555 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1556 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1557 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1558 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1559 NULL, 0, NULL); 1560 if (rc == -EIO) 1561 rc = 0; 1562 if (rc) 1563 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1564 NULL, 0, rc); 1565 return rc; 1566 } 1567 1568 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1569 { 1570 int rc; 1571 1572 rc = efx_mcdi_read_assertion(efx); 1573 if (rc <= 0) 1574 return rc; 1575 1576 return efx_mcdi_exit_assertion(efx); 1577 } 1578 1579 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1580 { 1581 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1582 int rc; 1583 1584 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1585 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1586 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1587 1588 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1589 1590 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1591 1592 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1593 NULL, 0, NULL); 1594 } 1595 1596 static int efx_mcdi_reset_func(struct efx_nic *efx) 1597 { 1598 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1599 int rc; 1600 1601 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1602 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1603 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1604 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1605 NULL, 0, NULL); 1606 return rc; 1607 } 1608 1609 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1610 { 1611 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1612 int rc; 1613 1614 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1615 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1616 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1617 NULL, 0, NULL); 1618 /* White is black, and up is down */ 1619 if (rc == -EIO) 1620 return 0; 1621 if (rc == 0) 1622 rc = -EIO; 1623 return rc; 1624 } 1625 1626 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1627 { 1628 return RESET_TYPE_RECOVER_OR_ALL; 1629 } 1630 1631 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1632 { 1633 int rc; 1634 1635 /* If MCDI is down, we can't handle_assertion */ 1636 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1637 rc = pci_reset_function(efx->pci_dev); 1638 if (rc) 1639 return rc; 1640 /* Re-enable polled MCDI completion */ 1641 if (efx->mcdi) { 1642 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1643 mcdi->mode = MCDI_MODE_POLL; 1644 } 1645 return 0; 1646 } 1647 1648 /* Recover from a failed assertion pre-reset */ 1649 rc = efx_mcdi_handle_assertion(efx); 1650 if (rc) 1651 return rc; 1652 1653 if (method == RESET_TYPE_DATAPATH) 1654 return 0; 1655 else if (method == RESET_TYPE_WORLD) 1656 return efx_mcdi_reset_mc(efx); 1657 else 1658 return efx_mcdi_reset_func(efx); 1659 } 1660 1661 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1662 const u8 *mac, int *id_out) 1663 { 1664 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1665 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1666 size_t outlen; 1667 int rc; 1668 1669 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1670 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1671 MC_CMD_FILTER_MODE_SIMPLE); 1672 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1673 1674 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1675 outbuf, sizeof(outbuf), &outlen); 1676 if (rc) 1677 goto fail; 1678 1679 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1680 rc = -EIO; 1681 goto fail; 1682 } 1683 1684 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1685 1686 return 0; 1687 1688 fail: 1689 *id_out = -1; 1690 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1691 return rc; 1692 1693 } 1694 1695 1696 int 1697 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1698 { 1699 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1700 } 1701 1702 1703 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1704 { 1705 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1706 size_t outlen; 1707 int rc; 1708 1709 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1710 outbuf, sizeof(outbuf), &outlen); 1711 if (rc) 1712 goto fail; 1713 1714 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1715 rc = -EIO; 1716 goto fail; 1717 } 1718 1719 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1720 1721 return 0; 1722 1723 fail: 1724 *id_out = -1; 1725 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1726 return rc; 1727 } 1728 1729 1730 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1731 { 1732 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1733 int rc; 1734 1735 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1736 1737 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1738 NULL, 0, NULL); 1739 return rc; 1740 } 1741 1742 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1743 { 1744 struct efx_channel *channel; 1745 struct efx_rx_queue *rx_queue; 1746 MCDI_DECLARE_BUF(inbuf, 1747 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1748 int rc, count; 1749 1750 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1751 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1752 1753 count = 0; 1754 efx_for_each_channel(channel, efx) { 1755 efx_for_each_channel_rx_queue(rx_queue, channel) { 1756 if (rx_queue->flush_pending) { 1757 rx_queue->flush_pending = false; 1758 atomic_dec(&efx->rxq_flush_pending); 1759 MCDI_SET_ARRAY_DWORD( 1760 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1761 count, efx_rx_queue_index(rx_queue)); 1762 count++; 1763 } 1764 } 1765 } 1766 1767 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1768 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1769 WARN_ON(rc < 0); 1770 1771 return rc; 1772 } 1773 1774 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 1775 { 1776 int rc; 1777 1778 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 1779 return rc; 1780 } 1781 1782 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled) 1783 { 1784 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 1785 1786 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 1787 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 1788 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 1789 return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 1790 NULL, 0, NULL); 1791 } 1792 1793 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 