xref: /openbmc/linux/drivers/net/ethernet/sfc/mcdi.c (revision d236d361)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2008-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18 
19 /**************************************************************************
20  *
21  * Management-Controller-to-Driver Interface
22  *
23  **************************************************************************
24  */
25 
26 #define MCDI_RPC_TIMEOUT       (10 * HZ)
27 
28 /* A reboot/assertion causes the MCDI status word to be set after the
29  * command word is set or a REBOOT event is sent. If we notice a reboot
30  * via these mechanisms then wait 250ms for the status word to be set.
31  */
32 #define MCDI_STATUS_DELAY_US		100
33 #define MCDI_STATUS_DELAY_COUNT		2500
34 #define MCDI_STATUS_SLEEP_MS						\
35 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36 
37 #define SEQ_MASK							\
38 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39 
40 struct efx_mcdi_async_param {
41 	struct list_head list;
42 	unsigned int cmd;
43 	size_t inlen;
44 	size_t outlen;
45 	bool quiet;
46 	efx_mcdi_async_completer *complete;
47 	unsigned long cookie;
48 	/* followed by request/response buffer */
49 };
50 
51 static void efx_mcdi_timeout_async(unsigned long context);
52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 			       bool *was_attached_out);
54 static bool efx_mcdi_poll_once(struct efx_nic *efx);
55 static void efx_mcdi_abandon(struct efx_nic *efx);
56 
57 #ifdef CONFIG_SFC_MCDI_LOGGING
58 static bool mcdi_logging_default;
59 module_param(mcdi_logging_default, bool, 0644);
60 MODULE_PARM_DESC(mcdi_logging_default,
61 		 "Enable MCDI logging on newly-probed functions");
62 #endif
63 
64 int efx_mcdi_init(struct efx_nic *efx)
65 {
66 	struct efx_mcdi_iface *mcdi;
67 	bool already_attached;
68 	int rc = -ENOMEM;
69 
70 	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
71 	if (!efx->mcdi)
72 		goto fail;
73 
74 	mcdi = efx_mcdi(efx);
75 	mcdi->efx = efx;
76 #ifdef CONFIG_SFC_MCDI_LOGGING
77 	/* consuming code assumes buffer is page-sized */
78 	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
79 	if (!mcdi->logging_buffer)
80 		goto fail1;
81 	mcdi->logging_enabled = mcdi_logging_default;
82 #endif
83 	init_waitqueue_head(&mcdi->wq);
84 	init_waitqueue_head(&mcdi->proxy_rx_wq);
85 	spin_lock_init(&mcdi->iface_lock);
86 	mcdi->state = MCDI_STATE_QUIESCENT;
87 	mcdi->mode = MCDI_MODE_POLL;
88 	spin_lock_init(&mcdi->async_lock);
89 	INIT_LIST_HEAD(&mcdi->async_list);
90 	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
91 		    (unsigned long)mcdi);
92 
93 	(void) efx_mcdi_poll_reboot(efx);
94 	mcdi->new_epoch = true;
95 
96 	/* Recover from a failed assertion before probing */
97 	rc = efx_mcdi_handle_assertion(efx);
98 	if (rc)
99 		goto fail2;
100 
101 	/* Let the MC (and BMC, if this is a LOM) know that the driver
102 	 * is loaded. We should do this before we reset the NIC.
103 	 */
104 	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
105 	if (rc) {
106 		netif_err(efx, probe, efx->net_dev,
107 			  "Unable to register driver with MCPU\n");
108 		goto fail2;
109 	}
110 	if (already_attached)
111 		/* Not a fatal error */
112 		netif_err(efx, probe, efx->net_dev,
113 			  "Host already registered with MCPU\n");
114 
115 	if (efx->mcdi->fn_flags &
116 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
117 		efx->primary = efx;
118 
119 	return 0;
120 fail2:
121 #ifdef CONFIG_SFC_MCDI_LOGGING
122 	free_page((unsigned long)mcdi->logging_buffer);
123 fail1:
124 #endif
125 	kfree(efx->mcdi);
126 	efx->mcdi = NULL;
127 fail:
128 	return rc;
129 }
130 
131 void efx_mcdi_detach(struct efx_nic *efx)
132 {
133 	if (!efx->mcdi)
134 		return;
135 
136 	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
137 
138 	/* Relinquish the device (back to the BMC, if this is a LOM) */
139 	efx_mcdi_drv_attach(efx, false, NULL);
140 }
141 
142 void efx_mcdi_fini(struct efx_nic *efx)
143 {
144 	if (!efx->mcdi)
145 		return;
146 
147 #ifdef CONFIG_SFC_MCDI_LOGGING
148 	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
149 #endif
150 
151 	kfree(efx->mcdi);
152 }
153 
154 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
155 				  const efx_dword_t *inbuf, size_t inlen)
156 {
157 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
158 #ifdef CONFIG_SFC_MCDI_LOGGING
159 	char *buf = mcdi->logging_buffer; /* page-sized */
160 #endif
161 	efx_dword_t hdr[2];
162 	size_t hdr_len;
163 	u32 xflags, seqno;
164 
165 	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
166 
167 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
168 	spin_lock_bh(&mcdi->iface_lock);
169 	++mcdi->seqno;
170 	spin_unlock_bh(&mcdi->iface_lock);
171 
172 	seqno = mcdi->seqno & SEQ_MASK;
173 	xflags = 0;
174 	if (mcdi->mode == MCDI_MODE_EVENTS)
175 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
176 
177 	if (efx->type->mcdi_max_ver == 1) {
178 		/* MCDI v1 */
179 		EFX_POPULATE_DWORD_7(hdr[0],
180 				     MCDI_HEADER_RESPONSE, 0,
181 				     MCDI_HEADER_RESYNC, 1,
182 				     MCDI_HEADER_CODE, cmd,
183 				     MCDI_HEADER_DATALEN, inlen,
184 				     MCDI_HEADER_SEQ, seqno,
185 				     MCDI_HEADER_XFLAGS, xflags,
186 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
187 		hdr_len = 4;
188 	} else {
189 		/* MCDI v2 */
190 		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
191 		EFX_POPULATE_DWORD_7(hdr[0],
192 				     MCDI_HEADER_RESPONSE, 0,
193 				     MCDI_HEADER_RESYNC, 1,
194 				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
195 				     MCDI_HEADER_DATALEN, 0,
196 				     MCDI_HEADER_SEQ, seqno,
197 				     MCDI_HEADER_XFLAGS, xflags,
198 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
199 		EFX_POPULATE_DWORD_2(hdr[1],
200 				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
201 				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
202 		hdr_len = 8;
203 	}
204 
205 #ifdef CONFIG_SFC_MCDI_LOGGING
206 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
207 		int bytes = 0;
208 		int i;
209 		/* Lengths should always be a whole number of dwords, so scream
210 		 * if they're not.
211 		 */
212 		WARN_ON_ONCE(hdr_len % 4);
213 		WARN_ON_ONCE(inlen % 4);
214 
215 		/* We own the logging buffer, as only one MCDI can be in
216 		 * progress on a NIC at any one time.  So no need for locking.
