1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2008-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/moduleparam.h> 12 #include <linux/atomic.h> 13 #include "net_driver.h" 14 #include "nic.h" 15 #include "io.h" 16 #include "farch_regs.h" 17 #include "mcdi_pcol.h" 18 19 /************************************************************************** 20 * 21 * Management-Controller-to-Driver Interface 22 * 23 ************************************************************************** 24 */ 25 26 #define MCDI_RPC_TIMEOUT (10 * HZ) 27 28 /* A reboot/assertion causes the MCDI status word to be set after the 29 * command word is set or a REBOOT event is sent. If we notice a reboot 30 * via these mechanisms then wait 250ms for the status word to be set. 31 */ 32 #define MCDI_STATUS_DELAY_US 100 33 #define MCDI_STATUS_DELAY_COUNT 2500 34 #define MCDI_STATUS_SLEEP_MS \ 35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 36 37 #define SEQ_MASK \ 38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 39 40 struct efx_mcdi_async_param { 41 struct list_head list; 42 unsigned int cmd; 43 size_t inlen; 44 size_t outlen; 45 bool quiet; 46 efx_mcdi_async_completer *complete; 47 unsigned long cookie; 48 /* followed by request/response buffer */ 49 }; 50 51 static void efx_mcdi_timeout_async(unsigned long context); 52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 53 bool *was_attached_out); 54 static bool efx_mcdi_poll_once(struct efx_nic *efx); 55 static void efx_mcdi_abandon(struct efx_nic *efx); 56 57 #ifdef CONFIG_SFC_MCDI_LOGGING 58 static bool mcdi_logging_default; 59 module_param(mcdi_logging_default, bool, 0644); 60 MODULE_PARM_DESC(mcdi_logging_default, 61 "Enable MCDI logging on newly-probed functions"); 62 #endif 63 64 int efx_mcdi_init(struct efx_nic *efx) 65 { 66 struct efx_mcdi_iface *mcdi; 67 bool already_attached; 68 int rc = -ENOMEM; 69 70 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 71 if (!efx->mcdi) 72 goto fail; 73 74 mcdi = efx_mcdi(efx); 75 mcdi->efx = efx; 76 #ifdef CONFIG_SFC_MCDI_LOGGING 77 /* consuming code assumes buffer is page-sized */ 78 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 79 if (!mcdi->logging_buffer) 80 goto fail1; 81 mcdi->logging_enabled = mcdi_logging_default; 82 #endif 83 init_waitqueue_head(&mcdi->wq); 84 init_waitqueue_head(&mcdi->proxy_rx_wq); 85 spin_lock_init(&mcdi->iface_lock); 86 mcdi->state = MCDI_STATE_QUIESCENT; 87 mcdi->mode = MCDI_MODE_POLL; 88 spin_lock_init(&mcdi->async_lock); 89 INIT_LIST_HEAD(&mcdi->async_list); 90 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, 91 (unsigned long)mcdi); 92 93 (void) efx_mcdi_poll_reboot(efx); 94 mcdi->new_epoch = true; 95 96 /* Recover from a failed assertion before probing */ 97 rc = efx_mcdi_handle_assertion(efx); 98 if (rc) 99 goto fail2; 100 101 /* Let the MC (and BMC, if this is a LOM) know that the driver 102 * is loaded. We should do this before we reset the NIC. 103 */ 104 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 105 if (rc) { 106 netif_err(efx, probe, efx->net_dev, 107 "Unable to register driver with MCPU\n"); 108 goto fail2; 109 } 110 if (already_attached) 111 /* Not a fatal error */ 112 netif_err(efx, probe, efx->net_dev, 113 "Host already registered with MCPU\n"); 114 115 if (efx->mcdi->fn_flags & 116 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 117 efx->primary = efx; 118 119 return 0; 120 fail2: 121 #ifdef CONFIG_SFC_MCDI_LOGGING 122 free_page((unsigned long)mcdi->logging_buffer); 123 fail1: 124 #endif 125 kfree(efx->mcdi); 126 efx->mcdi = NULL; 127 fail: 128 return rc; 129 } 130 131 void efx_mcdi_detach(struct efx_nic *efx) 132 { 133 if (!efx->mcdi) 134 return; 135 136 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 137 138 /* Relinquish the device (back to the BMC, if this is a LOM) */ 139 efx_mcdi_drv_attach(efx, false, NULL); 140 } 141 142 void efx_mcdi_fini(struct efx_nic *efx) 143 { 144 if (!efx->mcdi) 145 return; 146 147 #ifdef CONFIG_SFC_MCDI_LOGGING 148 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 149 #endif 150 151 kfree(efx->mcdi); 152 } 153 154 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 155 const efx_dword_t *inbuf, size_t inlen) 156 { 157 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 158 #ifdef CONFIG_SFC_MCDI_LOGGING 159 char *buf = mcdi->logging_buffer; /* page-sized */ 160 #endif 161 efx_dword_t hdr[2]; 162 size_t hdr_len; 163 u32 xflags, seqno; 164 165 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 166 167 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 168 spin_lock_bh(&mcdi->iface_lock); 169 ++mcdi->seqno; 170 spin_unlock_bh(&mcdi->iface_lock); 171 172 seqno = mcdi->seqno & SEQ_MASK; 173 xflags = 0; 174 if (mcdi->mode == MCDI_MODE_EVENTS) 175 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 176 177 if (efx->type->mcdi_max_ver == 1) { 178 /* MCDI v1 */ 179 EFX_POPULATE_DWORD_7(hdr[0], 180 MCDI_HEADER_RESPONSE, 0, 181 MCDI_HEADER_RESYNC, 1, 182 MCDI_HEADER_CODE, cmd, 183 MCDI_HEADER_DATALEN, inlen, 184 MCDI_HEADER_SEQ, seqno, 185 MCDI_HEADER_XFLAGS, xflags, 186 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 187 hdr_len = 4; 188 } else { 189 /* MCDI v2 */ 190 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 191 EFX_POPULATE_DWORD_7(hdr[0], 192 MCDI_HEADER_RESPONSE, 0, 193 MCDI_HEADER_RESYNC, 1, 194 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 195 MCDI_HEADER_DATALEN, 0, 196 MCDI_HEADER_SEQ, seqno, 197 MCDI_HEADER_XFLAGS, xflags, 198 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 199 EFX_POPULATE_DWORD_2(hdr[1], 200 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 201 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 202 hdr_len = 8; 203 } 204 205 #ifdef CONFIG_SFC_MCDI_LOGGING 206 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 207 int bytes = 0; 208 int i; 209 /* Lengths should always be a whole number of dwords, so scream 210 * if they're not. 211 */ 212 WARN_ON_ONCE(hdr_len % 4); 213 WARN_ON_ONCE(inlen % 4); 214 215 /* We own the logging buffer, as only one MCDI can be in 216 * progress on a NIC at any one time. So no need for locking. 217 */ 218 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 219 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 220 " %08x", le32_to_cpu(hdr[i].u32[0])); 221 222 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 223 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 224 " %08x", le32_to_cpu(inbuf[i].u32[0])); 225 226 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 227 } 228 #endif 229 230 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 231 232 mcdi->new_epoch = false; 233 } 234 235 static int efx_mcdi_errno(unsigned int mcdi_err) 236 { 237 switch (mcdi_err) { 238 case 0: 239 return 0; 240 #define TRANSLATE_ERROR(name) \ 241 case MC_CMD_ERR_ ## name: \ 242 return -name; 243 TRANSLATE_ERROR(EPERM); 244 TRANSLATE_ERROR(ENOENT); 245 TRANSLATE_ERROR(EINTR); 246 TRANSLATE_ERROR(EAGAIN); 247 TRANSLATE_ERROR(EACCES); 248 TRANSLATE_ERROR(EBUSY); 249 TRANSLATE_ERROR(EINVAL); 250 TRANSLATE_ERROR(EDEADLK); 251 TRANSLATE_ERROR(ENOSYS); 252 TRANSLATE_ERROR(ETIME); 253 TRANSLATE_ERROR(EALREADY); 254 TRANSLATE_ERROR(ENOSPC); 255 #undef TRANSLATE_ERROR 256 case MC_CMD_ERR_ENOTSUP: 257 return -EOPNOTSUPP; 258 case MC_CMD_ERR_ALLOC_FAIL: 259 return -ENOBUFS; 260 case MC_CMD_ERR_MAC_EXIST: 261 return -EADDRINUSE; 262 default: 263 return -EPROTO; 264 } 265 } 266 267 static void efx_mcdi_read_response_header(struct efx_nic *efx) 268 { 269 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 270 unsigned int respseq, respcmd, error; 271 #ifdef CONFIG_SFC_MCDI_LOGGING 272 char *buf = mcdi->logging_buffer; /* page-sized */ 273 #endif 274 efx_dword_t hdr; 275 276 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 277 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 278 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 279 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 280 281 if (respcmd != MC_CMD_V2_EXTN) { 282 mcdi->resp_hdr_len = 4; 283 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 284 } else { 285 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 286 mcdi->resp_hdr_len = 8; 287 mcdi->resp_data_len = 288 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 289 } 290 291 #ifdef CONFIG_SFC_MCDI_LOGGING 292 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 293 size_t hdr_len, data_len; 294 int bytes = 0; 295 int i; 296 297 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 298 hdr_len = mcdi->resp_hdr_len / 4; 299 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 300 * to dword size, and the MCDI buffer is always dword size 301 */ 302 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 303 304 /* We own the logging buffer, as only one MCDI can be in 305 * progress on a NIC at any one time. So no need for locking. 