1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2008-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/moduleparam.h> 12 #include <linux/atomic.h> 13 #include "net_driver.h" 14 #include "nic.h" 15 #include "io.h" 16 #include "farch_regs.h" 17 #include "mcdi_pcol.h" 18 19 /************************************************************************** 20 * 21 * Management-Controller-to-Driver Interface 22 * 23 ************************************************************************** 24 */ 25 26 #define MCDI_RPC_TIMEOUT (10 * HZ) 27 28 /* A reboot/assertion causes the MCDI status word to be set after the 29 * command word is set or a REBOOT event is sent. If we notice a reboot 30 * via these mechanisms then wait 250ms for the status word to be set. 31 */ 32 #define MCDI_STATUS_DELAY_US 100 33 #define MCDI_STATUS_DELAY_COUNT 2500 34 #define MCDI_STATUS_SLEEP_MS \ 35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 36 37 #define SEQ_MASK \ 38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 39 40 struct efx_mcdi_async_param { 41 struct list_head list; 42 unsigned int cmd; 43 size_t inlen; 44 size_t outlen; 45 bool quiet; 46 efx_mcdi_async_completer *complete; 47 unsigned long cookie; 48 /* followed by request/response buffer */ 49 }; 50 51 static void efx_mcdi_timeout_async(struct timer_list *t); 52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 53 bool *was_attached_out); 54 static bool efx_mcdi_poll_once(struct efx_nic *efx); 55 static void efx_mcdi_abandon(struct efx_nic *efx); 56 57 #ifdef CONFIG_SFC_MCDI_LOGGING 58 static bool mcdi_logging_default; 59 module_param(mcdi_logging_default, bool, 0644); 60 MODULE_PARM_DESC(mcdi_logging_default, 61 "Enable MCDI logging on newly-probed functions"); 62 #endif 63 64 int efx_mcdi_init(struct efx_nic *efx) 65 { 66 struct efx_mcdi_iface *mcdi; 67 bool already_attached; 68 int rc = -ENOMEM; 69 70 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 71 if (!efx->mcdi) 72 goto fail; 73 74 mcdi = efx_mcdi(efx); 75 mcdi->efx = efx; 76 #ifdef CONFIG_SFC_MCDI_LOGGING 77 /* consuming code assumes buffer is page-sized */ 78 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 79 if (!mcdi->logging_buffer) 80 goto fail1; 81 mcdi->logging_enabled = mcdi_logging_default; 82 #endif 83 init_waitqueue_head(&mcdi->wq); 84 init_waitqueue_head(&mcdi->proxy_rx_wq); 85 spin_lock_init(&mcdi->iface_lock); 86 mcdi->state = MCDI_STATE_QUIESCENT; 87 mcdi->mode = MCDI_MODE_POLL; 88 spin_lock_init(&mcdi->async_lock); 89 INIT_LIST_HEAD(&mcdi->async_list); 90 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0); 91 92 (void) efx_mcdi_poll_reboot(efx); 93 mcdi->new_epoch = true; 94 95 /* Recover from a failed assertion before probing */ 96 rc = efx_mcdi_handle_assertion(efx); 97 if (rc) 98 goto fail2; 99 100 /* Let the MC (and BMC, if this is a LOM) know that the driver 101 * is loaded. We should do this before we reset the NIC. 102 */ 103 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 104 if (rc) { 105 netif_err(efx, probe, efx->net_dev, 106 "Unable to register driver with MCPU\n"); 107 goto fail2; 108 } 109 if (already_attached) 110 /* Not a fatal error */ 111 netif_err(efx, probe, efx->net_dev, 112 "Host already registered with MCPU\n"); 113 114 if (efx->mcdi->fn_flags & 115 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 116 efx->primary = efx; 117 118 return 0; 119 fail2: 120 #ifdef CONFIG_SFC_MCDI_LOGGING 121 free_page((unsigned long)mcdi->logging_buffer); 122 fail1: 123 #endif 124 kfree(efx->mcdi); 125 efx->mcdi = NULL; 126 fail: 127 return rc; 128 } 129 130 void efx_mcdi_detach(struct efx_nic *efx) 131 { 132 if (!efx->mcdi) 133 return; 134 135 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 136 137 /* Relinquish the device (back to the BMC, if this is a LOM) */ 138 efx_mcdi_drv_attach(efx, false, NULL); 139 } 140 141 void efx_mcdi_fini(struct efx_nic *efx) 142 { 143 if (!efx->mcdi) 144 return; 145 146 #ifdef CONFIG_SFC_MCDI_LOGGING 147 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 148 #endif 149 150 kfree(efx->mcdi); 151 } 152 153 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 154 const efx_dword_t *inbuf, size_t inlen) 155 { 156 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 157 #ifdef CONFIG_SFC_MCDI_LOGGING 158 char *buf = mcdi->logging_buffer; /* page-sized */ 159 #endif 160 efx_dword_t hdr[2]; 161 size_t hdr_len; 162 u32 xflags, seqno; 163 164 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 165 166 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 167 spin_lock_bh(&mcdi->iface_lock); 168 ++mcdi->seqno; 169 spin_unlock_bh(&mcdi->iface_lock); 170 171 seqno = mcdi->seqno & SEQ_MASK; 172 xflags = 0; 173 if (mcdi->mode == MCDI_MODE_EVENTS) 174 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 175 176 if (efx->type->mcdi_max_ver == 1) { 177 /* MCDI v1 */ 178 EFX_POPULATE_DWORD_7(hdr[0], 179 MCDI_HEADER_RESPONSE, 0, 180 MCDI_HEADER_RESYNC, 1, 181 MCDI_HEADER_CODE, cmd, 182 MCDI_HEADER_DATALEN, inlen, 183 MCDI_HEADER_SEQ, seqno, 184 MCDI_HEADER_XFLAGS, xflags, 185 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 186 hdr_len = 4; 187 } else { 188 /* MCDI v2 */ 189 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 190 EFX_POPULATE_DWORD_7(hdr[0], 191 MCDI_HEADER_RESPONSE, 0, 192 MCDI_HEADER_RESYNC, 1, 193 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 194 MCDI_HEADER_DATALEN, 0, 195 MCDI_HEADER_SEQ, seqno, 196 MCDI_HEADER_XFLAGS, xflags, 197 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 198 EFX_POPULATE_DWORD_2(hdr[1], 199 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 200 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 201 hdr_len = 8; 202 } 203 204 #ifdef CONFIG_SFC_MCDI_LOGGING 205 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 206 int bytes = 0; 207 int i; 208 /* Lengths should always be a whole number of dwords, so scream 209 * if they're not. 210 */ 211 WARN_ON_ONCE(hdr_len % 4); 212 WARN_ON_ONCE(inlen % 4); 213 214 /* We own the logging buffer, as only one MCDI can be in 215 * progress on a NIC at any one time. So no need for locking. 216 */ 217 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 218 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 219 " %08x", le32_to_cpu(hdr[i].u32[0])); 220 221 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 222 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 223 " %08x", le32_to_cpu(inbuf[i].u32[0])); 224 225 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 226 } 227 #endif 228 229 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 230 231 mcdi->new_epoch = false; 232 } 233 234 static int efx_mcdi_errno(unsigned int mcdi_err) 235 { 236 switch (mcdi_err) { 237 case 0: 238 return 0; 239 #define TRANSLATE_ERROR(name) \ 240 case MC_CMD_ERR_ ## name: \ 241 return -name; 242 TRANSLATE_ERROR(EPERM); 243 TRANSLATE_ERROR(ENOENT); 244 TRANSLATE_ERROR(EINTR); 245 TRANSLATE_ERROR(EAGAIN); 246 TRANSLATE_ERROR(EACCES); 247 TRANSLATE_ERROR(EBUSY); 248 TRANSLATE_ERROR(EINVAL); 249 TRANSLATE_ERROR(EDEADLK); 250 TRANSLATE_ERROR(ENOSYS); 251 TRANSLATE_ERROR(ETIME); 252 TRANSLATE_ERROR(EALREADY); 253 TRANSLATE_ERROR(ENOSPC); 254 #undef TRANSLATE_ERROR 255 case MC_CMD_ERR_ENOTSUP: 256 return -EOPNOTSUPP; 257 case MC_CMD_ERR_ALLOC_FAIL: 258 return -ENOBUFS; 259 case MC_CMD_ERR_MAC_EXIST: 260 return -EADDRINUSE; 261 default: 262 return -EPROTO; 263 } 264 } 265 266 static void efx_mcdi_read_response_header(struct efx_nic *efx) 267 { 268 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 269 unsigned int respseq, respcmd, error; 270 #ifdef CONFIG_SFC_MCDI_LOGGING 271 char *buf = mcdi->logging_buffer; /* page-sized */ 272 #endif 273 efx_dword_t hdr; 274 275 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 276 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 277 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 278 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 279 280 if (respcmd != MC_CMD_V2_EXTN) { 281 mcdi->resp_hdr_len = 4; 282 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 283 } else { 284 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 285 mcdi->resp_hdr_len = 8; 286 mcdi->resp_data_len = 287 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 288 } 289 290 #ifdef CONFIG_SFC_MCDI_LOGGING 291 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 292 size_t hdr_len, data_len; 293 int bytes = 0; 294 int i; 295 296 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 297 hdr_len = mcdi->resp_hdr_len / 4; 298 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 299 * to dword size, and the MCDI buffer is always dword size 300 */ 301 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 302 303 /* We own the logging buffer, as only one MCDI can be in 304 * progress on a NIC at any one time. So no need for locking. 