217 		 */
218 		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
219 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
220 					  " %08x", le32_to_cpu(hdr[i].u32[0]));
221 
222 		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
223 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
224 					  " %08x", le32_to_cpu(inbuf[i].u32[0]));
225 
226 		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
227 	}
228 #endif
229 
230 	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
231 
232 	mcdi->new_epoch = false;
233 }
234 
235 static int efx_mcdi_errno(unsigned int mcdi_err)
236 {
237 	switch (mcdi_err) {
238 	case 0:
239 		return 0;
240 #define TRANSLATE_ERROR(name)					\
241 	case MC_CMD_ERR_ ## name:				\
242 		return -name;
243 	TRANSLATE_ERROR(EPERM);
244 	TRANSLATE_ERROR(ENOENT);
245 	TRANSLATE_ERROR(EINTR);
246 	TRANSLATE_ERROR(EAGAIN);
247 	TRANSLATE_ERROR(EACCES);
248 	TRANSLATE_ERROR(EBUSY);
249 	TRANSLATE_ERROR(EINVAL);
250 	TRANSLATE_ERROR(EDEADLK);
251 	TRANSLATE_ERROR(ENOSYS);
252 	TRANSLATE_ERROR(ETIME);
253 	TRANSLATE_ERROR(EALREADY);
254 	TRANSLATE_ERROR(ENOSPC);
255 #undef TRANSLATE_ERROR
256 	case MC_CMD_ERR_ENOTSUP:
257 		return -EOPNOTSUPP;
258 	case MC_CMD_ERR_ALLOC_FAIL:
259 		return -ENOBUFS;
260 	case MC_CMD_ERR_MAC_EXIST:
261 		return -EADDRINUSE;
262 	default:
263 		return -EPROTO;
264 	}
265 }
266 
267 static void efx_mcdi_read_response_header(struct efx_nic *efx)
268 {
269 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
270 	unsigned int respseq, respcmd, error;
271 #ifdef CONFIG_SFC_MCDI_LOGGING
272 	char *buf = mcdi->logging_buffer; /* page-sized */
273 #endif
274 	efx_dword_t hdr;
275 
276 	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
277 	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
278 	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
279 	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
280 
281 	if (respcmd != MC_CMD_V2_EXTN) {
282 		mcdi->resp_hdr_len = 4;
283 		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
284 	} else {
285 		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
286 		mcdi->resp_hdr_len = 8;
287 		mcdi->resp_data_len =
288 			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
289 	}
290 
291 #ifdef CONFIG_SFC_MCDI_LOGGING
292 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
293 		size_t hdr_len, data_len;
294 		int bytes = 0;
295 		int i;
296 
297 		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
298 		hdr_len = mcdi->resp_hdr_len / 4;
299 		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
300 		 * to dword size, and the MCDI buffer is always dword size
301 		 */
302 		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
303 
304 		/* We own the logging buffer, as only one MCDI can be in
305 		 * progress on a NIC at any one time.  So no need for locking.
306 		 */
307 		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
308 			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
309 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
310 					  " %08x", le32_to_cpu(hdr.u32[0]));
311 		}
312 
313 		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
314 			efx->type->mcdi_read_response(efx, &hdr,
315 					mcdi->resp_hdr_len + (i * 4), 4);
316 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
317 					  " %08x", le32_to_cpu(hdr.u32[0]));
318 		}
319 
320 		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
321 	}
322 #endif
323 
324 	mcdi->resprc_raw = 0;
325 	if (error && mcdi->resp_data_len == 0) {
326 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
327 		mcdi->resprc = -EIO;
328 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
329 		netif_err(efx, hw, efx->net_dev,
330 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
331 			  respseq, mcdi->seqno);
332 		mcdi->resprc = -EIO;
333 	} else if (error) {
334 		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
335 		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
336 		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
337 	} else {
338 		mcdi->resprc = 0;
339 	}
340 }
341 
342 static bool efx_mcdi_poll_once(struct efx_nic *efx)
343 {
344 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
345 
346 	rmb();
347 	if (!efx->type->mcdi_poll_response(efx))
348 		return false;
349 
350 	spin_lock_bh(&mcdi->iface_lock);
351 	efx_mcdi_read_response_header(efx);
352 	spin_unlock_bh(&mcdi->iface_lock);
353 
354 	return true;
355 }
356 
357 static int efx_mcdi_poll(struct efx_nic *efx)
358 {
359 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
360 	unsigned long time, finish;
361 	unsigned int spins;
362 	int rc;
363 
364 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
365 	rc = efx_mcdi_poll_reboot(efx);
366 	if (rc) {
367 		spin_lock_bh(&mcdi->iface_lock);
368 		mcdi->resprc = rc;
369 		mcdi->resp_hdr_len = 0;
370 		mcdi->resp_data_len = 0;
371 		spin_unlock_bh(&mcdi->iface_lock);
372 		return 0;
373 	}
374 
375 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
376 	 * because generally mcdi responses are fast. After that, back off
377 	 * and poll once a jiffy (approximately)
378 	 */
379 	spins = TICK_USEC;
380 	finish = jiffies + MCDI_RPC_TIMEOUT;
381 
382 	while (1) {
383 		if (spins != 0) {
384 			--spins;
385 			udelay(1);
386 		} else {
387 			schedule_timeout_uninterruptible(1);
388 		}
389 
390 		time = jiffies;
391 
392 		if (efx_mcdi_poll_once(efx))
393 			break;
394 
395 		if (time_after(time, finish))
396 			return -ETIMEDOUT;
397 	}
398 
399 	/* Return rc=0 like wait_event_timeout() */
400 	return 0;
401 }
402 
403 /* Test and clear MC-rebooted flag for this port/function; reset
404  * software state as necessary.
405  */
406 int efx_mcdi_poll_reboot(struct efx_nic *efx)
407 {
408 	if (!efx->mcdi)
409 		return 0;
410 
411 	return efx->type->mcdi_poll_reboot(efx);
412 }
413 
414 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
415 {
416 	return cmpxchg(&mcdi->state,
417 		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
418 		MCDI_STATE_QUIESCENT;
419 }
420 
421 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
422 {
423 	/* Wait until the interface becomes QUIESCENT and we win the race
424 	 * to mark it RUNNING_SYNC.
425 	 */
426 	wait_event(mcdi->wq,
427 		   cmpxchg(&mcdi->state,
428 			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
429 		   MCDI_STATE_QUIESCENT);
430 }
431 
432 static int efx_mcdi_await_completion(struct efx_nic *efx)
433 {
434 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
435 
436 	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
437 			       MCDI_RPC_TIMEOUT) == 0)
438 		return -ETIMEDOUT;
439 
440 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
441 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
442 	 * completed the request first, then we'll just end up completing the
443 	 * request again, which is safe.
444 	 *
445 	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
446 	 * wait_event_timeout() implicitly provides.
447 	 */
448 	if (mcdi->mode == MCDI_MODE_POLL)
449 		return efx_mcdi_poll(efx);
450 
451 	return 0;
452 }
453 
454 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
455  * requester.  Return whether this was done.  Does not take any locks.
456  */
457 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
458 {
459 	if (cmpxchg(&mcdi->state,
460 		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
461 	    MCDI_STATE_RUNNING_SYNC) {
462 		wake_up(&mcdi->wq);
463 		return true;
464 	}
465 
466 	return false;
467 }
468 
469 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
470 {
471 	if (mcdi->mode == MCDI_MODE_EVENTS) {
472 		struct efx_mcdi_async_param *async;
473 		struct efx_nic *efx = mcdi->efx;
474 
475 		/* Process the asynchronous request queue */
476 		spin_lock_bh(&mcdi->async_lock);
477 		async = list_first_entry_or_null(
478 			&mcdi->async_list, struct efx_mcdi_async_param, list);
479 		if (async) {
480 			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
481 			efx_mcdi_send_request(efx, async->cmd,
482 					      (const efx_dword_t *)(async + 1),
483 					      async->inlen);
484 			mod_timer(&mcdi->async_timer,
485 				  jiffies + MCDI_RPC_TIMEOUT);
486 		}
487 		spin_unlock_bh(&mcdi->async_lock);
488 
489 		if (async)
490 			return;
491 	}
492 
493 	mcdi->state = MCDI_STATE_QUIESCENT;
494 	wake_up(&mcdi->wq);
495 }
496 
497 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
498  * asynchronous completion function, and release the interface.
499  * Return whether this was done.  Must be called in bh-disabled
500  * context.  Will take iface_lock and async_lock.
