1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2008-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/moduleparam.h> 12 #include <linux/atomic.h> 13 #include "net_driver.h" 14 #include "nic.h" 15 #include "io.h" 16 #include "farch_regs.h" 17 #include "mcdi_pcol.h" 18 #include "phy.h" 19 20 /************************************************************************** 21 * 22 * Management-Controller-to-Driver Interface 23 * 24 ************************************************************************** 25 */ 26 27 #define MCDI_RPC_TIMEOUT (10 * HZ) 28 29 /* A reboot/assertion causes the MCDI status word to be set after the 30 * command word is set or a REBOOT event is sent. If we notice a reboot 31 * via these mechanisms then wait 250ms for the status word to be set. 32 */ 33 #define MCDI_STATUS_DELAY_US 100 34 #define MCDI_STATUS_DELAY_COUNT 2500 35 #define MCDI_STATUS_SLEEP_MS \ 36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 37 38 #define SEQ_MASK \ 39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 40 41 struct efx_mcdi_async_param { 42 struct list_head list; 43 unsigned int cmd; 44 size_t inlen; 45 size_t outlen; 46 bool quiet; 47 efx_mcdi_async_completer *complete; 48 unsigned long cookie; 49 /* followed by request/response buffer */ 50 }; 51 52 static void efx_mcdi_timeout_async(unsigned long context); 53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 54 bool *was_attached_out); 55 static bool efx_mcdi_poll_once(struct efx_nic *efx); 56 static void efx_mcdi_abandon(struct efx_nic *efx); 57 58 #ifdef CONFIG_SFC_MCDI_LOGGING 59 static bool mcdi_logging_default; 60 module_param(mcdi_logging_default, bool, 0644); 61 MODULE_PARM_DESC(mcdi_logging_default, 62 "Enable MCDI logging on newly-probed functions"); 63 #endif 64 65 int efx_mcdi_init(struct efx_nic *efx) 66 { 67 struct efx_mcdi_iface *mcdi; 68 bool already_attached; 69 int rc = -ENOMEM; 70 71 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 72 if (!efx->mcdi) 73 goto fail; 74 75 mcdi = efx_mcdi(efx); 76 mcdi->efx = efx; 77 #ifdef CONFIG_SFC_MCDI_LOGGING 78 /* consuming code assumes buffer is page-sized */ 79 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 80 if (!mcdi->logging_buffer) 81 goto fail1; 82 mcdi->logging_enabled = mcdi_logging_default; 83 #endif 84 init_waitqueue_head(&mcdi->wq); 85 init_waitqueue_head(&mcdi->proxy_rx_wq); 86 spin_lock_init(&mcdi->iface_lock); 87 mcdi->state = MCDI_STATE_QUIESCENT; 88 mcdi->mode = MCDI_MODE_POLL; 89 spin_lock_init(&mcdi->async_lock); 90 INIT_LIST_HEAD(&mcdi->async_list); 91 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, 92 (unsigned long)mcdi); 93 94 (void) efx_mcdi_poll_reboot(efx); 95 mcdi->new_epoch = true; 96 97 /* Recover from a failed assertion before probing */ 98 rc = efx_mcdi_handle_assertion(efx); 99 if (rc) 100 goto fail2; 101 102 /* Let the MC (and BMC, if this is a LOM) know that the driver 103 * is loaded. We should do this before we reset the NIC. 104 */ 105 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 106 if (rc) { 107 netif_err(efx, probe, efx->net_dev, 108 "Unable to register driver with MCPU\n"); 109 goto fail2; 110 } 111 if (already_attached) 112 /* Not a fatal error */ 113 netif_err(efx, probe, efx->net_dev, 114 "Host already registered with MCPU\n"); 115 116 if (efx->mcdi->fn_flags & 117 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 118 efx->primary = efx; 119 120 return 0; 121 fail2: 122 #ifdef CONFIG_SFC_MCDI_LOGGING 123 free_page((unsigned long)mcdi->logging_buffer); 124 fail1: 125 #endif 126 kfree(efx->mcdi); 127 efx->mcdi = NULL; 128 fail: 129 return rc; 130 } 131 132 void efx_mcdi_fini(struct efx_nic *efx) 133 { 134 if (!efx->mcdi) 135 return; 136 137 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 138 139 /* Relinquish the device (back to the BMC, if this is a LOM) */ 140 efx_mcdi_drv_attach(efx, false, NULL); 141 142 #ifdef CONFIG_SFC_MCDI_LOGGING 143 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 144 #endif 145 146 kfree(efx->mcdi); 147 } 148 149 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 150 const efx_dword_t *inbuf, size_t inlen) 151 { 152 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 153 #ifdef CONFIG_SFC_MCDI_LOGGING 154 char *buf = mcdi->logging_buffer; /* page-sized */ 155 #endif 156 efx_dword_t hdr[2]; 157 size_t hdr_len; 158 u32 xflags, seqno; 159 160 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 161 162 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 163 spin_lock_bh(&mcdi->iface_lock); 164 ++mcdi->seqno; 165 spin_unlock_bh(&mcdi->iface_lock); 166 167 seqno = mcdi->seqno & SEQ_MASK; 168 xflags = 0; 169 if (mcdi->mode == MCDI_MODE_EVENTS) 170 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 171 172 if (efx->type->mcdi_max_ver == 1) { 173 /* MCDI v1 */ 174 EFX_POPULATE_DWORD_7(hdr[0], 175 MCDI_HEADER_RESPONSE, 0, 176 MCDI_HEADER_RESYNC, 1, 177 MCDI_HEADER_CODE, cmd, 178 MCDI_HEADER_DATALEN, inlen, 179 MCDI_HEADER_SEQ, seqno, 180 MCDI_HEADER_XFLAGS, xflags, 181 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 182 hdr_len = 4; 183 } else { 184 /* MCDI v2 */ 185 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 186 EFX_POPULATE_DWORD_7(hdr[0], 187 MCDI_HEADER_RESPONSE, 0, 188 MCDI_HEADER_RESYNC, 1, 189 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 190 MCDI_HEADER_DATALEN, 0, 191 MCDI_HEADER_SEQ, seqno, 192 MCDI_HEADER_XFLAGS, xflags, 193 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 194 EFX_POPULATE_DWORD_2(hdr[1], 195 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 196 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 197 hdr_len = 8; 198 } 199 200 #ifdef CONFIG_SFC_MCDI_LOGGING 201 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 202 int bytes = 0; 203 int i; 204 /* Lengths should always be a whole number of dwords, so scream 205 * if they're not. 206 */ 207 WARN_ON_ONCE(hdr_len % 4); 208 WARN_ON_ONCE(inlen % 4); 209 210 /* We own the logging buffer, as only one MCDI can be in 211 * progress on a NIC at any one time. So no need for locking. 212 */ 213 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 214 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 215 " %08x", le32_to_cpu(hdr[i].u32[0])); 216 217 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 218 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 219 " %08x", le32_to_cpu(inbuf[i].u32[0])); 220 221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 222 } 223 #endif 224 225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 226 227 mcdi->new_epoch = false; 228 } 229 230 static int efx_mcdi_errno(unsigned int mcdi_err) 231 { 232 switch (mcdi_err) { 233 case 0: 234 return 0; 235 #define TRANSLATE_ERROR(name) \ 236 case MC_CMD_ERR_ ## name: \ 237 return -name; 238 TRANSLATE_ERROR(EPERM); 239 TRANSLATE_ERROR(ENOENT); 240 TRANSLATE_ERROR(EINTR); 241 TRANSLATE_ERROR(EAGAIN); 242 TRANSLATE_ERROR(EACCES); 243 TRANSLATE_ERROR(EBUSY); 244 TRANSLATE_ERROR(EINVAL); 245 TRANSLATE_ERROR(EDEADLK); 246 TRANSLATE_ERROR(ENOSYS); 247 TRANSLATE_ERROR(ETIME); 248 TRANSLATE_ERROR(EALREADY); 249 TRANSLATE_ERROR(ENOSPC); 250 #undef TRANSLATE_ERROR 251 case MC_CMD_ERR_ENOTSUP: 252 return -EOPNOTSUPP; 253 case MC_CMD_ERR_ALLOC_FAIL: 254 return -ENOBUFS; 255 case MC_CMD_ERR_MAC_EXIST: 256 return -EADDRINUSE; 257 default: 258 return -EPROTO; 259 } 260 } 261 262 static void efx_mcdi_read_response_header(struct efx_nic *efx) 263 { 264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 265 unsigned int respseq, respcmd, error; 266 #ifdef CONFIG_SFC_MCDI_LOGGING 267 char *buf = mcdi->logging_buffer; /* page-sized */ 268 #endif 269 efx_dword_t hdr; 270 271 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 275 276 if (respcmd != MC_CMD_V2_EXTN) { 277 mcdi->resp_hdr_len = 4; 278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 279 } else { 280 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 281 mcdi->resp_hdr_len = 8; 282 mcdi->resp_data_len = 283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 284 } 285 286 #ifdef CONFIG_SFC_MCDI_LOGGING 287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 288 size_t hdr_len, data_len; 289 int bytes = 0; 290 int i; 291 292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 293 hdr_len = mcdi->resp_hdr_len / 4; 294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 295 * to dword size, and the MCDI buffer is always dword size 296 */ 297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 298 299 /* We own the logging buffer, as only one MCDI can be in 300 * progress on a NIC at any one time. So no need for locking. 