305 */ 306 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 307 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 308 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 309 " %08x", le32_to_cpu(hdr.u32[0])); 310 } 311 312 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 313 efx->type->mcdi_read_response(efx, &hdr, 314 mcdi->resp_hdr_len + (i * 4), 4); 315 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 316 " %08x", le32_to_cpu(hdr.u32[0])); 317 } 318 319 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 320 } 321 #endif 322 323 mcdi->resprc_raw = 0; 324 if (error && mcdi->resp_data_len == 0) { 325 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 326 mcdi->resprc = -EIO; 327 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 328 netif_err(efx, hw, efx->net_dev, 329 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 330 respseq, mcdi->seqno); 331 mcdi->resprc = -EIO; 332 } else if (error) { 333 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 334 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); 335 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); 336 } else { 337 mcdi->resprc = 0; 338 } 339 } 340 341 static bool efx_mcdi_poll_once(struct efx_nic *efx) 342 { 343 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 344 345 rmb(); 346 if (!efx->type->mcdi_poll_response(efx)) 347 return false; 348 349 spin_lock_bh(&mcdi->iface_lock); 350 efx_mcdi_read_response_header(efx); 351 spin_unlock_bh(&mcdi->iface_lock); 352 353 return true; 354 } 355 356 static int efx_mcdi_poll(struct efx_nic *efx) 357 { 358 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 359 unsigned long time, finish; 360 unsigned int spins; 361 int rc; 362 363 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 364 rc = efx_mcdi_poll_reboot(efx); 365 if (rc) { 366 spin_lock_bh(&mcdi->iface_lock); 367 mcdi->resprc = rc; 368 mcdi->resp_hdr_len = 0; 369 mcdi->resp_data_len = 0; 370 spin_unlock_bh(&mcdi->iface_lock); 371 return 0; 372 } 373 374 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 375 * because generally mcdi responses are fast. After that, back off 376 * and poll once a jiffy (approximately) 377 */ 378 spins = USER_TICK_USEC; 379 finish = jiffies + MCDI_RPC_TIMEOUT; 380 381 while (1) { 382 if (spins != 0) { 383 --spins; 384 udelay(1); 385 } else { 386 schedule_timeout_uninterruptible(1); 387 } 388 389 time = jiffies; 390 391 if (efx_mcdi_poll_once(efx)) 392 break; 393 394 if (time_after(time, finish)) 395 return -ETIMEDOUT; 396 } 397 398 /* Return rc=0 like wait_event_timeout() */ 399 return 0; 400 } 401 402 /* Test and clear MC-rebooted flag for this port/function; reset 403 * software state as necessary. 404 */ 405 int efx_mcdi_poll_reboot(struct efx_nic *efx) 406 { 407 if (!efx->mcdi) 408 return 0; 409 410 return efx->type->mcdi_poll_reboot(efx); 411 } 412 413 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 414 { 415 return cmpxchg(&mcdi->state, 416 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 417 MCDI_STATE_QUIESCENT; 418 } 419 420 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 421 { 422 /* Wait until the interface becomes QUIESCENT and we win the race 423 * to mark it RUNNING_SYNC. 424 */ 425 wait_event(mcdi->wq, 426 cmpxchg(&mcdi->state, 427 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 428 MCDI_STATE_QUIESCENT); 429 } 430 431 static int efx_mcdi_await_completion(struct efx_nic *efx) 432 { 433 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 434 435 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 436 MCDI_RPC_TIMEOUT) == 0) 437 return -ETIMEDOUT; 438 439 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 440 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 441 * completed the request first, then we'll just end up completing the 442 * request again, which is safe. 443 * 444 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 445 * wait_event_timeout() implicitly provides. 446 */ 447 if (mcdi->mode == MCDI_MODE_POLL) 448 return efx_mcdi_poll(efx); 449 450 return 0; 451 } 452 453 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 454 * requester. Return whether this was done. Does not take any locks. 455 */ 456 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 457 { 458 if (cmpxchg(&mcdi->state, 459 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 460 MCDI_STATE_RUNNING_SYNC) { 461 wake_up(&mcdi->wq); 462 return true; 463 } 464 465 return false; 466 } 467 468 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 469 { 470 if (mcdi->mode == MCDI_MODE_EVENTS) { 471 struct efx_mcdi_async_param *async; 472 struct efx_nic *efx = mcdi->efx; 473 474 /* Process the asynchronous request queue */ 475 spin_lock_bh(&mcdi->async_lock); 476 async = list_first_entry_or_null( 477 &mcdi->async_list, struct efx_mcdi_async_param, list); 478 if (async) { 479 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 480 efx_mcdi_send_request(efx, async->cmd, 481 (const efx_dword_t *)(async + 1), 482 async->inlen); 483 mod_timer(&mcdi->async_timer, 484 jiffies + MCDI_RPC_TIMEOUT); 485 } 486 spin_unlock_bh(&mcdi->async_lock); 487 488 if (async) 489 return; 490 } 491 492 mcdi->state = MCDI_STATE_QUIESCENT; 493 wake_up(&mcdi->wq); 494 } 495 496 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 497 * asynchronous completion function, and release the interface. 498 * Return whether this was done. Must be called in bh-disabled 499 * context. Will take iface_lock and async_lock. 500 */ 501 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 502 { 503 struct efx_nic *efx = mcdi->efx; 504 struct efx_mcdi_async_param *async; 505 size_t hdr_len, data_len, err_len; 506 efx_dword_t *outbuf; 507 MCDI_DECLARE_BUF_ERR(errbuf); 508 int rc; 509 510 if (cmpxchg(&mcdi->state, 511 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 512 MCDI_STATE_RUNNING_ASYNC) 513 return false; 514 515 spin_lock(&mcdi->iface_lock); 516 if (timeout) { 517 /* Ensure that if the completion event arrives later, 518 * the seqno check in efx_mcdi_ev_cpl() will fail 519 */ 520 ++mcdi->seqno; 521 ++mcdi->credits; 522 rc = -ETIMEDOUT; 523 hdr_len = 0; 524 data_len = 0; 525 } else { 526 rc = mcdi->resprc; 527 hdr_len = mcdi->resp_hdr_len; 528 data_len = mcdi->resp_data_len; 529 } 530 spin_unlock(&mcdi->iface_lock); 531 532 /* Stop the timer. In case the timer function is running, we 533 * must wait for it to return so that there is no possibility 534 * of it aborting the next request. 535 */ 536 if (!timeout) 537 del_timer_sync(&mcdi->async_timer); 538 539 spin_lock(&mcdi->async_lock); 540 async = list_first_entry(&mcdi->async_list, 541 struct efx_mcdi_async_param, list); 542 list_del(&async->list); 543 spin_unlock(&mcdi->async_lock); 544 545 outbuf = (efx_dword_t *)(async + 1); 546 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 547 min(async->outlen, data_len)); 548 if (!timeout && rc && !async->quiet) { 549 err_len = min(sizeof(errbuf), data_len); 550 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 551 sizeof(errbuf)); 552 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 553 err_len, rc); 554 } 555 556 if (async->complete) 557 async->complete(efx, async->cookie, rc, outbuf, 558 min(async->outlen, data_len)); 559 kfree(async); 560 561 efx_mcdi_release(mcdi); 562 563 return true; 564 } 565 566 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 567 unsigned int datalen, unsigned int mcdi_err) 568 { 569 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 570 bool wake = false; 571 572 spin_lock(&mcdi->iface_lock); 573 574 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 575 if (mcdi->credits) 576 /* The request has been cancelled */ 577 --mcdi->credits; 578 else 579 netif_err(efx, hw, efx->net_dev, 580 "MC response mismatch tx seq 0x%x rx " 581 "seq 0x%x\n", seqno, mcdi->seqno); 582 } else { 583 if (efx->type->mcdi_max_ver >= 2) { 584 /* MCDI v2 responses don't fit in an event */ 585 efx_mcdi_read_response_header(efx); 586 } else { 587 mcdi->resprc = efx_mcdi_errno(mcdi_err); 588 mcdi->resp_hdr_len = 4; 589 mcdi->resp_data_len = datalen; 590 } 591 592 wake = true; 593 } 594 595 spin_unlock(&mcdi->iface_lock); 596 597 if (wake) { 598 if (!efx_mcdi_complete_async(mcdi, false)) 599 (void) efx_mcdi_complete_sync(mcdi); 600 601 /* If the interface isn't RUNNING_ASYNC or 602 * RUNNING_SYNC then we've received a duplicate 603 * completion after we've already transitioned back to 604 * QUIESCENT. [A subsequent invocation would increment 605 * seqno, so would have failed the seqno check]. 