xref: /openbmc/linux/drivers/net/ethernet/sfc/mcdi.c (revision 3821a065)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2008-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <asm/cmpxchg.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18 #include "phy.h"
19 
20 /**************************************************************************
21  *
22  * Management-Controller-to-Driver Interface
23  *
24  **************************************************************************
25  */
26 
27 #define MCDI_RPC_TIMEOUT       (10 * HZ)
28 
29 /* A reboot/assertion causes the MCDI status word to be set after the
30  * command word is set or a REBOOT event is sent. If we notice a reboot
31  * via these mechanisms then wait 250ms for the status word to be set.
32  */
33 #define MCDI_STATUS_DELAY_US		100
34 #define MCDI_STATUS_DELAY_COUNT		2500
35 #define MCDI_STATUS_SLEEP_MS						\
36 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37 
38 #define SEQ_MASK							\
39 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40 
41 struct efx_mcdi_async_param {
42 	struct list_head list;
43 	unsigned int cmd;
44 	size_t inlen;
45 	size_t outlen;
46 	bool quiet;
47 	efx_mcdi_async_completer *complete;
48 	unsigned long cookie;
49 	/* followed by request/response buffer */
50 };
51 
52 static void efx_mcdi_timeout_async(unsigned long context);
53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
54 			       bool *was_attached_out);
55 static bool efx_mcdi_poll_once(struct efx_nic *efx);
56 static void efx_mcdi_abandon(struct efx_nic *efx);
57 
58 #ifdef CONFIG_SFC_MCDI_LOGGING
59 static bool mcdi_logging_default;
60 module_param(mcdi_logging_default, bool, 0644);
61 MODULE_PARM_DESC(mcdi_logging_default,
62 		 "Enable MCDI logging on newly-probed functions");
63 #endif
64 
65 int efx_mcdi_init(struct efx_nic *efx)
66 {
67 	struct efx_mcdi_iface *mcdi;
68 	bool already_attached;
69 	int rc = -ENOMEM;
70 
71 	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
72 	if (!efx->mcdi)
73 		goto fail;
74 
75 	mcdi = efx_mcdi(efx);
76 	mcdi->efx = efx;
77 #ifdef CONFIG_SFC_MCDI_LOGGING
78 	/* consuming code assumes buffer is page-sized */
79 	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
80 	if (!mcdi->logging_buffer)
81 		goto fail1;
82 	mcdi->logging_enabled = mcdi_logging_default;
83 #endif
84 	init_waitqueue_head(&mcdi->wq);
85 	spin_lock_init(&mcdi->iface_lock);
86 	mcdi->state = MCDI_STATE_QUIESCENT;
87 	mcdi->mode = MCDI_MODE_POLL;
88 	spin_lock_init(&mcdi->async_lock);
89 	INIT_LIST_HEAD(&mcdi->async_list);
90 	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
91 		    (unsigned long)mcdi);
92 
93 	(void) efx_mcdi_poll_reboot(efx);
94 	mcdi->new_epoch = true;
95 
96 	/* Recover from a failed assertion before probing */
97 	rc = efx_mcdi_handle_assertion(efx);
98 	if (rc)
99 		goto fail2;
100 
101 	/* Let the MC (and BMC, if this is a LOM) know that the driver
102 	 * is loaded. We should do this before we reset the NIC.
