xref: /openbmc/linux/drivers/net/ethernet/sfc/mcdi.c (revision 82003e04)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2008-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18 #include "phy.h"
19 
20 /**************************************************************************
21  *
22  * Management-Controller-to-Driver Interface
23  *
24  **************************************************************************
25  */
26 
27 #define MCDI_RPC_TIMEOUT       (10 * HZ)
28 
29 /* A reboot/assertion causes the MCDI status word to be set after the
30  * command word is set or a REBOOT event is sent. If we notice a reboot
31  * via these mechanisms then wait 250ms for the status word to be set.
32  */
33 #define MCDI_STATUS_DELAY_US		100
34 #define MCDI_STATUS_DELAY_COUNT		2500
35 #define MCDI_STATUS_SLEEP_MS						\
36 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37 
38 #define SEQ_MASK							\
39 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40 
41 struct efx_mcdi_async_param {
42 	struct list_head list;
43 	unsigned int cmd;
44 	size_t inlen;
45 	size_t outlen;
46 	bool quiet;
47 	efx_mcdi_async_completer *complete;
48 	unsigned long cookie;
49 	/* followed by request/response buffer */
50 };
51 
52 static void efx_mcdi_timeout_async(unsigned long context);
53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
54 			       bool *was_attached_out);
55 static bool efx_mcdi_poll_once(struct efx_nic *efx);
56 static void efx_mcdi_abandon(struct efx_nic *efx);
57 
58 #ifdef CONFIG_SFC_MCDI_LOGGING
59 static bool mcdi_logging_default;
60 module_param(mcdi_logging_default, bool, 0644);
61 MODULE_PARM_DESC(mcdi_logging_default,
62 		 "Enable MCDI logging on newly-probed functions");
63 #endif
64 
65 int efx_mcdi_init(struct efx_nic *efx)
66 {
67 	struct efx_mcdi_iface *mcdi;
68 	bool already_attached;
69 	int rc = -ENOMEM;
70 
71 	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
72 	if (!efx->mcdi)
73 		goto fail;
74 
75 	mcdi = efx_mcdi(efx);
76 	mcdi->efx = efx;
77 #ifdef CONFIG_SFC_MCDI_LOGGING
78 	/* consuming code assumes buffer is page-sized */
79 	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
80 	if (!mcdi->logging_buffer)
81 		goto fail1;
82 	mcdi->logging_enabled = mcdi_logging_default;
83 #endif
84 	init_waitqueue_head(&mcdi->wq);
85 	init_waitqueue_head(&mcdi->proxy_rx_wq);
86 	spin_lock_init(&mcdi->iface_lock);
87 	mcdi->state = MCDI_STATE_QUIESCENT;
88 	mcdi->mode = MCDI_MODE_POLL;
89 	spin_lock_init(&mcdi->async_lock);
90 	INIT_LIST_HEAD(&mcdi->async_list);
91 	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
92 		    (unsigned long)mcdi);
93 
94 	(void) efx_mcdi_poll_reboot(efx);
95 	mcdi->new_epoch = true;
96 
97 	/* Recover from a failed assertion before probing */
98 	rc = efx_mcdi_handle_assertion(efx);
99 	if (rc)
100 		goto fail2;
101 
102 	/* Let the MC (and BMC, if this is a LOM) know that the driver
103 	 * is loaded. We should do this before we reset the NIC.
104 	 */
105 	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
106 	if (rc) {
107 		netif_err(efx, probe, efx->net_dev,
108 			  "Unable to register driver with MCPU\n");
109 		goto fail2;
110 	}
111 	if (already_attached)
112 		/* Not a fatal error */
113 		netif_err(efx, probe, efx->net_dev,
114 			  "Host already registered with MCPU\n");
115 
116 	if (efx->mcdi->fn_flags &
117 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
118 		efx->primary = efx;
119 
120 	return 0;
121 fail2:
122 #ifdef CONFIG_SFC_MCDI_LOGGING
123 	free_page((unsigned long)mcdi->logging_buffer);
124 fail1:
125 #endif
126 	kfree(efx->mcdi);
127 	efx->mcdi = NULL;
128 fail:
129 	return rc;
130 }
131 
132 void efx_mcdi_fini(struct efx_nic *efx)
133 {
134 	if (!efx->mcdi)
135 		return;
136 
137 	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
138 
139 	/* Relinquish the device (back to the BMC, if this is a LOM) */
140 	efx_mcdi_drv_attach(efx, false, NULL);
141 
142 #ifdef CONFIG_SFC_MCDI_LOGGING
143 	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
144 #endif
145 
146 	kfree(efx->mcdi);
147 }
148 
149 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
150 				  const efx_dword_t *inbuf, size_t inlen)
151 {
152 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
153 #ifdef CONFIG_SFC_MCDI_LOGGING
154 	char *buf = mcdi->logging_buffer; /* page-sized */
155 #endif
156 	efx_dword_t hdr[2];
157 	size_t hdr_len;
158 	u32 xflags, seqno;
159 
160 	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
161 
162 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
163 	spin_lock_bh(&mcdi->iface_lock);
164 	++mcdi->seqno;
165 	spin_unlock_bh(&mcdi->iface_lock);
166 
167 	seqno = mcdi->seqno & SEQ_MASK;
168 	xflags = 0;
169 	if (mcdi->mode == MCDI_MODE_EVENTS)
170 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
171 
172 	if (efx->type->mcdi_max_ver == 1) {
173 		/* MCDI v1 */
174 		EFX_POPULATE_DWORD_7(hdr[0],
175 				     MCDI_HEADER_RESPONSE, 0,
176 				     MCDI_HEADER_RESYNC, 1,
177 				     MCDI_HEADER_CODE, cmd,
178 				     MCDI_HEADER_DATALEN, inlen,
179 				     MCDI_HEADER_SEQ, seqno,
180 				     MCDI_HEADER_XFLAGS, xflags,
181 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
182 		hdr_len = 4;
183 	} else {
184 		/* MCDI v2 */
185 		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
186 		EFX_POPULATE_DWORD_7(hdr[0],
187 				     MCDI_HEADER_RESPONSE, 0,
188 				     MCDI_HEADER_RESYNC, 1,
189 				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
190 				     MCDI_HEADER_DATALEN, 0,
191 				     MCDI_HEADER_SEQ, seqno,
192 				     MCDI_HEADER_XFLAGS, xflags,
193 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
194 		EFX_POPULATE_DWORD_2(hdr[1],
195 				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
196 				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
197 		hdr_len = 8;
198 	}
199 
200 #ifdef CONFIG_SFC_MCDI_LOGGING
201 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
202 		int bytes = 0;
203 		int i;
204 		/* Lengths should always be a whole number of dwords, so scream
205 		 * if they're not.
206 		 */
207 		WARN_ON_ONCE(hdr_len % 4);
208 		WARN_ON_ONCE(inlen % 4);
209 
210 		/* We own the logging buffer, as only one MCDI can be in
211 		 * progress on a NIC at any one time.  So no need for locking.