501  */
502 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
503 {
504 	struct efx_nic *efx = mcdi->efx;
505 	struct efx_mcdi_async_param *async;
506 	size_t hdr_len, data_len, err_len;
507 	efx_dword_t *outbuf;
508 	MCDI_DECLARE_BUF_ERR(errbuf);
509 	int rc;
510 
511 	if (cmpxchg(&mcdi->state,
512 		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
513 	    MCDI_STATE_RUNNING_ASYNC)
514 		return false;
515 
516 	spin_lock(&mcdi->iface_lock);
517 	if (timeout) {
518 		/* Ensure that if the completion event arrives later,
519 		 * the seqno check in efx_mcdi_ev_cpl() will fail
520 		 */
521 		++mcdi->seqno;
522 		++mcdi->credits;
523 		rc = -ETIMEDOUT;
524 		hdr_len = 0;
525 		data_len = 0;
526 	} else {
527 		rc = mcdi->resprc;
528 		hdr_len = mcdi->resp_hdr_len;
529 		data_len = mcdi->resp_data_len;
530 	}
531 	spin_unlock(&mcdi->iface_lock);
532 
533 	/* Stop the timer.  In case the timer function is running, we
534 	 * must wait for it to return so that there is no possibility
535 	 * of it aborting the next request.
536 	 */
537 	if (!timeout)
538 		del_timer_sync(&mcdi->async_timer);
539 
540 	spin_lock(&mcdi->async_lock);
541 	async = list_first_entry(&mcdi->async_list,
542 				 struct efx_mcdi_async_param, list);
543 	list_del(&async->list);
544 	spin_unlock(&mcdi->async_lock);
545 
546 	outbuf = (efx_dword_t *)(async + 1);
547 	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
548 				      min(async->outlen, data_len));
549 	if (!timeout && rc && !async->quiet) {
550 		err_len = min(sizeof(errbuf), data_len);
551 		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
552 					      sizeof(errbuf));
553 		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
554 				       err_len, rc);
555 	}
556 
557 	if (async->complete)
558 		async->complete(efx, async->cookie, rc, outbuf,
559 				min(async->outlen, data_len));
560 	kfree(async);
561 
562 	efx_mcdi_release(mcdi);
563 
564 	return true;
565 }
566 
567 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
568 			    unsigned int datalen, unsigned int mcdi_err)
569 {
570 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
571 	bool wake = false;
572 
573 	spin_lock(&mcdi->iface_lock);
574 
575 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
576 		if (mcdi->credits)
577 			/* The request has been cancelled */
578 			--mcdi->credits;
579 		else
580 			netif_err(efx, hw, efx->net_dev,
581 				  "MC response mismatch tx seq 0x%x rx "
582 				  "seq 0x%x\n", seqno, mcdi->seqno);
583 	} else {
584 		if (efx->type->mcdi_max_ver >= 2) {
585 			/* MCDI v2 responses don't fit in an event */
586 			efx_mcdi_read_response_header(efx);
587 		} else {
588 			mcdi->resprc = efx_mcdi_errno(mcdi_err);
589 			mcdi->resp_hdr_len = 4;
590 			mcdi->resp_data_len = datalen;
591 		}
592 
593 		wake = true;
594 	}
595 
596 	spin_unlock(&mcdi->iface_lock);
597 
598 	if (wake) {
599 		if (!efx_mcdi_complete_async(mcdi, false))
600 			(void) efx_mcdi_complete_sync(mcdi);
601 
602 		/* If the interface isn't RUNNING_ASYNC or
603 		 * RUNNING_SYNC then we've received a duplicate
604 		 * completion after we've already transitioned back to
605 		 * QUIESCENT. [A subsequent invocation would increment
606 		 * seqno, so would have failed the seqno check].
607 		 */
608 	}
609 }
610 
611 static void efx_mcdi_timeout_async(unsigned long context)
612 {
613 	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
614 
615 	efx_mcdi_complete_async(mcdi, true);
616 }
617 
618 static int
619 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
620 {
621 	if (efx->type->mcdi_max_ver < 0 ||
622 	     (efx->type->mcdi_max_ver < 2 &&
623 	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
624 		return -EINVAL;
625 
626 	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
627 	    (efx->type->mcdi_max_ver < 2 &&
628 	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
629 		return -EMSGSIZE;
630 
631 	return 0;
632 }
633 
634 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
635 				      size_t hdr_len, size_t data_len,
636 				      u32 *proxy_handle)
637 {
638 	MCDI_DECLARE_BUF_ERR(testbuf);
639 	const size_t buflen = sizeof(testbuf);
640 
641 	if (!proxy_handle || data_len < buflen)
642 		return false;
643 
644 	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
645 	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
646 		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
647 		return true;
648 	}
649 
650 	return false;
651 }
652 
653 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
654 				size_t inlen,
655 				efx_dword_t *outbuf, size_t outlen,
656 				size_t *outlen_actual, bool quiet,
657 				u32 *proxy_handle, int *raw_rc)
658 {
659 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
660 	MCDI_DECLARE_BUF_ERR(errbuf);
661 	int rc;
662 
663 	if (mcdi->mode == MCDI_MODE_POLL)
664 		rc = efx_mcdi_poll(efx);
665 	else
666 		rc = efx_mcdi_await_completion(efx);
667 
668 	if (rc != 0) {
669 		netif_err(efx, hw, efx->net_dev,
670 			  "MC command 0x%x inlen %d mode %d timed out\n",
671 			  cmd, (int)inlen, mcdi->mode);
672 
673 		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
674 			netif_err(efx, hw, efx->net_dev,
675 				  "MCDI request was completed without an event\n");
676 			rc = 0;
677 		}
678 
679 		efx_mcdi_abandon(efx);
680 
681 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
682 		 * and completing a request we've just cancelled, by ensuring
683 		 * that the seqno check therein fails.
684 		 */
685 		spin_lock_bh(&mcdi->iface_lock);
686 		++mcdi->seqno;
687 		++mcdi->credits;
688 		spin_unlock_bh(&mcdi->iface_lock);
689 	}
690 
691 	if (proxy_handle)
692 		*proxy_handle = 0;
693 
694 	if (rc != 0) {
695 		if (outlen_actual)
696 			*outlen_actual = 0;
697 	} else {
698 		size_t hdr_len, data_len, err_len;
699 
700 		/* At the very least we need a memory barrier here to ensure
701 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
702 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
703 		 * acquiring the iface_lock. */
704 		spin_lock_bh(&mcdi->iface_lock);
705 		rc = mcdi->resprc;
706 		if (raw_rc)
707 			*raw_rc = mcdi->resprc_raw;
708 		hdr_len = mcdi->resp_hdr_len;
709 		data_len = mcdi->resp_data_len;
710 		err_len = min(sizeof(errbuf), data_len);
711 		spin_unlock_bh(&mcdi->iface_lock);
712 
713 		BUG_ON(rc > 0);
714 
715 		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
716 					      min(outlen, data_len));
717 		if (outlen_actual)
718 			*outlen_actual = data_len;
719 
720 		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
721 
722 		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
723 			/* Don't reset if MC_CMD_REBOOT returns EIO */
724 		} else if (rc == -EIO || rc == -EINTR) {
725 			netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
726 			netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
727 				  cmd, -rc);
728 			if (efx->type->mcdi_reboot_detected)
729 				efx->type->mcdi_reboot_detected(efx);
730 			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
731 		} else if (proxy_handle && (rc == -EPROTO) &&
732 			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
733 						     proxy_handle)) {
734 			mcdi->proxy_rx_status = 0;
735 			mcdi->proxy_rx_handle = 0;
736 			mcdi->state = MCDI_STATE_PROXY_WAIT;
737 		} else if (rc && !quiet) {
738 			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
739 					       rc);
740 		}
741 
742 		if (rc == -EIO || rc == -EINTR) {
743 			msleep(MCDI_STATUS_SLEEP_MS);
744 			efx_mcdi_poll_reboot(efx);
745 			mcdi->new_epoch = true;
746 		}
747 	}
748 
749 	if (!proxy_handle || !*proxy_handle)
750 		efx_mcdi_release(mcdi);
751 	return rc;
752 }
753 
754 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
755 {
756 	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
757 		/* Interrupt the proxy wait. */
758 		mcdi->proxy_rx_status = -EINTR;
759 		wake_up(&mcdi->proxy_rx_wq);
760 	}
761 }
762 
763 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
764 				       u32 handle, int status)
765 {
766 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
767 
768 	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
769 
770 	mcdi->proxy_rx_status = efx_mcdi_errno(status);
771 	/* Ensure the status is written before we update the handle, since the
772 	 * latter is used to check if we've finished.