301 */ 302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 304 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 305 " %08x", le32_to_cpu(hdr.u32[0])); 306 } 307 308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 309 efx->type->mcdi_read_response(efx, &hdr, 310 mcdi->resp_hdr_len + (i * 4), 4); 311 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 312 " %08x", le32_to_cpu(hdr.u32[0])); 313 } 314 315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 316 } 317 #endif 318 319 mcdi->resprc_raw = 0; 320 if (error && mcdi->resp_data_len == 0) { 321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 322 mcdi->resprc = -EIO; 323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 324 netif_err(efx, hw, efx->net_dev, 325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 326 respseq, mcdi->seqno); 327 mcdi->resprc = -EIO; 328 } else if (error) { 329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); 331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); 332 } else { 333 mcdi->resprc = 0; 334 } 335 } 336 337 static bool efx_mcdi_poll_once(struct efx_nic *efx) 338 { 339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 340 341 rmb(); 342 if (!efx->type->mcdi_poll_response(efx)) 343 return false; 344 345 spin_lock_bh(&mcdi->iface_lock); 346 efx_mcdi_read_response_header(efx); 347 spin_unlock_bh(&mcdi->iface_lock); 348 349 return true; 350 } 351 352 static int efx_mcdi_poll(struct efx_nic *efx) 353 { 354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 355 unsigned long time, finish; 356 unsigned int spins; 357 int rc; 358 359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 360 rc = efx_mcdi_poll_reboot(efx); 361 if (rc) { 362 spin_lock_bh(&mcdi->iface_lock); 363 mcdi->resprc = rc; 364 mcdi->resp_hdr_len = 0; 365 mcdi->resp_data_len = 0; 366 spin_unlock_bh(&mcdi->iface_lock); 367 return 0; 368 } 369 370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 371 * because generally mcdi responses are fast. After that, back off 372 * and poll once a jiffy (approximately) 373 */ 374 spins = TICK_USEC; 375 finish = jiffies + MCDI_RPC_TIMEOUT; 376 377 while (1) { 378 if (spins != 0) { 379 --spins; 380 udelay(1); 381 } else { 382 schedule_timeout_uninterruptible(1); 383 } 384 385 time = jiffies; 386 387 if (efx_mcdi_poll_once(efx)) 388 break; 389 390 if (time_after(time, finish)) 391 return -ETIMEDOUT; 392 } 393 394 /* Return rc=0 like wait_event_timeout() */ 395 return 0; 396 } 397 398 /* Test and clear MC-rebooted flag for this port/function; reset 399 * software state as necessary. 400 */ 401 int efx_mcdi_poll_reboot(struct efx_nic *efx) 402 { 403 if (!efx->mcdi) 404 return 0; 405 406 return efx->type->mcdi_poll_reboot(efx); 407 } 408 409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 410 { 411 return cmpxchg(&mcdi->state, 412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 413 MCDI_STATE_QUIESCENT; 414 } 415 416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 417 { 418 /* Wait until the interface becomes QUIESCENT and we win the race 419 * to mark it RUNNING_SYNC. 420 */ 421 wait_event(mcdi->wq, 422 cmpxchg(&mcdi->state, 423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 424 MCDI_STATE_QUIESCENT); 425 } 426 427 static int efx_mcdi_await_completion(struct efx_nic *efx) 428 { 429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 430 431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 432 MCDI_RPC_TIMEOUT) == 0) 433 return -ETIMEDOUT; 434 435 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 437 * completed the request first, then we'll just end up completing the 438 * request again, which is safe. 439 * 440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 441 * wait_event_timeout() implicitly provides. 442 */ 443 if (mcdi->mode == MCDI_MODE_POLL) 444 return efx_mcdi_poll(efx); 445 446 return 0; 447 } 448 449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 450 * requester. Return whether this was done. Does not take any locks. 451 */ 452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 453 { 454 if (cmpxchg(&mcdi->state, 455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 456 MCDI_STATE_RUNNING_SYNC) { 457 wake_up(&mcdi->wq); 458 return true; 459 } 460 461 return false; 462 } 463 464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 465 { 466 if (mcdi->mode == MCDI_MODE_EVENTS) { 467 struct efx_mcdi_async_param *async; 468 struct efx_nic *efx = mcdi->efx; 469 470 /* Process the asynchronous request queue */ 471 spin_lock_bh(&mcdi->async_lock); 472 async = list_first_entry_or_null( 473 &mcdi->async_list, struct efx_mcdi_async_param, list); 474 if (async) { 475 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 476 efx_mcdi_send_request(efx, async->cmd, 477 (const efx_dword_t *)(async + 1), 478 async->inlen); 479 mod_timer(&mcdi->async_timer, 480 jiffies + MCDI_RPC_TIMEOUT); 481 } 482 spin_unlock_bh(&mcdi->async_lock); 483 484 if (async) 485 return; 486 } 487 488 mcdi->state = MCDI_STATE_QUIESCENT; 489 wake_up(&mcdi->wq); 490 } 491 492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 493 * asynchronous completion function, and release the interface. 494 * Return whether this was done. Must be called in bh-disabled 495 * context. Will take iface_lock and async_lock. 496 */ 497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 498 { 499 struct efx_nic *efx = mcdi->efx; 500 struct efx_mcdi_async_param *async; 501 size_t hdr_len, data_len, err_len; 502 efx_dword_t *outbuf; 503 MCDI_DECLARE_BUF_ERR(errbuf); 504 int rc; 505 506 if (cmpxchg(&mcdi->state, 507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 508 MCDI_STATE_RUNNING_ASYNC) 509 return false; 510 511 spin_lock(&mcdi->iface_lock); 512 if (timeout) { 513 /* Ensure that if the completion event arrives later, 514 * the seqno check in efx_mcdi_ev_cpl() will fail 515 */ 516 ++mcdi->seqno; 517 ++mcdi->credits; 518 rc = -ETIMEDOUT; 519 hdr_len = 0; 520 data_len = 0; 521 } else { 522 rc = mcdi->resprc; 523 hdr_len = mcdi->resp_hdr_len; 524 data_len = mcdi->resp_data_len; 525 } 526 spin_unlock(&mcdi->iface_lock); 527 528 /* Stop the timer. In case the timer function is running, we 529 * must wait for it to return so that there is no possibility 530 * of it aborting the next request. 531 */ 532 if (!timeout) 533 del_timer_sync(&mcdi->async_timer); 534 535 spin_lock(&mcdi->async_lock); 536 async = list_first_entry(&mcdi->async_list, 537 struct efx_mcdi_async_param, list); 538 list_del(&async->list); 539 spin_unlock(&mcdi->async_lock); 540 541 outbuf = (efx_dword_t *)(async + 1); 542 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 543 min(async->outlen, data_len)); 544 if (!timeout && rc && !async->quiet) { 545 err_len = min(sizeof(errbuf), data_len); 546 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 547 sizeof(errbuf)); 548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 549 err_len, rc); 550 } 551 552 if (async->complete) 553 async->complete(efx, async->cookie, rc, outbuf, 554 min(async->outlen, data_len)); 555 kfree(async); 556 557 efx_mcdi_release(mcdi); 558 559 return true; 560 } 561 562 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 563 unsigned int datalen, unsigned int mcdi_err) 564 { 565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 566 bool wake = false; 567 568 spin_lock(&mcdi->iface_lock); 569 570 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 571 if (mcdi->credits) 572 /* The request has been cancelled */ 573 --mcdi->credits; 574 else 575 netif_err(efx, hw, efx->net_dev, 576 "MC response mismatch tx seq 0x%x rx " 577 "seq 0x%x\n", seqno, mcdi->seqno); 578 } else { 579 if (efx->type->mcdi_max_ver >= 2) { 580 /* MCDI v2 responses don't fit in an event */ 581 efx_mcdi_read_response_header(efx); 582 } else { 583 mcdi->resprc = efx_mcdi_errno(mcdi_err); 584 mcdi->resp_hdr_len = 4; 585 mcdi->resp_data_len = datalen; 586 } 587 588 wake = true; 589 } 590 591 spin_unlock(&mcdi->iface_lock); 592 593 if (wake) { 594 if (!efx_mcdi_complete_async(mcdi, false)) 595 (void) efx_mcdi_complete_sync(mcdi); 596 597 /* If the interface isn't RUNNING_ASYNC or 598 * RUNNING_SYNC then we've received a duplicate 599 * completion after we've already transitioned back to 600 * QUIESCENT. [A subsequent invocation would increment 601 * seqno, so would have failed the seqno check]. 