212 		 */
213 		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
214 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
215 					  " %08x", le32_to_cpu(hdr[i].u32[0]));
216 
217 		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
218 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
219 					  " %08x", le32_to_cpu(inbuf[i].u32[0]));
220 
221 		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
222 	}
223 #endif
224 
225 	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
226 
227 	mcdi->new_epoch = false;
228 }
229 
230 static int efx_mcdi_errno(unsigned int mcdi_err)
231 {
232 	switch (mcdi_err) {
233 	case 0:
234 		return 0;
235 #define TRANSLATE_ERROR(name)					\
236 	case MC_CMD_ERR_ ## name:				\
237 		return -name;
238 	TRANSLATE_ERROR(EPERM);
239 	TRANSLATE_ERROR(ENOENT);
240 	TRANSLATE_ERROR(EINTR);
241 	TRANSLATE_ERROR(EAGAIN);
242 	TRANSLATE_ERROR(EACCES);
243 	TRANSLATE_ERROR(EBUSY);
244 	TRANSLATE_ERROR(EINVAL);
245 	TRANSLATE_ERROR(EDEADLK);
246 	TRANSLATE_ERROR(ENOSYS);
247 	TRANSLATE_ERROR(ETIME);
248 	TRANSLATE_ERROR(EALREADY);
249 	TRANSLATE_ERROR(ENOSPC);
250 #undef TRANSLATE_ERROR
251 	case MC_CMD_ERR_ENOTSUP:
252 		return -EOPNOTSUPP;
253 	case MC_CMD_ERR_ALLOC_FAIL:
254 		return -ENOBUFS;
255 	case MC_CMD_ERR_MAC_EXIST:
256 		return -EADDRINUSE;
257 	default:
258 		return -EPROTO;
259 	}
260 }
261 
262 static void efx_mcdi_read_response_header(struct efx_nic *efx)
263 {
264 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
265 	unsigned int respseq, respcmd, error;
266 #ifdef CONFIG_SFC_MCDI_LOGGING
267 	char *buf = mcdi->logging_buffer; /* page-sized */
268 #endif
269 	efx_dword_t hdr;
270 
271 	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
272 	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
273 	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
274 	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
275 
276 	if (respcmd != MC_CMD_V2_EXTN) {
277 		mcdi->resp_hdr_len = 4;
278 		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
279 	} else {
280 		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
281 		mcdi->resp_hdr_len = 8;
282 		mcdi->resp_data_len =
283 			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
284 	}
285 
286 #ifdef CONFIG_SFC_MCDI_LOGGING
287 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
288 		size_t hdr_len, data_len;
289 		int bytes = 0;
290 		int i;
291 
292 		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
293 		hdr_len = mcdi->resp_hdr_len / 4;
294 		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 		 * to dword size, and the MCDI buffer is always dword size
296 		 */
297 		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
298 
299 		/* We own the logging buffer, as only one MCDI can be in
300 		 * progress on a NIC at any one time.  So no need for locking.
301 		 */
302 		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
303 			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
304 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
305 					  " %08x", le32_to_cpu(hdr.u32[0]));
306 		}
307 
308 		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
309 			efx->type->mcdi_read_response(efx, &hdr,
310 					mcdi->resp_hdr_len + (i * 4), 4);
311 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
312 					  " %08x", le32_to_cpu(hdr.u32[0]));
313 		}
314 
315 		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
316 	}
317 #endif
318 
319 	mcdi->resprc_raw = 0;
320 	if (error && mcdi->resp_data_len == 0) {
321 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
322 		mcdi->resprc = -EIO;
323 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
324 		netif_err(efx, hw, efx->net_dev,
325 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 			  respseq, mcdi->seqno);
327 		mcdi->resprc = -EIO;
328 	} else if (error) {
329 		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
330 		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
331 		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
332 	} else {
333 		mcdi->resprc = 0;
334 	}
335 }
336 
337 static bool efx_mcdi_poll_once(struct efx_nic *efx)
338 {
339 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
340 
341 	rmb();
342 	if (!efx->type->mcdi_poll_response(efx))
343 		return false;
344 
345 	spin_lock_bh(&mcdi->iface_lock);
346 	efx_mcdi_read_response_header(efx);
347 	spin_unlock_bh(&mcdi->iface_lock);
348 
349 	return true;
350 }
351 
352 static int efx_mcdi_poll(struct efx_nic *efx)
353 {
354 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
355 	unsigned long time, finish;
356 	unsigned int spins;
357 	int rc;
358 
359 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 	rc = efx_mcdi_poll_reboot(efx);
361 	if (rc) {
362 		spin_lock_bh(&mcdi->iface_lock);
363 		mcdi->resprc = rc;
364 		mcdi->resp_hdr_len = 0;
365 		mcdi->resp_data_len = 0;
366 		spin_unlock_bh(&mcdi->iface_lock);
367 		return 0;
368 	}
369 
370 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 	 * because generally mcdi responses are fast. After that, back off
372 	 * and poll once a jiffy (approximately)
373 	 */
374 	spins = TICK_USEC;
375 	finish = jiffies + MCDI_RPC_TIMEOUT;
376 
377 	while (1) {
378 		if (spins != 0) {
379 			--spins;
380 			udelay(1);
381 		} else {
382 			schedule_timeout_uninterruptible(1);
383 		}
384 
385 		time = jiffies;
386 
387 		if (efx_mcdi_poll_once(efx))
388 			break;
389 
390 		if (time_after(time, finish))
391 			return -ETIMEDOUT;
392 	}
393 
394 	/* Return rc=0 like wait_event_timeout() */
395 	return 0;
396 }
397 
398 /* Test and clear MC-rebooted flag for this port/function; reset
399  * software state as necessary.
400  */
401 int efx_mcdi_poll_reboot(struct efx_nic *efx)
402 {
403 	if (!efx->mcdi)
404 		return 0;
405 
406 	return efx->type->mcdi_poll_reboot(efx);
407 }
408 
409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
410 {
411 	return cmpxchg(&mcdi->state,
412 		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
413 		MCDI_STATE_QUIESCENT;
414 }
415 
416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
417 {
418 	/* Wait until the interface becomes QUIESCENT and we win the race
419 	 * to mark it RUNNING_SYNC.
420 	 */
421 	wait_event(mcdi->wq,
422 		   cmpxchg(&mcdi->state,
423 			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
424 		   MCDI_STATE_QUIESCENT);
425 }
426 
427 static int efx_mcdi_await_completion(struct efx_nic *efx)
428 {
429 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
430 
431 	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
432 			       MCDI_RPC_TIMEOUT) == 0)
433 		return -ETIMEDOUT;
434 
435 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 	 * completed the request first, then we'll just end up completing the
438 	 * request again, which is safe.
439 	 *
440 	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 	 * wait_event_timeout() implicitly provides.
442 	 */
443 	if (mcdi->mode == MCDI_MODE_POLL)
444 		return efx_mcdi_poll(efx);
445 
446 	return 0;
447 }
448 
449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450  * requester.  Return whether this was done.  Does not take any locks.
451  */
452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
453 {
454 	if (cmpxchg(&mcdi->state,
455 		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
456 	    MCDI_STATE_RUNNING_SYNC) {
457 		wake_up(&mcdi->wq);
458 		return true;
459 	}
460 
461 	return false;
462 }
463 
464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
465 {
466 	if (mcdi->mode == MCDI_MODE_EVENTS) {
467 		struct efx_mcdi_async_param *async;
468 		struct efx_nic *efx = mcdi->efx;
469 
470 		/* Process the asynchronous request queue */
471 		spin_lock_bh(&mcdi->async_lock);
472 		async = list_first_entry_or_null(
473 			&mcdi->async_list, struct efx_mcdi_async_param, list);
474 		if (async) {
475 			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
476 			efx_mcdi_send_request(efx, async->cmd,
477 					      (const efx_dword_t *)(async + 1),
478 					      async->inlen);
479 			mod_timer(&mcdi->async_timer,
480 				  jiffies + MCDI_RPC_TIMEOUT);
481 		}
482 		spin_unlock_bh(&mcdi->async_lock);
483 
484 		if (async)
485 			return;
486 	}
487 
488 	mcdi->state = MCDI_STATE_QUIESCENT;
489 	wake_up(&mcdi->wq);
490 }
491 
492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493  * asynchronous completion function, and release the interface.
494  * Return whether this was done.  Must be called in bh-disabled
495  * context.  Will take iface_lock and async_lock.
496  */
497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
498 {
499 	struct efx_nic *efx = mcdi->efx;
500 	struct efx_mcdi_async_param *async;
501 	size_t hdr_len, data_len, err_len;
502 	efx_dword_t *outbuf;
503 	MCDI_DECLARE_BUF_ERR(errbuf);
504 	int rc;
505 
506 	if (cmpxchg(&mcdi->state,
507 		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
508 	    MCDI_STATE_RUNNING_ASYNC)
509 		return false;
510 
511 	spin_lock(&mcdi->iface_lock);
512 	if (timeout) {
513 		/* Ensure that if the completion event arrives later,
514 		 * the seqno check in efx_mcdi_ev_cpl() will fail
515 		 */
516 		++mcdi->seqno;
517 		++mcdi->credits;
518 		rc = -ETIMEDOUT;
519 		hdr_len = 0;
520 		data_len = 0;
521 	} else {
522 		rc = mcdi->resprc;
523 		hdr_len = mcdi->resp_hdr_len;
524 		data_len = mcdi->resp_data_len;
525 	}
526 	spin_unlock(&mcdi->iface_lock);
527 
528 	/* Stop the timer.  In case the timer function is running, we
529 	 * must wait for it to return so that there is no possibility
530 	 * of it aborting the next request.