606 */ 607 } 608 } 609 610 static void efx_mcdi_timeout_async(struct timer_list *t) 611 { 612 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer); 613 614 efx_mcdi_complete_async(mcdi, true); 615 } 616 617 static int 618 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 619 { 620 if (efx->type->mcdi_max_ver < 0 || 621 (efx->type->mcdi_max_ver < 2 && 622 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 623 return -EINVAL; 624 625 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 626 (efx->type->mcdi_max_ver < 2 && 627 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 628 return -EMSGSIZE; 629 630 return 0; 631 } 632 633 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, 634 size_t hdr_len, size_t data_len, 635 u32 *proxy_handle) 636 { 637 MCDI_DECLARE_BUF_ERR(testbuf); 638 const size_t buflen = sizeof(testbuf); 639 640 if (!proxy_handle || data_len < buflen) 641 return false; 642 643 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); 644 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { 645 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); 646 return true; 647 } 648 649 return false; 650 } 651 652 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 653 size_t inlen, 654 efx_dword_t *outbuf, size_t outlen, 655 size_t *outlen_actual, bool quiet, 656 u32 *proxy_handle, int *raw_rc) 657 { 658 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 659 MCDI_DECLARE_BUF_ERR(errbuf); 660 int rc; 661 662 if (mcdi->mode == MCDI_MODE_POLL) 663 rc = efx_mcdi_poll(efx); 664 else 665 rc = efx_mcdi_await_completion(efx); 666 667 if (rc != 0) { 668 netif_err(efx, hw, efx->net_dev, 669 "MC command 0x%x inlen %d mode %d timed out\n", 670 cmd, (int)inlen, mcdi->mode); 671 672 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 673 netif_err(efx, hw, efx->net_dev, 674 "MCDI request was completed without an event\n"); 675 rc = 0; 676 } 677 678 efx_mcdi_abandon(efx); 679 680 /* Close the race with efx_mcdi_ev_cpl() executing just too late 681 * and completing a request we've just cancelled, by ensuring 682 * that the seqno check therein fails. 683 */ 684 spin_lock_bh(&mcdi->iface_lock); 685 ++mcdi->seqno; 686 ++mcdi->credits; 687 spin_unlock_bh(&mcdi->iface_lock); 688 } 689 690 if (proxy_handle) 691 *proxy_handle = 0; 692 693 if (rc != 0) { 694 if (outlen_actual) 695 *outlen_actual = 0; 696 } else { 697 size_t hdr_len, data_len, err_len; 698 699 /* At the very least we need a memory barrier here to ensure 700 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 701 * a spurious efx_mcdi_ev_cpl() running concurrently by 702 * acquiring the iface_lock. */ 703 spin_lock_bh(&mcdi->iface_lock); 704 rc = mcdi->resprc; 705 if (raw_rc) 706 *raw_rc = mcdi->resprc_raw; 707 hdr_len = mcdi->resp_hdr_len; 708 data_len = mcdi->resp_data_len; 709 err_len = min(sizeof(errbuf), data_len); 710 spin_unlock_bh(&mcdi->iface_lock); 711 712 BUG_ON(rc > 0); 713 714 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 715 min(outlen, data_len)); 716 if (outlen_actual) 717 *outlen_actual = data_len; 718 719 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 720 721 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 722 /* Don't reset if MC_CMD_REBOOT returns EIO */ 723 } else if (rc == -EIO || rc == -EINTR) { 724 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n"); 725 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n", 726 cmd, -rc); 727 if (efx->type->mcdi_reboot_detected) 728 efx->type->mcdi_reboot_detected(efx); 729 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 730 } else if (proxy_handle && (rc == -EPROTO) && 731 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, 732 proxy_handle)) { 733 mcdi->proxy_rx_status = 0; 734 mcdi->proxy_rx_handle = 0; 735 mcdi->state = MCDI_STATE_PROXY_WAIT; 736 } else if (rc && !quiet) { 737 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 738 rc); 739 } 740 741 if (rc == -EIO || rc == -EINTR) { 742 msleep(MCDI_STATUS_SLEEP_MS); 743 efx_mcdi_poll_reboot(efx); 744 mcdi->new_epoch = true; 745 } 746 } 747 748 if (!proxy_handle || !*proxy_handle) 749 efx_mcdi_release(mcdi); 750 return rc; 751 } 752 753 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) 754 { 755 if (mcdi->state == MCDI_STATE_PROXY_WAIT) { 756 /* Interrupt the proxy wait. */ 757 mcdi->proxy_rx_status = -EINTR; 758 wake_up(&mcdi->proxy_rx_wq); 759 } 760 } 761 762 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, 763 u32 handle, int status) 764 { 765 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 766 767 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); 768 769 mcdi->proxy_rx_status = efx_mcdi_errno(status); 770 /* Ensure the status is written before we update the handle, since the 771 * latter is used to check if we've finished. 772 */ 773 wmb(); 774 mcdi->proxy_rx_handle = handle; 775 wake_up(&mcdi->proxy_rx_wq); 776 } 777 778 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) 779 { 780 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 781 int rc; 782 783 /* Wait for a proxy event, or timeout. */ 784 rc = wait_event_timeout(mcdi->proxy_rx_wq, 785 mcdi->proxy_rx_handle != 0 || 786 mcdi->proxy_rx_status == -EINTR, 787 MCDI_RPC_TIMEOUT); 788 789 if (rc <= 0) { 790 netif_dbg(efx, hw, efx->net_dev, 791 "MCDI proxy timeout %d\n", handle); 792 return -ETIMEDOUT; 793 } else if (mcdi->proxy_rx_handle != handle) { 794 netif_warn(efx, hw, efx->net_dev, 795 "MCDI proxy unexpected handle %d (expected %d)\n", 796 mcdi->proxy_rx_handle, handle); 797 return -EINVAL; 798 } 799 800 return mcdi->proxy_rx_status; 801 } 802 803 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 804 const efx_dword_t *inbuf, size_t inlen, 805 efx_dword_t *outbuf, size_t outlen, 806 size_t *outlen_actual, bool quiet, int *raw_rc) 807 { 808 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ 809 int rc; 810 811 if (inbuf && inlen && (inbuf == outbuf)) { 812 /* The input buffer can't be aliased with the output. */ 813 WARN_ON(1); 814 return -EINVAL; 815 } 816 817 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 818 if (rc) 819 return rc; 820 821 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 822 outlen_actual, quiet, &proxy_handle, raw_rc); 823 824 if (proxy_handle) { 825 /* Handle proxy authorisation. This allows approval of MCDI 826 * operations to be delegated to the admin function, allowing 827 * fine control over (eg) multicast subscriptions. 828 */ 829 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 830 831 netif_dbg(efx, hw, efx->net_dev, 832 "MCDI waiting for proxy auth %d\n", 833 proxy_handle); 834 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); 835 836 if (rc == 0) { 837 netif_dbg(efx, hw, efx->net_dev, 838 "MCDI proxy retry %d\n", proxy_handle); 839 840 /* We now retry the original request. */ 841 mcdi->state = MCDI_STATE_RUNNING_SYNC; 842 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 843 844 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, 845 outbuf, outlen, outlen_actual, 846 quiet, NULL, raw_rc); 847 } else { 848 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 849 "MC command 0x%x failed after proxy auth rc=%d\n", 850 cmd, rc); 851 852 if (rc == -EINTR || rc == -EIO) 853 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 854 efx_mcdi_release(mcdi); 855 } 856 } 857 858 return rc; 859 } 860 861 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, 862 const efx_dword_t *inbuf, size_t inlen, 863 efx_dword_t *outbuf, size_t outlen, 864 size_t *outlen_actual, bool quiet) 865 { 866 int raw_rc = 0; 867 int rc; 868 869 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 870 outbuf, outlen, outlen_actual, true, &raw_rc); 871 872 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 873 efx->type->is_vf) { 874 /* If the EVB port isn't available within a VF this may 875 * mean the PF is still bringing the switch up. We should 876 * retry our request shortly. 877 */ 878 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; 879 unsigned int delay_us = 10000; 880 881 netif_dbg(efx, hw, efx->net_dev, 882 "%s: NO_EVB_PORT; will retry request\n", 883 __func__); 884 885 do { 886 usleep_range(delay_us, delay_us + 10000); 887 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 888 outbuf, outlen, outlen_actual, 889 true, &raw_rc); 890 if (delay_us < 100000) 891 delay_us <<= 1; 892 } while ((rc == -EPROTO) && 893 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 894 time_before(jiffies, abort_time)); 895 } 896 897 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) 898 efx_mcdi_display_error(efx, cmd, inlen, 899 outbuf, outlen, rc); 900 901 return rc; 902 } 903 904 /** 905 * efx_mcdi_rpc - Issue an MCDI command and wait for completion 906 * @efx: NIC through which to issue the command 907 * @cmd: Command type number 908 * @inbuf: Command parameters 909 * @inlen: Length of command parameters, in bytes. Must be a multiple 910 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. 