773 	 */
774 	wmb();
775 	mcdi->proxy_rx_handle = handle;
776 	wake_up(&mcdi->proxy_rx_wq);
777 }
778 
779 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
780 {
781 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
782 	int rc;
783 
784 	/* Wait for a proxy event, or timeout. */
785 	rc = wait_event_timeout(mcdi->proxy_rx_wq,
786 				mcdi->proxy_rx_handle != 0 ||
787 				mcdi->proxy_rx_status == -EINTR,
788 				MCDI_RPC_TIMEOUT);
789 
790 	if (rc <= 0) {
791 		netif_dbg(efx, hw, efx->net_dev,
792 			  "MCDI proxy timeout %d\n", handle);
793 		return -ETIMEDOUT;
794 	} else if (mcdi->proxy_rx_handle != handle) {
795 		netif_warn(efx, hw, efx->net_dev,
796 			   "MCDI proxy unexpected handle %d (expected %d)\n",
797 			   mcdi->proxy_rx_handle, handle);
798 		return -EINVAL;
799 	}
800 
801 	return mcdi->proxy_rx_status;
802 }
803 
804 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
805 			 const efx_dword_t *inbuf, size_t inlen,
806 			 efx_dword_t *outbuf, size_t outlen,
807 			 size_t *outlen_actual, bool quiet, int *raw_rc)
808 {
809 	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
810 	int rc;
811 
812 	if (inbuf && inlen && (inbuf == outbuf)) {
813 		/* The input buffer can't be aliased with the output. */
814 		WARN_ON(1);
815 		return -EINVAL;
816 	}
817 
818 	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
819 	if (rc)
820 		return rc;
821 
822 	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
823 				  outlen_actual, quiet, &proxy_handle, raw_rc);
824 
825 	if (proxy_handle) {
826 		/* Handle proxy authorisation. This allows approval of MCDI
827 		 * operations to be delegated to the admin function, allowing
828 		 * fine control over (eg) multicast subscriptions.
829 		 */
830 		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
831 
832 		netif_dbg(efx, hw, efx->net_dev,
833 			  "MCDI waiting for proxy auth %d\n",
834 			  proxy_handle);
835 		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
836 
837 		if (rc == 0) {
838 			netif_dbg(efx, hw, efx->net_dev,
839 				  "MCDI proxy retry %d\n", proxy_handle);
840 
841 			/* We now retry the original request. */
842 			mcdi->state = MCDI_STATE_RUNNING_SYNC;
843 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
844 
845 			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
846 						  outbuf, outlen, outlen_actual,
847 						  quiet, NULL, raw_rc);
848 		} else {
849 			netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
850 				       "MC command 0x%x failed after proxy auth rc=%d\n",
851 				       cmd, rc);
852 
853 			if (rc == -EINTR || rc == -EIO)
854 				efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
855 			efx_mcdi_release(mcdi);
856 		}
857 	}
858 
859 	return rc;
860 }
861 
862 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
863 				   const efx_dword_t *inbuf, size_t inlen,
864 				   efx_dword_t *outbuf, size_t outlen,
865 				   size_t *outlen_actual, bool quiet)
866 {
867 	int raw_rc = 0;
868 	int rc;
869 
870 	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
871 			   outbuf, outlen, outlen_actual, true, &raw_rc);
872 
873 	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
874 	    efx->type->is_vf) {
875 		/* If the EVB port isn't available within a VF this may
876 		 * mean the PF is still bringing the switch up. We should
877 		 * retry our request shortly.
878 		 */
879 		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
880 		unsigned int delay_us = 10000;
881 
882 		netif_dbg(efx, hw, efx->net_dev,
883 			  "%s: NO_EVB_PORT; will retry request\n",
884 			  __func__);
885 
886 		do {
887 			usleep_range(delay_us, delay_us + 10000);
888 			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
889 					   outbuf, outlen, outlen_actual,
890 					   true, &raw_rc);
891 			if (delay_us < 100000)
892 				delay_us <<= 1;
893 		} while ((rc == -EPROTO) &&
894 			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
895 			 time_before(jiffies, abort_time));
896 	}
897 
898 	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
899 		efx_mcdi_display_error(efx, cmd, inlen,
900 				       outbuf, outlen, rc);
901 
902 	return rc;
903 }
904 
905 /**
906  * efx_mcdi_rpc - Issue an MCDI command and wait for completion
907  * @efx: NIC through which to issue the command
908  * @cmd: Command type number
909  * @inbuf: Command parameters
910  * @inlen: Length of command parameters, in bytes.  Must be a multiple
911  *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
912  * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
913  * @outlen: Length of response buffer, in bytes.  If the actual
914  *	response is longer than @outlen & ~3, it will be truncated
915  *	to that length.
916  * @outlen_actual: Pointer through which to return the actual response
917  *	length.  May be %NULL if this is not needed.
918  *
919  * This function may sleep and therefore must be called in an appropriate
920  * context.
921  *
922  * Return: A negative error code, or zero if successful.  The error
923  *	code may come from the MCDI response or may indicate a failure
924  *	to communicate with the MC.  In the former case, the response
925  *	will still be copied to @outbuf and *@outlen_actual will be
926  *	set accordingly.  In the latter case, *@outlen_actual will be
927  *	set to zero.
928  */
929 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
930 		 const efx_dword_t *inbuf, size_t inlen,
931 		 efx_dword_t *outbuf, size_t outlen,
932 		 size_t *outlen_actual)
933 {
934 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
935 				       outlen_actual, false);
936 }
937 
938 /* Normally, on receiving an error code in the MCDI response,
939  * efx_mcdi_rpc will log an error message containing (among other
940  * things) the raw error code, by means of efx_mcdi_display_error.
941  * This _quiet version suppresses that; if the caller wishes to log
942  * the error conditionally on the return code, it should call this
943  * function and is then responsible for calling efx_mcdi_display_error
944  * as needed.
945  */
946 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
947 		       const efx_dword_t *inbuf, size_t inlen,
948 		       efx_dword_t *outbuf, size_t outlen,
949 		       size_t *outlen_actual)
950 {
951 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
952 				       outlen_actual, true);
953 }
954 
955 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
956 		       const efx_dword_t *inbuf, size_t inlen)
957 {
958 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
959 	int rc;
960 
961 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
962 	if (rc)
963 		return rc;
964 
965 	if (efx->mc_bist_for_other_fn)
966 		return -ENETDOWN;
967 
968 	if (mcdi->mode == MCDI_MODE_FAIL)
969 		return -ENETDOWN;
970 
971 	efx_mcdi_acquire_sync(mcdi);
972 	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
973 	return 0;
974 }
975 
976 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
977 			       const efx_dword_t *inbuf, size_t inlen,
978 			       size_t outlen,
979 			       efx_mcdi_async_completer *complete,
980 			       unsigned long cookie, bool quiet)
981 {
982 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
983 	struct efx_mcdi_async_param *async;
984 	int rc;
985 
986 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
987 	if (rc)
988 		return rc;
989 
990 	if (efx->mc_bist_for_other_fn)
991 		return -ENETDOWN;
992 
993 	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
994 			GFP_ATOMIC);
995 	if (!async)
996 		return -ENOMEM;
997 
998 	async->cmd = cmd;
999 	async->inlen = inlen;
1000 	async->outlen = outlen;
1001 	async->quiet = quiet;
1002 	async->complete = complete;
1003 	async->cookie = cookie;
1004 	memcpy(async + 1, inbuf, inlen);
1005 
1006 	spin_lock_bh(&mcdi->async_lock);
1007 
1008 	if (mcdi->mode == MCDI_MODE_EVENTS) {
1009 		list_add_tail(&async->list, &mcdi->async_list);
1010 
1011 		/* If this is at the front of the queue, try to start it
1012 		 * immediately
1013 		 */
1014 		if (mcdi->async_list.next == &async->list &&
1015 		    efx_mcdi_acquire_async(mcdi)) {
1016 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1017 			mod_timer(&mcdi->async_timer,
1018 				  jiffies + MCDI_RPC_TIMEOUT);
1019 		}
1020 	} else {
1021 		kfree(async);
1022 		rc = -ENETDOWN;
1023 	}
1024 
1025 	spin_unlock_bh(&mcdi->async_lock);
1026 
1027 	return rc;
1028 }
1029 
1030 /**
1031  * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1032  * @efx: NIC through which to issue the command
1033  * @cmd: Command type number
1034  * @inbuf: Command parameters
1035  * @inlen: Length of command parameters, in bytes
1036  * @outlen: Length to allocate for response buffer, in bytes
1037  * @complete: Function to be called on completion or cancellation.