531 	 */
532 	if (!timeout)
533 		del_timer_sync(&mcdi->async_timer);
534 
535 	spin_lock(&mcdi->async_lock);
536 	async = list_first_entry(&mcdi->async_list,
537 				 struct efx_mcdi_async_param, list);
538 	list_del(&async->list);
539 	spin_unlock(&mcdi->async_lock);
540 
541 	outbuf = (efx_dword_t *)(async + 1);
542 	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
543 				      min(async->outlen, data_len));
544 	if (!timeout && rc && !async->quiet) {
545 		err_len = min(sizeof(errbuf), data_len);
546 		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
547 					      sizeof(errbuf));
548 		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
549 				       err_len, rc);
550 	}
551 
552 	if (async->complete)
553 		async->complete(efx, async->cookie, rc, outbuf,
554 				min(async->outlen, data_len));
555 	kfree(async);
556 
557 	efx_mcdi_release(mcdi);
558 
559 	return true;
560 }
561 
562 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
563 			    unsigned int datalen, unsigned int mcdi_err)
564 {
565 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
566 	bool wake = false;
567 
568 	spin_lock(&mcdi->iface_lock);
569 
570 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
571 		if (mcdi->credits)
572 			/* The request has been cancelled */
573 			--mcdi->credits;
574 		else
575 			netif_err(efx, hw, efx->net_dev,
576 				  "MC response mismatch tx seq 0x%x rx "
577 				  "seq 0x%x\n", seqno, mcdi->seqno);
578 	} else {
579 		if (efx->type->mcdi_max_ver >= 2) {
580 			/* MCDI v2 responses don't fit in an event */
581 			efx_mcdi_read_response_header(efx);
582 		} else {
583 			mcdi->resprc = efx_mcdi_errno(mcdi_err);
584 			mcdi->resp_hdr_len = 4;
585 			mcdi->resp_data_len = datalen;
586 		}
587 
588 		wake = true;
589 	}
590 
591 	spin_unlock(&mcdi->iface_lock);
592 
593 	if (wake) {
594 		if (!efx_mcdi_complete_async(mcdi, false))
595 			(void) efx_mcdi_complete_sync(mcdi);
596 
597 		/* If the interface isn't RUNNING_ASYNC or
598 		 * RUNNING_SYNC then we've received a duplicate
599 		 * completion after we've already transitioned back to
600 		 * QUIESCENT. [A subsequent invocation would increment
601 		 * seqno, so would have failed the seqno check].
602 		 */
603 	}
604 }
605 
606 static void efx_mcdi_timeout_async(unsigned long context)
607 {
608 	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
609 
610 	efx_mcdi_complete_async(mcdi, true);
611 }
612 
613 static int
614 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
615 {
616 	if (efx->type->mcdi_max_ver < 0 ||
617 	     (efx->type->mcdi_max_ver < 2 &&
618 	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
619 		return -EINVAL;
620 
621 	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
622 	    (efx->type->mcdi_max_ver < 2 &&
623 	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
624 		return -EMSGSIZE;
625 
626 	return 0;
627 }
628 
629 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
630 				      size_t hdr_len, size_t data_len,
631 				      u32 *proxy_handle)
632 {
633 	MCDI_DECLARE_BUF_ERR(testbuf);
634 	const size_t buflen = sizeof(testbuf);
635 
636 	if (!proxy_handle || data_len < buflen)
637 		return false;
638 
639 	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
640 	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
641 		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
642 		return true;
643 	}
644 
645 	return false;
646 }
647 
648 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
649 				size_t inlen,
650 				efx_dword_t *outbuf, size_t outlen,
651 				size_t *outlen_actual, bool quiet,
652 				u32 *proxy_handle, int *raw_rc)
653 {
654 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
655 	MCDI_DECLARE_BUF_ERR(errbuf);
656 	int rc;
657 
658 	if (mcdi->mode == MCDI_MODE_POLL)
659 		rc = efx_mcdi_poll(efx);
660 	else
661 		rc = efx_mcdi_await_completion(efx);
662 
663 	if (rc != 0) {
664 		netif_err(efx, hw, efx->net_dev,
665 			  "MC command 0x%x inlen %d mode %d timed out\n",
666 			  cmd, (int)inlen, mcdi->mode);
667 
668 		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
669 			netif_err(efx, hw, efx->net_dev,
670 				  "MCDI request was completed without an event\n");
671 			rc = 0;
672 		}
673 
674 		efx_mcdi_abandon(efx);
675 
676 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
677 		 * and completing a request we've just cancelled, by ensuring
678 		 * that the seqno check therein fails.
679 		 */
680 		spin_lock_bh(&mcdi->iface_lock);
681 		++mcdi->seqno;
682 		++mcdi->credits;
683 		spin_unlock_bh(&mcdi->iface_lock);
684 	}
685 
686 	if (proxy_handle)
687 		*proxy_handle = 0;
688 
689 	if (rc != 0) {
690 		if (outlen_actual)
691 			*outlen_actual = 0;
692 	} else {
693 		size_t hdr_len, data_len, err_len;
694 
695 		/* At the very least we need a memory barrier here to ensure
696 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
697 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
698 		 * acquiring the iface_lock. */
699 		spin_lock_bh(&mcdi->iface_lock);
700 		rc = mcdi->resprc;
701 		if (raw_rc)
702 			*raw_rc = mcdi->resprc_raw;
703 		hdr_len = mcdi->resp_hdr_len;
704 		data_len = mcdi->resp_data_len;
705 		err_len = min(sizeof(errbuf), data_len);
706 		spin_unlock_bh(&mcdi->iface_lock);
707 
708 		BUG_ON(rc > 0);
709 
710 		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
711 					      min(outlen, data_len));
712 		if (outlen_actual)
713 			*outlen_actual = data_len;
714 
715 		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
716 
717 		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
718 			/* Don't reset if MC_CMD_REBOOT returns EIO */
719 		} else if (rc == -EIO || rc == -EINTR) {
720 			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
721 				  -rc);
722 			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
723 		} else if (proxy_handle && (rc == -EPROTO) &&
724 			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
725 						     proxy_handle)) {
726 			mcdi->proxy_rx_status = 0;
727 			mcdi->proxy_rx_handle = 0;
728 			mcdi->state = MCDI_STATE_PROXY_WAIT;
729 		} else if (rc && !quiet) {
730 			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
731 					       rc);
732 		}
733 
734 		if (rc == -EIO || rc == -EINTR) {
735 			msleep(MCDI_STATUS_SLEEP_MS);
736 			efx_mcdi_poll_reboot(efx);
737 			mcdi->new_epoch = true;
738 		}
739 	}
740 
741 	if (!proxy_handle || !*proxy_handle)
742 		efx_mcdi_release(mcdi);
743 	return rc;
744 }
745 
746 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
747 {
748 	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
749 		/* Interrupt the proxy wait. */
750 		mcdi->proxy_rx_status = -EINTR;
751 		wake_up(&mcdi->proxy_rx_wq);
752 	}
753 }
754 
755 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
756 				       u32 handle, int status)
757 {
758 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
759 
760 	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
761 
762 	mcdi->proxy_rx_status = efx_mcdi_errno(status);
763 	/* Ensure the status is written before we update the handle, since the
764 	 * latter is used to check if we've finished.