306 */ 307 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 308 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 309 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 310 " %08x", le32_to_cpu(hdr.u32[0])); 311 } 312 313 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 314 efx->type->mcdi_read_response(efx, &hdr, 315 mcdi->resp_hdr_len + (i * 4), 4); 316 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 317 " %08x", le32_to_cpu(hdr.u32[0])); 318 } 319 320 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 321 } 322 #endif 323 324 mcdi->resprc_raw = 0; 325 if (error && mcdi->resp_data_len == 0) { 326 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 327 mcdi->resprc = -EIO; 328 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 329 netif_err(efx, hw, efx->net_dev, 330 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 331 respseq, mcdi->seqno); 332 mcdi->resprc = -EIO; 333 } else if (error) { 334 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 335 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); 336 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); 337 } else { 338 mcdi->resprc = 0; 339 } 340 } 341 342 static bool efx_mcdi_poll_once(struct efx_nic *efx) 343 { 344 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 345 346 rmb(); 347 if (!efx->type->mcdi_poll_response(efx)) 348 return false; 349 350 spin_lock_bh(&mcdi->iface_lock); 351 efx_mcdi_read_response_header(efx); 352 spin_unlock_bh(&mcdi->iface_lock); 353 354 return true; 355 } 356 357 static int efx_mcdi_poll(struct efx_nic *efx) 358 { 359 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 360 unsigned long time, finish; 361 unsigned int spins; 362 int rc; 363 364 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 365 rc = efx_mcdi_poll_reboot(efx); 366 if (rc) { 367 spin_lock_bh(&mcdi->iface_lock); 368 mcdi->resprc = rc; 369 mcdi->resp_hdr_len = 0; 370 mcdi->resp_data_len = 0; 371 spin_unlock_bh(&mcdi->iface_lock); 372 return 0; 373 } 374 375 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 376 * because generally mcdi responses are fast. After that, back off 377 * and poll once a jiffy (approximately) 378 */ 379 spins = TICK_USEC; 380 finish = jiffies + MCDI_RPC_TIMEOUT; 381 382 while (1) { 383 if (spins != 0) { 384 --spins; 385 udelay(1); 386 } else { 387 schedule_timeout_uninterruptible(1); 388 } 389 390 time = jiffies; 391 392 if (efx_mcdi_poll_once(efx)) 393 break; 394 395 if (time_after(time, finish)) 396 return -ETIMEDOUT; 397 } 398 399 /* Return rc=0 like wait_event_timeout() */ 400 return 0; 401 } 402 403 /* Test and clear MC-rebooted flag for this port/function; reset 404 * software state as necessary. 405 */ 406 int efx_mcdi_poll_reboot(struct efx_nic *efx) 407 { 408 if (!efx->mcdi) 409 return 0; 410 411 return efx->type->mcdi_poll_reboot(efx); 412 } 413 414 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 415 { 416 return cmpxchg(&mcdi->state, 417 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 418 MCDI_STATE_QUIESCENT; 419 } 420 421 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 422 { 423 /* Wait until the interface becomes QUIESCENT and we win the race 424 * to mark it RUNNING_SYNC. 425 */ 426 wait_event(mcdi->wq, 427 cmpxchg(&mcdi->state, 428 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 429 MCDI_STATE_QUIESCENT); 430 } 431 432 static int efx_mcdi_await_completion(struct efx_nic *efx) 433 { 434 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 435 436 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 437 MCDI_RPC_TIMEOUT) == 0) 438 return -ETIMEDOUT; 439 440 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 441 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 442 * completed the request first, then we'll just end up completing the 443 * request again, which is safe. 444 * 445 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 446 * wait_event_timeout() implicitly provides. 447 */ 448 if (mcdi->mode == MCDI_MODE_POLL) 449 return efx_mcdi_poll(efx); 450 451 return 0; 452 } 453 454 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 455 * requester. Return whether this was done. Does not take any locks. 456 */ 457 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 458 { 459 if (cmpxchg(&mcdi->state, 460 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 461 MCDI_STATE_RUNNING_SYNC) { 462 wake_up(&mcdi->wq); 463 return true; 464 } 465 466 return false; 467 } 468 469 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 470 { 471 if (mcdi->mode == MCDI_MODE_EVENTS) { 472 struct efx_mcdi_async_param *async; 473 struct efx_nic *efx = mcdi->efx; 474 475 /* Process the asynchronous request queue */ 476 spin_lock_bh(&mcdi->async_lock); 477 async = list_first_entry_or_null( 478 &mcdi->async_list, struct efx_mcdi_async_param, list); 479 if (async) { 480 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 481 efx_mcdi_send_request(efx, async->cmd, 482 (const efx_dword_t *)(async + 1), 483 async->inlen); 484 mod_timer(&mcdi->async_timer, 485 jiffies + MCDI_RPC_TIMEOUT); 486 } 487 spin_unlock_bh(&mcdi->async_lock); 488 489 if (async) 490 return; 491 } 492 493 mcdi->state = MCDI_STATE_QUIESCENT; 494 wake_up(&mcdi->wq); 495 } 496 497 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 498 * asynchronous completion function, and release the interface. 499 * Return whether this was done. Must be called in bh-disabled 500 * context. Will take iface_lock and async_lock. 501 */ 502 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 503 { 504 struct efx_nic *efx = mcdi->efx; 505 struct efx_mcdi_async_param *async; 506 size_t hdr_len, data_len, err_len; 507 efx_dword_t *outbuf; 508 MCDI_DECLARE_BUF_ERR(errbuf); 509 int rc; 510 511 if (cmpxchg(&mcdi->state, 512 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 513 MCDI_STATE_RUNNING_ASYNC) 514 return false; 515 516 spin_lock(&mcdi->iface_lock); 517 if (timeout) { 518 /* Ensure that if the completion event arrives later, 519 * the seqno check in efx_mcdi_ev_cpl() will fail 520 */ 521 ++mcdi->seqno; 522 ++mcdi->credits; 523 rc = -ETIMEDOUT; 524 hdr_len = 0; 525 data_len = 0; 526 } else { 527 rc = mcdi->resprc; 528 hdr_len = mcdi->resp_hdr_len; 529 data_len = mcdi->resp_data_len; 530 } 531 spin_unlock(&mcdi->iface_lock); 532 533 /* Stop the timer. In case the timer function is running, we 534 * must wait for it to return so that there is no possibility 535 * of it aborting the next request. 536 */ 537 if (!timeout) 538 del_timer_sync(&mcdi->async_timer); 539 540 spin_lock(&mcdi->async_lock); 541 async = list_first_entry(&mcdi->async_list, 542 struct efx_mcdi_async_param, list); 543 list_del(&async->list); 544 spin_unlock(&mcdi->async_lock); 545 546 outbuf = (efx_dword_t *)(async + 1); 547 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 548 min(async->outlen, data_len)); 549 if (!timeout && rc && !async->quiet) { 550 err_len = min(sizeof(errbuf), data_len); 551 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 552 sizeof(errbuf)); 553 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 554 err_len, rc); 555 } 556 557 if (async->complete) 558 async->complete(efx, async->cookie, rc, outbuf, 559 min(async->outlen, data_len)); 560 kfree(async); 561 562 efx_mcdi_release(mcdi); 563 564 return true; 565 } 566 567 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 568 unsigned int datalen, unsigned int mcdi_err) 569 { 570 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 571 bool wake = false; 572 573 spin_lock(&mcdi->iface_lock); 574 575 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 576 if (mcdi->credits) 577 /* The request has been cancelled */ 578 --mcdi->credits; 579 else 580 netif_err(efx, hw, efx->net_dev, 581 "MC response mismatch tx seq 0x%x rx " 582 "seq 0x%x\n", seqno, mcdi->seqno); 583 } else { 584 if (efx->type->mcdi_max_ver >= 2) { 585 /* MCDI v2 responses don't fit in an event */ 586 efx_mcdi_read_response_header(efx); 587 } else { 588 mcdi->resprc = efx_mcdi_errno(mcdi_err); 589 mcdi->resp_hdr_len = 4; 590 mcdi->resp_data_len = datalen; 591 } 592 593 wake = true; 594 } 595 596 spin_unlock(&mcdi->iface_lock); 597 598 if (wake) { 599 if (!efx_mcdi_complete_async(mcdi, false)) 600 (void) efx_mcdi_complete_sync(mcdi); 601 602 /* If the interface isn't RUNNING_ASYNC or 603 * RUNNING_SYNC then we've received a duplicate 604 * completion after we've already transitioned back to 605 * QUIESCENT. [A subsequent invocation would increment 606 * seqno, so would have failed the seqno check]. 