1038  * @cookie: Arbitrary value to be passed to @complete.
1039  *
1040  * This function does not sleep and therefore may be called in atomic
1041  * context.  It will fail if event queues are disabled or if MCDI
1042  * event completions have been disabled due to an error.
1043  *
1044  * If it succeeds, the @complete function will be called exactly once
1045  * in atomic context, when one of the following occurs:
1046  * (a) the completion event is received (in NAPI context)
1047  * (b) event queues are disabled (in the process that disables them)
1048  * (c) the request times-out (in timer context)
1049  */
1050 int
1051 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1052 		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1053 		   efx_mcdi_async_completer *complete, unsigned long cookie)
1054 {
1055 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1056 				   cookie, false);
1057 }
1058 
1059 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1060 			     const efx_dword_t *inbuf, size_t inlen,
1061 			     size_t outlen, efx_mcdi_async_completer *complete,
1062 			     unsigned long cookie)
1063 {
1064 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1065 				   cookie, true);
1066 }
1067 
1068 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1069 			efx_dword_t *outbuf, size_t outlen,
1070 			size_t *outlen_actual)
1071 {
1072 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1073 				    outlen_actual, false, NULL, NULL);
1074 }
1075 
1076 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1077 			      efx_dword_t *outbuf, size_t outlen,
1078 			      size_t *outlen_actual)
1079 {
1080 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1081 				    outlen_actual, true, NULL, NULL);
1082 }
1083 
1084 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1085 			    size_t inlen, efx_dword_t *outbuf,
1086 			    size_t outlen, int rc)
1087 {
1088 	int code = 0, err_arg = 0;
1089 
1090 	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1091 		code = MCDI_DWORD(outbuf, ERR_CODE);
1092 	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1093 		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1094 	netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1095 		       "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1096 		       cmd, inlen, rc, code, err_arg);
1097 }
1098 
1099 /* Switch to polled MCDI completions.  This can be called in various
1100  * error conditions with various locks held, so it must be lockless.
1101  * Caller is responsible for flushing asynchronous requests later.
1102  */
1103 void efx_mcdi_mode_poll(struct efx_nic *efx)
1104 {
1105 	struct efx_mcdi_iface *mcdi;
1106 
1107 	if (!efx->mcdi)
1108 		return;
1109 
1110 	mcdi = efx_mcdi(efx);
1111 	/* If already in polling mode, nothing to do.
1112 	 * If in fail-fast state, don't switch to polled completion.
1113 	 * FLR recovery will do that later.
1114 	 */
1115 	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1116 		return;
1117 
1118 	/* We can switch from event completion to polled completion, because
1119 	 * mcdi requests are always completed in shared memory. We do this by
1120 	 * switching the mode to POLL'd then completing the request.
1121 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1122 	 *
1123 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1124 	 * which efx_mcdi_complete_sync() provides for us.
1125 	 */
1126 	mcdi->mode = MCDI_MODE_POLL;
1127 
1128 	efx_mcdi_complete_sync(mcdi);
1129 }
1130 
1131 /* Flush any running or queued asynchronous requests, after event processing
1132  * is stopped
1133  */
1134 void efx_mcdi_flush_async(struct efx_nic *efx)
1135 {
1136 	struct efx_mcdi_async_param *async, *next;
1137 	struct efx_mcdi_iface *mcdi;
1138 
1139 	if (!efx->mcdi)
1140 		return;
1141 
1142 	mcdi = efx_mcdi(efx);
1143 
1144 	/* We must be in poll or fail mode so no more requests can be queued */
1145 	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1146 
1147 	del_timer_sync(&mcdi->async_timer);
1148 
1149 	/* If a request is still running, make sure we give the MC
1150 	 * time to complete it so that the response won't overwrite our
1151 	 * next request.
1152 	 */
1153 	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1154 		efx_mcdi_poll(efx);
1155 		mcdi->state = MCDI_STATE_QUIESCENT;
1156 	}
1157 
1158 	/* Nothing else will access the async list now, so it is safe
1159 	 * to walk it without holding async_lock.  If we hold it while
1160 	 * calling a completer then lockdep may warn that we have
1161 	 * acquired locks in the wrong order.
1162 	 */
1163 	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1164 		if (async->complete)
1165 			async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1166 		list_del(&async->list);
1167 		kfree(async);
1168 	}
1169 }
1170 
1171 void efx_mcdi_mode_event(struct efx_nic *efx)
1172 {
1173 	struct efx_mcdi_iface *mcdi;
1174 
1175 	if (!efx->mcdi)
1176 		return;
1177 
1178 	mcdi = efx_mcdi(efx);
1179 	/* If already in event completion mode, nothing to do.
1180 	 * If in fail-fast state, don't switch to event completion.  FLR
1181 	 * recovery will do that later.
1182 	 */
1183 	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1184 		return;
1185 
1186 	/* We can't switch from polled to event completion in the middle of a
1187 	 * request, because the completion method is specified in the request.
1188 	 * So acquire the interface to serialise the requestors. We don't need
1189 	 * to acquire the iface_lock to change the mode here, but we do need a
1190 	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1191 	 * efx_mcdi_acquire() provides.
1192 	 */
1193 	efx_mcdi_acquire_sync(mcdi);
1194 	mcdi->mode = MCDI_MODE_EVENTS;
1195 	efx_mcdi_release(mcdi);
1196 }
1197 
1198 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1199 {
1200 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1201 
1202 	/* If there is an outstanding MCDI request, it has been terminated
1203 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1204 	 * in polled mode, then do nothing because the MC reboot handler will
1205 	 * set the header correctly. However, if the mcdi interface is waiting
1206 	 * for a CMDDONE event it won't receive it [and since all MCDI events
1207 	 * are sent to the same queue, we can't be racing with
1208 	 * efx_mcdi_ev_cpl()]
1209 	 *
1210 	 * If there is an outstanding asynchronous request, we can't
1211 	 * complete it now (efx_mcdi_complete() would deadlock).  The
1212 	 * reset process will take care of this.
1213 	 *
1214 	 * There's a race here with efx_mcdi_send_request(), because
1215 	 * we might receive a REBOOT event *before* the request has
1216 	 * been copied out. In polled mode (during startup) this is
1217 	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1218 	 * event mode, this condition is just an edge-case of
1219 	 * receiving a REBOOT event after posting the MCDI
1220 	 * request. Did the mc reboot before or after the copyout? The
1221 	 * best we can do always is just return failure.
1222 	 *
1223 	 * If there is an outstanding proxy response expected it is not going
1224 	 * to arrive. We should thus abort it.
1225 	 */
1226 	spin_lock(&mcdi->iface_lock);
1227 	efx_mcdi_proxy_abort(mcdi);
1228 
1229 	if (efx_mcdi_complete_sync(mcdi)) {
1230 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1231 			mcdi->resprc = rc;
1232 			mcdi->resp_hdr_len = 0;
1233 			mcdi->resp_data_len = 0;
1234 			++mcdi->credits;
1235 		}
1236 	} else {
1237 		int count;
1238 
1239 		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1240 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1241 			rc = efx_mcdi_poll_reboot(efx);
1242 			if (rc)
1243 				break;
1244 			udelay(MCDI_STATUS_DELAY_US);
1245 		}
1246 
1247 		/* On EF10, a CODE_MC_REBOOT event can be received without the
1248 		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1249 		 * If zero was returned from the final call to
1250 		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1251 		 * MC has definitely rebooted so prepare for the reset.