765 	 */
766 	wmb();
767 	mcdi->proxy_rx_handle = handle;
768 	wake_up(&mcdi->proxy_rx_wq);
769 }
770 
771 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
772 {
773 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
774 	int rc;
775 
776 	/* Wait for a proxy event, or timeout. */
777 	rc = wait_event_timeout(mcdi->proxy_rx_wq,
778 				mcdi->proxy_rx_handle != 0 ||
779 				mcdi->proxy_rx_status == -EINTR,
780 				MCDI_RPC_TIMEOUT);
781 
782 	if (rc <= 0) {
783 		netif_dbg(efx, hw, efx->net_dev,
784 			  "MCDI proxy timeout %d\n", handle);
785 		return -ETIMEDOUT;
786 	} else if (mcdi->proxy_rx_handle != handle) {
787 		netif_warn(efx, hw, efx->net_dev,
788 			   "MCDI proxy unexpected handle %d (expected %d)\n",
789 			   mcdi->proxy_rx_handle, handle);
790 		return -EINVAL;
791 	}
792 
793 	return mcdi->proxy_rx_status;
794 }
795 
796 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
797 			 const efx_dword_t *inbuf, size_t inlen,
798 			 efx_dword_t *outbuf, size_t outlen,
799 			 size_t *outlen_actual, bool quiet, int *raw_rc)
800 {
801 	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
802 	int rc;
803 
804 	if (inbuf && inlen && (inbuf == outbuf)) {
805 		/* The input buffer can't be aliased with the output. */
806 		WARN_ON(1);
807 		return -EINVAL;
808 	}
809 
810 	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
811 	if (rc)
812 		return rc;
813 
814 	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
815 				  outlen_actual, quiet, &proxy_handle, raw_rc);
816 
817 	if (proxy_handle) {
818 		/* Handle proxy authorisation. This allows approval of MCDI
819 		 * operations to be delegated to the admin function, allowing
820 		 * fine control over (eg) multicast subscriptions.
821 		 */
822 		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
823 
824 		netif_dbg(efx, hw, efx->net_dev,
825 			  "MCDI waiting for proxy auth %d\n",
826 			  proxy_handle);
827 		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
828 
829 		if (rc == 0) {
830 			netif_dbg(efx, hw, efx->net_dev,
831 				  "MCDI proxy retry %d\n", proxy_handle);
832 
833 			/* We now retry the original request. */
834 			mcdi->state = MCDI_STATE_RUNNING_SYNC;
835 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
836 
837 			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
838 						  outbuf, outlen, outlen_actual,
839 						  quiet, NULL, raw_rc);
840 		} else {
841 			netif_printk(efx, hw,
842 				     rc == -EPERM ? KERN_DEBUG : KERN_ERR,
843 				     efx->net_dev,
844 				     "MC command 0x%x failed after proxy auth rc=%d\n",
845 				     cmd, rc);
846 
847 			if (rc == -EINTR || rc == -EIO)
848 				efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
849 			efx_mcdi_release(mcdi);
850 		}
851 	}
852 
853 	return rc;
854 }
855 
856 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
857 				   const efx_dword_t *inbuf, size_t inlen,
858 				   efx_dword_t *outbuf, size_t outlen,
859 				   size_t *outlen_actual, bool quiet)
860 {
861 	int raw_rc = 0;
862 	int rc;
863 
864 	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
865 			   outbuf, outlen, outlen_actual, true, &raw_rc);
866 
867 	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
868 	    efx->type->is_vf) {
869 		/* If the EVB port isn't available within a VF this may
870 		 * mean the PF is still bringing the switch up. We should
871 		 * retry our request shortly.
872 		 */
873 		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
874 		unsigned int delay_us = 10000;
875 
876 		netif_dbg(efx, hw, efx->net_dev,
877 			  "%s: NO_EVB_PORT; will retry request\n",
878 			  __func__);
879 
880 		do {
881 			usleep_range(delay_us, delay_us + 10000);
882 			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
883 					   outbuf, outlen, outlen_actual,
884 					   true, &raw_rc);
885 			if (delay_us < 100000)
886 				delay_us <<= 1;
887 		} while ((rc == -EPROTO) &&
888 			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
889 			 time_before(jiffies, abort_time));
890 	}
891 
892 	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
893 		efx_mcdi_display_error(efx, cmd, inlen,
894 				       outbuf, outlen, rc);
895 
896 	return rc;
897 }
898 
899 /**
900  * efx_mcdi_rpc - Issue an MCDI command and wait for completion
901  * @efx: NIC through which to issue the command
902  * @cmd: Command type number
903  * @inbuf: Command parameters
904  * @inlen: Length of command parameters, in bytes.  Must be a multiple
905  *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
906  * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
907  * @outlen: Length of response buffer, in bytes.  If the actual
908  *	response is longer than @outlen & ~3, it will be truncated
909  *	to that length.
910  * @outlen_actual: Pointer through which to return the actual response
911  *	length.  May be %NULL if this is not needed.
912  *
913  * This function may sleep and therefore must be called in an appropriate
914  * context.
915  *
916  * Return: A negative error code, or zero if successful.  The error
917  *	code may come from the MCDI response or may indicate a failure
918  *	to communicate with the MC.  In the former case, the response
919  *	will still be copied to @outbuf and *@outlen_actual will be
920  *	set accordingly.  In the latter case, *@outlen_actual will be
921  *	set to zero.
922  */
923 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
924 		 const efx_dword_t *inbuf, size_t inlen,
925 		 efx_dword_t *outbuf, size_t outlen,
926 		 size_t *outlen_actual)
927 {
928 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
929 				       outlen_actual, false);
930 }
931 
932 /* Normally, on receiving an error code in the MCDI response,
933  * efx_mcdi_rpc will log an error message containing (among other
934  * things) the raw error code, by means of efx_mcdi_display_error.
935  * This _quiet version suppresses that; if the caller wishes to log
936  * the error conditionally on the return code, it should call this
937  * function and is then responsible for calling efx_mcdi_display_error
938  * as needed.
939  */
940 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
941 		       const efx_dword_t *inbuf, size_t inlen,
942 		       efx_dword_t *outbuf, size_t outlen,
943 		       size_t *outlen_actual)
944 {
945 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
946 				       outlen_actual, true);
947 }
948 
949 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
950 		       const efx_dword_t *inbuf, size_t inlen)
951 {
952 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
953 	int rc;
954 
955 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
956 	if (rc)
957 		return rc;
958 
959 	if (efx->mc_bist_for_other_fn)
960 		return -ENETDOWN;
961 
962 	if (mcdi->mode == MCDI_MODE_FAIL)
963 		return -ENETDOWN;
964 
965 	efx_mcdi_acquire_sync(mcdi);
966 	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
967 	return 0;
968 }
969 
970 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
971 			       const efx_dword_t *inbuf, size_t inlen,
972 			       size_t outlen,
973 			       efx_mcdi_async_completer *complete,
974 			       unsigned long cookie, bool quiet)
975 {
976 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
977 	struct efx_mcdi_async_param *async;
978 	int rc;
979 
980 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
981 	if (rc)
982 		return rc;
983 
984 	if (efx->mc_bist_for_other_fn)
985 		return -ENETDOWN;
986 
987 	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
988 			GFP_ATOMIC);
989 	if (!async)
990 		return -ENOMEM;
991 
992 	async->cmd = cmd;
993 	async->inlen = inlen;
994 	async->outlen = outlen;
995 	async->quiet = quiet;
996 	async->complete = complete;
997 	async->cookie = cookie;
998 	memcpy(async + 1, inbuf, inlen);
999 
1000 	spin_lock_bh(&mcdi->async_lock);
1001 
1002 	if (mcdi->mode == MCDI_MODE_EVENTS) {
1003 		list_add_tail(&async->list, &mcdi->async_list);
1004 
1005 		/* If this is at the front of the queue, try to start it
1006 		 * immediately
1007 		 */
1008 		if (mcdi->async_list.next == &async->list &&
1009 		    efx_mcdi_acquire_async(mcdi)) {
1010 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1011 			mod_timer(&mcdi->async_timer,
1012 				  jiffies + MCDI_RPC_TIMEOUT);
1013 		}
1014 	} else {
1015 		kfree(async);
1016 		rc = -ENETDOWN;
1017 	}
1018 
1019 	spin_unlock_bh(&mcdi->async_lock);
1020 
1021 	return rc;
1022 }
1023 
1024 /**
1025  * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1026  * @efx: NIC through which to issue the command
1027  * @cmd: Command type number
1028  * @inbuf: Command parameters
1029  * @inlen: Length of command parameters, in bytes
1030  * @outlen: Length to allocate for response buffer, in bytes
1031  * @complete: Function to be called on completion or cancellation.