911 * @outbuf: Response buffer. May be %NULL if @outlen is 0. 912 * @outlen: Length of response buffer, in bytes. If the actual 913 * response is longer than @outlen & ~3, it will be truncated 914 * to that length. 915 * @outlen_actual: Pointer through which to return the actual response 916 * length. May be %NULL if this is not needed. 917 * 918 * This function may sleep and therefore must be called in an appropriate 919 * context. 920 * 921 * Return: A negative error code, or zero if successful. The error 922 * code may come from the MCDI response or may indicate a failure 923 * to communicate with the MC. In the former case, the response 924 * will still be copied to @outbuf and *@outlen_actual will be 925 * set accordingly. In the latter case, *@outlen_actual will be 926 * set to zero. 927 */ 928 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 929 const efx_dword_t *inbuf, size_t inlen, 930 efx_dword_t *outbuf, size_t outlen, 931 size_t *outlen_actual) 932 { 933 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 934 outlen_actual, false); 935 } 936 937 /* Normally, on receiving an error code in the MCDI response, 938 * efx_mcdi_rpc will log an error message containing (among other 939 * things) the raw error code, by means of efx_mcdi_display_error. 940 * This _quiet version suppresses that; if the caller wishes to log 941 * the error conditionally on the return code, it should call this 942 * function and is then responsible for calling efx_mcdi_display_error 943 * as needed. 944 */ 945 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 946 const efx_dword_t *inbuf, size_t inlen, 947 efx_dword_t *outbuf, size_t outlen, 948 size_t *outlen_actual) 949 { 950 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 951 outlen_actual, true); 952 } 953 954 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 955 const efx_dword_t *inbuf, size_t inlen) 956 { 957 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 958 int rc; 959 960 rc = efx_mcdi_check_supported(efx, cmd, inlen); 961 if (rc) 962 return rc; 963 964 if (efx->mc_bist_for_other_fn) 965 return -ENETDOWN; 966 967 if (mcdi->mode == MCDI_MODE_FAIL) 968 return -ENETDOWN; 969 970 efx_mcdi_acquire_sync(mcdi); 971 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 972 return 0; 973 } 974 975 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 976 const efx_dword_t *inbuf, size_t inlen, 977 size_t outlen, 978 efx_mcdi_async_completer *complete, 979 unsigned long cookie, bool quiet) 980 { 981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 982 struct efx_mcdi_async_param *async; 983 int rc; 984 985 rc = efx_mcdi_check_supported(efx, cmd, inlen); 986 if (rc) 987 return rc; 988 989 if (efx->mc_bist_for_other_fn) 990 return -ENETDOWN; 991 992 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 993 GFP_ATOMIC); 994 if (!async) 995 return -ENOMEM; 996 997 async->cmd = cmd; 998 async->inlen = inlen; 999 async->outlen = outlen; 1000 async->quiet = quiet; 1001 async->complete = complete; 1002 async->cookie = cookie; 1003 memcpy(async + 1, inbuf, inlen); 1004 1005 spin_lock_bh(&mcdi->async_lock); 1006 1007 if (mcdi->mode == MCDI_MODE_EVENTS) { 1008 list_add_tail(&async->list, &mcdi->async_list); 1009 1010 /* If this is at the front of the queue, try to start it 1011 * immediately 1012 */ 1013 if (mcdi->async_list.next == &async->list && 1014 efx_mcdi_acquire_async(mcdi)) { 1015 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 1016 mod_timer(&mcdi->async_timer, 1017 jiffies + MCDI_RPC_TIMEOUT); 1018 } 1019 } else { 1020 kfree(async); 1021 rc = -ENETDOWN; 1022 } 1023 1024 spin_unlock_bh(&mcdi->async_lock); 1025 1026 return rc; 1027 } 1028 1029 /** 1030 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 1031 * @efx: NIC through which to issue the command 1032 * @cmd: Command type number 1033 * @inbuf: Command parameters 1034 * @inlen: Length of command parameters, in bytes 1035 * @outlen: Length to allocate for response buffer, in bytes 1036 * @complete: Function to be called on completion or cancellation. 1037 * @cookie: Arbitrary value to be passed to @complete. 1038 * 1039 * This function does not sleep and therefore may be called in atomic 1040 * context. It will fail if event queues are disabled or if MCDI 1041 * event completions have been disabled due to an error. 1042 * 1043 * If it succeeds, the @complete function will be called exactly once 1044 * in atomic context, when one of the following occurs: 1045 * (a) the completion event is received (in NAPI context) 1046 * (b) event queues are disabled (in the process that disables them) 1047 * (c) the request times-out (in timer context) 1048 */ 1049 int 1050 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 1051 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 1052 efx_mcdi_async_completer *complete, unsigned long cookie) 1053 { 1054 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1055 cookie, false); 1056 } 1057 1058 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 1059 const efx_dword_t *inbuf, size_t inlen, 1060 size_t outlen, efx_mcdi_async_completer *complete, 1061 unsigned long cookie) 1062 { 1063 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1064 cookie, true); 1065 } 1066 1067 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 1068 efx_dword_t *outbuf, size_t outlen, 1069 size_t *outlen_actual) 1070 { 1071 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1072 outlen_actual, false, NULL, NULL); 1073 } 1074 1075 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 1076 efx_dword_t *outbuf, size_t outlen, 1077 size_t *outlen_actual) 1078 { 1079 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1080 outlen_actual, true, NULL, NULL); 1081 } 1082 1083 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 1084 size_t inlen, efx_dword_t *outbuf, 1085 size_t outlen, int rc) 1086 { 1087 int code = 0, err_arg = 0; 1088 1089 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 1090 code = MCDI_DWORD(outbuf, ERR_CODE); 1091 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 1092 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 1093 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 1094 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", 1095 cmd, inlen, rc, code, err_arg); 1096 } 1097 1098 /* Switch to polled MCDI completions. This can be called in various 1099 * error conditions with various locks held, so it must be lockless. 1100 * Caller is responsible for flushing asynchronous requests later. 1101 */ 1102 void efx_mcdi_mode_poll(struct efx_nic *efx) 1103 { 1104 struct efx_mcdi_iface *mcdi; 1105 1106 if (!efx->mcdi) 1107 return; 1108 1109 mcdi = efx_mcdi(efx); 1110 /* If already in polling mode, nothing to do. 1111 * If in fail-fast state, don't switch to polled completion. 1112 * FLR recovery will do that later. 1113 */ 1114 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 1115 return; 1116 1117 /* We can switch from event completion to polled completion, because 1118 * mcdi requests are always completed in shared memory. We do this by 1119 * switching the mode to POLL'd then completing the request. 1120 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 1121 * 1122 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 1123 * which efx_mcdi_complete_sync() provides for us. 1124 */ 1125 mcdi->mode = MCDI_MODE_POLL; 1126 1127 efx_mcdi_complete_sync(mcdi); 1128 } 1129 1130 /* Flush any running or queued asynchronous requests, after event processing 1131 * is stopped 1132 */ 1133 void efx_mcdi_flush_async(struct efx_nic *efx) 1134 { 1135 struct efx_mcdi_async_param *async, *next; 1136 struct efx_mcdi_iface *mcdi; 1137 1138 if (!efx->mcdi) 1139 return; 1140 1141 mcdi = efx_mcdi(efx); 1142 1143 /* We must be in poll or fail mode so no more requests can be queued */ 1144 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 1145 1146 del_timer_sync(&mcdi->async_timer); 1147 1148 /* If a request is still running, make sure we give the MC 1149 * time to complete it so that the response won't overwrite our 1150 * next request. 1151 */ 1152 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 1153 efx_mcdi_poll(efx); 1154 mcdi->state = MCDI_STATE_QUIESCENT; 1155 } 1156 1157 /* Nothing else will access the async list now, so it is safe 1158 * to walk it without holding async_lock. If we hold it while 1159 * calling a completer then lockdep may warn that we have 1160 * acquired locks in the wrong order. 