1252 		 */
1253 		if (!rc && efx->type->mcdi_reboot_detected)
1254 			efx->type->mcdi_reboot_detected(efx);
1255 
1256 		mcdi->new_epoch = true;
1257 
1258 		/* Nobody was waiting for an MCDI request, so trigger a reset */
1259 		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1260 	}
1261 
1262 	spin_unlock(&mcdi->iface_lock);
1263 }
1264 
1265 /* The MC is going down in to BIST mode. set the BIST flag to block
1266  * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1267  * (which doesn't actually execute a reset, it waits for the controlling
1268  * function to reset it).
1269  */
1270 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1271 {
1272 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1273 
1274 	spin_lock(&mcdi->iface_lock);
1275 	efx->mc_bist_for_other_fn = true;
1276 	efx_mcdi_proxy_abort(mcdi);
1277 
1278 	if (efx_mcdi_complete_sync(mcdi)) {
1279 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1280 			mcdi->resprc = -EIO;
1281 			mcdi->resp_hdr_len = 0;
1282 			mcdi->resp_data_len = 0;
1283 			++mcdi->credits;
1284 		}
1285 	}
1286 	mcdi->new_epoch = true;
1287 	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1288 	spin_unlock(&mcdi->iface_lock);
1289 }
1290 
1291 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1292  * to recover.
1293  */
1294 static void efx_mcdi_abandon(struct efx_nic *efx)
1295 {
1296 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1297 
1298 	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1299 		return; /* it had already been done */
1300 	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1301 	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1302 }
1303 
1304 /* Called from  falcon_process_eventq for MCDI events */
1305 void efx_mcdi_process_event(struct efx_channel *channel,
1306 			    efx_qword_t *event)
1307 {
1308 	struct efx_nic *efx = channel->efx;
1309 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1310 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1311 
1312 	switch (code) {
1313 	case MCDI_EVENT_CODE_BADSSERT:
1314 		netif_err(efx, hw, efx->net_dev,
1315 			  "MC watchdog or assertion failure at 0x%x\n", data);
1316 		efx_mcdi_ev_death(efx, -EINTR);
1317 		break;
1318 
1319 	case MCDI_EVENT_CODE_PMNOTICE:
1320 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1321 		break;
1322 
1323 	case MCDI_EVENT_CODE_CMDDONE:
1324 		efx_mcdi_ev_cpl(efx,
1325 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1326 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1327 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1328 		break;
1329 
1330 	case MCDI_EVENT_CODE_LINKCHANGE:
1331 		efx_mcdi_process_link_change(efx, event);
1332 		break;
1333 	case MCDI_EVENT_CODE_SENSOREVT:
1334 		efx_mcdi_sensor_event(efx, event);
1335 		break;
1336 	case MCDI_EVENT_CODE_SCHEDERR:
1337 		netif_dbg(efx, hw, efx->net_dev,
1338 			  "MC Scheduler alert (0x%x)\n", data);
1339 		break;
1340 	case MCDI_EVENT_CODE_REBOOT:
1341 	case MCDI_EVENT_CODE_MC_REBOOT:
1342 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1343 		efx_mcdi_ev_death(efx, -EIO);
1344 		break;
1345 	case MCDI_EVENT_CODE_MC_BIST:
1346 		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1347 		efx_mcdi_ev_bist(efx);
1348 		break;
1349 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1350 		/* MAC stats are gather lazily.  We can ignore this. */
1351 		break;
1352 	case MCDI_EVENT_CODE_FLR:
1353 		if (efx->type->sriov_flr)
1354 			efx->type->sriov_flr(efx,
1355 					     MCDI_EVENT_FIELD(*event, FLR_VF));
1356 		break;
1357 	case MCDI_EVENT_CODE_PTP_RX:
1358 	case MCDI_EVENT_CODE_PTP_FAULT:
1359 	case MCDI_EVENT_CODE_PTP_PPS:
1360 		efx_ptp_event(efx, event);
1361 		break;
1362 	case MCDI_EVENT_CODE_PTP_TIME:
1363 		efx_time_sync_event(channel, event);
1364 		break;
1365 	case MCDI_EVENT_CODE_TX_FLUSH:
1366 	case MCDI_EVENT_CODE_RX_FLUSH:
1367 		/* Two flush events will be sent: one to the same event
1368 		 * queue as completions, and one to event queue 0.
1369 		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1370 		 * flag will be set, and we should ignore the event
1371 		 * because we want to wait for all completions.
1372 		 */
1373 		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1374 			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1375 		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1376 			efx_ef10_handle_drain_event(efx);
1377 		break;
1378 	case MCDI_EVENT_CODE_TX_ERR:
1379 	case MCDI_EVENT_CODE_RX_ERR:
1380 		netif_err(efx, hw, efx->net_dev,
1381 			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1382 			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1383 			  EFX_QWORD_VAL(*event));
1384 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1385 		break;
1386 	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1387 		efx_mcdi_ev_proxy_response(efx,
1388 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1389 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1390 		break;
1391 	default:
1392 		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1393 			  code);
1394 	}
1395 }
1396 
1397 /**************************************************************************
1398  *
1399  * Specific request functions
1400  *
1401  **************************************************************************
1402  */
1403 
1404 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1405 {
1406 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1407 	size_t outlength;
1408 	const __le16 *ver_words;
1409 	size_t offset;
1410 	int rc;
1411 
1412 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1413 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1414 			  outbuf, sizeof(outbuf), &outlength);
1415 	if (rc)
1416 		goto fail;
1417 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1418 		rc = -EIO;
1419 		goto fail;
1420 	}
1421 
1422 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1423 	offset = snprintf(buf, len, "%u.%u.%u.%u",
1424 			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1425 			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1426 
1427 	/* EF10 may have multiple datapath firmware variants within a
1428 	 * single version.  Report which variants are running.
1429 	 */
1430 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1431 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1432 
1433 		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1434 				   nic_data->rx_dpcpu_fw_id,
1435 				   nic_data->tx_dpcpu_fw_id);
1436 
1437 		/* It's theoretically possible for the string to exceed 31
1438 		 * characters, though in practice the first three version
1439 		 * components are short enough that this doesn't happen.
1440 		 */
1441 		if (WARN_ON(offset >= len))
1442 			buf[0] = 0;
1443 	}
1444 
1445 	return;
1446 
1447 fail:
1448 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1449 	buf[0] = 0;
1450 }
1451 
1452 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1453 			       bool *was_attached)
1454 {
1455 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1456 	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1457 	size_t outlen;
1458 	int rc;
1459 
1460 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1461 		       driver_operating ? 1 : 0);
1462 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1463 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1464 
1465 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1466 				outbuf, sizeof(outbuf), &outlen);
1467 	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1468 	 * specified will fail with EPERM, and we have to tell the MC we don't
1469 	 * care what firmware we get.
1470 	 */
1471 	if (rc == -EPERM) {
1472 		netif_dbg(efx, probe, efx->net_dev,
1473 			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1474 		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1475 			       MC_CMD_FW_DONT_CARE);
1476 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1477 					sizeof(inbuf), outbuf, sizeof(outbuf),
1478 					&outlen);
1479 	}
1480 	if (rc) {
1481 		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1482 				       outbuf, outlen, rc);
1483 		goto fail;
1484 	}
1485 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1486 		rc = -EIO;
1487 		goto fail;
1488 	}
1489 
1490 	if (driver_operating) {
1491 		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1492 			efx->mcdi->fn_flags =
1493 				MCDI_DWORD(outbuf,
1494 					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1495 		} else {
1496 			/* Synthesise flags for Siena */
1497 			efx->mcdi->fn_flags =
1498 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1499 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1500 				(efx_port_num(efx) == 0) <<
1501 				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1502 		}
1503 	}
1504 
1505 	/* We currently assume we have control of the external link
1506 	 * and are completely trusted by firmware.  Abort probing
1507 	 * if that's not true for this function.
1508 	 */
1509 
1510 	if (was_attached != NULL)
1511 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1512 	return 0;
1513 
1514 fail:
1515 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1516 	return rc;
1517 }
1518 
1519 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1520 			   u16 *fw_subtype_list, u32 *capabilities)
1521 {
1522 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1523 	size_t outlen, i;
1524 	int port_num = efx_port_num(efx);
1525 	int rc;
1526 
1527 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1528 	/* we need __aligned(2) for ether_addr_copy */
1529 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1530 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1531 
1532 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1533 			  outbuf, sizeof(outbuf), &outlen);
1534 	if (rc)
1535 		goto fail;
1536 
1537 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1538 		rc = -EIO;
1539 		goto fail;
1540 	}
1541 
1542 	if (mac_address)
1543 		ether_addr_copy(mac_address,
1544 				port_num ?