607 */ 608 } 609 } 610 611 static void efx_mcdi_timeout_async(unsigned long context) 612 { 613 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; 614 615 efx_mcdi_complete_async(mcdi, true); 616 } 617 618 static int 619 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 620 { 621 if (efx->type->mcdi_max_ver < 0 || 622 (efx->type->mcdi_max_ver < 2 && 623 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 624 return -EINVAL; 625 626 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 627 (efx->type->mcdi_max_ver < 2 && 628 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 629 return -EMSGSIZE; 630 631 return 0; 632 } 633 634 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, 635 size_t hdr_len, size_t data_len, 636 u32 *proxy_handle) 637 { 638 MCDI_DECLARE_BUF_ERR(testbuf); 639 const size_t buflen = sizeof(testbuf); 640 641 if (!proxy_handle || data_len < buflen) 642 return false; 643 644 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); 645 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { 646 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); 647 return true; 648 } 649 650 return false; 651 } 652 653 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 654 size_t inlen, 655 efx_dword_t *outbuf, size_t outlen, 656 size_t *outlen_actual, bool quiet, 657 u32 *proxy_handle, int *raw_rc) 658 { 659 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 660 MCDI_DECLARE_BUF_ERR(errbuf); 661 int rc; 662 663 if (mcdi->mode == MCDI_MODE_POLL) 664 rc = efx_mcdi_poll(efx); 665 else 666 rc = efx_mcdi_await_completion(efx); 667 668 if (rc != 0) { 669 netif_err(efx, hw, efx->net_dev, 670 "MC command 0x%x inlen %d mode %d timed out\n", 671 cmd, (int)inlen, mcdi->mode); 672 673 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 674 netif_err(efx, hw, efx->net_dev, 675 "MCDI request was completed without an event\n"); 676 rc = 0; 677 } 678 679 efx_mcdi_abandon(efx); 680 681 /* Close the race with efx_mcdi_ev_cpl() executing just too late 682 * and completing a request we've just cancelled, by ensuring 683 * that the seqno check therein fails. 684 */ 685 spin_lock_bh(&mcdi->iface_lock); 686 ++mcdi->seqno; 687 ++mcdi->credits; 688 spin_unlock_bh(&mcdi->iface_lock); 689 } 690 691 if (proxy_handle) 692 *proxy_handle = 0; 693 694 if (rc != 0) { 695 if (outlen_actual) 696 *outlen_actual = 0; 697 } else { 698 size_t hdr_len, data_len, err_len; 699 700 /* At the very least we need a memory barrier here to ensure 701 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 702 * a spurious efx_mcdi_ev_cpl() running concurrently by 703 * acquiring the iface_lock. */ 704 spin_lock_bh(&mcdi->iface_lock); 705 rc = mcdi->resprc; 706 if (raw_rc) 707 *raw_rc = mcdi->resprc_raw; 708 hdr_len = mcdi->resp_hdr_len; 709 data_len = mcdi->resp_data_len; 710 err_len = min(sizeof(errbuf), data_len); 711 spin_unlock_bh(&mcdi->iface_lock); 712 713 BUG_ON(rc > 0); 714 715 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 716 min(outlen, data_len)); 717 if (outlen_actual) 718 *outlen_actual = data_len; 719 720 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 721 722 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 723 /* Don't reset if MC_CMD_REBOOT returns EIO */ 724 } else if (rc == -EIO || rc == -EINTR) { 725 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n"); 726 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n", 727 cmd, -rc); 728 if (efx->type->mcdi_reboot_detected) 729 efx->type->mcdi_reboot_detected(efx); 730 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 731 } else if (proxy_handle && (rc == -EPROTO) && 732 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, 733 proxy_handle)) { 734 mcdi->proxy_rx_status = 0; 735 mcdi->proxy_rx_handle = 0; 736 mcdi->state = MCDI_STATE_PROXY_WAIT; 737 } else if (rc && !quiet) { 738 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 739 rc); 740 } 741 742 if (rc == -EIO || rc == -EINTR) { 743 msleep(MCDI_STATUS_SLEEP_MS); 744 efx_mcdi_poll_reboot(efx); 745 mcdi->new_epoch = true; 746 } 747 } 748 749 if (!proxy_handle || !*proxy_handle) 750 efx_mcdi_release(mcdi); 751 return rc; 752 } 753 754 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) 755 { 756 if (mcdi->state == MCDI_STATE_PROXY_WAIT) { 757 /* Interrupt the proxy wait. */ 758 mcdi->proxy_rx_status = -EINTR; 759 wake_up(&mcdi->proxy_rx_wq); 760 } 761 } 762 763 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, 764 u32 handle, int status) 765 { 766 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 767 768 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); 769 770 mcdi->proxy_rx_status = efx_mcdi_errno(status); 771 /* Ensure the status is written before we update the handle, since the 772 * latter is used to check if we've finished. 773 */ 774 wmb(); 775 mcdi->proxy_rx_handle = handle; 776 wake_up(&mcdi->proxy_rx_wq); 777 } 778 779 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) 780 { 781 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 782 int rc; 783 784 /* Wait for a proxy event, or timeout. */ 785 rc = wait_event_timeout(mcdi->proxy_rx_wq, 786 mcdi->proxy_rx_handle != 0 || 787 mcdi->proxy_rx_status == -EINTR, 788 MCDI_RPC_TIMEOUT); 789 790 if (rc <= 0) { 791 netif_dbg(efx, hw, efx->net_dev, 792 "MCDI proxy timeout %d\n", handle); 793 return -ETIMEDOUT; 794 } else if (mcdi->proxy_rx_handle != handle) { 795 netif_warn(efx, hw, efx->net_dev, 796 "MCDI proxy unexpected handle %d (expected %d)\n", 797 mcdi->proxy_rx_handle, handle); 798 return -EINVAL; 799 } 800 801 return mcdi->proxy_rx_status; 802 } 803 804 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 805 const efx_dword_t *inbuf, size_t inlen, 806 efx_dword_t *outbuf, size_t outlen, 807 size_t *outlen_actual, bool quiet, int *raw_rc) 808 { 809 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ 810 int rc; 811 812 if (inbuf && inlen && (inbuf == outbuf)) { 813 /* The input buffer can't be aliased with the output. */ 814 WARN_ON(1); 815 return -EINVAL; 816 } 817 818 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 819 if (rc) 820 return rc; 821 822 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 823 outlen_actual, quiet, &proxy_handle, raw_rc); 824 825 if (proxy_handle) { 826 /* Handle proxy authorisation. This allows approval of MCDI 827 * operations to be delegated to the admin function, allowing 828 * fine control over (eg) multicast subscriptions. 829 */ 830 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 831 832 netif_dbg(efx, hw, efx->net_dev, 833 "MCDI waiting for proxy auth %d\n", 834 proxy_handle); 835 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); 836 837 if (rc == 0) { 838 netif_dbg(efx, hw, efx->net_dev, 839 "MCDI proxy retry %d\n", proxy_handle); 840 841 /* We now retry the original request. */ 842 mcdi->state = MCDI_STATE_RUNNING_SYNC; 843 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 844 845 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, 846 outbuf, outlen, outlen_actual, 847 quiet, NULL, raw_rc); 848 } else { 849 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 850 "MC command 0x%x failed after proxy auth rc=%d\n", 851 cmd, rc); 852 853 if (rc == -EINTR || rc == -EIO) 854 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 855 efx_mcdi_release(mcdi); 856 } 857 } 858 859 return rc; 860 } 861 862 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, 863 const efx_dword_t *inbuf, size_t inlen, 864 efx_dword_t *outbuf, size_t outlen, 865 size_t *outlen_actual, bool quiet) 866 { 867 int raw_rc = 0; 868 int rc; 869 870 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 871 outbuf, outlen, outlen_actual, true, &raw_rc); 872 873 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 874 efx->type->is_vf) { 875 /* If the EVB port isn't available within a VF this may 876 * mean the PF is still bringing the switch up. We should 877 * retry our request shortly. 