1032  * @cookie: Arbitrary value to be passed to @complete.
1033  *
1034  * This function does not sleep and therefore may be called in atomic
1035  * context.  It will fail if event queues are disabled or if MCDI
1036  * event completions have been disabled due to an error.
1037  *
1038  * If it succeeds, the @complete function will be called exactly once
1039  * in atomic context, when one of the following occurs:
1040  * (a) the completion event is received (in NAPI context)
1041  * (b) event queues are disabled (in the process that disables them)
1042  * (c) the request times-out (in timer context)
1043  */
1044 int
1045 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1046 		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1047 		   efx_mcdi_async_completer *complete, unsigned long cookie)
1048 {
1049 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1050 				   cookie, false);
1051 }
1052 
1053 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1054 			     const efx_dword_t *inbuf, size_t inlen,
1055 			     size_t outlen, efx_mcdi_async_completer *complete,
1056 			     unsigned long cookie)
1057 {
1058 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1059 				   cookie, true);
1060 }
1061 
1062 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1063 			efx_dword_t *outbuf, size_t outlen,
1064 			size_t *outlen_actual)
1065 {
1066 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1067 				    outlen_actual, false, NULL, NULL);
1068 }
1069 
1070 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1071 			      efx_dword_t *outbuf, size_t outlen,
1072 			      size_t *outlen_actual)
1073 {
1074 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1075 				    outlen_actual, true, NULL, NULL);
1076 }
1077 
1078 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1079 			    size_t inlen, efx_dword_t *outbuf,
1080 			    size_t outlen, int rc)
1081 {
1082 	int code = 0, err_arg = 0;
1083 
1084 	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1085 		code = MCDI_DWORD(outbuf, ERR_CODE);
1086 	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1087 		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1088 	netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR,
1089 		     efx->net_dev,
1090 		     "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1091 		     cmd, inlen, rc, code, err_arg);
1092 }
1093 
1094 /* Switch to polled MCDI completions.  This can be called in various
1095  * error conditions with various locks held, so it must be lockless.
1096  * Caller is responsible for flushing asynchronous requests later.
1097  */
1098 void efx_mcdi_mode_poll(struct efx_nic *efx)
1099 {
1100 	struct efx_mcdi_iface *mcdi;
1101 
1102 	if (!efx->mcdi)
1103 		return;
1104 
1105 	mcdi = efx_mcdi(efx);
1106 	/* If already in polling mode, nothing to do.
1107 	 * If in fail-fast state, don't switch to polled completion.
1108 	 * FLR recovery will do that later.
1109 	 */
1110 	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1111 		return;
1112 
1113 	/* We can switch from event completion to polled completion, because
1114 	 * mcdi requests are always completed in shared memory. We do this by
1115 	 * switching the mode to POLL'd then completing the request.
1116 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1117 	 *
1118 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1119 	 * which efx_mcdi_complete_sync() provides for us.
1120 	 */
1121 	mcdi->mode = MCDI_MODE_POLL;
1122 
1123 	efx_mcdi_complete_sync(mcdi);
1124 }
1125 
1126 /* Flush any running or queued asynchronous requests, after event processing
1127  * is stopped
1128  */
1129 void efx_mcdi_flush_async(struct efx_nic *efx)
1130 {
1131 	struct efx_mcdi_async_param *async, *next;
1132 	struct efx_mcdi_iface *mcdi;
1133 
1134 	if (!efx->mcdi)
1135 		return;
1136 
1137 	mcdi = efx_mcdi(efx);
1138 
1139 	/* We must be in poll or fail mode so no more requests can be queued */
1140 	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1141 
1142 	del_timer_sync(&mcdi->async_timer);
1143 
1144 	/* If a request is still running, make sure we give the MC
1145 	 * time to complete it so that the response won't overwrite our
1146 	 * next request.
1147 	 */
1148 	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1149 		efx_mcdi_poll(efx);
1150 		mcdi->state = MCDI_STATE_QUIESCENT;
1151 	}
1152 
1153 	/* Nothing else will access the async list now, so it is safe
1154 	 * to walk it without holding async_lock.  If we hold it while
1155 	 * calling a completer then lockdep may warn that we have
1156 	 * acquired locks in the wrong order.
1157 	 */
1158 	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1159 		if (async->complete)
1160 			async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1161 		list_del(&async->list);
1162 		kfree(async);
1163 	}
1164 }
1165 
1166 void efx_mcdi_mode_event(struct efx_nic *efx)
1167 {
1168 	struct efx_mcdi_iface *mcdi;
1169 
1170 	if (!efx->mcdi)
1171 		return;
1172 
1173 	mcdi = efx_mcdi(efx);
1174 	/* If already in event completion mode, nothing to do.
1175 	 * If in fail-fast state, don't switch to event completion.  FLR
1176 	 * recovery will do that later.
1177 	 */
1178 	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1179 		return;
1180 
1181 	/* We can't switch from polled to event completion in the middle of a
1182 	 * request, because the completion method is specified in the request.
1183 	 * So acquire the interface to serialise the requestors. We don't need
1184 	 * to acquire the iface_lock to change the mode here, but we do need a
1185 	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1186 	 * efx_mcdi_acquire() provides.
1187 	 */
1188 	efx_mcdi_acquire_sync(mcdi);
1189 	mcdi->mode = MCDI_MODE_EVENTS;
1190 	efx_mcdi_release(mcdi);
1191 }
1192 
1193 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1194 {
1195 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1196 
1197 	/* If there is an outstanding MCDI request, it has been terminated
1198 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1199 	 * in polled mode, then do nothing because the MC reboot handler will
1200 	 * set the header correctly. However, if the mcdi interface is waiting
1201 	 * for a CMDDONE event it won't receive it [and since all MCDI events
1202 	 * are sent to the same queue, we can't be racing with
1203 	 * efx_mcdi_ev_cpl()]
1204 	 *
1205 	 * If there is an outstanding asynchronous request, we can't
1206 	 * complete it now (efx_mcdi_complete() would deadlock).  The
1207 	 * reset process will take care of this.
1208 	 *
1209 	 * There's a race here with efx_mcdi_send_request(), because
1210 	 * we might receive a REBOOT event *before* the request has
1211 	 * been copied out. In polled mode (during startup) this is
1212 	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1213 	 * event mode, this condition is just an edge-case of
1214 	 * receiving a REBOOT event after posting the MCDI
1215 	 * request. Did the mc reboot before or after the copyout? The
1216 	 * best we can do always is just return failure.
1217 	 *
1218 	 * If there is an outstanding proxy response expected it is not going
1219 	 * to arrive. We should thus abort it.
1220 	 */
1221 	spin_lock(&mcdi->iface_lock);
1222 	efx_mcdi_proxy_abort(mcdi);
1223 
1224 	if (efx_mcdi_complete_sync(mcdi)) {
1225 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1226 			mcdi->resprc = rc;
1227 			mcdi->resp_hdr_len = 0;
1228 			mcdi->resp_data_len = 0;
1229 			++mcdi->credits;
1230 		}
1231 	} else {
1232 		int count;
1233 
1234 		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1235 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1236 			rc = efx_mcdi_poll_reboot(efx);
1237 			if (rc)
1238 				break;
1239 			udelay(MCDI_STATUS_DELAY_US);
1240 		}
1241 
1242 		/* On EF10, a CODE_MC_REBOOT event can be received without the
1243 		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1244 		 * If zero was returned from the final call to
1245 		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1246 		 * MC has definitely rebooted so prepare for the reset.