103 	 */
104 	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
105 	if (rc) {
106 		netif_err(efx, probe, efx->net_dev,
107 			  "Unable to register driver with MCPU\n");
108 		goto fail2;
109 	}
110 	if (already_attached)
111 		/* Not a fatal error */
112 		netif_err(efx, probe, efx->net_dev,
113 			  "Host already registered with MCPU\n");
114 
115 	if (efx->mcdi->fn_flags &
116 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
117 		efx->primary = efx;
118 
119 	return 0;
120 fail2:
121 #ifdef CONFIG_SFC_MCDI_LOGGING
122 	free_page((unsigned long)mcdi->logging_buffer);
123 fail1:
124 #endif
125 	kfree(efx->mcdi);
126 	efx->mcdi = NULL;
127 fail:
128 	return rc;
129 }
130 
131 void efx_mcdi_fini(struct efx_nic *efx)
132 {
133 	if (!efx->mcdi)
134 		return;
135 
136 	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
137 
138 	/* Relinquish the device (back to the BMC, if this is a LOM) */
139 	efx_mcdi_drv_attach(efx, false, NULL);
140 
141 #ifdef CONFIG_SFC_MCDI_LOGGING
142 	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
143 #endif
144 
145 	kfree(efx->mcdi);
146 }
147 
148 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
149 				  const efx_dword_t *inbuf, size_t inlen)
150 {
151 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
152 #ifdef CONFIG_SFC_MCDI_LOGGING
153 	char *buf = mcdi->logging_buffer; /* page-sized */
154 #endif
155 	efx_dword_t hdr[2];
156 	size_t hdr_len;
157 	u32 xflags, seqno;
158 
159 	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
160 
161 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
162 	spin_lock_bh(&mcdi->iface_lock);
163 	++mcdi->seqno;
164 	spin_unlock_bh(&mcdi->iface_lock);
165 
166 	seqno = mcdi->seqno & SEQ_MASK;
167 	xflags = 0;
168 	if (mcdi->mode == MCDI_MODE_EVENTS)
169 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
170 
171 	if (efx->type->mcdi_max_ver == 1) {
172 		/* MCDI v1 */
173 		EFX_POPULATE_DWORD_7(hdr[0],
174 				     MCDI_HEADER_RESPONSE, 0,
175 				     MCDI_HEADER_RESYNC, 1,
176 				     MCDI_HEADER_CODE, cmd,
177 				     MCDI_HEADER_DATALEN, inlen,
178 				     MCDI_HEADER_SEQ, seqno,
179 				     MCDI_HEADER_XFLAGS, xflags,
180 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
181 		hdr_len = 4;
182 	} else {
183 		/* MCDI v2 */
184 		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
185 		EFX_POPULATE_DWORD_7(hdr[0],
186 				     MCDI_HEADER_RESPONSE, 0,
187 				     MCDI_HEADER_RESYNC, 1,
188 				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
189 				     MCDI_HEADER_DATALEN, 0,
190 				     MCDI_HEADER_SEQ, seqno,
191 				     MCDI_HEADER_XFLAGS, xflags,
192 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
193 		EFX_POPULATE_DWORD_2(hdr[1],
194 				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
195 				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
196 		hdr_len = 8;
197 	}
198 
199 #ifdef CONFIG_SFC_MCDI_LOGGING
200 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
201 		int bytes = 0;
202 		int i;
203 		/* Lengths should always be a whole number of dwords, so scream
204 		 * if they're not.
205 		 */
206 		WARN_ON_ONCE(hdr_len % 4);
207 		WARN_ON_ONCE(inlen % 4);
208 
209 		/* We own the logging buffer, as only one MCDI can be in
210 		 * progress on a NIC at any one time.  So no need for locking.
211 		 */
212 		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
213 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
214 					  " %08x", le32_to_cpu(hdr[i].u32[0]));
215 
216 		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
217 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
218 					  " %08x", le32_to_cpu(inbuf[i].u32[0]));
219 
220 		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
221 	}
222 #endif
223 
224 	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
225 
226 	mcdi->new_epoch = false;
227 }
228 
229 static int efx_mcdi_errno(unsigned int mcdi_err)
230 {
231 	switch (mcdi_err) {
232 	case 0:
233 		return 0;
234 #define TRANSLATE_ERROR(name)					\
235 	case MC_CMD_ERR_ ## name:				\
236 		return -name;
237 	TRANSLATE_ERROR(EPERM);
238 	TRANSLATE_ERROR(ENOENT);
239 	TRANSLATE_ERROR(EINTR);
240 	TRANSLATE_ERROR(EAGAIN);
241 	TRANSLATE_ERROR(EACCES);
242 	TRANSLATE_ERROR(EBUSY);
243 	TRANSLATE_ERROR(EINVAL);
244 	TRANSLATE_ERROR(EDEADLK);
245 	TRANSLATE_ERROR(ENOSYS);
246 	TRANSLATE_ERROR(ETIME);
247 	TRANSLATE_ERROR(EALREADY);
248 	TRANSLATE_ERROR(ENOSPC);
249 #undef TRANSLATE_ERROR