602 */ 603 } 604 } 605 606 static void efx_mcdi_timeout_async(unsigned long context) 607 { 608 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; 609 610 efx_mcdi_complete_async(mcdi, true); 611 } 612 613 static int 614 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 615 { 616 if (efx->type->mcdi_max_ver < 0 || 617 (efx->type->mcdi_max_ver < 2 && 618 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 619 return -EINVAL; 620 621 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 622 (efx->type->mcdi_max_ver < 2 && 623 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 624 return -EMSGSIZE; 625 626 return 0; 627 } 628 629 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, 630 size_t hdr_len, size_t data_len, 631 u32 *proxy_handle) 632 { 633 MCDI_DECLARE_BUF_ERR(testbuf); 634 const size_t buflen = sizeof(testbuf); 635 636 if (!proxy_handle || data_len < buflen) 637 return false; 638 639 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); 640 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { 641 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); 642 return true; 643 } 644 645 return false; 646 } 647 648 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 649 size_t inlen, 650 efx_dword_t *outbuf, size_t outlen, 651 size_t *outlen_actual, bool quiet, 652 u32 *proxy_handle, int *raw_rc) 653 { 654 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 655 MCDI_DECLARE_BUF_ERR(errbuf); 656 int rc; 657 658 if (mcdi->mode == MCDI_MODE_POLL) 659 rc = efx_mcdi_poll(efx); 660 else 661 rc = efx_mcdi_await_completion(efx); 662 663 if (rc != 0) { 664 netif_err(efx, hw, efx->net_dev, 665 "MC command 0x%x inlen %d mode %d timed out\n", 666 cmd, (int)inlen, mcdi->mode); 667 668 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 669 netif_err(efx, hw, efx->net_dev, 670 "MCDI request was completed without an event\n"); 671 rc = 0; 672 } 673 674 efx_mcdi_abandon(efx); 675 676 /* Close the race with efx_mcdi_ev_cpl() executing just too late 677 * and completing a request we've just cancelled, by ensuring 678 * that the seqno check therein fails. 679 */ 680 spin_lock_bh(&mcdi->iface_lock); 681 ++mcdi->seqno; 682 ++mcdi->credits; 683 spin_unlock_bh(&mcdi->iface_lock); 684 } 685 686 if (proxy_handle) 687 *proxy_handle = 0; 688 689 if (rc != 0) { 690 if (outlen_actual) 691 *outlen_actual = 0; 692 } else { 693 size_t hdr_len, data_len, err_len; 694 695 /* At the very least we need a memory barrier here to ensure 696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 697 * a spurious efx_mcdi_ev_cpl() running concurrently by 698 * acquiring the iface_lock. */ 699 spin_lock_bh(&mcdi->iface_lock); 700 rc = mcdi->resprc; 701 if (raw_rc) 702 *raw_rc = mcdi->resprc_raw; 703 hdr_len = mcdi->resp_hdr_len; 704 data_len = mcdi->resp_data_len; 705 err_len = min(sizeof(errbuf), data_len); 706 spin_unlock_bh(&mcdi->iface_lock); 707 708 BUG_ON(rc > 0); 709 710 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 711 min(outlen, data_len)); 712 if (outlen_actual) 713 *outlen_actual = data_len; 714 715 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 716 717 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 718 /* Don't reset if MC_CMD_REBOOT returns EIO */ 719 } else if (rc == -EIO || rc == -EINTR) { 720 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", 721 -rc); 722 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 723 } else if (proxy_handle && (rc == -EPROTO) && 724 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, 725 proxy_handle)) { 726 mcdi->proxy_rx_status = 0; 727 mcdi->proxy_rx_handle = 0; 728 mcdi->state = MCDI_STATE_PROXY_WAIT; 729 } else if (rc && !quiet) { 730 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 731 rc); 732 } 733 734 if (rc == -EIO || rc == -EINTR) { 735 msleep(MCDI_STATUS_SLEEP_MS); 736 efx_mcdi_poll_reboot(efx); 737 mcdi->new_epoch = true; 738 } 739 } 740 741 if (!proxy_handle || !*proxy_handle) 742 efx_mcdi_release(mcdi); 743 return rc; 744 } 745 746 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) 747 { 748 if (mcdi->state == MCDI_STATE_PROXY_WAIT) { 749 /* Interrupt the proxy wait. */ 750 mcdi->proxy_rx_status = -EINTR; 751 wake_up(&mcdi->proxy_rx_wq); 752 } 753 } 754 755 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, 756 u32 handle, int status) 757 { 758 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 759 760 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); 761 762 mcdi->proxy_rx_status = efx_mcdi_errno(status); 763 /* Ensure the status is written before we update the handle, since the 764 * latter is used to check if we've finished. 765 */ 766 wmb(); 767 mcdi->proxy_rx_handle = handle; 768 wake_up(&mcdi->proxy_rx_wq); 769 } 770 771 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) 772 { 773 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 774 int rc; 775 776 /* Wait for a proxy event, or timeout. */ 777 rc = wait_event_timeout(mcdi->proxy_rx_wq, 778 mcdi->proxy_rx_handle != 0 || 779 mcdi->proxy_rx_status == -EINTR, 780 MCDI_RPC_TIMEOUT); 781 782 if (rc <= 0) { 783 netif_dbg(efx, hw, efx->net_dev, 784 "MCDI proxy timeout %d\n", handle); 785 return -ETIMEDOUT; 786 } else if (mcdi->proxy_rx_handle != handle) { 787 netif_warn(efx, hw, efx->net_dev, 788 "MCDI proxy unexpected handle %d (expected %d)\n", 789 mcdi->proxy_rx_handle, handle); 790 return -EINVAL; 791 } 792 793 return mcdi->proxy_rx_status; 794 } 795 796 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 797 const efx_dword_t *inbuf, size_t inlen, 798 efx_dword_t *outbuf, size_t outlen, 799 size_t *outlen_actual, bool quiet, int *raw_rc) 800 { 801 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ 802 int rc; 803 804 if (inbuf && inlen && (inbuf == outbuf)) { 805 /* The input buffer can't be aliased with the output. */ 806 WARN_ON(1); 807 return -EINVAL; 808 } 809 810 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 811 if (rc) 812 return rc; 813 814 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 815 outlen_actual, quiet, &proxy_handle, raw_rc); 816 817 if (proxy_handle) { 818 /* Handle proxy authorisation. This allows approval of MCDI 819 * operations to be delegated to the admin function, allowing 820 * fine control over (eg) multicast subscriptions. 821 */ 822 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 823 824 netif_dbg(efx, hw, efx->net_dev, 825 "MCDI waiting for proxy auth %d\n", 826 proxy_handle); 827 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); 828 829 if (rc == 0) { 830 netif_dbg(efx, hw, efx->net_dev, 831 "MCDI proxy retry %d\n", proxy_handle); 832 833 /* We now retry the original request. */ 834 mcdi->state = MCDI_STATE_RUNNING_SYNC; 835 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 836 837 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, 838 outbuf, outlen, outlen_actual, 839 quiet, NULL, raw_rc); 840 } else { 841 netif_printk(efx, hw, 842 rc == -EPERM ? KERN_DEBUG : KERN_ERR, 843 efx->net_dev, 844 "MC command 0x%x failed after proxy auth rc=%d\n", 845 cmd, rc); 846 847 if (rc == -EINTR || rc == -EIO) 848 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 849 efx_mcdi_release(mcdi); 850 } 851 } 852 853 return rc; 854 } 855 856 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, 857 const efx_dword_t *inbuf, size_t inlen, 858 efx_dword_t *outbuf, size_t outlen, 859 size_t *outlen_actual, bool quiet) 860 { 861 int raw_rc = 0; 862 int rc; 863 864 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 865 outbuf, outlen, outlen_actual, true, &raw_rc); 866 867 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 868 efx->type->is_vf) { 869 /* If the EVB port isn't available within a VF this may 870 * mean the PF is still bringing the switch up. We should 871 * retry our request shortly. 872 */ 873 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; 874 unsigned int delay_us = 10000; 875 876 netif_dbg(efx, hw, efx->net_dev, 877 "%s: NO_EVB_PORT; will retry request\n", 878 __func__); 879 880 do { 881 usleep_range(delay_us, delay_us + 10000); 882 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 883 outbuf, outlen, outlen_actual, 884 true, &raw_rc); 885 if (delay_us < 100000) 886 delay_us <<= 1; 887 } while ((rc == -EPROTO) && 888 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 889 time_before(jiffies, abort_time)); 890 } 891 892 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) 893 efx_mcdi_display_error(efx, cmd, inlen, 894 outbuf, outlen, rc); 895 896 return rc; 897 } 898 899 /** 900 * efx_mcdi_rpc - Issue an MCDI command and wait for completion 901 * @efx: NIC through which to issue the command 902 * @cmd: Command type number 903 * @inbuf: Command parameters 904 * @inlen: Length of command parameters, in bytes. Must be a multiple 905 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. 