1247 		 */
1248 		if (!rc && efx->type->mcdi_reboot_detected)
1249 			efx->type->mcdi_reboot_detected(efx);
1250 
1251 		mcdi->new_epoch = true;
1252 
1253 		/* Nobody was waiting for an MCDI request, so trigger a reset */
1254 		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1255 	}
1256 
1257 	spin_unlock(&mcdi->iface_lock);
1258 }
1259 
1260 /* The MC is going down in to BIST mode. set the BIST flag to block
1261  * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1262  * (which doesn't actually execute a reset, it waits for the controlling
1263  * function to reset it).
1264  */
1265 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1266 {
1267 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1268 
1269 	spin_lock(&mcdi->iface_lock);
1270 	efx->mc_bist_for_other_fn = true;
1271 	efx_mcdi_proxy_abort(mcdi);
1272 
1273 	if (efx_mcdi_complete_sync(mcdi)) {
1274 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1275 			mcdi->resprc = -EIO;
1276 			mcdi->resp_hdr_len = 0;
1277 			mcdi->resp_data_len = 0;
1278 			++mcdi->credits;
1279 		}
1280 	}
1281 	mcdi->new_epoch = true;
1282 	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1283 	spin_unlock(&mcdi->iface_lock);
1284 }
1285 
1286 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1287  * to recover.
1288  */
1289 static void efx_mcdi_abandon(struct efx_nic *efx)
1290 {
1291 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1292 
1293 	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1294 		return; /* it had already been done */
1295 	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1296 	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1297 }
1298 
1299 /* Called from  falcon_process_eventq for MCDI events */
1300 void efx_mcdi_process_event(struct efx_channel *channel,
1301 			    efx_qword_t *event)
1302 {
1303 	struct efx_nic *efx = channel->efx;
1304 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1305 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1306 
1307 	switch (code) {
1308 	case MCDI_EVENT_CODE_BADSSERT:
1309 		netif_err(efx, hw, efx->net_dev,
1310 			  "MC watchdog or assertion failure at 0x%x\n", data);
1311 		efx_mcdi_ev_death(efx, -EINTR);
1312 		break;
1313 
1314 	case MCDI_EVENT_CODE_PMNOTICE:
1315 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1316 		break;
1317 
1318 	case MCDI_EVENT_CODE_CMDDONE:
1319 		efx_mcdi_ev_cpl(efx,
1320 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1321 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1322 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1323 		break;
1324 
1325 	case MCDI_EVENT_CODE_LINKCHANGE:
1326 		efx_mcdi_process_link_change(efx, event);
1327 		break;
1328 	case MCDI_EVENT_CODE_SENSOREVT:
1329 		efx_mcdi_sensor_event(efx, event);
1330 		break;
1331 	case MCDI_EVENT_CODE_SCHEDERR:
1332 		netif_dbg(efx, hw, efx->net_dev,
1333 			  "MC Scheduler alert (0x%x)\n", data);
1334 		break;
1335 	case MCDI_EVENT_CODE_REBOOT:
1336 	case MCDI_EVENT_CODE_MC_REBOOT:
1337 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1338 		efx_mcdi_ev_death(efx, -EIO);
1339 		break;
1340 	case MCDI_EVENT_CODE_MC_BIST:
1341 		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1342 		efx_mcdi_ev_bist(efx);
1343 		break;
1344 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1345 		/* MAC stats are gather lazily.  We can ignore this. */
1346 		break;
1347 	case MCDI_EVENT_CODE_FLR:
1348 		if (efx->type->sriov_flr)
1349 			efx->type->sriov_flr(efx,
1350 					     MCDI_EVENT_FIELD(*event, FLR_VF));
1351 		break;
1352 	case MCDI_EVENT_CODE_PTP_RX:
1353 	case MCDI_EVENT_CODE_PTP_FAULT:
1354 	case MCDI_EVENT_CODE_PTP_PPS:
1355 		efx_ptp_event(efx, event);
1356 		break;
1357 	case MCDI_EVENT_CODE_PTP_TIME:
1358 		efx_time_sync_event(channel, event);
1359 		break;
1360 	case MCDI_EVENT_CODE_TX_FLUSH:
1361 	case MCDI_EVENT_CODE_RX_FLUSH:
1362 		/* Two flush events will be sent: one to the same event
1363 		 * queue as completions, and one to event queue 0.
1364 		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1365 		 * flag will be set, and we should ignore the event
1366 		 * because we want to wait for all completions.
1367 		 */
1368 		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1369 			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1370 		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1371 			efx_ef10_handle_drain_event(efx);
1372 		break;
1373 	case MCDI_EVENT_CODE_TX_ERR:
1374 	case MCDI_EVENT_CODE_RX_ERR:
1375 		netif_err(efx, hw, efx->net_dev,
1376 			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1377 			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1378 			  EFX_QWORD_VAL(*event));
1379 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1380 		break;
1381 	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1382 		efx_mcdi_ev_proxy_response(efx,
1383 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1384 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1385 		break;
1386 	default:
1387 		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1388 			  code);
1389 	}
1390 }
1391 
1392 /**************************************************************************
1393  *
1394  * Specific request functions
1395  *
1396  **************************************************************************
1397  */
1398 
1399 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1400 {
1401 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1402 	size_t outlength;
1403 	const __le16 *ver_words;
1404 	size_t offset;
1405 	int rc;
1406 
1407 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1408 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1409 			  outbuf, sizeof(outbuf), &outlength);
1410 	if (rc)
1411 		goto fail;
1412 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1413 		rc = -EIO;
1414 		goto fail;
1415 	}
1416 
1417 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1418 	offset = snprintf(buf, len, "%u.%u.%u.%u",
1419 			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1420 			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1421 
1422 	/* EF10 may have multiple datapath firmware variants within a
1423 	 * single version.  Report which variants are running.
1424 	 */
1425 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1426 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1427 
1428 		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1429 				   nic_data->rx_dpcpu_fw_id,
1430 				   nic_data->tx_dpcpu_fw_id);
1431 
1432 		/* It's theoretically possible for the string to exceed 31
1433 		 * characters, though in practice the first three version
1434 		 * components are short enough that this doesn't happen.
1435 		 */
1436 		if (WARN_ON(offset >= len))
1437 			buf[0] = 0;
1438 	}
1439 
1440 	return;
1441 
1442 fail:
1443 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1444 	buf[0] = 0;
1445 }
1446 
1447 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1448 			       bool *was_attached)
1449 {
1450 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1451 	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1452 	size_t outlen;
1453 	int rc;
1454 
1455 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1456 		       driver_operating ? 1 : 0);
1457 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1458 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1459 
1460 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1461 				outbuf, sizeof(outbuf), &outlen);
1462 	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1463 	 * specified will fail with EPERM, and we have to tell the MC we don't
1464 	 * care what firmware we get.
1465 	 */
1466 	if (rc == -EPERM) {
1467 		netif_dbg(efx, probe, efx->net_dev,
1468 			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1469 		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1470 			       MC_CMD_FW_DONT_CARE);
1471 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1472 					sizeof(inbuf), outbuf, sizeof(outbuf),
1473 					&outlen);
1474 	}
1475 	if (rc) {
1476 		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1477 				       outbuf, outlen, rc);
1478 		goto fail;
1479 	}
1480 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1481 		rc = -EIO;
1482 		goto fail;
1483 	}
1484 
1485 	if (driver_operating) {
1486 		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1487 			efx->mcdi->fn_flags =
1488 				MCDI_DWORD(outbuf,
1489 					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1490 		} else {
1491 			/* Synthesise flags for Siena */
1492 			efx->mcdi->fn_flags =
1493 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1494 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1495 				(efx_port_num(efx) == 0) <<
1496 				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1497 		}
1498 	}
1499 
1500 	/* We currently assume we have control of the external link
1501 	 * and are completely trusted by firmware.  Abort probing
1502 	 * if that's not true for this function.
1503 	 */
1504 
1505 	if (was_attached != NULL)
1506 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1507 	return 0;
1508 
1509 fail:
1510 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1511 	return rc;
1512 }
1513 
1514 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1515 			   u16 *fw_subtype_list, u32 *capabilities)
1516 {
1517 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1518 	size_t outlen, i;
1519 	int port_num = efx_port_num(efx);
1520 	int rc;
1521 
1522 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1523 	/* we need __aligned(2) for ether_addr_copy */
1524 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1525 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1526 
1527 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1528 			  outbuf, sizeof(outbuf), &outlen);
1529 	if (rc)
1530 		goto fail;
1531 
1532 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1533 		rc = -EIO;
1534 		goto fail;
1535 	}
1536 
1537 	if (mac_address)
1538 		ether_addr_copy(mac_address,
1539 				port_num ?