878 */ 879 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; 880 unsigned int delay_us = 10000; 881 882 netif_dbg(efx, hw, efx->net_dev, 883 "%s: NO_EVB_PORT; will retry request\n", 884 __func__); 885 886 do { 887 usleep_range(delay_us, delay_us + 10000); 888 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 889 outbuf, outlen, outlen_actual, 890 true, &raw_rc); 891 if (delay_us < 100000) 892 delay_us <<= 1; 893 } while ((rc == -EPROTO) && 894 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 895 time_before(jiffies, abort_time)); 896 } 897 898 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) 899 efx_mcdi_display_error(efx, cmd, inlen, 900 outbuf, outlen, rc); 901 902 return rc; 903 } 904 905 /** 906 * efx_mcdi_rpc - Issue an MCDI command and wait for completion 907 * @efx: NIC through which to issue the command 908 * @cmd: Command type number 909 * @inbuf: Command parameters 910 * @inlen: Length of command parameters, in bytes. Must be a multiple 911 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. 912 * @outbuf: Response buffer. May be %NULL if @outlen is 0. 913 * @outlen: Length of response buffer, in bytes. If the actual 914 * response is longer than @outlen & ~3, it will be truncated 915 * to that length. 916 * @outlen_actual: Pointer through which to return the actual response 917 * length. May be %NULL if this is not needed. 918 * 919 * This function may sleep and therefore must be called in an appropriate 920 * context. 921 * 922 * Return: A negative error code, or zero if successful. The error 923 * code may come from the MCDI response or may indicate a failure 924 * to communicate with the MC. In the former case, the response 925 * will still be copied to @outbuf and *@outlen_actual will be 926 * set accordingly. In the latter case, *@outlen_actual will be 927 * set to zero. 928 */ 929 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 930 const efx_dword_t *inbuf, size_t inlen, 931 efx_dword_t *outbuf, size_t outlen, 932 size_t *outlen_actual) 933 { 934 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 935 outlen_actual, false); 936 } 937 938 /* Normally, on receiving an error code in the MCDI response, 939 * efx_mcdi_rpc will log an error message containing (among other 940 * things) the raw error code, by means of efx_mcdi_display_error. 941 * This _quiet version suppresses that; if the caller wishes to log 942 * the error conditionally on the return code, it should call this 943 * function and is then responsible for calling efx_mcdi_display_error 944 * as needed. 945 */ 946 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 947 const efx_dword_t *inbuf, size_t inlen, 948 efx_dword_t *outbuf, size_t outlen, 949 size_t *outlen_actual) 950 { 951 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 952 outlen_actual, true); 953 } 954 955 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 956 const efx_dword_t *inbuf, size_t inlen) 957 { 958 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 959 int rc; 960 961 rc = efx_mcdi_check_supported(efx, cmd, inlen); 962 if (rc) 963 return rc; 964 965 if (efx->mc_bist_for_other_fn) 966 return -ENETDOWN; 967 968 if (mcdi->mode == MCDI_MODE_FAIL) 969 return -ENETDOWN; 970 971 efx_mcdi_acquire_sync(mcdi); 972 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 973 return 0; 974 } 975 976 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 977 const efx_dword_t *inbuf, size_t inlen, 978 size_t outlen, 979 efx_mcdi_async_completer *complete, 980 unsigned long cookie, bool quiet) 981 { 982 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 983 struct efx_mcdi_async_param *async; 984 int rc; 985 986 rc = efx_mcdi_check_supported(efx, cmd, inlen); 987 if (rc) 988 return rc; 989 990 if (efx->mc_bist_for_other_fn) 991 return -ENETDOWN; 992 993 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 994 GFP_ATOMIC); 995 if (!async) 996 return -ENOMEM; 997 998 async->cmd = cmd; 999 async->inlen = inlen; 1000 async->outlen = outlen; 1001 async->quiet = quiet; 1002 async->complete = complete; 1003 async->cookie = cookie; 1004 memcpy(async + 1, inbuf, inlen); 1005 1006 spin_lock_bh(&mcdi->async_lock); 1007 1008 if (mcdi->mode == MCDI_MODE_EVENTS) { 1009 list_add_tail(&async->list, &mcdi->async_list); 1010 1011 /* If this is at the front of the queue, try to start it 1012 * immediately 1013 */ 1014 if (mcdi->async_list.next == &async->list && 1015 efx_mcdi_acquire_async(mcdi)) { 1016 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 1017 mod_timer(&mcdi->async_timer, 1018 jiffies + MCDI_RPC_TIMEOUT); 1019 } 1020 } else { 1021 kfree(async); 1022 rc = -ENETDOWN; 1023 } 1024 1025 spin_unlock_bh(&mcdi->async_lock); 1026 1027 return rc; 1028 } 1029 1030 /** 1031 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 1032 * @efx: NIC through which to issue the command 1033 * @cmd: Command type number 1034 * @inbuf: Command parameters 1035 * @inlen: Length of command parameters, in bytes 1036 * @outlen: Length to allocate for response buffer, in bytes 1037 * @complete: Function to be called on completion or cancellation. 1038 * @cookie: Arbitrary value to be passed to @complete. 1039 * 1040 * This function does not sleep and therefore may be called in atomic 1041 * context. It will fail if event queues are disabled or if MCDI 1042 * event completions have been disabled due to an error. 1043 * 1044 * If it succeeds, the @complete function will be called exactly once 1045 * in atomic context, when one of the following occurs: 1046 * (a) the completion event is received (in NAPI context) 1047 * (b) event queues are disabled (in the process that disables them) 1048 * (c) the request times-out (in timer context) 1049 */ 1050 int 1051 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 1052 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 1053 efx_mcdi_async_completer *complete, unsigned long cookie) 1054 { 1055 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1056 cookie, false); 1057 } 1058 1059 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 1060 const efx_dword_t *inbuf, size_t inlen, 1061 size_t outlen, efx_mcdi_async_completer *complete, 1062 unsigned long cookie) 1063 { 1064 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1065 cookie, true); 1066 } 1067 1068 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 1069 efx_dword_t *outbuf, size_t outlen, 1070 size_t *outlen_actual) 1071 { 1072 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1073 outlen_actual, false, NULL, NULL); 1074 } 1075 1076 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 1077 efx_dword_t *outbuf, size_t outlen, 1078 size_t *outlen_actual) 1079 { 1080 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1081 outlen_actual, true, NULL, NULL); 1082 } 1083 1084 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 1085 size_t inlen, efx_dword_t *outbuf, 1086 size_t outlen, int rc) 1087 { 1088 int code = 0, err_arg = 0; 1089 1090 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 1091 code = MCDI_DWORD(outbuf, ERR_CODE); 1092 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 1093 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 1094 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 1095 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", 1096 cmd, inlen, rc, code, err_arg); 1097 } 1098 1099 /* Switch to polled MCDI completions. This can be called in various 1100 * error conditions with various locks held, so it must be lockless. 1101 * Caller is responsible for flushing asynchronous requests later. 1102 */ 1103 void efx_mcdi_mode_poll(struct efx_nic *efx) 1104 { 1105 struct efx_mcdi_iface *mcdi; 1106 1107 if (!efx->mcdi) 1108 return; 1109 1110 mcdi = efx_mcdi(efx); 1111 /* If already in polling mode, nothing to do. 1112 * If in fail-fast state, don't switch to polled completion. 1113 * FLR recovery will do that later. 1114 */ 1115 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 1116 return; 1117 1118 /* We can switch from event completion to polled completion, because 1119 * mcdi requests are always completed in shared memory. We do this by 1120 * switching the mode to POLL'd then completing the request. 1121 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 1122 * 1123 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 1124 * which efx_mcdi_complete_sync() provides for us. 1125 */ 1126 mcdi->mode = MCDI_MODE_POLL; 1127 1128 efx_mcdi_complete_sync(mcdi); 1129 } 1130 1131 /* Flush any running or queued asynchronous requests, after event processing 1132 * is stopped 1133 */ 1134 void efx_mcdi_flush_async(struct efx_nic *efx) 1135 { 1136 struct efx_mcdi_async_param *async, *next; 1137 struct efx_mcdi_iface *mcdi; 1138 1139 if (!efx->mcdi) 1140 return; 1141 1142 mcdi = efx_mcdi(efx); 1143 1144 /* We must be in poll or fail mode so no more requests can be queued */ 1145 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 1146 1147 del_timer_sync(&mcdi->async_timer); 1148 1149 /* If a request is still running, make sure we give the MC 1150 * time to complete it so that the response won't overwrite our 1151 * next request. 