906 * @outbuf: Response buffer. May be %NULL if @outlen is 0. 907 * @outlen: Length of response buffer, in bytes. If the actual 908 * response is longer than @outlen & ~3, it will be truncated 909 * to that length. 910 * @outlen_actual: Pointer through which to return the actual response 911 * length. May be %NULL if this is not needed. 912 * 913 * This function may sleep and therefore must be called in an appropriate 914 * context. 915 * 916 * Return: A negative error code, or zero if successful. The error 917 * code may come from the MCDI response or may indicate a failure 918 * to communicate with the MC. In the former case, the response 919 * will still be copied to @outbuf and *@outlen_actual will be 920 * set accordingly. In the latter case, *@outlen_actual will be 921 * set to zero. 922 */ 923 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 924 const efx_dword_t *inbuf, size_t inlen, 925 efx_dword_t *outbuf, size_t outlen, 926 size_t *outlen_actual) 927 { 928 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 929 outlen_actual, false); 930 } 931 932 /* Normally, on receiving an error code in the MCDI response, 933 * efx_mcdi_rpc will log an error message containing (among other 934 * things) the raw error code, by means of efx_mcdi_display_error. 935 * This _quiet version suppresses that; if the caller wishes to log 936 * the error conditionally on the return code, it should call this 937 * function and is then responsible for calling efx_mcdi_display_error 938 * as needed. 939 */ 940 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 941 const efx_dword_t *inbuf, size_t inlen, 942 efx_dword_t *outbuf, size_t outlen, 943 size_t *outlen_actual) 944 { 945 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 946 outlen_actual, true); 947 } 948 949 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 950 const efx_dword_t *inbuf, size_t inlen) 951 { 952 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 953 int rc; 954 955 rc = efx_mcdi_check_supported(efx, cmd, inlen); 956 if (rc) 957 return rc; 958 959 if (efx->mc_bist_for_other_fn) 960 return -ENETDOWN; 961 962 if (mcdi->mode == MCDI_MODE_FAIL) 963 return -ENETDOWN; 964 965 efx_mcdi_acquire_sync(mcdi); 966 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 967 return 0; 968 } 969 970 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 971 const efx_dword_t *inbuf, size_t inlen, 972 size_t outlen, 973 efx_mcdi_async_completer *complete, 974 unsigned long cookie, bool quiet) 975 { 976 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 977 struct efx_mcdi_async_param *async; 978 int rc; 979 980 rc = efx_mcdi_check_supported(efx, cmd, inlen); 981 if (rc) 982 return rc; 983 984 if (efx->mc_bist_for_other_fn) 985 return -ENETDOWN; 986 987 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 988 GFP_ATOMIC); 989 if (!async) 990 return -ENOMEM; 991 992 async->cmd = cmd; 993 async->inlen = inlen; 994 async->outlen = outlen; 995 async->quiet = quiet; 996 async->complete = complete; 997 async->cookie = cookie; 998 memcpy(async + 1, inbuf, inlen); 999 1000 spin_lock_bh(&mcdi->async_lock); 1001 1002 if (mcdi->mode == MCDI_MODE_EVENTS) { 1003 list_add_tail(&async->list, &mcdi->async_list); 1004 1005 /* If this is at the front of the queue, try to start it 1006 * immediately 1007 */ 1008 if (mcdi->async_list.next == &async->list && 1009 efx_mcdi_acquire_async(mcdi)) { 1010 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 1011 mod_timer(&mcdi->async_timer, 1012 jiffies + MCDI_RPC_TIMEOUT); 1013 } 1014 } else { 1015 kfree(async); 1016 rc = -ENETDOWN; 1017 } 1018 1019 spin_unlock_bh(&mcdi->async_lock); 1020 1021 return rc; 1022 } 1023 1024 /** 1025 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 1026 * @efx: NIC through which to issue the command 1027 * @cmd: Command type number 1028 * @inbuf: Command parameters 1029 * @inlen: Length of command parameters, in bytes 1030 * @outlen: Length to allocate for response buffer, in bytes 1031 * @complete: Function to be called on completion or cancellation. 1032 * @cookie: Arbitrary value to be passed to @complete. 1033 * 1034 * This function does not sleep and therefore may be called in atomic 1035 * context. It will fail if event queues are disabled or if MCDI 1036 * event completions have been disabled due to an error. 1037 * 1038 * If it succeeds, the @complete function will be called exactly once 1039 * in atomic context, when one of the following occurs: 1040 * (a) the completion event is received (in NAPI context) 1041 * (b) event queues are disabled (in the process that disables them) 1042 * (c) the request times-out (in timer context) 1043 */ 1044 int 1045 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 1046 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 1047 efx_mcdi_async_completer *complete, unsigned long cookie) 1048 { 1049 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1050 cookie, false); 1051 } 1052 1053 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 1054 const efx_dword_t *inbuf, size_t inlen, 1055 size_t outlen, efx_mcdi_async_completer *complete, 1056 unsigned long cookie) 1057 { 1058 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1059 cookie, true); 1060 } 1061 1062 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 1063 efx_dword_t *outbuf, size_t outlen, 1064 size_t *outlen_actual) 1065 { 1066 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1067 outlen_actual, false, NULL, NULL); 1068 } 1069 1070 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 1071 efx_dword_t *outbuf, size_t outlen, 1072 size_t *outlen_actual) 1073 { 1074 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1075 outlen_actual, true, NULL, NULL); 1076 } 1077 1078 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 1079 size_t inlen, efx_dword_t *outbuf, 1080 size_t outlen, int rc) 1081 { 1082 int code = 0, err_arg = 0; 1083 1084 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 1085 code = MCDI_DWORD(outbuf, ERR_CODE); 1086 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 1087 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 1088 netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR, 1089 efx->net_dev, 1090 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", 1091 cmd, inlen, rc, code, err_arg); 1092 } 1093 1094 /* Switch to polled MCDI completions. This can be called in various 1095 * error conditions with various locks held, so it must be lockless. 1096 * Caller is responsible for flushing asynchronous requests later. 1097 */ 1098 void efx_mcdi_mode_poll(struct efx_nic *efx) 1099 { 1100 struct efx_mcdi_iface *mcdi; 1101 1102 if (!efx->mcdi) 1103 return; 1104 1105 mcdi = efx_mcdi(efx); 1106 /* If already in polling mode, nothing to do. 1107 * If in fail-fast state, don't switch to polled completion. 1108 * FLR recovery will do that later. 1109 */ 1110 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 1111 return; 1112 1113 /* We can switch from event completion to polled completion, because 1114 * mcdi requests are always completed in shared memory. We do this by 1115 * switching the mode to POLL'd then completing the request. 1116 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 1117 * 1118 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 1119 * which efx_mcdi_complete_sync() provides for us. 1120 */ 1121 mcdi->mode = MCDI_MODE_POLL; 1122 1123 efx_mcdi_complete_sync(mcdi); 1124 } 1125 1126 /* Flush any running or queued asynchronous requests, after event processing 1127 * is stopped 1128 */ 1129 void efx_mcdi_flush_async(struct efx_nic *efx) 1130 { 1131 struct efx_mcdi_async_param *async, *next; 1132 struct efx_mcdi_iface *mcdi; 1133 1134 if (!efx->mcdi) 1135 return; 1136 1137 mcdi = efx_mcdi(efx); 1138 1139 /* We must be in poll or fail mode so no more requests can be queued */ 1140 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 1141 1142 del_timer_sync(&mcdi->async_timer); 1143 1144 /* If a request is still running, make sure we give the MC 1145 * time to complete it so that the response won't overwrite our 1146 * next request. 