250 	case MC_CMD_ERR_ENOTSUP:
251 		return -EOPNOTSUPP;
252 	case MC_CMD_ERR_ALLOC_FAIL:
253 		return -ENOBUFS;
254 	case MC_CMD_ERR_MAC_EXIST:
255 		return -EADDRINUSE;
256 	default:
257 		return -EPROTO;
258 	}
259 }
260 
261 static void efx_mcdi_read_response_header(struct efx_nic *efx)
262 {
263 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
264 	unsigned int respseq, respcmd, error;
265 #ifdef CONFIG_SFC_MCDI_LOGGING
266 	char *buf = mcdi->logging_buffer; /* page-sized */
267 #endif
268 	efx_dword_t hdr;
269 
270 	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
271 	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
272 	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
273 	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
274 
275 	if (respcmd != MC_CMD_V2_EXTN) {
276 		mcdi->resp_hdr_len = 4;
277 		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
278 	} else {
279 		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
280 		mcdi->resp_hdr_len = 8;
281 		mcdi->resp_data_len =
282 			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
283 	}
284 
285 #ifdef CONFIG_SFC_MCDI_LOGGING
286 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
287 		size_t hdr_len, data_len;
288 		int bytes = 0;
289 		int i;
290 
291 		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
292 		hdr_len = mcdi->resp_hdr_len / 4;
293 		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
294 		 * to dword size, and the MCDI buffer is always dword size
295 		 */
296 		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
297 
298 		/* We own the logging buffer, as only one MCDI can be in
299 		 * progress on a NIC at any one time.  So no need for locking.
300 		 */
301 		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
302 			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
303 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
304 					  " %08x", le32_to_cpu(hdr.u32[0]));
305 		}
306 
307 		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
308 			efx->type->mcdi_read_response(efx, &hdr,
309 					mcdi->resp_hdr_len + (i * 4), 4);
310 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
311 					  " %08x", le32_to_cpu(hdr.u32[0]));
312 		}
313 
314 		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
315 	}
316 #endif
317 
318 	if (error && mcdi->resp_data_len == 0) {
319 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
320 		mcdi->resprc = -EIO;
321 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
322 		netif_err(efx, hw, efx->net_dev,
323 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
324 			  respseq, mcdi->seqno);
325 		mcdi->resprc = -EIO;
326 	} else if (error) {
327 		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
328 		mcdi->resprc =
329 			efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
330 	} else {
331 		mcdi->resprc = 0;
332 	}
333 }
334 
335 static bool efx_mcdi_poll_once(struct efx_nic *efx)
336 {
337 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
338 
339 	rmb();
340 	if (!efx->type->mcdi_poll_response(efx))
341 		return false;
342 
343 	spin_lock_bh(&mcdi->iface_lock);
344 	efx_mcdi_read_response_header(efx);
345 	spin_unlock_bh(&mcdi->iface_lock);
346 
347 	return true;
348 }
349 
350 static int efx_mcdi_poll(struct efx_nic *efx)
351 {
352 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
353 	unsigned long time, finish;
354 	unsigned int spins;
355 	int rc;
356 
357 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
358 	rc = efx_mcdi_poll_reboot(efx);
359 	if (rc) {
360 		spin_lock_bh(&mcdi->iface_lock);
361 		mcdi->resprc = rc;
362 		mcdi->resp_hdr_len = 0;
363 		mcdi->resp_data_len = 0;
364 		spin_unlock_bh(&mcdi->iface_lock);
365 		return 0;
366 	}
367 
368 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
369 	 * because generally mcdi responses are fast. After that, back off
370 	 * and poll once a jiffy (approximately)
371 	 */
372 	spins = TICK_USEC;
373 	finish = jiffies + MCDI_RPC_TIMEOUT;
374 
375 	while (1) {
376 		if (spins != 0) {
377 			--spins;
378 			udelay(1);
379 		} else {
380 			schedule_timeout_uninterruptible(1);
381 		}
382 
383 		time = jiffies;
384 
385 		if (efx_mcdi_poll_once(efx))
386 			break;
387 
388 		if (time_after(time, finish))
389 			return -ETIMEDOUT;
390 	}
391 
392 	/* Return rc=0 like wait_event_timeout() */
393 	return 0;
394 }
395 
396 /* Test and clear MC-rebooted flag for this port/function; reset
397  * software state as necessary.