1161 */ 1162 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 1163 if (async->complete) 1164 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 1165 list_del(&async->list); 1166 kfree(async); 1167 } 1168 } 1169 1170 void efx_mcdi_mode_event(struct efx_nic *efx) 1171 { 1172 struct efx_mcdi_iface *mcdi; 1173 1174 if (!efx->mcdi) 1175 return; 1176 1177 mcdi = efx_mcdi(efx); 1178 /* If already in event completion mode, nothing to do. 1179 * If in fail-fast state, don't switch to event completion. FLR 1180 * recovery will do that later. 1181 */ 1182 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 1183 return; 1184 1185 /* We can't switch from polled to event completion in the middle of a 1186 * request, because the completion method is specified in the request. 1187 * So acquire the interface to serialise the requestors. We don't need 1188 * to acquire the iface_lock to change the mode here, but we do need a 1189 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 1190 * efx_mcdi_acquire() provides. 1191 */ 1192 efx_mcdi_acquire_sync(mcdi); 1193 mcdi->mode = MCDI_MODE_EVENTS; 1194 efx_mcdi_release(mcdi); 1195 } 1196 1197 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 1198 { 1199 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1200 1201 /* If there is an outstanding MCDI request, it has been terminated 1202 * either by a BADASSERT or REBOOT event. If the mcdi interface is 1203 * in polled mode, then do nothing because the MC reboot handler will 1204 * set the header correctly. However, if the mcdi interface is waiting 1205 * for a CMDDONE event it won't receive it [and since all MCDI events 1206 * are sent to the same queue, we can't be racing with 1207 * efx_mcdi_ev_cpl()] 1208 * 1209 * If there is an outstanding asynchronous request, we can't 1210 * complete it now (efx_mcdi_complete() would deadlock). The 1211 * reset process will take care of this. 1212 * 1213 * There's a race here with efx_mcdi_send_request(), because 1214 * we might receive a REBOOT event *before* the request has 1215 * been copied out. In polled mode (during startup) this is 1216 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1217 * event mode, this condition is just an edge-case of 1218 * receiving a REBOOT event after posting the MCDI 1219 * request. Did the mc reboot before or after the copyout? The 1220 * best we can do always is just return failure. 1221 * 1222 * If there is an outstanding proxy response expected it is not going 1223 * to arrive. We should thus abort it. 1224 */ 1225 spin_lock(&mcdi->iface_lock); 1226 efx_mcdi_proxy_abort(mcdi); 1227 1228 if (efx_mcdi_complete_sync(mcdi)) { 1229 if (mcdi->mode == MCDI_MODE_EVENTS) { 1230 mcdi->resprc = rc; 1231 mcdi->resp_hdr_len = 0; 1232 mcdi->resp_data_len = 0; 1233 ++mcdi->credits; 1234 } 1235 } else { 1236 int count; 1237 1238 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1239 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1240 rc = efx_mcdi_poll_reboot(efx); 1241 if (rc) 1242 break; 1243 udelay(MCDI_STATUS_DELAY_US); 1244 } 1245 1246 /* On EF10, a CODE_MC_REBOOT event can be received without the 1247 * reboot detection in efx_mcdi_poll_reboot() being triggered. 1248 * If zero was returned from the final call to 1249 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1250 * MC has definitely rebooted so prepare for the reset. 1251 */ 1252 if (!rc && efx->type->mcdi_reboot_detected) 1253 efx->type->mcdi_reboot_detected(efx); 1254 1255 mcdi->new_epoch = true; 1256 1257 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1258 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1259 } 1260 1261 spin_unlock(&mcdi->iface_lock); 1262 } 1263 1264 /* The MC is going down in to BIST mode. set the BIST flag to block 1265 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 1266 * (which doesn't actually execute a reset, it waits for the controlling 1267 * function to reset it). 1268 */ 1269 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1270 { 1271 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1272 1273 spin_lock(&mcdi->iface_lock); 1274 efx->mc_bist_for_other_fn = true; 1275 efx_mcdi_proxy_abort(mcdi); 1276 1277 if (efx_mcdi_complete_sync(mcdi)) { 1278 if (mcdi->mode == MCDI_MODE_EVENTS) { 1279 mcdi->resprc = -EIO; 1280 mcdi->resp_hdr_len = 0; 1281 mcdi->resp_data_len = 0; 1282 ++mcdi->credits; 1283 } 1284 } 1285 mcdi->new_epoch = true; 1286 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1287 spin_unlock(&mcdi->iface_lock); 1288 } 1289 1290 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1291 * to recover. 1292 */ 1293 static void efx_mcdi_abandon(struct efx_nic *efx) 1294 { 1295 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1296 1297 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1298 return; /* it had already been done */ 1299 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1300 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1301 } 1302 1303 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */ 1304 void efx_mcdi_process_event(struct efx_channel *channel, 1305 efx_qword_t *event) 1306 { 1307 struct efx_nic *efx = channel->efx; 1308 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1309 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1310 1311 switch (code) { 1312 case MCDI_EVENT_CODE_BADSSERT: 1313 netif_err(efx, hw, efx->net_dev, 1314 "MC watchdog or assertion failure at 0x%x\n", data); 1315 efx_mcdi_ev_death(efx, -EINTR); 1316 break; 1317 1318 case MCDI_EVENT_CODE_PMNOTICE: 1319 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1320 break; 1321 1322 case MCDI_EVENT_CODE_CMDDONE: 1323 efx_mcdi_ev_cpl(efx, 1324 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1325 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1326 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1327 break; 1328 1329 case MCDI_EVENT_CODE_LINKCHANGE: 1330 efx_mcdi_process_link_change(efx, event); 1331 break; 1332 case MCDI_EVENT_CODE_SENSOREVT: 1333 efx_mcdi_sensor_event(efx, event); 1334 break; 1335 case MCDI_EVENT_CODE_SCHEDERR: 1336 netif_dbg(efx, hw, efx->net_dev, 1337 "MC Scheduler alert (0x%x)\n", data); 1338 break; 1339 case MCDI_EVENT_CODE_REBOOT: 1340 case MCDI_EVENT_CODE_MC_REBOOT: 1341 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1342 efx_mcdi_ev_death(efx, -EIO); 1343 break; 1344 case MCDI_EVENT_CODE_MC_BIST: 1345 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1346 efx_mcdi_ev_bist(efx); 1347 break; 1348 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1349 /* MAC stats are gather lazily. We can ignore this. */ 1350 break; 1351 case MCDI_EVENT_CODE_FLR: 1352 if (efx->type->sriov_flr) 1353 efx->type->sriov_flr(efx, 1354 MCDI_EVENT_FIELD(*event, FLR_VF)); 1355 break; 1356 case MCDI_EVENT_CODE_PTP_RX: 1357 case MCDI_EVENT_CODE_PTP_FAULT: 1358 case MCDI_EVENT_CODE_PTP_PPS: 1359 efx_ptp_event(efx, event); 1360 break; 1361 case MCDI_EVENT_CODE_PTP_TIME: 1362 efx_time_sync_event(channel, event); 1363 break; 1364 case MCDI_EVENT_CODE_TX_FLUSH: 1365 case MCDI_EVENT_CODE_RX_FLUSH: 1366 /* Two flush events will be sent: one to the same event 1367 * queue as completions, and one to event queue 0. 1368 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1369 * flag will be set, and we should ignore the event 1370 * because we want to wait for all completions. 1371 */ 1372 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1373 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1374 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1375 efx_ef10_handle_drain_event(efx); 1376 break; 1377 case MCDI_EVENT_CODE_TX_ERR: 1378 case MCDI_EVENT_CODE_RX_ERR: 1379 netif_err(efx, hw, efx->net_dev, 1380 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1381 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1382 EFX_QWORD_VAL(*event)); 1383 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1384 break; 1385 case MCDI_EVENT_CODE_PROXY_RESPONSE: 1386 efx_mcdi_ev_proxy_response(efx, 1387 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), 1388 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); 1389 break; 1390 default: 1391 netif_err(efx, hw, efx->net_dev, 1392 "Unknown MCDI event " EFX_QWORD_FMT "\n", 1393 EFX_QWORD_VAL(*event)); 1394 } 1395 } 1396 1397 /************************************************************************** 1398 * 1399 * Specific request functions 1400 * 1401 ************************************************************************** 1402 */ 1403 1404 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1405 { 1406 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1407 size_t outlength; 1408 const __le16 *ver_words; 1409 size_t offset; 1410 int rc; 1411 1412 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1413 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1414 outbuf, sizeof(outbuf), &outlength); 1415 if (rc) 1416 goto fail; 1417 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1418 rc = -EIO; 1419 goto fail; 1420 } 1421 1422 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1423 offset = snprintf(buf, len, "%u.