1540 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1541 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1542 	if (fw_subtype_list) {
1543 		for (i = 0;
1544 		     i < MCDI_VAR_ARRAY_LEN(outlen,
1545 					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1546 		     i++)
1547 			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1548 				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1549 		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1550 			fw_subtype_list[i] = 0;
1551 	}
1552 	if (capabilities) {
1553 		if (port_num)
1554 			*capabilities = MCDI_DWORD(outbuf,
1555 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1556 		else
1557 			*capabilities = MCDI_DWORD(outbuf,
1558 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1559 	}
1560 
1561 	return 0;
1562 
1563 fail:
1564 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1565 		  __func__, rc, (int)outlen);
1566 
1567 	return rc;
1568 }
1569 
1570 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1571 {
1572 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1573 	u32 dest = 0;
1574 	int rc;
1575 
1576 	if (uart)
1577 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1578 	if (evq)
1579 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1580 
1581 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1582 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1583 
1584 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1585 
1586 	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1587 			  NULL, 0, NULL);
1588 	return rc;
1589 }
1590 
1591 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1592 {
1593 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1594 	size_t outlen;
1595 	int rc;
1596 
1597 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1598 
1599 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1600 			  outbuf, sizeof(outbuf), &outlen);
1601 	if (rc)
1602 		goto fail;
1603 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1604 		rc = -EIO;
1605 		goto fail;
1606 	}
1607 
1608 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1609 	return 0;
1610 
1611 fail:
1612 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1613 		  __func__, rc);
1614 	return rc;
1615 }
1616 
1617 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1618 			size_t *size_out, size_t *erase_size_out,
1619 			bool *protected_out)
1620 {
1621 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1622 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1623 	size_t outlen;
1624 	int rc;
1625 
1626 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1627 
1628 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1629 			  outbuf, sizeof(outbuf), &outlen);
1630 	if (rc)
1631 		goto fail;
1632 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1633 		rc = -EIO;
1634 		goto fail;
1635 	}
1636 
1637 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1638 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1639 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1640 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1641 	return 0;
1642 
1643 fail:
1644 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1645 	return rc;
1646 }
1647 
1648 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1649 {
1650 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1651 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1652 	int rc;
1653 
1654 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1655 
1656 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1657 			  outbuf, sizeof(outbuf), NULL);
1658 	if (rc)
1659 		return rc;
1660 
1661 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1662 	case MC_CMD_NVRAM_TEST_PASS:
1663 	case MC_CMD_NVRAM_TEST_NOTSUPP:
1664 		return 0;
1665 	default:
1666 		return -EIO;
1667 	}
1668 }
1669 
1670 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1671 {
1672 	u32 nvram_types;
1673 	unsigned int type;
1674 	int rc;
1675 
1676 	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1677 	if (rc)
1678 		goto fail1;
1679 
1680 	type = 0;
1681 	while (nvram_types != 0) {
1682 		if (nvram_types & 1) {
1683 			rc = efx_mcdi_nvram_test(efx, type);
1684 			if (rc)
1685 				goto fail2;
1686 		}
1687 		type++;
1688 		nvram_types >>= 1;
1689 	}
1690 
1691 	return 0;
1692 
1693 fail2:
1694 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1695 		  __func__, type);
1696 fail1:
1697 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1698 	return rc;
1699 }
1700 
1701 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1702  * negative on error.
1703  */
1704 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1705 {
1706 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1707 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1708 	unsigned int flags, index;
1709 	const char *reason;
1710 	size_t outlen;
1711 	int retry;
1712 	int rc;
1713 
1714 	/* Attempt to read any stored assertion state before we reboot
1715 	 * the mcfw out of the assertion handler. Retry twice, once
1716 	 * because a boot-time assertion might cause this command to fail
1717 	 * with EINTR. And once again because GET_ASSERTS can race with
1718 	 * MC_CMD_REBOOT running on the other port. */
1719 	retry = 2;
1720 	do {
1721 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1722 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1723 					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1724 					outbuf, sizeof(outbuf), &outlen);
1725 		if (rc == -EPERM)
1726 			return 0;
1727 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1728 
1729 	if (rc) {
1730 		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1731 				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1732 				       outlen, rc);
1733 		return rc;
1734 	}
1735 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1736 		return -EIO;
1737 
1738 	/* Print out any recorded assertion state */
1739 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1740 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1741 		return 0;
1742 
1743 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1744 		? "system-level assertion"
1745 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1746 		? "thread-level assertion"
1747 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1748 		? "watchdog reset"
1749 		: "unknown assertion";
1750 	netif_err(efx, hw, efx->net_dev,
1751 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1752 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1753 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1754 
1755 	/* Print out the registers */
1756 	for (index = 0;
1757 	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1758 	     index++)
1759 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1760 			  1 + index,
1761 			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1762 					   index));
1763 
1764 	return 1;
1765 }
1766 
1767 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1768 {
1769 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1770 	int rc;
1771 
1772 	/* If the MC is running debug firmware, it might now be
1773 	 * waiting for a debugger to attach, but we just want it to
1774 	 * reboot.  We set a flag that makes the command a no-op if it
1775 	 * has already done so.
1776 	 * The MCDI will thus return either 0 or -EIO.
1777 	 */
1778 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1779 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1780 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1781 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1782 				NULL, 0, NULL);
1783 	if (rc == -EIO)
1784 		rc = 0;
1785 	if (rc)
1786 		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1787 				       NULL, 0, rc);
1788 	return rc;
1789 }
1790 
1791 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1792 {
1793 	int rc;
1794 
1795 	rc = efx_mcdi_read_assertion(efx);
1796 	if (rc <= 0)
1797 		return rc;
1798 
1799 	return efx_mcdi_exit_assertion(efx);
1800 }
1801 
1802 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1803 {
1804 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1805 	int rc;
1806 
1807 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1808 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1809 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1810 
1811 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1812 
1813 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1814 
1815 	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1816 			  NULL, 0, NULL);
1817 }
1818 
1819 static int efx_mcdi_reset_func(struct efx_nic *efx)
1820 {
1821 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1822 	int rc;
1823 
1824 	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1825 	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1826 			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1827 	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1828 			  NULL, 0, NULL);
1829 	return rc;
1830 }
1831 
1832 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1833 {
1834 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1835 	int rc;
1836 
1837 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1838 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1839 	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1840 			  NULL, 0, NULL);
1841 	/* White is black, and up is down */
1842 	if (rc == -EIO)
1843 		return 0;
1844 	if (rc == 0)
1845 		rc = -EIO;
1846 	return rc;
1847 }
1848 
1849 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1850 {
1851 	return RESET_TYPE_RECOVER_OR_ALL;
1852 }
1853 
1854 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1855 {
1856 	int rc;
1857 
1858 	/* If MCDI is down, we can't handle_assertion */
1859 	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1860 		rc = pci_reset_function(efx->pci_dev);
1861 		if (rc)
1862 			return rc;
1863 		/* Re-enable polled MCDI completion */
1864 		if (efx->mcdi) {
1865 			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1866 			mcdi->mode = MCDI_MODE_POLL;
1867 		}
1868 		return 0;
1869 	}
1870 
1871 	/* Recover from a failed assertion pre-reset */
1872 	rc = efx_mcdi_handle_assertion(efx);
1873 	if (rc)
1874 		return rc;
1875 
1876 	if (method == RESET_TYPE_DATAPATH)
1877 		return 0;
1878 	else if (method == RESET_TYPE_WORLD)
1879 		return efx_mcdi_reset_mc(efx);
1880 	else
1881 		return efx_mcdi_reset_func(efx);
1882 }
1883 
1884 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1885 				   const u8 *mac, int *id_out)
1886 {
1887 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1888 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1889 	size_t outlen;
1890 	int rc;
1891 