398  */
399 int efx_mcdi_poll_reboot(struct efx_nic *efx)
400 {
401 	if (!efx->mcdi)
402 		return 0;
403 
404 	return efx->type->mcdi_poll_reboot(efx);
405 }
406 
407 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
408 {
409 	return cmpxchg(&mcdi->state,
410 		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
411 		MCDI_STATE_QUIESCENT;
412 }
413 
414 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
415 {
416 	/* Wait until the interface becomes QUIESCENT and we win the race
417 	 * to mark it RUNNING_SYNC.
418 	 */
419 	wait_event(mcdi->wq,
420 		   cmpxchg(&mcdi->state,
421 			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
422 		   MCDI_STATE_QUIESCENT);
423 }
424 
425 static int efx_mcdi_await_completion(struct efx_nic *efx)
426 {
427 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
428 
429 	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
430 			       MCDI_RPC_TIMEOUT) == 0)
431 		return -ETIMEDOUT;
432 
433 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
434 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
435 	 * completed the request first, then we'll just end up completing the
436 	 * request again, which is safe.
437 	 *
438 	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
439 	 * wait_event_timeout() implicitly provides.
440 	 */
441 	if (mcdi->mode == MCDI_MODE_POLL)
442 		return efx_mcdi_poll(efx);
443 
444 	return 0;
445 }
446 
447 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
448  * requester.  Return whether this was done.  Does not take any locks.
449  */
450 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
451 {
452 	if (cmpxchg(&mcdi->state,
453 		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
454 	    MCDI_STATE_RUNNING_SYNC) {
455 		wake_up(&mcdi->wq);
456 		return true;
457 	}
458 
459 	return false;
460 }
461 
462 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
463 {
464 	if (mcdi->mode == MCDI_MODE_EVENTS) {
465 		struct efx_mcdi_async_param *async;
466 		struct efx_nic *efx = mcdi->efx;
467 
468 		/* Process the asynchronous request queue */
469 		spin_lock_bh(&mcdi->async_lock);
470 		async = list_first_entry_or_null(
471 			&mcdi->async_list, struct efx_mcdi_async_param, list);
472 		if (async) {
473 			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
474 			efx_mcdi_send_request(efx, async->cmd,
475 					      (const efx_dword_t *)(async + 1),
476 					      async->inlen);
477 			mod_timer(&mcdi->async_timer,
478 				  jiffies + MCDI_RPC_TIMEOUT);
479 		}
480 		spin_unlock_bh(&mcdi->async_lock);
481 
482 		if (async)
483 			return;
484 	}
485 
486 	mcdi->state = MCDI_STATE_QUIESCENT;
487 	wake_up(&mcdi->wq);
488 }
489 
490 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
491  * asynchronous completion function, and release the interface.
492  * Return whether this was done.  Must be called in bh-disabled
493  * context.  Will take iface_lock and async_lock.
494  */
495 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
496 {
497 	struct efx_nic *efx = mcdi->efx;
498 	struct efx_mcdi_async_param *async;
499 	size_t hdr_len, data_len, err_len;
500 	efx_dword_t *outbuf;
501 	MCDI_DECLARE_BUF_ERR(errbuf);
502 	int rc;
503 
504 	if (cmpxchg(&mcdi->state,
505 		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
506 	    MCDI_STATE_RUNNING_ASYNC)
507 		return false;
508 
509 	spin_lock(&mcdi->iface_lock);
510 	if (timeout) {
511 		/* Ensure that if the completion event arrives later,
512 		 * the seqno check in efx_mcdi_ev_cpl() will fail
513 		 */
514 		++mcdi->seqno;
515 		++mcdi->credits;
516 		rc = -ETIMEDOUT;
517 		hdr_len = 0;
518 		data_len = 0;
519 	} else {
520 		rc = mcdi->resprc;
521 		hdr_len = mcdi->resp_hdr_len;
522 		data_len = mcdi->resp_data_len;
523 	}
524 	spin_unlock(&mcdi->iface_lock);
525 
526 	/* Stop the timer.  In case the timer function is running, we
527 	 * must wait for it to return so that there is no possibility
528 	 * of it aborting the next request.