1147 */ 1148 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 1149 efx_mcdi_poll(efx); 1150 mcdi->state = MCDI_STATE_QUIESCENT; 1151 } 1152 1153 /* Nothing else will access the async list now, so it is safe 1154 * to walk it without holding async_lock. If we hold it while 1155 * calling a completer then lockdep may warn that we have 1156 * acquired locks in the wrong order. 1157 */ 1158 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 1159 if (async->complete) 1160 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 1161 list_del(&async->list); 1162 kfree(async); 1163 } 1164 } 1165 1166 void efx_mcdi_mode_event(struct efx_nic *efx) 1167 { 1168 struct efx_mcdi_iface *mcdi; 1169 1170 if (!efx->mcdi) 1171 return; 1172 1173 mcdi = efx_mcdi(efx); 1174 /* If already in event completion mode, nothing to do. 1175 * If in fail-fast state, don't switch to event completion. FLR 1176 * recovery will do that later. 1177 */ 1178 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 1179 return; 1180 1181 /* We can't switch from polled to event completion in the middle of a 1182 * request, because the completion method is specified in the request. 1183 * So acquire the interface to serialise the requestors. We don't need 1184 * to acquire the iface_lock to change the mode here, but we do need a 1185 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 1186 * efx_mcdi_acquire() provides. 1187 */ 1188 efx_mcdi_acquire_sync(mcdi); 1189 mcdi->mode = MCDI_MODE_EVENTS; 1190 efx_mcdi_release(mcdi); 1191 } 1192 1193 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 1194 { 1195 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1196 1197 /* If there is an outstanding MCDI request, it has been terminated 1198 * either by a BADASSERT or REBOOT event. If the mcdi interface is 1199 * in polled mode, then do nothing because the MC reboot handler will 1200 * set the header correctly. However, if the mcdi interface is waiting 1201 * for a CMDDONE event it won't receive it [and since all MCDI events 1202 * are sent to the same queue, we can't be racing with 1203 * efx_mcdi_ev_cpl()] 1204 * 1205 * If there is an outstanding asynchronous request, we can't 1206 * complete it now (efx_mcdi_complete() would deadlock). The 1207 * reset process will take care of this. 1208 * 1209 * There's a race here with efx_mcdi_send_request(), because 1210 * we might receive a REBOOT event *before* the request has 1211 * been copied out. In polled mode (during startup) this is 1212 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1213 * event mode, this condition is just an edge-case of 1214 * receiving a REBOOT event after posting the MCDI 1215 * request. Did the mc reboot before or after the copyout? The 1216 * best we can do always is just return failure. 1217 * 1218 * If there is an outstanding proxy response expected it is not going 1219 * to arrive. We should thus abort it. 1220 */ 1221 spin_lock(&mcdi->iface_lock); 1222 efx_mcdi_proxy_abort(mcdi); 1223 1224 if (efx_mcdi_complete_sync(mcdi)) { 1225 if (mcdi->mode == MCDI_MODE_EVENTS) { 1226 mcdi->resprc = rc; 1227 mcdi->resp_hdr_len = 0; 1228 mcdi->resp_data_len = 0; 1229 ++mcdi->credits; 1230 } 1231 } else { 1232 int count; 1233 1234 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1235 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1236 rc = efx_mcdi_poll_reboot(efx); 1237 if (rc) 1238 break; 1239 udelay(MCDI_STATUS_DELAY_US); 1240 } 1241 1242 /* On EF10, a CODE_MC_REBOOT event can be received without the 1243 * reboot detection in efx_mcdi_poll_reboot() being triggered. 1244 * If zero was returned from the final call to 1245 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1246 * MC has definitely rebooted so prepare for the reset. 1247 */ 1248 if (!rc && efx->type->mcdi_reboot_detected) 1249 efx->type->mcdi_reboot_detected(efx); 1250 1251 mcdi->new_epoch = true; 1252 1253 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1254 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1255 } 1256 1257 spin_unlock(&mcdi->iface_lock); 1258 } 1259 1260 /* The MC is going down in to BIST mode. set the BIST flag to block 1261 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 1262 * (which doesn't actually execute a reset, it waits for the controlling 1263 * function to reset it). 1264 */ 1265 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1266 { 1267 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1268 1269 spin_lock(&mcdi->iface_lock); 1270 efx->mc_bist_for_other_fn = true; 1271 efx_mcdi_proxy_abort(mcdi); 1272 1273 if (efx_mcdi_complete_sync(mcdi)) { 1274 if (mcdi->mode == MCDI_MODE_EVENTS) { 1275 mcdi->resprc = -EIO; 1276 mcdi->resp_hdr_len = 0; 1277 mcdi->resp_data_len = 0; 1278 ++mcdi->credits; 1279 } 1280 } 1281 mcdi->new_epoch = true; 1282 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1283 spin_unlock(&mcdi->iface_lock); 1284 } 1285 1286 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1287 * to recover. 1288 */ 1289 static void efx_mcdi_abandon(struct efx_nic *efx) 1290 { 1291 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1292 1293 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1294 return; /* it had already been done */ 1295 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1296 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1297 } 1298 1299 /* Called from falcon_process_eventq for MCDI events */ 1300 void efx_mcdi_process_event(struct efx_channel *channel, 1301 efx_qword_t *event) 1302 { 1303 struct efx_nic *efx = channel->efx; 1304 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1305 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1306 1307 switch (code) { 1308 case MCDI_EVENT_CODE_BADSSERT: 1309 netif_err(efx, hw, efx->net_dev, 1310 "MC watchdog or assertion failure at 0x%x\n", data); 1311 efx_mcdi_ev_death(efx, -EINTR); 1312 break; 1313 1314 case MCDI_EVENT_CODE_PMNOTICE: 1315 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1316 break; 1317 1318 case MCDI_EVENT_CODE_CMDDONE: 1319 efx_mcdi_ev_cpl(efx, 1320 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1321 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1322 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1323 break; 1324 1325 case MCDI_EVENT_CODE_LINKCHANGE: 1326 efx_mcdi_process_link_change(efx, event); 1327 break; 1328 case MCDI_EVENT_CODE_SENSOREVT: 1329 efx_mcdi_sensor_event(efx, event); 1330 break; 1331 case MCDI_EVENT_CODE_SCHEDERR: 1332 netif_dbg(efx, hw, efx->net_dev, 1333 "MC Scheduler alert (0x%x)\n", data); 1334 break; 1335 case MCDI_EVENT_CODE_REBOOT: 1336 case MCDI_EVENT_CODE_MC_REBOOT: 1337 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1338 efx_mcdi_ev_death(efx, -EIO); 1339 break; 1340 case MCDI_EVENT_CODE_MC_BIST: 1341 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1342 efx_mcdi_ev_bist(efx); 1343 break; 1344 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1345 /* MAC stats are gather lazily. We can ignore this. */ 1346 break; 1347 case MCDI_EVENT_CODE_FLR: 1348 if (efx->type->sriov_flr) 1349 efx->type->sriov_flr(efx, 1350 MCDI_EVENT_FIELD(*event, FLR_VF)); 1351 break; 1352 case MCDI_EVENT_CODE_PTP_RX: 1353 case MCDI_EVENT_CODE_PTP_FAULT: 1354 case MCDI_EVENT_CODE_PTP_PPS: 1355 efx_ptp_event(efx, event); 1356 break; 1357 case MCDI_EVENT_CODE_PTP_TIME: 1358 efx_time_sync_event(channel, event); 1359 break; 1360 case MCDI_EVENT_CODE_TX_FLUSH: 1361 case MCDI_EVENT_CODE_RX_FLUSH: 1362 /* Two flush events will be sent: one to the same event 1363 * queue as completions, and one to event queue 0. 1364 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1365 * flag will be set, and we should ignore the event 1366 * because we want to wait for all completions. 