1152 */ 1153 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 1154 efx_mcdi_poll(efx); 1155 mcdi->state = MCDI_STATE_QUIESCENT; 1156 } 1157 1158 /* Nothing else will access the async list now, so it is safe 1159 * to walk it without holding async_lock. If we hold it while 1160 * calling a completer then lockdep may warn that we have 1161 * acquired locks in the wrong order. 1162 */ 1163 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 1164 if (async->complete) 1165 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 1166 list_del(&async->list); 1167 kfree(async); 1168 } 1169 } 1170 1171 void efx_mcdi_mode_event(struct efx_nic *efx) 1172 { 1173 struct efx_mcdi_iface *mcdi; 1174 1175 if (!efx->mcdi) 1176 return; 1177 1178 mcdi = efx_mcdi(efx); 1179 /* If already in event completion mode, nothing to do. 1180 * If in fail-fast state, don't switch to event completion. FLR 1181 * recovery will do that later. 1182 */ 1183 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 1184 return; 1185 1186 /* We can't switch from polled to event completion in the middle of a 1187 * request, because the completion method is specified in the request. 1188 * So acquire the interface to serialise the requestors. We don't need 1189 * to acquire the iface_lock to change the mode here, but we do need a 1190 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 1191 * efx_mcdi_acquire() provides. 1192 */ 1193 efx_mcdi_acquire_sync(mcdi); 1194 mcdi->mode = MCDI_MODE_EVENTS; 1195 efx_mcdi_release(mcdi); 1196 } 1197 1198 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 1199 { 1200 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1201 1202 /* If there is an outstanding MCDI request, it has been terminated 1203 * either by a BADASSERT or REBOOT event. If the mcdi interface is 1204 * in polled mode, then do nothing because the MC reboot handler will 1205 * set the header correctly. However, if the mcdi interface is waiting 1206 * for a CMDDONE event it won't receive it [and since all MCDI events 1207 * are sent to the same queue, we can't be racing with 1208 * efx_mcdi_ev_cpl()] 1209 * 1210 * If there is an outstanding asynchronous request, we can't 1211 * complete it now (efx_mcdi_complete() would deadlock). The 1212 * reset process will take care of this. 1213 * 1214 * There's a race here with efx_mcdi_send_request(), because 1215 * we might receive a REBOOT event *before* the request has 1216 * been copied out. In polled mode (during startup) this is 1217 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1218 * event mode, this condition is just an edge-case of 1219 * receiving a REBOOT event after posting the MCDI 1220 * request. Did the mc reboot before or after the copyout? The 1221 * best we can do always is just return failure. 1222 * 1223 * If there is an outstanding proxy response expected it is not going 1224 * to arrive. We should thus abort it. 1225 */ 1226 spin_lock(&mcdi->iface_lock); 1227 efx_mcdi_proxy_abort(mcdi); 1228 1229 if (efx_mcdi_complete_sync(mcdi)) { 1230 if (mcdi->mode == MCDI_MODE_EVENTS) { 1231 mcdi->resprc = rc; 1232 mcdi->resp_hdr_len = 0; 1233 mcdi->resp_data_len = 0; 1234 ++mcdi->credits; 1235 } 1236 } else { 1237 int count; 1238 1239 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1240 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1241 rc = efx_mcdi_poll_reboot(efx); 1242 if (rc) 1243 break; 1244 udelay(MCDI_STATUS_DELAY_US); 1245 } 1246 1247 /* On EF10, a CODE_MC_REBOOT event can be received without the 1248 * reboot detection in efx_mcdi_poll_reboot() being triggered. 1249 * If zero was returned from the final call to 1250 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1251 * MC has definitely rebooted so prepare for the reset. 1252 */ 1253 if (!rc && efx->type->mcdi_reboot_detected) 1254 efx->type->mcdi_reboot_detected(efx); 1255 1256 mcdi->new_epoch = true; 1257 1258 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1259 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1260 } 1261 1262 spin_unlock(&mcdi->iface_lock); 1263 } 1264 1265 /* The MC is going down in to BIST mode. set the BIST flag to block 1266 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 1267 * (which doesn't actually execute a reset, it waits for the controlling 1268 * function to reset it). 1269 */ 1270 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1271 { 1272 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1273 1274 spin_lock(&mcdi->iface_lock); 1275 efx->mc_bist_for_other_fn = true; 1276 efx_mcdi_proxy_abort(mcdi); 1277 1278 if (efx_mcdi_complete_sync(mcdi)) { 1279 if (mcdi->mode == MCDI_MODE_EVENTS) { 1280 mcdi->resprc = -EIO; 1281 mcdi->resp_hdr_len = 0; 1282 mcdi->resp_data_len = 0; 1283 ++mcdi->credits; 1284 } 1285 } 1286 mcdi->new_epoch = true; 1287 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1288 spin_unlock(&mcdi->iface_lock); 1289 } 1290 1291 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1292 * to recover. 1293 */ 1294 static void efx_mcdi_abandon(struct efx_nic *efx) 1295 { 1296 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1297 1298 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1299 return; /* it had already been done */ 1300 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1301 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1302 } 1303 1304 /* Called from falcon_process_eventq for MCDI events */ 1305 void efx_mcdi_process_event(struct efx_channel *channel, 1306 efx_qword_t *event) 1307 { 1308 struct efx_nic *efx = channel->efx; 1309 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1310 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1311 1312 switch (code) { 1313 case MCDI_EVENT_CODE_BADSSERT: 1314 netif_err(efx, hw, efx->net_dev, 1315 "MC watchdog or assertion failure at 0x%x\n", data); 1316 efx_mcdi_ev_death(efx, -EINTR); 1317 break; 1318 1319 case MCDI_EVENT_CODE_PMNOTICE: 1320 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1321 break; 1322 1323 case MCDI_EVENT_CODE_CMDDONE: 1324 efx_mcdi_ev_cpl(efx, 1325 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1326 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1327 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1328 break; 1329 1330 case MCDI_EVENT_CODE_LINKCHANGE: 1331 efx_mcdi_process_link_change(efx, event); 1332 break; 1333 case MCDI_EVENT_CODE_SENSOREVT: 1334 efx_mcdi_sensor_event(efx, event); 1335 break; 1336 case MCDI_EVENT_CODE_SCHEDERR: 1337 netif_dbg(efx, hw, efx->net_dev, 1338 "MC Scheduler alert (0x%x)\n", data); 1339 break; 1340 case MCDI_EVENT_CODE_REBOOT: 1341 case MCDI_EVENT_CODE_MC_REBOOT: 1342 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1343 efx_mcdi_ev_death(efx, -EIO); 1344 break; 1345 case MCDI_EVENT_CODE_MC_BIST: 1346 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1347 efx_mcdi_ev_bist(efx); 1348 break; 1349 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1350 /* MAC stats are gather lazily. We can ignore this. */ 1351 break; 1352 case MCDI_EVENT_CODE_FLR: 1353 if (efx->type->sriov_flr) 1354 efx->type->sriov_flr(efx, 1355 MCDI_EVENT_FIELD(*event, FLR_VF)); 1356 break; 1357 case MCDI_EVENT_CODE_PTP_RX: 1358 case MCDI_EVENT_CODE_PTP_FAULT: 1359 case MCDI_EVENT_CODE_PTP_PPS: 1360 efx_ptp_event(efx, event); 1361 break; 1362 case MCDI_EVENT_CODE_PTP_TIME: 1363 efx_time_sync_event(channel, event); 1364 break; 1365 case MCDI_EVENT_CODE_TX_FLUSH: 1366 case MCDI_EVENT_CODE_RX_FLUSH: 1367 /* Two flush events will be sent: one to the same event 1368 * queue as completions, and one to event queue 0. 1369 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1370 * flag will be set, and we should ignore the event 1371 * because we want to wait for all completions. 