1892 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1893 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1894 		       MC_CMD_FILTER_MODE_SIMPLE);
1895 	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1896 
1897 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1898 			  outbuf, sizeof(outbuf), &outlen);
1899 	if (rc)
1900 		goto fail;
1901 
1902 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1903 		rc = -EIO;
1904 		goto fail;
1905 	}
1906 
1907 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1908 
1909 	return 0;
1910 
1911 fail:
1912 	*id_out = -1;
1913 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1914 	return rc;
1915 
1916 }
1917 
1918 
1919 int
1920 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1921 {
1922 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1923 }
1924 
1925 
1926 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1927 {
1928 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1929 	size_t outlen;
1930 	int rc;
1931 
1932 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1933 			  outbuf, sizeof(outbuf), &outlen);
1934 	if (rc)
1935 		goto fail;
1936 
1937 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1938 		rc = -EIO;
1939 		goto fail;
1940 	}
1941 
1942 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1943 
1944 	return 0;
1945 
1946 fail:
1947 	*id_out = -1;
1948 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1949 	return rc;
1950 }
1951 
1952 
1953 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1954 {
1955 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1956 	int rc;
1957 
1958 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1959 
1960 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1961 			  NULL, 0, NULL);
1962 	return rc;
1963 }
1964 
1965 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1966 {
1967 	struct efx_channel *channel;
1968 	struct efx_rx_queue *rx_queue;
1969 	MCDI_DECLARE_BUF(inbuf,
1970 			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1971 	int rc, count;
1972 
1973 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1974 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1975 
1976 	count = 0;
1977 	efx_for_each_channel(channel, efx) {
1978 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1979 			if (rx_queue->flush_pending) {
1980 				rx_queue->flush_pending = false;
1981 				atomic_dec(&efx->rxq_flush_pending);
1982 				MCDI_SET_ARRAY_DWORD(
1983 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1984 					count, efx_rx_queue_index(rx_queue));
1985 				count++;
1986 			}
1987 		}
1988 	}
1989 
1990 	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1991 			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1992 	WARN_ON(rc < 0);
1993 
1994 	return rc;
1995 }
1996 
1997 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1998 {
1999 	int rc;
2000 
2001 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2002 	return rc;
2003 }
2004 
2005 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2006 			    unsigned int *flags)
2007 {
2008 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2009 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2010 	size_t outlen;
2011 	int rc;
2012 
2013 	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2014 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2015 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2016 	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2017 			  outbuf, sizeof(outbuf), &outlen);
2018 	if (rc)
2019 		return rc;
2020 
2021 	if (!flags)
2022 		return 0;
2023 
2024 	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2025 		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2026 	else
2027 		*flags = 0;
2028 
2029 	return 0;
2030 }
2031 
2032 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2033 			     unsigned int *enabled_out)
2034 {
2035 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2036 	size_t outlen;
2037 	int rc;
2038 
2039 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2040 			  outbuf, sizeof(outbuf), &outlen);
2041 	if (rc)
2042 		goto fail;
2043 
2044 	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2045 		rc = -EIO;
2046 		goto fail;
2047 	}
2048 
2049 	if (impl_out)
2050 		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2051 
2052 	if (enabled_out)
2053 		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2054 
2055 	return 0;
2056 
2057 fail:
2058 	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2059 	 * terrifying.  The call site will have to deal with it though.
2060 	 */
2061 	netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
2062 		     efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2063 	return rc;
2064 }
2065 
2066 #ifdef CONFIG_SFC_MTD
2067 
2068 #define EFX_MCDI_NVRAM_LEN_MAX 128
2069 
2070 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2071 {
2072 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2073 	int rc;
2074 
2075 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2076 
2077 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2078 
2079 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2080 			  NULL, 0, NULL);
2081 	return rc;
2082 }
2083 
2084 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2085 			       loff_t offset, u8 *buffer, size_t length)
2086 {
2087 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2088 	MCDI_DECLARE_BUF(outbuf,
2089 			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2090 	size_t outlen;
2091 	int rc;
2092 
2093 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2094 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2095 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2096 
2097 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2098 			  outbuf, sizeof(outbuf), &outlen);
2099 	if (rc)
2100 		return rc;
2101 
2102 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2103 	return 0;
2104 }
2105 
2106 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2107 				loff_t offset, const u8 *buffer, size_t length)
2108 {
2109 	MCDI_DECLARE_BUF(inbuf,
2110 			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2111 	int rc;
2112 
2113 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2114 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2115 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2116 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2117 
2118 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2119 
2120 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2121 			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2122 			  NULL, 0, NULL);
2123 	return rc;
2124 }
2125 
2126 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2127 				loff_t offset, size_t length)
2128 {
2129 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2130 	int rc;
2131 
2132 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2133 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2134 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2135 
2136 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2137 
2138 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2139 			  NULL, 0, NULL);
2140 	return rc;
2141 }
2142 
2143 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2144 {
2145 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2146 	int rc;
2147 
2148 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2149 
2150 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2151 
2152 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2153 			  NULL, 0, NULL);
2154 	return rc;
2155 }
2156 
2157 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2158 		      size_t len, size_t *retlen, u8 *buffer)
2159 {
2160 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2161 	struct efx_nic *efx = mtd->priv;
2162 	loff_t offset = start;
2163 	loff_t end = min_t(loff_t, start + len, mtd->size);
2164 	size_t chunk;
2165 	int rc = 0;
2166 
2167 	while (offset < end) {
2168 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2169 		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2170 					 buffer, chunk);
2171 		if (rc)
2172 			goto out;
2173 		offset += chunk;
2174 		buffer += chunk;
2175 	}
2176 out:
2177 	*retlen = offset - start;
2178 	return rc;
2179 }
2180 
2181 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2182 {
2183 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2184 	struct efx_nic *efx = mtd->priv;
2185 	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2186 	loff_t end = min_t(loff_t, start + len, mtd->size);
2187 	size_t chunk = part->common.mtd.erasesize;
2188 	int rc = 0;
2189 
2190 	if (!part->updating) {
2191 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2192 		if (rc)
2193 			goto out;
2194 		part->updating = true;
2195 	}
2196 
2197 	/* The MCDI interface can in fact do multiple erase blocks at once;
2198 	 * but erasing may be slow, so we make multiple calls here to avoid
2199 	 * tripping the MCDI RPC timeout. */
2200 	while (offset < end) {
2201 		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2202 					  chunk);
2203 		if (rc)
2204 			goto out;
2205 		offset += chunk;
2206 	}
2207 out:
2208 	return rc;
2209 }
2210 
2211 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2212 		       size_t len, size_t *retlen, const u8 *buffer)
2213 {
2214 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2215 	struct efx_nic *efx = mtd->priv;
2216 	loff_t offset = start;
2217 	loff_t end = min_t(loff_t, start + len, mtd->size);
2218 	size_t chunk;
2219 	int rc = 0;
2220 
2221 	if (!part->updating) {
2222 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2223 		if (rc)
2224 			goto out;
2225 		part->updating = true;
2226 	}
2227 
2228 	while (offset < end) {
2229 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2230 		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2231 					  buffer, chunk);
2232 		if (rc)
2233 			goto out;
2234 		offset += chunk;
2235 		buffer += chunk;
2236 	}
2237 out:
2238 	*retlen = offset - start;
2239 	return rc;
2240 }
2241 
2242 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2243 {
2244 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2245 	struct efx_nic *efx = mtd->priv;
2246 	int rc = 0;
2247 
2248 	if (part->updating) {
2249 		part->updating = false;
2250 		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2251 	}
2252 
2253 	return rc;
2254 }
2255 
2256 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2257 {
2258 	struct efx_mcdi_mtd_partition *mcdi_part =
2259 		container_of(part, struct efx_mcdi_mtd_partition, common);
2260 	struct efx_nic *efx = part->mtd.priv;
2261 
2262 	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2263 		 efx->name, part->type_name, mcdi_part->fw_subtype);
2264 }
2265 
2266 #endif /* CONFIG_SFC_MTD */
2267