1794 unsigned int *enabled_out) 1795 { 1796 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 1797 size_t outlen; 1798 int rc; 1799 1800 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 1801 outbuf, sizeof(outbuf), &outlen); 1802 if (rc) 1803 goto fail; 1804 1805 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 1806 rc = -EIO; 1807 goto fail; 1808 } 1809 1810 if (impl_out) 1811 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 1812 1813 if (enabled_out) 1814 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 1815 1816 return 0; 1817 1818 fail: 1819 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1820 return rc; 1821 } 1822 1823 #ifdef CONFIG_SFC_MTD 1824 1825 #define EFX_MCDI_NVRAM_LEN_MAX 128 1826 1827 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 1828 { 1829 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); 1830 int rc; 1831 1832 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 1833 1834 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 1835 1836 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 1837 NULL, 0, NULL); 1838 return rc; 1839 } 1840 1841 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 1842 loff_t offset, u8 *buffer, size_t length) 1843 { 1844 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); 1845 MCDI_DECLARE_BUF(outbuf, 1846 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 1847 size_t outlen; 1848 int rc; 1849 1850 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 1851 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 1852 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 1853 1854 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 1855 outbuf, sizeof(outbuf), &outlen); 1856 if (rc) 1857 return rc; 1858 1859 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 1860 return 0; 1861 } 1862 1863 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 1864 loff_t offset, const u8 *buffer, size_t length) 1865 { 1866 MCDI_DECLARE_BUF(inbuf, 1867 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 1868 int rc; 1869 1870 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 1871 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 1872 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 1873 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 1874 1875 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 1876 1877 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 1878 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 1879 NULL, 0, NULL); 1880 return rc; 1881 } 1882 1883 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 1884 loff_t offset, size_t length) 1885 { 1886 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 1887 int rc; 1888 1889 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 1890 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 1891 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 1892 1893 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 1894 1895 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 1896 NULL, 0, NULL); 1897 return rc; 1898 } 1899 1900 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 1901 { 1902 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); 1903 int rc; 1904 1905 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 1906 1907 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); 1908 1909 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 1910 NULL, 0, NULL); 1911 return rc; 1912 } 1913 1914 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 1915 size_t len, size_t *retlen, u8 *buffer) 1916 { 1917 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1918 struct efx_nic *efx = mtd->priv; 1919 loff_t offset = start; 1920 loff_t end = min_t(loff_t, start + len, mtd->size); 1921 size_t chunk; 1922 int rc = 0; 1923 1924 while (offset < end) { 1925 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 1926 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 1927 buffer, chunk); 1928 if (rc) 1929 goto out; 1930 offset += chunk; 1931 buffer += chunk; 1932 } 1933 out: 1934 *retlen = offset - start; 1935 return rc; 1936 } 1937 1938 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 1939 { 1940 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1941 struct efx_nic *efx = mtd->priv; 1942 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 1943 loff_t end = min_t(loff_t, start + len, mtd->size); 1944 size_t chunk = part->common.mtd.erasesize; 1945 int rc = 0; 1946 1947 if (!part->updating) { 1948 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 1949 if (rc) 1950 goto out; 1951 part->updating = true; 1952 } 1953 1954 /* The MCDI interface can in fact do multiple erase blocks at once; 1955 * but erasing may be slow, so we make multiple calls here to avoid 1956 * tripping the MCDI RPC timeout. */ 1957 while (offset < end) { 1958 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 1959 chunk); 1960 if (rc) 1961 goto out; 1962 offset += chunk; 1963 } 1964 out: 1965 return rc; 1966 } 1967 1968 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 1969 size_t len, size_t *retlen, const u8 *buffer) 1970 { 1971 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1972 struct efx_nic *efx = mtd->priv; 1973 loff_t offset = start; 1974 loff_t end = min_t(loff_t, start + len, mtd->size); 1975 size_t chunk; 1976 int rc = 0; 1977 1978 if (!part->updating) { 1979 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 1980 if (rc) 1981 goto out; 1982 part->updating = true; 1983 } 1984 1985 while (offset < end) { 1986 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 1987 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 1988 buffer, chunk); 1989 if (rc) 1990 goto out; 1991 offset += chunk; 1992 buffer += chunk; 1993 } 1994 out: 1995 *retlen = offset - start; 1996 return rc; 1997 } 1998 1999 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2000 { 2001 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2002 struct efx_nic *efx = mtd->priv; 2003 int rc = 0; 2004 2005 if (part->updating) { 2006 part->updating = false; 2007 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2008 } 2009 2010 return rc; 2011 } 2012 2013 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2014 { 2015 struct efx_mcdi_mtd_partition *mcdi_part = 2016 container_of(part, struct efx_mcdi_mtd_partition, common); 2017 struct efx_nic *efx = part->mtd.priv; 2018 2019 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2020 efx->name, part->type_name, mcdi_part->fw_subtype); 2021 } 2022 2023 #endif /* CONFIG_SFC_MTD */ 2024