%u.%u.%u", 1424 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 1425 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 1426 1427 /* EF10 may have multiple datapath firmware variants within a 1428 * single version. Report which variants are running. 1429 */ 1430 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1431 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1432 1433 offset += snprintf(buf + offset, len - offset, " rx%x tx%x", 1434 nic_data->rx_dpcpu_fw_id, 1435 nic_data->tx_dpcpu_fw_id); 1436 1437 /* It's theoretically possible for the string to exceed 31 1438 * characters, though in practice the first three version 1439 * components are short enough that this doesn't happen. 1440 */ 1441 if (WARN_ON(offset >= len)) 1442 buf[0] = 0; 1443 } 1444 1445 return; 1446 1447 fail: 1448 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1449 buf[0] = 0; 1450 } 1451 1452 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1453 bool *was_attached) 1454 { 1455 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1456 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1457 size_t outlen; 1458 int rc; 1459 1460 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1461 driver_operating ? 1 : 0); 1462 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1463 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1464 1465 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1466 outbuf, sizeof(outbuf), &outlen); 1467 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1468 * specified will fail with EPERM, and we have to tell the MC we don't 1469 * care what firmware we get. 1470 */ 1471 if (rc == -EPERM) { 1472 netif_dbg(efx, probe, efx->net_dev, 1473 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); 1474 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1475 MC_CMD_FW_DONT_CARE); 1476 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1477 sizeof(inbuf), outbuf, sizeof(outbuf), 1478 &outlen); 1479 } 1480 if (rc) { 1481 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1482 outbuf, outlen, rc); 1483 goto fail; 1484 } 1485 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1486 rc = -EIO; 1487 goto fail; 1488 } 1489 1490 if (driver_operating) { 1491 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1492 efx->mcdi->fn_flags = 1493 MCDI_DWORD(outbuf, 1494 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1495 } else { 1496 /* Synthesise flags for Siena */ 1497 efx->mcdi->fn_flags = 1498 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1500 (efx_port_num(efx) == 0) << 1501 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1502 } 1503 } 1504 1505 /* We currently assume we have control of the external link 1506 * and are completely trusted by firmware. Abort probing 1507 * if that's not true for this function. 1508 */ 1509 1510 if (was_attached != NULL) 1511 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1512 return 0; 1513 1514 fail: 1515 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1516 return rc; 1517 } 1518 1519 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1520 u16 *fw_subtype_list, u32 *capabilities) 1521 { 1522 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1523 size_t outlen, i; 1524 int port_num = efx_port_num(efx); 1525 int rc; 1526 1527 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1528 /* we need __aligned(2) for ether_addr_copy */ 1529 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1531 1532 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1533 outbuf, sizeof(outbuf), &outlen); 1534 if (rc) 1535 goto fail; 1536 1537 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1538 rc = -EIO; 1539 goto fail; 1540 } 1541 1542 if (mac_address) 1543 ether_addr_copy(mac_address, 1544 port_num ? 1545 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1546 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1547 if (fw_subtype_list) { 1548 for (i = 0; 1549 i < MCDI_VAR_ARRAY_LEN(outlen, 1550 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1551 i++) 1552 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1553 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1554 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1555 fw_subtype_list[i] = 0; 1556 } 1557 if (capabilities) { 1558 if (port_num) 1559 *capabilities = MCDI_DWORD(outbuf, 1560 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1561 else 1562 *capabilities = MCDI_DWORD(outbuf, 1563 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1564 } 1565 1566 return 0; 1567 1568 fail: 1569 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1570 __func__, rc, (int)outlen); 1571 1572 return rc; 1573 } 1574 1575 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1576 { 1577 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1578 u32 dest = 0; 1579 int rc; 1580 1581 if (uart) 1582 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1583 if (evq) 1584 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1585 1586 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1587 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1588 1589 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1590 1591 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1592 NULL, 0, NULL); 1593 return rc; 1594 } 1595 1596 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1597 { 1598 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1599 size_t outlen; 1600 int rc; 1601 1602 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1603 1604 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1605 outbuf, sizeof(outbuf), &outlen); 1606 if (rc) 1607 goto fail; 1608 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1609 rc = -EIO; 1610 goto fail; 1611 } 1612 1613 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1614 return 0; 1615 1616 fail: 1617 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1618 __func__, rc); 1619 return rc; 1620 } 1621 1622 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1623 size_t *size_out, size_t *erase_size_out, 1624 bool *protected_out) 1625 { 1626 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1627 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1628 size_t outlen; 1629 int rc; 1630 1631 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1632 1633 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1634 outbuf, sizeof(outbuf), &outlen); 1635 if (rc) 1636 goto fail; 1637 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1638 rc = -EIO; 1639 goto fail; 1640 } 1641 1642 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1643 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1644 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1645 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1646 return 0; 1647 1648 fail: 1649 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1650 return rc; 1651 } 1652 1653 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1654 { 1655 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1656 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1657 int rc; 1658 1659 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1660 1661 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1662 outbuf, sizeof(outbuf), NULL); 1663 if (rc) 1664 return rc; 1665 1666 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1667 case MC_CMD_NVRAM_TEST_PASS: 1668 case MC_CMD_NVRAM_TEST_NOTSUPP: 1669 return 0; 1670 default: 1671 return -EIO; 1672 } 1673 } 1674 1675 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1676 { 1677 u32 nvram_types; 1678 unsigned int type; 1679 int rc; 1680 1681 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1682 if (rc) 1683 goto fail1; 1684 1685 type = 0; 1686 while (nvram_types != 0) { 1687 if (nvram_types & 1) { 1688 rc = efx_mcdi_nvram_test(efx, type); 1689 if (rc) 1690 goto fail2; 1691 } 1692 type++; 1693 nvram_types >>= 1; 1694 } 1695 1696 return 0; 1697 1698 fail2: 1699 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1700 __func__, type); 1701 fail1: 1702 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1703 return rc; 1704 } 1705 1706 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1707 * negative on error. 