529 	 */
530 	if (!timeout)
531 		del_timer_sync(&mcdi->async_timer);
532 
533 	spin_lock(&mcdi->async_lock);
534 	async = list_first_entry(&mcdi->async_list,
535 				 struct efx_mcdi_async_param, list);
536 	list_del(&async->list);
537 	spin_unlock(&mcdi->async_lock);
538 
539 	outbuf = (efx_dword_t *)(async + 1);
540 	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
541 				      min(async->outlen, data_len));
542 	if (!timeout && rc && !async->quiet) {
543 		err_len = min(sizeof(errbuf), data_len);
544 		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
545 					      sizeof(errbuf));
546 		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
547 				       err_len, rc);
548 	}
549 	async->complete(efx, async->cookie, rc, outbuf, data_len);
550 	kfree(async);
551 
552 	efx_mcdi_release(mcdi);
553 
554 	return true;
555 }
556 
557 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
558 			    unsigned int datalen, unsigned int mcdi_err)
559 {
560 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
561 	bool wake = false;
562 
563 	spin_lock(&mcdi->iface_lock);
564 
565 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
566 		if (mcdi->credits)
567 			/* The request has been cancelled */
568 			--mcdi->credits;
569 		else
570 			netif_err(efx, hw, efx->net_dev,
571 				  "MC response mismatch tx seq 0x%x rx "
572 				  "seq 0x%x\n", seqno, mcdi->seqno);
573 	} else {
574 		if (efx->type->mcdi_max_ver >= 2) {
575 			/* MCDI v2 responses don't fit in an event */
576 			efx_mcdi_read_response_header(efx);
577 		} else {
578 			mcdi->resprc = efx_mcdi_errno(mcdi_err);
579 			mcdi->resp_hdr_len = 4;
580 			mcdi->resp_data_len = datalen;
581 		}
582 
583 		wake = true;
584 	}
585 
586 	spin_unlock(&mcdi->iface_lock);
587 
588 	if (wake) {
589 		if (!efx_mcdi_complete_async(mcdi, false))
590 			(void) efx_mcdi_complete_sync(mcdi);
591 
592 		/* If the interface isn't RUNNING_ASYNC or
593 		 * RUNNING_SYNC then we've received a duplicate
594 		 * completion after we've already transitioned back to
595 		 * QUIESCENT. [A subsequent invocation would increment
596 		 * seqno, so would have failed the seqno check].
597 		 */
598 	}
599 }
600 
601 static void efx_mcdi_timeout_async(unsigned long context)
602 {
603 	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
604 
605 	efx_mcdi_complete_async(mcdi, true);
606 }
607 
608 static int
609 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
610 {
611 	if (efx->type->mcdi_max_ver < 0 ||
612 	     (efx->type->mcdi_max_ver < 2 &&
613 	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
614 		return -EINVAL;
615 
616 	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
617 	    (efx->type->mcdi_max_ver < 2 &&
618 	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
619 		return -EMSGSIZE;
620 
621 	return 0;
622 }
623 
624 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
625 				efx_dword_t *outbuf, size_t outlen,
626 				size_t *outlen_actual, bool quiet)
627 {
628 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
629 	MCDI_DECLARE_BUF_ERR(errbuf);
630 	int rc;
631 
632 	if (mcdi->mode == MCDI_MODE_POLL)
633 		rc = efx_mcdi_poll(efx);
634 	else
635 		rc = efx_mcdi_await_completion(efx);
636 
637 	if (rc != 0) {
638 		netif_err(efx, hw, efx->net_dev,
639 			  "MC command 0x%x inlen %d mode %d timed out\n",
640 			  cmd, (int)inlen, mcdi->mode);
641 
642 		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
643 			netif_err(efx, hw, efx->net_dev,
644 				  "MCDI request was completed without an event\n");
645 			rc = 0;
646 		}
647 
648 		efx_mcdi_abandon(efx);
649 
650 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
651 		 * and completing a request we've just cancelled, by ensuring
652 		 * that the seqno check therein fails.