1367 */ 1368 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1369 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1370 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1371 efx_ef10_handle_drain_event(efx); 1372 break; 1373 case MCDI_EVENT_CODE_TX_ERR: 1374 case MCDI_EVENT_CODE_RX_ERR: 1375 netif_err(efx, hw, efx->net_dev, 1376 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1377 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1378 EFX_QWORD_VAL(*event)); 1379 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1380 break; 1381 case MCDI_EVENT_CODE_PROXY_RESPONSE: 1382 efx_mcdi_ev_proxy_response(efx, 1383 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), 1384 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); 1385 break; 1386 default: 1387 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", 1388 code); 1389 } 1390 } 1391 1392 /************************************************************************** 1393 * 1394 * Specific request functions 1395 * 1396 ************************************************************************** 1397 */ 1398 1399 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1400 { 1401 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1402 size_t outlength; 1403 const __le16 *ver_words; 1404 size_t offset; 1405 int rc; 1406 1407 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1408 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1409 outbuf, sizeof(outbuf), &outlength); 1410 if (rc) 1411 goto fail; 1412 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1413 rc = -EIO; 1414 goto fail; 1415 } 1416 1417 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1418 offset = snprintf(buf, len, "%u.%u.%u.%u", 1419 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 1420 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 1421 1422 /* EF10 may have multiple datapath firmware variants within a 1423 * single version. Report which variants are running. 1424 */ 1425 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1426 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1427 1428 offset += snprintf(buf + offset, len - offset, " rx%x tx%x", 1429 nic_data->rx_dpcpu_fw_id, 1430 nic_data->tx_dpcpu_fw_id); 1431 1432 /* It's theoretically possible for the string to exceed 31 1433 * characters, though in practice the first three version 1434 * components are short enough that this doesn't happen. 1435 */ 1436 if (WARN_ON(offset >= len)) 1437 buf[0] = 0; 1438 } 1439 1440 return; 1441 1442 fail: 1443 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1444 buf[0] = 0; 1445 } 1446 1447 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1448 bool *was_attached) 1449 { 1450 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1451 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1452 size_t outlen; 1453 int rc; 1454 1455 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1456 driver_operating ? 1 : 0); 1457 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1458 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1459 1460 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1461 outbuf, sizeof(outbuf), &outlen); 1462 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1463 * specified will fail with EPERM, and we have to tell the MC we don't 1464 * care what firmware we get. 1465 */ 1466 if (rc == -EPERM) { 1467 netif_dbg(efx, probe, efx->net_dev, 1468 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); 1469 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1470 MC_CMD_FW_DONT_CARE); 1471 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1472 sizeof(inbuf), outbuf, sizeof(outbuf), 1473 &outlen); 1474 } 1475 if (rc) { 1476 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1477 outbuf, outlen, rc); 1478 goto fail; 1479 } 1480 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1481 rc = -EIO; 1482 goto fail; 1483 } 1484 1485 if (driver_operating) { 1486 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1487 efx->mcdi->fn_flags = 1488 MCDI_DWORD(outbuf, 1489 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1490 } else { 1491 /* Synthesise flags for Siena */ 1492 efx->mcdi->fn_flags = 1493 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1494 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1495 (efx_port_num(efx) == 0) << 1496 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1497 } 1498 } 1499 1500 /* We currently assume we have control of the external link 1501 * and are completely trusted by firmware. Abort probing 1502 * if that's not true for this function. 1503 */ 1504 1505 if (was_attached != NULL) 1506 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1507 return 0; 1508 1509 fail: 1510 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1511 return rc; 1512 } 1513 1514 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1515 u16 *fw_subtype_list, u32 *capabilities) 1516 { 1517 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1518 size_t outlen, i; 1519 int port_num = efx_port_num(efx); 1520 int rc; 1521 1522 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1523 /* we need __aligned(2) for ether_addr_copy */ 1524 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1525 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1526 1527 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1528 outbuf, sizeof(outbuf), &outlen); 1529 if (rc) 1530 goto fail; 1531 1532 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1533 rc = -EIO; 1534 goto fail; 1535 } 1536 1537 if (mac_address) 1538 ether_addr_copy(mac_address, 1539 port_num ? 1540 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1541 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1542 if (fw_subtype_list) { 1543 for (i = 0; 1544 i < MCDI_VAR_ARRAY_LEN(outlen, 1545 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1546 i++) 1547 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1548 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1549 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1550 fw_subtype_list[i] = 0; 1551 } 1552 if (capabilities) { 1553 if (port_num) 1554 *capabilities = MCDI_DWORD(outbuf, 1555 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1556 else 1557 *capabilities = MCDI_DWORD(outbuf, 1558 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1559 } 1560 1561 return 0; 1562 1563 fail: 1564 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1565 __func__, rc, (int)outlen); 1566 1567 return rc; 1568 } 1569 1570 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1571 { 1572 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1573 u32 dest = 0; 1574 int rc; 1575 1576 if (uart) 1577 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1578 if (evq) 1579 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1580 1581 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1582 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1583 1584 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1585 1586 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1587 NULL, 0, NULL); 1588 return rc; 1589 } 1590 1591 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1592 { 1593 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1594 size_t outlen; 1595 int rc; 1596 1597 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1598 1599 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1600 outbuf, sizeof(outbuf), &outlen); 1601 if (rc) 1602 goto fail; 1603 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1604 rc = -EIO; 1605 goto fail; 1606 } 1607 1608 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1609 return 0; 1610 1611 fail: 1612 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1613 __func__, rc); 1614 return rc; 1615 } 1616 1617 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1618 size_t *size_out, size_t *erase_size_out, 1619 bool *protected_out) 1620 { 1621 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1622 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1623 size_t outlen; 1624 int rc; 1625 1626 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1627 1628 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1629 outbuf, sizeof(outbuf), &outlen); 1630 if (rc) 1631 goto fail; 1632 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1633 rc = -EIO; 1634 goto fail; 1635 } 1636 1637 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1638 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1639 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1640 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1641 return 0; 1642 1643 fail: 1644 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1645 return rc; 1646 } 1647 1648 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1649 { 1650 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1651 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1652 int rc; 1653 1654 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1655 1656 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1657 outbuf, sizeof(outbuf), NULL); 1658 if (rc) 1659 return rc; 1660 1661 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1662 case MC_CMD_NVRAM_TEST_PASS: 1663 case MC_CMD_NVRAM_TEST_NOTSUPP: 1664 return 0; 1665 default: 1666 return -EIO; 1667 } 1668 } 1669 1670 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1671 { 1672 u32 nvram_types; 1673 unsigned int type; 1674 int rc; 1675 1676 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1677 if (rc) 1678 goto fail1; 1679 1680 type = 0; 1681 while (nvram_types != 0) { 1682 if (nvram_types & 1) { 1683 rc = efx_mcdi_nvram_test(efx, type); 1684 if (rc) 1685 goto fail2; 1686 } 1687 type++; 1688 nvram_types >>= 1; 1689 } 1690 1691 return 0; 1692 1693 fail2: 1694 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1695 __func__, type); 1696 fail1: 1697 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1698 return rc; 1699 } 1700 1701 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1702 * negative on error. 