1545 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1546 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1547 	if (fw_subtype_list) {
1548 		for (i = 0;
1549 		     i < MCDI_VAR_ARRAY_LEN(outlen,
1550 					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1551 		     i++)
1552 			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1553 				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1554 		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1555 			fw_subtype_list[i] = 0;
1556 	}
1557 	if (capabilities) {
1558 		if (port_num)
1559 			*capabilities = MCDI_DWORD(outbuf,
1560 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1561 		else
1562 			*capabilities = MCDI_DWORD(outbuf,
1563 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1564 	}
1565 
1566 	return 0;
1567 
1568 fail:
1569 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1570 		  __func__, rc, (int)outlen);
1571 
1572 	return rc;
1573 }
1574 
1575 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1576 {
1577 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1578 	u32 dest = 0;
1579 	int rc;
1580 
1581 	if (uart)
1582 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1583 	if (evq)
1584 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1585 
1586 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1587 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1588 
1589 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1590 
1591 	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1592 			  NULL, 0, NULL);
1593 	return rc;
1594 }
1595 
1596 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1597 {
1598 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1599 	size_t outlen;
1600 	int rc;
1601 
1602 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1603 
1604 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1605 			  outbuf, sizeof(outbuf), &outlen);
1606 	if (rc)
1607 		goto fail;
1608 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1609 		rc = -EIO;
1610 		goto fail;
1611 	}
1612 
1613 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1614 	return 0;
1615 
1616 fail:
1617 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1618 		  __func__, rc);
1619 	return rc;
1620 }
1621 
1622 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1623 			size_t *size_out, size_t *erase_size_out,
1624 			bool *protected_out)
1625 {
1626 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1627 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1628 	size_t outlen;
1629 	int rc;
1630 
1631 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1632 
1633 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1634 			  outbuf, sizeof(outbuf), &outlen);
1635 	if (rc)
1636 		goto fail;
1637 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1638 		rc = -EIO;
1639 		goto fail;
1640 	}
1641 
1642 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1643 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1644 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1645 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1646 	return 0;
1647 
1648 fail:
1649 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1650 	return rc;
1651 }
1652 
1653 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1654 {
1655 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1656 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1657 	int rc;
1658 
1659 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1660 
1661 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1662 			  outbuf, sizeof(outbuf), NULL);
1663 	if (rc)
1664 		return rc;
1665 
1666 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1667 	case MC_CMD_NVRAM_TEST_PASS:
1668 	case MC_CMD_NVRAM_TEST_NOTSUPP:
1669 		return 0;
1670 	default:
1671 		return -EIO;
1672 	}
1673 }
1674 
1675 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1676 {
1677 	u32 nvram_types;
1678 	unsigned int type;
1679 	int rc;
1680 
1681 	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1682 	if (rc)
1683 		goto fail1;
1684 
1685 	type = 0;
1686 	while (nvram_types != 0) {
1687 		if (nvram_types & 1) {
1688 			rc = efx_mcdi_nvram_test(efx, type);
1689 			if (rc)
1690 				goto fail2;
1691 		}
1692 		type++;
1693 		nvram_types >>= 1;
1694 	}
1695 
1696 	return 0;
1697 
1698 fail2:
1699 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1700 		  __func__, type);
1701 fail1:
1702 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1703 	return rc;
1704 }
1705 
1706 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1707  * negative on error.
1708  */
1709 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1710 {
1711 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1712 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1713 	unsigned int flags, index;
1714 	const char *reason;
1715 	size_t outlen;
1716 	int retry;
1717 	int rc;
1718 
1719 	/* Attempt to read any stored assertion state before we reboot
1720 	 * the mcfw out of the assertion handler. Retry twice, once
1721 	 * because a boot-time assertion might cause this command to fail
1722 	 * with EINTR. And once again because GET_ASSERTS can race with
1723 	 * MC_CMD_REBOOT running on the other port. */
1724 	retry = 2;
1725 	do {
1726 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1727 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1728 					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1729 					outbuf, sizeof(outbuf), &outlen);
1730 		if (rc == -EPERM)
1731 			return 0;
1732 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1733 
1734 	if (rc) {
1735 		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1736 				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1737 				       outlen, rc);
1738 		return rc;
1739 	}
1740 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1741 		return -EIO;
1742 
1743 	/* Print out any recorded assertion state */
1744 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1745 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1746 		return 0;
1747 
1748 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1749 		? "system-level assertion"
1750 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1751 		? "thread-level assertion"
1752 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1753 		? "watchdog reset"
1754 		: "unknown assertion";
1755 	netif_err(efx, hw, efx->net_dev,
1756 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1757 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1758 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1759 
1760 	/* Print out the registers */
1761 	for (index = 0;
1762 	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1763 	     index++)
1764 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1765 			  1 + index,
1766 			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1767 					   index));
1768 
1769 	return 1;
1770 }
1771 
1772 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1773 {
1774 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1775 	int rc;
1776 
1777 	/* If the MC is running debug firmware, it might now be
1778 	 * waiting for a debugger to attach, but we just want it to
1779 	 * reboot.  We set a flag that makes the command a no-op if it
1780 	 * has already done so.
1781 	 * The MCDI will thus return either 0 or -EIO.
1782 	 */
1783 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1784 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1785 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1786 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1787 				NULL, 0, NULL);
1788 	if (rc == -EIO)
1789 		rc = 0;
1790 	if (rc)
1791 		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1792 				       NULL, 0, rc);
1793 	return rc;
1794 }
1795 
1796 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1797 {
1798 	int rc;
1799 
1800 	rc = efx_mcdi_read_assertion(efx);
1801 	if (rc <= 0)
1802 		return rc;
1803 
1804 	return efx_mcdi_exit_assertion(efx);
1805 }
1806 
1807 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1808 {
1809 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1810 	int rc;
1811 
1812 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1813 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1814 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1815 
1816 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1817 
1818 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1819 
1820 	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1821 			  NULL, 0, NULL);
1822 }
1823 
1824 static int efx_mcdi_reset_func(struct efx_nic *efx)
1825 {
1826 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1827 	int rc;
1828 
1829 	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1830 	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1831 			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1832 	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1833 			  NULL, 0, NULL);
1834 	return rc;
1835 }
1836 
1837 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1838 {
1839 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1840 	int rc;
1841 
1842 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1843 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1844 	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1845 			  NULL, 0, NULL);
1846 	/* White is black, and up is down */
1847 	if (rc == -EIO)
1848 		return 0;
1849 	if (rc == 0)
1850 		rc = -EIO;
1851 	return rc;
1852 }
1853 
1854 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1855 {
1856 	return RESET_TYPE_RECOVER_OR_ALL;
1857 }
1858 
1859 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1860 {
1861 	int rc;
1862 
1863 	/* If MCDI is down, we can't handle_assertion */
1864 	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1865 		rc = pci_reset_function(efx->pci_dev);
1866 		if (rc)
1867 			return rc;
1868 		/* Re-enable polled MCDI completion */
1869 		if (efx->mcdi) {
1870 			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1871 			mcdi->mode = MCDI_MODE_POLL;
1872 		}
1873 		return 0;
1874 	}
1875 
1876 	/* Recover from a failed assertion pre-reset */
1877 	rc = efx_mcdi_handle_assertion(efx);
1878 	if (rc)
1879 		return rc;
1880 
1881 	if (method == RESET_TYPE_DATAPATH)
1882 		return 0;
1883 	else if (method == RESET_TYPE_WORLD)
1884 		return efx_mcdi_reset_mc(efx);
1885 	else
1886 		return efx_mcdi_reset_func(efx);
1887 }
1888 
1889 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1890 				   const u8 *mac, int *id_out)
1891 {
1892 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1893 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1894 	size_t outlen;
1895 	int rc;
1896 