653 		 */
654 		spin_lock_bh(&mcdi->iface_lock);
655 		++mcdi->seqno;
656 		++mcdi->credits;
657 		spin_unlock_bh(&mcdi->iface_lock);
658 	}
659 
660 	if (rc != 0) {
661 		if (outlen_actual)
662 			*outlen_actual = 0;
663 	} else {
664 		size_t hdr_len, data_len, err_len;
665 
666 		/* At the very least we need a memory barrier here to ensure
667 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
668 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
669 		 * acquiring the iface_lock. */
670 		spin_lock_bh(&mcdi->iface_lock);
671 		rc = mcdi->resprc;
672 		hdr_len = mcdi->resp_hdr_len;
673 		data_len = mcdi->resp_data_len;
674 		err_len = min(sizeof(errbuf), data_len);
675 		spin_unlock_bh(&mcdi->iface_lock);
676 
677 		BUG_ON(rc > 0);
678 
679 		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
680 					      min(outlen, data_len));
681 		if (outlen_actual)
682 			*outlen_actual = data_len;
683 
684 		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
685 
686 		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
687 			/* Don't reset if MC_CMD_REBOOT returns EIO */
688 		} else if (rc == -EIO || rc == -EINTR) {
689 			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
690 				  -rc);
691 			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
692 		} else if (rc && !quiet) {
693 			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
694 					       rc);
695 		}
696 
697 		if (rc == -EIO || rc == -EINTR) {
698 			msleep(MCDI_STATUS_SLEEP_MS);
699 			efx_mcdi_poll_reboot(efx);
700 			mcdi->new_epoch = true;
701 		}
702 	}
703 
704 	efx_mcdi_release(mcdi);
705 	return rc;
706 }
707 
708 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
709 			 const efx_dword_t *inbuf, size_t inlen,
710 			 efx_dword_t *outbuf, size_t outlen,
711 			 size_t *outlen_actual, bool quiet)
712 {
713 	int rc;
714 
715 	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
716 	if (rc) {
717 		if (outlen_actual)
718 			*outlen_actual = 0;
719 		return rc;
720 	}
721 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
722 				    outlen_actual, quiet);
723 }
724 
725 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
726 		 const efx_dword_t *inbuf, size_t inlen,
727 		 efx_dword_t *outbuf, size_t outlen,
728 		 size_t *outlen_actual)
729 {
730 	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
731 			     outlen_actual, false);
732 }
733 
734 /* Normally, on receiving an error code in the MCDI response,
735  * efx_mcdi_rpc will log an error message containing (among other
736  * things) the raw error code, by means of efx_mcdi_display_error.
737  * This _quiet version suppresses that; if the caller wishes to log
738  * the error conditionally on the return code, it should call this
739  * function and is then responsible for calling efx_mcdi_display_error
740  * as needed.
741  */
742 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
743 		       const efx_dword_t *inbuf, size_t inlen,
744 		       efx_dword_t *outbuf, size_t outlen,
745 		       size_t *outlen_actual)
746 {
747 	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
748 			     outlen_actual, true);
749 }
750 
751 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
752 		       const efx_dword_t *inbuf, size_t inlen)
753 {
754 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
755 	int rc;
756 
757 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
758 	if (rc)
759 		return rc;
760 
761 	if (efx->mc_bist_for_other_fn)
762 		return -ENETDOWN;
763 
764 	if (mcdi->mode == MCDI_MODE_FAIL)
765 		return -ENETDOWN;
766 
767 	efx_mcdi_acquire_sync(mcdi);
768 	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
769 	return 0;
770 }
771 
772 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
773 			       const efx_dword_t *inbuf, size_t inlen,
774 			       size_t outlen,
775 			       efx_mcdi_async_completer *complete,
776 			       unsigned long cookie, bool quiet)
777 {
778 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
779 	struct efx_mcdi_async_param *async;
780 	int rc;
781 
782 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
783 	if (rc)
784 		return rc;
785 
786 	if (efx->mc_bist_for_other_fn)
787 		return -ENETDOWN;
788 
789 	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
790 			GFP_ATOMIC);
791 	if (!async)
792 		return -ENOMEM;
793 
794 	async->cmd = cmd;
795 	async->inlen = inlen;
796 	async->outlen = outlen;