1703 */ 1704 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1705 { 1706 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1707 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1708 unsigned int flags, index; 1709 const char *reason; 1710 size_t outlen; 1711 int retry; 1712 int rc; 1713 1714 /* Attempt to read any stored assertion state before we reboot 1715 * the mcfw out of the assertion handler. Retry twice, once 1716 * because a boot-time assertion might cause this command to fail 1717 * with EINTR. And once again because GET_ASSERTS can race with 1718 * MC_CMD_REBOOT running on the other port. */ 1719 retry = 2; 1720 do { 1721 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1722 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1723 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1724 outbuf, sizeof(outbuf), &outlen); 1725 if (rc == -EPERM) 1726 return 0; 1727 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1728 1729 if (rc) { 1730 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1731 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1732 outlen, rc); 1733 return rc; 1734 } 1735 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1736 return -EIO; 1737 1738 /* Print out any recorded assertion state */ 1739 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1740 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1741 return 0; 1742 1743 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1744 ? "system-level assertion" 1745 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1746 ? "thread-level assertion" 1747 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1748 ? "watchdog reset" 1749 : "unknown assertion"; 1750 netif_err(efx, hw, efx->net_dev, 1751 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1752 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1753 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1754 1755 /* Print out the registers */ 1756 for (index = 0; 1757 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1758 index++) 1759 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1760 1 + index, 1761 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1762 index)); 1763 1764 return 1; 1765 } 1766 1767 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1768 { 1769 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1770 int rc; 1771 1772 /* If the MC is running debug firmware, it might now be 1773 * waiting for a debugger to attach, but we just want it to 1774 * reboot. We set a flag that makes the command a no-op if it 1775 * has already done so. 1776 * The MCDI will thus return either 0 or -EIO. 1777 */ 1778 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1779 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1780 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1781 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1782 NULL, 0, NULL); 1783 if (rc == -EIO) 1784 rc = 0; 1785 if (rc) 1786 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1787 NULL, 0, rc); 1788 return rc; 1789 } 1790 1791 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1792 { 1793 int rc; 1794 1795 rc = efx_mcdi_read_assertion(efx); 1796 if (rc <= 0) 1797 return rc; 1798 1799 return efx_mcdi_exit_assertion(efx); 1800 } 1801 1802 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1803 { 1804 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1805 int rc; 1806 1807 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1808 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1809 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1810 1811 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1812 1813 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1814 1815 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1816 NULL, 0, NULL); 1817 } 1818 1819 static int efx_mcdi_reset_func(struct efx_nic *efx) 1820 { 1821 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1822 int rc; 1823 1824 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1825 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1826 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1827 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1828 NULL, 0, NULL); 1829 return rc; 1830 } 1831 1832 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1833 { 1834 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1835 int rc; 1836 1837 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1838 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1839 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1840 NULL, 0, NULL); 1841 /* White is black, and up is down */ 1842 if (rc == -EIO) 1843 return 0; 1844 if (rc == 0) 1845 rc = -EIO; 1846 return rc; 1847 } 1848 1849 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1850 { 1851 return RESET_TYPE_RECOVER_OR_ALL; 1852 } 1853 1854 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1855 { 1856 int rc; 1857 1858 /* If MCDI is down, we can't handle_assertion */ 1859 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1860 rc = pci_reset_function(efx->pci_dev); 1861 if (rc) 1862 return rc; 1863 /* Re-enable polled MCDI completion */ 1864 if (efx->mcdi) { 1865 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1866 mcdi->mode = MCDI_MODE_POLL; 1867 } 1868 return 0; 1869 } 1870 1871 /* Recover from a failed assertion pre-reset */ 1872 rc = efx_mcdi_handle_assertion(efx); 1873 if (rc) 1874 return rc; 1875 1876 if (method == RESET_TYPE_DATAPATH) 1877 return 0; 1878 else if (method == RESET_TYPE_WORLD) 1879 return efx_mcdi_reset_mc(efx); 1880 else 1881 return efx_mcdi_reset_func(efx); 1882 } 1883 1884 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1885 const u8 *mac, int *id_out) 1886 { 1887 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1888 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1889 size_t outlen; 1890 int rc; 1891 1892 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1893 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1894 MC_CMD_FILTER_MODE_SIMPLE); 1895 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1896 1897 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1898 outbuf, sizeof(outbuf), &outlen); 1899 if (rc) 1900 goto fail; 1901 1902 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1903 rc = -EIO; 1904 goto fail; 1905 } 1906 1907 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1908 1909 return 0; 1910 1911 fail: 1912 *id_out = -1; 1913 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1914 return rc; 1915 1916 } 1917 1918 1919 int 1920 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1921 { 1922 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1923 } 1924 1925 1926 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1927 { 1928 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1929 size_t outlen; 1930 int rc; 1931 1932 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1933 outbuf, sizeof(outbuf), &outlen); 1934 if (rc) 1935 goto fail; 1936 1937 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1938 rc = -EIO; 1939 goto fail; 1940 } 1941 1942 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1943 1944 return 0; 1945 1946 fail: 1947 *id_out = -1; 1948 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1949 return rc; 1950 } 1951 1952 1953 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1954 { 1955 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1956 int rc; 1957 1958 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1959 1960 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1961 NULL, 0, NULL); 1962 return rc; 1963 } 1964 1965 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1966 { 1967 struct efx_channel *channel; 1968 struct efx_rx_queue *rx_queue; 1969 MCDI_DECLARE_BUF(inbuf, 1970 