1897 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1898 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1899 		       MC_CMD_FILTER_MODE_SIMPLE);
1900 	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1901 
1902 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1903 			  outbuf, sizeof(outbuf), &outlen);
1904 	if (rc)
1905 		goto fail;
1906 
1907 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1908 		rc = -EIO;
1909 		goto fail;
1910 	}
1911 
1912 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1913 
1914 	return 0;
1915 
1916 fail:
1917 	*id_out = -1;
1918 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1919 	return rc;
1920 
1921 }
1922 
1923 
1924 int
1925 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1926 {
1927 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1928 }
1929 
1930 
1931 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1932 {
1933 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1934 	size_t outlen;
1935 	int rc;
1936 
1937 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1938 			  outbuf, sizeof(outbuf), &outlen);
1939 	if (rc)
1940 		goto fail;
1941 
1942 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1943 		rc = -EIO;
1944 		goto fail;
1945 	}
1946 
1947 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1948 
1949 	return 0;
1950 
1951 fail:
1952 	*id_out = -1;
1953 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1954 	return rc;
1955 }
1956 
1957 
1958 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1959 {
1960 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1961 	int rc;
1962 
1963 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1964 
1965 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1966 			  NULL, 0, NULL);
1967 	return rc;
1968 }
1969 
1970 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1971 {
1972 	struct efx_channel *channel;
1973 	struct efx_rx_queue *rx_queue;
1974 	MCDI_DECLARE_BUF(inbuf,
1975 			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1976 	int rc, count;
1977 
1978 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1979 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1980 
1981 	count = 0;
1982 	efx_for_each_channel(channel, efx) {
1983 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1984 			if (rx_queue->flush_pending) {
1985 				rx_queue->flush_pending = false;
1986 				atomic_dec(&efx->rxq_flush_pending);
1987 				MCDI_SET_ARRAY_DWORD(
1988 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1989 					count, efx_rx_queue_index(rx_queue));
1990 				count++;
1991 			}
1992 		}
1993 	}
1994 
1995 	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1996 			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1997 	WARN_ON(rc < 0);
1998 
1999 	return rc;
2000 }
2001 
2002 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2003 {
2004 	int rc;
2005 
2006 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2007 	return rc;
2008 }
2009 
2010 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2011 			    unsigned int *flags)
2012 {
2013 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2014 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2015 	size_t outlen;
2016 	int rc;
2017 
2018 	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2019 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2020 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2021 	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2022 			  outbuf, sizeof(outbuf), &outlen);
2023 	if (rc)
2024 		return rc;
2025 
2026 	if (!flags)
2027 		return 0;
2028 
2029 	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2030 		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2031 	else
2032 		*flags = 0;
2033 
2034 	return 0;
2035 }
2036 
2037 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2038 			     unsigned int *enabled_out)
2039 {
2040 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2041 	size_t outlen;
2042 	int rc;
2043 
2044 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2045 			  outbuf, sizeof(outbuf), &outlen);
2046 	if (rc)
2047 		goto fail;
2048 
2049 	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2050 		rc = -EIO;
2051 		goto fail;
2052 	}
2053 
2054 	if (impl_out)
2055 		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2056 
2057 	if (enabled_out)
2058 		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2059 
2060 	return 0;
2061 
2062 fail:
2063 	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2064 	 * terrifying.  The call site will have to deal with it though.
2065 	 */
2066 	netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2067 		       "%s: failed rc=%d\n", __func__, rc);
2068 	return rc;
2069 }
2070 
2071 #ifdef CONFIG_SFC_MTD
2072 
2073 #define EFX_MCDI_NVRAM_LEN_MAX 128
2074 
2075 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2076 {
2077 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2078 	int rc;
2079 
2080 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2081 
2082 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2083 
2084 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2085 			  NULL, 0, NULL);
2086 	return rc;
2087 }
2088 
2089 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2090 			       loff_t offset, u8 *buffer, size_t length)
2091 {
2092 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2093 	MCDI_DECLARE_BUF(outbuf,
2094 			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2095 	size_t outlen;
2096 	int rc;
2097 
2098 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2099 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2100 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2101 
2102 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2103 			  outbuf, sizeof(outbuf), &outlen);
2104 	if (rc)
2105 		return rc;
2106 
2107 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2108 	return 0;
2109 }
2110 
2111 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2112 				loff_t offset, const u8 *buffer, size_t length)
2113 {
2114 	MCDI_DECLARE_BUF(inbuf,
2115 			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2116 	int rc;
2117 
2118 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2119 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2120 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2121 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2122 
2123 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2124 
2125 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2126 			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2127 			  NULL, 0, NULL);
2128 	return rc;
2129 }
2130 
2131 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2132 				loff_t offset, size_t length)
2133 {
2134 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2135 	int rc;
2136 
2137 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2138 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2139 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2140 
2141 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2142 
2143 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2144 			  NULL, 0, NULL);
2145 	return rc;
2146 }
2147 
2148 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2149 {
2150 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2151 	int rc;
2152 
2153 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2154 
2155 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2156 
2157 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2158 			  NULL, 0, NULL);
2159 	return rc;
2160 }
2161 
2162 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2163 		      size_t len, size_t *retlen, u8 *buffer)
2164 {
2165 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2166 	struct efx_nic *efx = mtd->priv;
2167 	loff_t offset = start;
2168 	loff_t end = min_t(loff_t, start + len, mtd->size);
2169 	size_t chunk;
2170 	int rc = 0;
2171 
2172 	while (offset < end) {
2173 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2174 		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2175 					 buffer, chunk);
2176 		if (rc)
2177 			goto out;
2178 		offset += chunk;
2179 		buffer += chunk;
2180 	}
2181 out:
2182 	*retlen = offset - start;
2183 	return rc;
2184 }
2185 
2186 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2187 {
2188 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2189 	struct efx_nic *efx = mtd->priv;
2190 	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2191 	loff_t end = min_t(loff_t, start + len, mtd->size);
2192 	size_t chunk = part->common.mtd.erasesize;
2193 	int rc = 0;
2194 
2195 	if (!part->updating) {
2196 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2197 		if (rc)
2198 			goto out;
2199 		part->updating = true;
2200 	}
2201 
2202 	/* The MCDI interface can in fact do multiple erase blocks at once;
2203 	 * but erasing may be slow, so we make multiple calls here to avoid
2204 	 * tripping the MCDI RPC timeout. */
2205 	while (offset < end) {
2206 		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2207 					  chunk);
2208 		if (rc)
2209 			goto out;
2210 		offset += chunk;
2211 	}
2212 out:
2213 	return rc;
2214 }
2215 
2216 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2217 		       size_t len, size_t *retlen, const u8 *buffer)
2218 {
2219 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2220 	struct efx_nic *efx = mtd->priv;
2221 	loff_t offset = start;
2222 	loff_t end = min_t(loff_t, start + len, mtd->size);
2223 	size_t chunk;
2224 	int rc = 0;
2225 
2226 	if (!part->updating) {
2227 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2228 		if (rc)
2229 			goto out;
2230 		part->updating = true;
2231 	}
2232 
2233 	while (offset < end) {
2234 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2235 		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2236 					  buffer, chunk);
2237 		if (rc)
2238 			goto out;
2239 		offset += chunk;
2240 		buffer += chunk;
2241 	}
2242 out:
2243 	*retlen = offset - start;
2244 	return rc;
2245 }
2246 
2247 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2248 {
2249 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2250 	struct efx_nic *efx = mtd->priv;
2251 	int rc = 0;
2252 
2253 	if (part->updating) {
2254 		part->updating = false;
2255 		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2256 	}
2257 
2258 	return rc;
2259 }
2260 
2261 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2262 {
2263 	struct efx_mcdi_mtd_partition *mcdi_part =
2264 		container_of(part, struct efx_mcdi_mtd_partition, common);
2265 	struct efx_nic *efx = part->mtd.priv;
2266 
2267 	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2268 		 efx->name, part->type_name, mcdi_part->fw_subtype);
2269 }
2270 
2271 #endif /* CONFIG_SFC_MTD */
2272