1708 */ 1709 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1710 { 1711 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1712 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1713 unsigned int flags, index; 1714 const char *reason; 1715 size_t outlen; 1716 int retry; 1717 int rc; 1718 1719 /* Attempt to read any stored assertion state before we reboot 1720 * the mcfw out of the assertion handler. Retry twice, once 1721 * because a boot-time assertion might cause this command to fail 1722 * with EINTR. And once again because GET_ASSERTS can race with 1723 * MC_CMD_REBOOT running on the other port. */ 1724 retry = 2; 1725 do { 1726 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1727 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1728 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1729 outbuf, sizeof(outbuf), &outlen); 1730 if (rc == -EPERM) 1731 return 0; 1732 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1733 1734 if (rc) { 1735 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1736 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1737 outlen, rc); 1738 return rc; 1739 } 1740 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1741 return -EIO; 1742 1743 /* Print out any recorded assertion state */ 1744 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1745 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1746 return 0; 1747 1748 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1749 ? "system-level assertion" 1750 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1751 ? "thread-level assertion" 1752 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1753 ? "watchdog reset" 1754 : "unknown assertion"; 1755 netif_err(efx, hw, efx->net_dev, 1756 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1757 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1758 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1759 1760 /* Print out the registers */ 1761 for (index = 0; 1762 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1763 index++) 1764 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1765 1 + index, 1766 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1767 index)); 1768 1769 return 1; 1770 } 1771 1772 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1773 { 1774 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1775 int rc; 1776 1777 /* If the MC is running debug firmware, it might now be 1778 * waiting for a debugger to attach, but we just want it to 1779 * reboot. We set a flag that makes the command a no-op if it 1780 * has already done so. 1781 * The MCDI will thus return either 0 or -EIO. 1782 */ 1783 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1784 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1785 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1786 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1787 NULL, 0, NULL); 1788 if (rc == -EIO) 1789 rc = 0; 1790 if (rc) 1791 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1792 NULL, 0, rc); 1793 return rc; 1794 } 1795 1796 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1797 { 1798 int rc; 1799 1800 rc = efx_mcdi_read_assertion(efx); 1801 if (rc <= 0) 1802 return rc; 1803 1804 return efx_mcdi_exit_assertion(efx); 1805 } 1806 1807 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1808 { 1809 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1810 int rc; 1811 1812 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1813 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1814 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1815 1816 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1817 1818 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1819 1820 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1821 NULL, 0, NULL); 1822 } 1823 1824 static int efx_mcdi_reset_func(struct efx_nic *efx) 1825 { 1826 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1827 int rc; 1828 1829 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1830 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1831 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1832 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1833 NULL, 0, NULL); 1834 return rc; 1835 } 1836 1837 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1838 { 1839 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1840 int rc; 1841 1842 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1843 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1844 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1845 NULL, 0, NULL); 1846 /* White is black, and up is down */ 1847 if (rc == -EIO) 1848 return 0; 1849 if (rc == 0) 1850 rc = -EIO; 1851 return rc; 1852 } 1853 1854 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1855 { 1856 return RESET_TYPE_RECOVER_OR_ALL; 1857 } 1858 1859 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1860 { 1861 int rc; 1862 1863 /* If MCDI is down, we can't handle_assertion */ 1864 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1865 rc = pci_reset_function(efx->pci_dev); 1866 if (rc) 1867 return rc; 1868 /* Re-enable polled MCDI completion */ 1869 if (efx->mcdi) { 1870 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1871 mcdi->mode = MCDI_MODE_POLL; 1872 } 1873 return 0; 1874 } 1875 1876 /* Recover from a failed assertion pre-reset */ 1877 rc = efx_mcdi_handle_assertion(efx); 1878 if (rc) 1879 return rc; 1880 1881 if (method == RESET_TYPE_DATAPATH) 1882 return 0; 1883 else if (method == RESET_TYPE_WORLD) 1884 return efx_mcdi_reset_mc(efx); 1885 else 1886 return efx_mcdi_reset_func(efx); 1887 } 1888 1889 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1890 const u8 *mac, int *id_out) 1891 { 1892 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1893 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1894 size_t outlen; 1895 int rc; 1896 1897 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1898 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1899 MC_CMD_FILTER_MODE_SIMPLE); 1900 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1901 1902 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1903 outbuf, sizeof(outbuf), &outlen); 1904 if (rc) 1905 goto fail; 1906 1907 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1908 rc = -EIO; 1909 goto fail; 1910 } 1911 1912 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1913 1914 return 0; 1915 1916 fail: 1917 *id_out = -1; 1918 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1919 return rc; 1920 1921 } 1922 1923 1924 int 1925 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1926 { 1927 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1928 } 1929 1930 1931 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1932 { 1933 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1934 size_t outlen; 1935 int rc; 1936 1937 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1938 outbuf, sizeof(outbuf), &outlen); 1939 if (rc) 1940 goto fail; 1941 1942 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1943 rc = -EIO; 1944 goto fail; 1945 } 1946 1947 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1948 1949 return 0; 1950 1951 fail: 1952 *id_out = -1; 1953 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1954 return rc; 1955 } 1956 1957 1958 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1959 { 1960 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1961 int rc; 1962 1963 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1964 1965 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1966 NULL, 0, NULL); 1967 return rc; 1968 } 1969 1970 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1971 { 1972 struct efx_channel *channel; 1973 struct efx_rx_queue *rx_queue; 1974 MCDI_DECLARE_BUF(inbuf, 1975 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1976 int rc, count; 1977 1978 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1979 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1980 1981 count = 0; 1982 efx_for_each_channel(channel, efx) { 1983 efx_for_each_channel_rx_queue(rx_queue, channel) { 1984 if (rx_queue->flush_pending) { 1985 rx_queue->flush_pending = false; 1986 atomic_dec(&efx->rxq_flush_pending); 1987 MCDI_SET_ARRAY_DWORD( 1988 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1989 count, efx_rx_queue_index(rx_queue)); 1990 count++; 1991 } 1992 } 1993 } 1994 1995 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1996 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1997 WARN_ON(rc < 0); 1998 1999 return rc; 2000 } 2001 2002 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 2003 { 2004 int rc; 2005 2006 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 2007 return rc; 2008 } 2009 2010 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, 2011 unsigned int *flags) 2012 { 2013 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 2014 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); 2015 size_t outlen; 2016 int rc; 2017 2018 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 2019 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 2020 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 2021 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 2022 outbuf, sizeof(outbuf), &outlen); 2023 if (rc) 2024 return rc; 2025 2026 if (!flags) 2027 return 0; 2028 2029 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) 2030 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); 2031 else 2032 *flags = 0; 2033 2034 return 0; 2035 } 2036 2037 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 2038 unsigned int *enabled_out) 2039 { 2040 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 2041 size_t outlen; 2042 int rc; 2043 2044 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 2045 outbuf, sizeof(outbuf), &outlen); 2046 if (rc) 2047 goto fail; 2048 2049 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 2050 rc = -EIO; 2051 goto fail; 2052 } 2053 2054 if (impl_out) 2055 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 2056 2057 if (enabled_out) 2058 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 2059 2060 return 0; 2061 2062 fail: 2063 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially 2064 * terrifying. The call site will have to deal with it though. 