1372 */ 1373 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1374 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1375 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1376 efx_ef10_handle_drain_event(efx); 1377 break; 1378 case MCDI_EVENT_CODE_TX_ERR: 1379 case MCDI_EVENT_CODE_RX_ERR: 1380 netif_err(efx, hw, efx->net_dev, 1381 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1382 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1383 EFX_QWORD_VAL(*event)); 1384 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1385 break; 1386 case MCDI_EVENT_CODE_PROXY_RESPONSE: 1387 efx_mcdi_ev_proxy_response(efx, 1388 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), 1389 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); 1390 break; 1391 default: 1392 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", 1393 code); 1394 } 1395 } 1396 1397 /************************************************************************** 1398 * 1399 * Specific request functions 1400 * 1401 ************************************************************************** 1402 */ 1403 1404 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1405 { 1406 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1407 size_t outlength; 1408 const __le16 *ver_words; 1409 size_t offset; 1410 int rc; 1411 1412 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1413 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1414 outbuf, sizeof(outbuf), &outlength); 1415 if (rc) 1416 goto fail; 1417 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1418 rc = -EIO; 1419 goto fail; 1420 } 1421 1422 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1423 offset = snprintf(buf, len, "%u.%u.%u.%u", 1424 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 1425 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 1426 1427 /* EF10 may have multiple datapath firmware variants within a 1428 * single version. Report which variants are running. 1429 */ 1430 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1431 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1432 1433 offset += snprintf(buf + offset, len - offset, " rx%x tx%x", 1434 nic_data->rx_dpcpu_fw_id, 1435 nic_data->tx_dpcpu_fw_id); 1436 1437 /* It's theoretically possible for the string to exceed 31 1438 * characters, though in practice the first three version 1439 * components are short enough that this doesn't happen. 1440 */ 1441 if (WARN_ON(offset >= len)) 1442 buf[0] = 0; 1443 } 1444 1445 return; 1446 1447 fail: 1448 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1449 buf[0] = 0; 1450 } 1451 1452 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1453 bool *was_attached) 1454 { 1455 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1456 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1457 size_t outlen; 1458 int rc; 1459 1460 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1461 driver_operating ? 1 : 0); 1462 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1463 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1464 1465 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1466 outbuf, sizeof(outbuf), &outlen); 1467 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1468 * specified will fail with EPERM, and we have to tell the MC we don't 1469 * care what firmware we get. 1470 */ 1471 if (rc == -EPERM) { 1472 netif_dbg(efx, probe, efx->net_dev, 1473 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); 1474 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1475 MC_CMD_FW_DONT_CARE); 1476 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1477 sizeof(inbuf), outbuf, sizeof(outbuf), 1478 &outlen); 1479 } 1480 if (rc) { 1481 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1482 outbuf, outlen, rc); 1483 goto fail; 1484 } 1485 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1486 rc = -EIO; 1487 goto fail; 1488 } 1489 1490 if (driver_operating) { 1491 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1492 efx->mcdi->fn_flags = 1493 MCDI_DWORD(outbuf, 1494 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1495 } else { 1496 /* Synthesise flags for Siena */ 1497 efx->mcdi->fn_flags = 1498 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1500 (efx_port_num(efx) == 0) << 1501 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1502 } 1503 } 1504 1505 /* We currently assume we have control of the external link 1506 * and are completely trusted by firmware. Abort probing 1507 * if that's not true for this function. 1508 */ 1509 1510 if (was_attached != NULL) 1511 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1512 return 0; 1513 1514 fail: 1515 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1516 return rc; 1517 } 1518 1519 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1520 u16 *fw_subtype_list, u32 *capabilities) 1521 { 1522 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1523 size_t outlen, i; 1524 int port_num = efx_port_num(efx); 1525 int rc; 1526 1527 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1528 /* we need __aligned(2) for ether_addr_copy */ 1529 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1531 1532 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1533 outbuf, sizeof(outbuf), &outlen); 1534 if (rc) 1535 goto fail; 1536 1537 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1538 rc = -EIO; 1539 goto fail; 1540 } 1541 1542 if (mac_address) 1543 ether_addr_copy(mac_address, 1544 port_num ? 1545 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1546 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1547 if (fw_subtype_list) { 1548 for (i = 0; 1549 i < MCDI_VAR_ARRAY_LEN(outlen, 1550 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1551 i++) 1552 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1553 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1554 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1555 fw_subtype_list[i] = 0; 1556 } 1557 if (capabilities) { 1558 if (port_num) 1559 *capabilities = MCDI_DWORD(outbuf, 1560 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1561 else 1562 *capabilities = MCDI_DWORD(outbuf, 1563 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1564 } 1565 1566 return 0; 1567 1568 fail: 1569 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1570 __func__, rc, (int)outlen); 1571 1572 return rc; 1573 } 1574 1575 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1576 { 1577 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1578 u32 dest = 0; 1579 int rc; 1580 1581 if (uart) 1582 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1583 if (evq) 1584 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1585 1586 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1587 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1588 1589 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1590 1591 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1592 NULL, 0, NULL); 1593 return rc; 1594 } 1595 1596 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1597 { 1598 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1599 size_t outlen; 1600 int rc; 1601 1602 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1603 1604 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1605 outbuf, sizeof(outbuf), &outlen); 1606 if (rc) 1607 goto fail; 1608 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1609 rc = -EIO; 1610 goto fail; 1611 } 1612 1613 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1614 return 0; 1615 1616 fail: 1617 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1618 __func__, rc); 1619 return rc; 1620 } 1621 1622 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1623 size_t *size_out, size_t *erase_size_out, 1624 bool *protected_out) 1625 { 1626 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1627 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1628 size_t outlen; 1629 int rc; 1630 1631 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1632 1633 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1634 outbuf, sizeof(outbuf), &outlen); 1635 if (rc) 1636 goto fail; 1637 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1638 rc = -EIO; 1639 goto fail; 1640 } 1641 1642 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1643 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1644 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1645 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1646 return 0; 1647 1648 fail: 1649 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1650 return rc; 1651 } 1652 1653 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1654 { 1655 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1656 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1657 int rc; 1658 1659 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1660 1661 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1662 outbuf, sizeof(outbuf), NULL); 1663 if (rc) 1664 return rc; 1665 1666 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1667 case MC_CMD_NVRAM_TEST_PASS: 1668 case MC_CMD_NVRAM_TEST_NOTSUPP: 1669 return 0; 1670 default: 1671 return -EIO; 1672 } 1673 } 1674 1675 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1676 { 1677 u32 nvram_types; 1678 unsigned int type; 1679 int rc; 1680 1681 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1682 if (rc) 1683 goto fail1; 1684 1685 type = 0; 1686 while (nvram_types != 0) { 1687 if (nvram_types & 1) { 1688 rc = efx_mcdi_nvram_test(efx, type); 1689 if (rc) 1690 goto fail2; 1691 } 1692 type++; 1693 nvram_types >>= 1; 1694 } 1695 1696 return 0; 1697 1698 fail2: 1699 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1700 __func__, type); 1701 fail1: 1702 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1703 return rc; 1704 } 1705 1706 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1707 * negative on error. 