797 	async->quiet = quiet;
798 	async->complete = complete;
799 	async->cookie = cookie;
800 	memcpy(async + 1, inbuf, inlen);
801 
802 	spin_lock_bh(&mcdi->async_lock);
803 
804 	if (mcdi->mode == MCDI_MODE_EVENTS) {
805 		list_add_tail(&async->list, &mcdi->async_list);
806 
807 		/* If this is at the front of the queue, try to start it
808 		 * immediately
809 		 */
810 		if (mcdi->async_list.next == &async->list &&
811 		    efx_mcdi_acquire_async(mcdi)) {
812 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
813 			mod_timer(&mcdi->async_timer,
814 				  jiffies + MCDI_RPC_TIMEOUT);
815 		}
816 	} else {
817 		kfree(async);
818 		rc = -ENETDOWN;
819 	}
820 
821 	spin_unlock_bh(&mcdi->async_lock);
822 
823 	return rc;
824 }
825 
826 /**
827  * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
828  * @efx: NIC through which to issue the command
829  * @cmd: Command type number
830  * @inbuf: Command parameters
831  * @inlen: Length of command parameters, in bytes
832  * @outlen: Length to allocate for response buffer, in bytes
833  * @complete: Function to be called on completion or cancellation.
834  * @cookie: Arbitrary value to be passed to @complete.
835  *
836  * This function does not sleep and therefore may be called in atomic
837  * context.  It will fail if event queues are disabled or if MCDI
838  * event completions have been disabled due to an error.
839  *
840  * If it succeeds, the @complete function will be called exactly once
841  * in atomic context, when one of the following occurs:
842  * (a) the completion event is received (in NAPI context)
843  * (b) event queues are disabled (in the process that disables them)
844  * (c) the request times-out (in timer context)
845  */
846 int
847 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
848 		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
849 		   efx_mcdi_async_completer *complete, unsigned long cookie)
850 {
851 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
852 				   cookie, false);
853 }
854 
855 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
856 			     const efx_dword_t *inbuf, size_t inlen,
857 			     size_t outlen, efx_mcdi_async_completer *complete,
858 			     unsigned long cookie)
859 {
860 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
861 				   cookie, true);
862 }
863 
864 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
865 			efx_dword_t *outbuf, size_t outlen,
866 			size_t *outlen_actual)
867 {
868 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
869 				    outlen_actual, false);
870 }
871 
872 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
873 			      efx_dword_t *outbuf, size_t outlen,
874 			      size_t *outlen_actual)
875 {
876 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
877 				    outlen_actual, true);
878 }
879 
880 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
881 			    size_t inlen, efx_dword_t *outbuf,
882 			    size_t outlen, int rc)
883 {
884 	int code = 0, err_arg = 0;
885 
886 	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
887 		code = MCDI_DWORD(outbuf, ERR_CODE);
888 	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
889 		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
890 	netif_err(efx, hw, efx->net_dev,
891 		  "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
892 		  cmd, (int)inlen, rc, code, err_arg);
893 }
894 
895 /* Switch to polled MCDI completions.  This can be called in various
896  * error conditions with various locks held, so it must be lockless.
897  * Caller is responsible for flushing asynchronous requests later.
898  */
899 void efx_mcdi_mode_poll(struct efx_nic *efx)
900 {
901 	struct efx_mcdi_iface *mcdi;
902 
903 	if (!efx->mcdi)
904 		return;
905 
906 	mcdi = efx_mcdi(efx);
907 	/* If already in polling mode, nothing to do.
908 	 * If in fail-fast state, don't switch to polled completion.
909 	 * FLR recovery will do that later.
910 	 */
911 	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
912 		return;
913 
914 	/* We can switch from event completion to polled completion, because
915 	 * mcdi requests are always completed in shared memory. We do this by
916 	 * switching the mode to POLL'd then completing the request.
917 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
918 	 *
919 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
920 	 * which efx_mcdi_complete_sync() provides for us.