2065 */ 2066 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err, 2067 "%s: failed rc=%d\n", __func__, rc); 2068 return rc; 2069 } 2070 2071 #ifdef CONFIG_SFC_MTD 2072 2073 #define EFX_MCDI_NVRAM_LEN_MAX 128 2074 2075 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 2076 { 2077 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN); 2078 int rc; 2079 2080 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 2081 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS, 2082 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2083 1); 2084 2085 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 2086 2087 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 2088 NULL, 0, NULL); 2089 2090 return rc; 2091 } 2092 2093 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 2094 loff_t offset, u8 *buffer, size_t length) 2095 { 2096 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN); 2097 MCDI_DECLARE_BUF(outbuf, 2098 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2099 size_t outlen; 2100 int rc; 2101 2102 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 2103 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 2104 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 2105 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE, 2106 MC_CMD_NVRAM_READ_IN_V2_DEFAULT); 2107 2108 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 2109 outbuf, sizeof(outbuf), &outlen); 2110 if (rc) 2111 return rc; 2112 2113 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 2114 return 0; 2115 } 2116 2117 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 2118 loff_t offset, const u8 *buffer, size_t length) 2119 { 2120 MCDI_DECLARE_BUF(inbuf, 2121 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2122 int rc; 2123 2124 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 2125 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 2126 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 2127 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 2128 2129 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 2130 2131 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 2132 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 2133 NULL, 0, NULL); 2134 return rc; 2135 } 2136 2137 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 2138 loff_t offset, size_t length) 2139 { 2140 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 2141 int rc; 2142 2143 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 2144 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 2145 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 2146 2147 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 2148 2149 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 2150 NULL, 0, NULL); 2151 return rc; 2152 } 2153 2154 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 2155 { 2156 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN); 2157 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN); 2158 size_t outlen; 2159 int rc, rc2; 2160 2161 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 2162 /* Always set this flag. Old firmware ignores it */ 2163 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS, 2164 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2165 1); 2166 2167 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 2168 outbuf, sizeof(outbuf), &outlen); 2169 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) { 2170 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE); 2171 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS) 2172 netif_err(efx, drv, efx->net_dev, 2173 "NVRAM update failed verification with code 0x%x\n", 2174 rc2); 2175 switch (rc2) { 2176 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS: 2177 break; 2178 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED: 2179 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED: 2180 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED: 2181 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED: 2182 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED: 2183 rc = -EIO; 2184 break; 2185 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT: 2186 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST: 2187 rc = -EINVAL; 2188 break; 2189 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES: 2190 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS: 2191 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH: 2192 rc = -EPERM; 2193 break; 2194 default: 2195 netif_err(efx, drv, efx->net_dev, 2196 "Unknown response to NVRAM_UPDATE_FINISH\n"); 2197 rc = -EIO; 2198 } 2199 } 2200 2201 return rc; 2202 } 2203 2204 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 2205 size_t len, size_t *retlen, u8 *buffer) 2206 { 2207 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2208 struct efx_nic *efx = mtd->priv; 2209 loff_t offset = start; 2210 loff_t end = min_t(loff_t, start + len, mtd->size); 2211 size_t chunk; 2212 int rc = 0; 2213 2214 while (offset < end) { 2215 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2216 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 2217 buffer, chunk); 2218 if (rc) 2219 goto out; 2220 offset += chunk; 2221 buffer += chunk; 2222 } 2223 out: 2224 *retlen = offset - start; 2225 return rc; 2226 } 2227 2228 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 2229 { 2230 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2231 struct efx_nic *efx = mtd->priv; 2232 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 2233 loff_t end = min_t(loff_t, start + len, mtd->size); 2234 size_t chunk = part->common.mtd.erasesize; 2235 int rc = 0; 2236 2237 if (!part->updating) { 2238 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2239 if (rc) 2240 goto out; 2241 part->updating = true; 2242 } 2243 2244 /* The MCDI interface can in fact do multiple erase blocks at once; 2245 * but erasing may be slow, so we make multiple calls here to avoid 2246 * tripping the MCDI RPC timeout. */ 2247 while (offset < end) { 2248 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 2249 chunk); 2250 if (rc) 2251 goto out; 2252 offset += chunk; 2253 } 2254 out: 2255 return rc; 2256 } 2257 2258 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2259 size_t len, size_t *retlen, const u8 *buffer) 2260 { 2261 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2262 struct efx_nic *efx = mtd->priv; 2263 loff_t offset = start; 2264 loff_t end = min_t(loff_t, start + len, mtd->size); 2265 size_t chunk; 2266 int rc = 0; 2267 2268 if (!part->updating) { 2269 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2270 if (rc) 2271 goto out; 2272 part->updating = true; 2273 } 2274 2275 while (offset < end) { 2276 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2277 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2278 buffer, chunk); 2279 if (rc) 2280 goto out; 2281 offset += chunk; 2282 buffer += chunk; 2283 } 2284 out: 2285 *retlen = offset - start; 2286 return rc; 2287 } 2288 2289 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2290 { 2291 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2292 struct efx_nic *efx = mtd->priv; 2293 int rc = 0; 2294 2295 if (part->updating) { 2296 part->updating = false; 2297 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2298 } 2299 2300 return rc; 2301 } 2302 2303 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2304 { 2305 struct efx_mcdi_mtd_partition *mcdi_part = 2306 container_of(part, struct efx_mcdi_mtd_partition, common); 2307 struct efx_nic *efx = part->mtd.priv; 2308 2309 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2310 efx->name, part->type_name, mcdi_part->fw_subtype); 2311 } 2312 2313 #endif /* CONFIG_SFC_MTD */ 2314