1708 */ 1709 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1710 { 1711 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1712 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1713 unsigned int flags, index; 1714 const char *reason; 1715 size_t outlen; 1716 int retry; 1717 int rc; 1718 1719 /* Attempt to read any stored assertion state before we reboot 1720 * the mcfw out of the assertion handler. Retry twice, once 1721 * because a boot-time assertion might cause this command to fail 1722 * with EINTR. And once again because GET_ASSERTS can race with 1723 * MC_CMD_REBOOT running on the other port. */ 1724 retry = 2; 1725 do { 1726 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1727 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1728 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1729 outbuf, sizeof(outbuf), &outlen); 1730 if (rc == -EPERM) 1731 return 0; 1732 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1733 1734 if (rc) { 1735 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1736 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1737 outlen, rc); 1738 return rc; 1739 } 1740 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1741 return -EIO; 1742 1743 /* Print out any recorded assertion state */ 1744 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1745 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1746 return 0; 1747 1748 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1749 ? "system-level assertion" 1750 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1751 ? "thread-level assertion" 1752 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1753 ? "watchdog reset" 1754 : "unknown assertion"; 1755 netif_err(efx, hw, efx->net_dev, 1756 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1757 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1758 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1759 1760 /* Print out the registers */ 1761 for (index = 0; 1762 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1763 index++) 1764 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1765 1 + index, 1766 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1767 index)); 1768 1769 return 1; 1770 } 1771 1772 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1773 { 1774 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1775 int rc; 1776 1777 /* If the MC is running debug firmware, it might now be 1778 * waiting for a debugger to attach, but we just want it to 1779 * reboot. We set a flag that makes the command a no-op if it 1780 * has already done so. 1781 * The MCDI will thus return either 0 or -EIO. 1782 */ 1783 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1784 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1785 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1786 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1787 NULL, 0, NULL); 1788 if (rc == -EIO) 1789 rc = 0; 1790 if (rc) 1791 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1792 NULL, 0, rc); 1793 return rc; 1794 } 1795 1796 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1797 { 1798 int rc; 1799 1800 rc = efx_mcdi_read_assertion(efx); 1801 if (rc <= 0) 1802 return rc; 1803 1804 return efx_mcdi_exit_assertion(efx); 1805 } 1806 1807 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1808 { 1809 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1810 int rc; 1811 1812 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1813 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1814 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1815 1816 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1817 1818 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1819 1820 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1821 NULL, 0, NULL); 1822 } 1823 1824 static int efx_mcdi_reset_func(struct efx_nic *efx) 1825 { 1826 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1827 int rc; 1828 1829 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1830 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1831 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1832 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1833 NULL, 0, NULL); 1834 return rc; 1835 } 1836 1837 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1838 { 1839 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1840 int rc; 1841 1842 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1843 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1844 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1845 NULL, 0, NULL); 1846 /* White is black, and up is down */ 1847 if (rc == -EIO) 1848 return 0; 1849 if (rc == 0) 1850 rc = -EIO; 1851 return rc; 1852 } 1853 1854 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1855 { 1856 return RESET_TYPE_RECOVER_OR_ALL; 1857 } 1858 1859 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1860 { 1861 int rc; 1862 1863 /* If MCDI is down, we can't handle_assertion */ 1864 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1865 rc = pci_reset_function(efx->pci_dev); 1866 if (rc) 1867 return rc; 1868 /* Re-enable polled MCDI completion */ 1869 if (efx->mcdi) { 1870 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1871 mcdi->mode = MCDI_MODE_POLL; 1872 } 1873 return 0; 1874 } 1875 1876 /* Recover from a failed assertion pre-reset */ 1877 rc = efx_mcdi_handle_assertion(efx); 1878 if (rc) 1879 return rc; 1880 1881 if (method == RESET_TYPE_DATAPATH) 1882 return 0; 1883 else if (method == RESET_TYPE_WORLD) 1884 return efx_mcdi_reset_mc(efx); 1885 else 1886 return efx_mcdi_reset_func(efx); 1887 } 1888 1889 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1890 const u8 *mac, int *id_out) 1891 { 1892 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1893 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1894 size_t outlen; 1895 int rc; 1896 1897 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1898 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1899 MC_CMD_FILTER_MODE_SIMPLE); 1900 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1901 1902 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1903 outbuf, sizeof(outbuf), &outlen); 1904 if (rc) 1905 goto fail; 1906 1907 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1908 rc = -EIO; 1909 goto fail; 1910 } 1911 1912 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1913 1914 return 0; 1915 1916 fail: 1917 *id_out = -1; 1918 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1919 return rc; 1920 1921 } 1922 1923 1924 int 1925 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1926 { 1927 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1928 } 1929 1930 1931 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1932 { 1933 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1934 size_t outlen; 1935 int rc; 1936 1937 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1938 outbuf, sizeof(outbuf), &outlen); 1939 if (rc) 1940 goto fail; 1941 1942 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1943 rc = -EIO; 1944 goto fail; 1945 } 1946 1947 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1948 1949 return 0; 1950 1951 fail: 1952 *id_out = -1; 1953 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1954 return rc; 1955 } 1956 1957 1958 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1959 { 1960 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1961 int rc; 1962 1963 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1964 1965 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1966 NULL, 0, NULL); 1967 return rc; 1968 } 1969 1970 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1971 { 1972 struct efx_channel *channel; 1973 struct efx_rx_queue *rx_queue; 1974 MCDI_DECLARE_BUF(inbuf, 1975 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1976 int rc, count; 1977 1978 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1979 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1980 1981 count = 0; 1982 efx_for_each_channel(channel, efx) { 1983 efx_for_each_channel_rx_queue(rx_queue, channel) { 1984 if (rx_queue->flush_pending) { 1985 rx_queue->flush_pending = false; 1986 atomic_dec(&efx->rxq_flush_pending); 1987 MCDI_SET_ARRAY_DWORD( 1988 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1989 count, efx_rx_queue_index(rx_queue)); 1990 count++; 1991 } 1992 } 1993 } 1994 1995 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1996 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1997 WARN_ON(rc < 0); 1998 1999 return rc; 2000 } 2001 2002 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 2003 { 2004 int rc; 2005 2006 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 2007 return rc; 2008 } 2009 2010 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, 2011 unsigned int *flags) 2012 { 2013 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 2014 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); 2015 size_t outlen; 2016 int rc; 2017 2018 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 2019 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 2020 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 2021 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 2022 outbuf, sizeof(outbuf), &outlen); 2023 if (rc) 2024 return rc; 2025 2026 if (!flags) 2027 return 0; 2028 2029 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) 2030 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); 2031 else 2032 *flags = 0; 2033 2034 return 0; 2035 } 2036 2037 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 2038 unsigned int *enabled_out) 2039 { 2040 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 2041 size_t outlen; 2042 int rc; 2043 2044 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 2045 outbuf, sizeof(outbuf), &outlen); 2046 if (rc) 2047 goto fail; 2048 2049 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 2050 rc = -EIO; 2051 goto fail; 2052 } 2053 2054 if (impl_out) 2055 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 2056 2057 if (enabled_out) 2058 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 2059 2060 return 0; 2061 2062 fail: 2063 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially 2064 * terrifying. The call site will have to deal with it though. 2065 */ 2066 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err, 2067 "%s: failed rc=%d\n", __func__, rc); 2068 return rc; 2069 } 2070 2071 #ifdef CONFIG_SFC_MTD 2072 2073 #define EFX_MCDI_NVRAM_LEN_MAX 128 2074 2075 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 2076 { 2077 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); 2078 int rc; 2079 2080 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 2081 2082 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 2083 2084 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 2085 NULL, 0, NULL); 2086 return rc; 2087 } 2088 2089 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 2090 loff_t offset, u8 *buffer, size_t length) 2091 { 2092 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); 2093 MCDI_DECLARE_BUF(outbuf, 2094 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2095 size_t outlen; 2096 int rc; 2097 2098 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 2099 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 2100 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 2101 2102 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 2103 outbuf, sizeof(outbuf), &outlen); 2104 if (rc) 2105 return rc; 2106 2107 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 2108 return 0; 2109 } 2110 2111 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 2112 loff_t offset, const u8 *buffer, size_t length) 2113 { 2114 MCDI_DECLARE_BUF(inbuf, 2115 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2116 int rc; 2117 2118 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 2119 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 2120 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 2121 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 2122 2123 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 2124 2125 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 2126 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 2127 NULL, 0, NULL); 2128 return rc; 2129 } 2130 2131 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 2132 loff_t offset, size_t length) 2133 { 2134 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 2135 int rc; 2136 2137 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 2138 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 2139 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 2140 2141 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 2142 2143 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 2144 NULL, 0, NULL); 2145 return rc; 2146 } 2147 2148 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 2149 { 2150 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); 2151 int rc; 2152 2153 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 2154 2155 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); 2156 2157 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 2158 NULL, 0, NULL); 2159 return rc; 2160 } 2161 2162 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 2163 size_t len, size_t *retlen, u8 *buffer) 2164 { 2165 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2166 struct efx_nic *efx = mtd->priv; 2167 loff_t offset = start; 2168 loff_t end = min_t(loff_t, start + len, mtd->size); 2169 size_t chunk; 2170 int rc = 0; 2171 2172 while (offset < end) { 2173 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2174 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 2175 buffer, chunk); 2176 if (rc) 2177 goto out; 2178 offset += chunk; 2179 buffer += chunk; 2180 } 2181 out: 2182 *retlen = offset - start; 2183 return rc; 2184 } 2185 2186 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 2187 { 2188 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2189 struct efx_nic *efx = mtd->priv; 2190 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 2191 loff_t end = min_t(loff_t, start + len, mtd->size); 2192 size_t chunk = part->common.mtd.erasesize; 2193 int rc = 0; 2194 2195 if (!part->updating) { 2196 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2197 if (rc) 2198 goto out; 2199 part->updating = true; 2200 } 2201 2202 /* The MCDI interface can in fact do multiple erase blocks at once; 2203 * but erasing may be slow, so we make multiple calls here to avoid 2204 * tripping the MCDI RPC timeout. */ 2205 while (offset < end) { 2206 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 2207 chunk); 2208 if (rc) 2209 goto out; 2210 offset += chunk; 2211 } 2212 out: 2213 return rc; 2214 } 2215 2216 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2217 size_t len, size_t *retlen, const u8 *buffer) 2218 { 2219 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2220 struct efx_nic *efx = mtd->priv; 2221 loff_t offset = start; 2222 loff_t end = min_t(loff_t, start + len, mtd->size); 2223 size_t chunk; 2224 int rc = 0; 2225 2226 if (!part->updating) { 2227 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2228 if (rc) 2229 goto out; 2230 part->updating = true; 2231 } 2232 2233 while (offset < end) { 2234 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2235 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2236 buffer, chunk); 2237 if (rc) 2238 goto out; 2239 offset += chunk; 2240 buffer += chunk; 2241 } 2242 out: 2243 *retlen = offset - start; 2244 return rc; 2245 } 2246 2247 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2248 { 2249 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2250 struct efx_nic *efx = mtd->priv; 2251 int rc = 0; 2252 2253 if (part->updating) { 2254 part->updating = false; 2255 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2256 } 2257 2258 return rc; 2259 } 2260 2261 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2262 { 2263 struct efx_mcdi_mtd_partition *mcdi_part = 2264 container_of(part, struct efx_mcdi_mtd_partition, common); 2265 struct efx_nic *efx = part->mtd.priv; 2266 2267 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2268 efx->name, part->type_name, mcdi_part->fw_subtype); 2269 } 2270 2271 #endif /* CONFIG_SFC_MTD */ 2272