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1971 int rc, count; 1972 1973 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1974 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1975 1976 count = 0; 1977 efx_for_each_channel(channel, efx) { 1978 efx_for_each_channel_rx_queue(rx_queue, channel) { 1979 if (rx_queue->flush_pending) { 1980 rx_queue->flush_pending = false; 1981 atomic_dec(&efx->rxq_flush_pending); 1982 MCDI_SET_ARRAY_DWORD( 1983 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1984 count, efx_rx_queue_index(rx_queue)); 1985 count++; 1986 } 1987 } 1988 } 1989 1990 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1991 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1992 WARN_ON(rc < 0); 1993 1994 return rc; 1995 } 1996 1997 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 1998 { 1999 int rc; 2000 2001 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 2002 return rc; 2003 } 2004 2005 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, 2006 unsigned int *flags) 2007 { 2008 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 2009 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); 2010 size_t outlen; 2011 int rc; 2012 2013 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 2014 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 2015 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 2016 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 2017 outbuf, sizeof(outbuf), &outlen); 2018 if (rc) 2019 return rc; 2020 2021 if (!flags) 2022 return 0; 2023 2024 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) 2025 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); 2026 else 2027 *flags = 0; 2028 2029 return 0; 2030 } 2031 2032 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 2033 unsigned int *enabled_out) 2034 { 2035 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 2036 size_t outlen; 2037 int rc; 2038 2039 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 2040 outbuf, sizeof(outbuf), &outlen); 2041 if (rc) 2042 goto fail; 2043 2044 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 2045 rc = -EIO; 2046 goto fail; 2047 } 2048 2049 if (impl_out) 2050 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 2051 2052 if (enabled_out) 2053 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 2054 2055 return 0; 2056 2057 fail: 2058 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially 2059 * terrifying. The call site will have to deal with it though. 2060 */ 2061 netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR, 2062 efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 2063 return rc; 2064 } 2065 2066 #ifdef CONFIG_SFC_MTD 2067 2068 #define EFX_MCDI_NVRAM_LEN_MAX 128 2069 2070 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 2071 { 2072 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); 2073 int rc; 2074 2075 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 2076 2077 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 2078 2079 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 2080 NULL, 0, NULL); 2081 return rc; 2082 } 2083 2084 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 2085 loff_t offset, u8 *buffer, size_t length) 2086 { 2087 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); 2088 MCDI_DECLARE_BUF(outbuf, 2089 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2090 size_t outlen; 2091 int rc; 2092 2093 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 2094 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 2095 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 2096 2097 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 2098 outbuf, sizeof(outbuf), &outlen); 2099 if (rc) 2100 return rc; 2101 2102 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 2103 return 0; 2104 } 2105 2106 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 2107 loff_t offset, const u8 *buffer, size_t length) 2108 { 2109 MCDI_DECLARE_BUF(inbuf, 2110 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2111 int rc; 2112 2113 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 2114 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 2115 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 2116 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 2117 2118 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 2119 2120 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 2121 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 2122 NULL, 0, NULL); 2123 return rc; 2124 } 2125 2126 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 2127 loff_t offset, size_t length) 2128 { 2129 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 2130 int rc; 2131 2132 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 2133 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 2134 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 2135 2136 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 2137 2138 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 2139 NULL, 0, NULL); 2140 return rc; 2141 } 2142 2143 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 2144 { 2145 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); 2146 int rc; 2147 2148 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 2149 2150 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); 2151 2152 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 2153 NULL, 0, NULL); 2154 return rc; 2155 } 2156 2157 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 2158 size_t len, size_t *retlen, u8 *buffer) 2159 { 2160 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2161 struct efx_nic *efx = mtd->priv; 2162 loff_t offset = start; 2163 loff_t end = min_t(loff_t, start + len, mtd->size); 2164 size_t chunk; 2165 int rc = 0; 2166 2167 while (offset < end) { 2168 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2169 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 2170 buffer, chunk); 2171 if (rc) 2172 goto out; 2173 offset += chunk; 2174 buffer += chunk; 2175 } 2176 out: 2177 *retlen = offset - start; 2178 return rc; 2179 } 2180 2181 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 2182 { 2183 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2184 struct efx_nic *efx = mtd->priv; 2185 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 2186 loff_t end = min_t(loff_t, start + len, mtd->size); 2187 size_t chunk = part->common.mtd.erasesize; 2188 int rc = 0; 2189 2190 if (!part->updating) { 2191 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2192 if (rc) 2193 goto out; 2194 part->updating = true; 2195 } 2196 2197 /* The MCDI interface can in fact do multiple erase blocks at once; 2198 * but erasing may be slow, so we make multiple calls here to avoid 2199 * tripping the MCDI RPC timeout. */ 2200 while (offset < end) { 2201 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 2202 chunk); 2203 if (rc) 2204 goto out; 2205 offset += chunk; 2206 } 2207 out: 2208 return rc; 2209 } 2210 2211 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2212 size_t len, size_t *retlen, const u8 *buffer) 2213 { 2214 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2215 struct efx_nic *efx = mtd->priv; 2216 loff_t offset = start; 2217 loff_t end = min_t(loff_t, start + len, mtd->size); 2218 size_t chunk; 2219 int rc = 0; 2220 2221 if (!part->updating) { 2222 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2223 if (rc) 2224 goto out; 2225 part->updating = true; 2226 } 2227 2228 while (offset < end) { 2229 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2230 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2231 buffer, chunk); 2232 if (rc) 2233 goto out; 2234 offset += chunk; 2235 buffer += chunk; 2236 } 2237 out: 2238 *retlen = offset - start; 2239 return rc; 2240 } 2241 2242 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2243 { 2244 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2245 struct efx_nic *efx = mtd->priv; 2246 int rc = 0; 2247 2248 if (part->updating) { 2249 part->updating = false; 2250 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2251 } 2252 2253 return rc; 2254 } 2255 2256 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2257 { 2258 struct efx_mcdi_mtd_partition *mcdi_part = 2259 container_of(part, struct efx_mcdi_mtd_partition, common); 2260 struct efx_nic *efx = part->mtd.priv; 2261 2262 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2263 efx->name, part->type_name, mcdi_part->fw_subtype); 2264 } 2265 2266 #endif /* CONFIG_SFC_MTD */ 2267