921 	 */
922 	mcdi->mode = MCDI_MODE_POLL;
923 
924 	efx_mcdi_complete_sync(mcdi);
925 }
926 
927 /* Flush any running or queued asynchronous requests, after event processing
928  * is stopped
929  */
930 void efx_mcdi_flush_async(struct efx_nic *efx)
931 {
932 	struct efx_mcdi_async_param *async, *next;
933 	struct efx_mcdi_iface *mcdi;
934 
935 	if (!efx->mcdi)
936 		return;
937 
938 	mcdi = efx_mcdi(efx);
939 
940 	/* We must be in poll or fail mode so no more requests can be queued */
941 	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
942 
943 	del_timer_sync(&mcdi->async_timer);
944 
945 	/* If a request is still running, make sure we give the MC
946 	 * time to complete it so that the response won't overwrite our
947 	 * next request.
948 	 */
949 	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
950 		efx_mcdi_poll(efx);
951 		mcdi->state = MCDI_STATE_QUIESCENT;
952 	}
953 
954 	/* Nothing else will access the async list now, so it is safe
955 	 * to walk it without holding async_lock.  If we hold it while
956 	 * calling a completer then lockdep may warn that we have
957 	 * acquired locks in the wrong order.
958 	 */
959 	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
960 		async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
961 		list_del(&async->list);
962 		kfree(async);
963 	}
964 }
965 
966 void efx_mcdi_mode_event(struct efx_nic *efx)
967 {
968 	struct efx_mcdi_iface *mcdi;
969 
970 	if (!efx->mcdi)
971 		return;
972 
973 	mcdi = efx_mcdi(efx);
974 	/* If already in event completion mode, nothing to do.
975 	 * If in fail-fast state, don't switch to event completion.  FLR
976 	 * recovery will do that later.
977 	 */
978 	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
979 		return;
980 
981 	/* We can't switch from polled to event completion in the middle of a
982 	 * request, because the completion method is specified in the request.
983 	 * So acquire the interface to serialise the requestors. We don't need
984 	 * to acquire the iface_lock to change the mode here, but we do need a
985 	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
986 	 * efx_mcdi_acquire() provides.
987 	 */
988 	efx_mcdi_acquire_sync(mcdi);
989 	mcdi->mode = MCDI_MODE_EVENTS;
990 	efx_mcdi_release(mcdi);
991 }
992 
993 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
994 {
995 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
996 
997 	/* If there is an outstanding MCDI request, it has been terminated
998 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
999 	 * in polled mode, then do nothing because the MC reboot handler will
1000 	 * set the header correctly. However, if the mcdi interface is waiting
1001 	 * for a CMDDONE event it won't receive it [and since all MCDI events
1002 	 * are sent to the same queue, we can't be racing with
1003 	 * efx_mcdi_ev_cpl()]
1004 	 *
1005 	 * If there is an outstanding asynchronous request, we can't
1006 	 * complete it now (efx_mcdi_complete() would deadlock).  The
1007 	 * reset process will take care of this.
1008 	 *
1009 	 * There's a race here with efx_mcdi_send_request(), because
1010 	 * we might receive a REBOOT event *before* the request has
1011 	 * been copied out. In polled mode (during startup) this is
1012 	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1013 	 * event mode, this condition is just an edge-case of
1014 	 * receiving a REBOOT event after posting the MCDI
1015 	 * request. Did the mc reboot before or after the copyout? The
1016 	 * best we can do always is just return failure.
1017 	 */
1018 	spin_lock(&mcdi->iface_lock);
1019 	if (efx_mcdi_complete_sync(mcdi)) {
1020 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1021 			mcdi->resprc = rc;
1022 			mcdi->resp_hdr_len = 0;
1023 			mcdi->resp_data_len = 0;
1024 			++mcdi->credits;
1025 		}
1026 	} else {
1027 		int count;
1028 
1029 		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1030 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1031 			if (efx_mcdi_poll_reboot(efx))
1032 				break;
1033 			udelay(MCDI_STATUS_DELAY_US);
1034 		}
1035 		mcdi->new_epoch = true;
1036 
1037 		/* Nobody was waiting for an MCDI request, so trigger a reset */
1038 		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1039 	}
1040 
1041 	spin_unlock(&mcdi->iface_lock);
1042 }
1043 
1044 /* The MC is going down in to BIST mode. set the BIST flag to block
1045  * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1046  * (which doesn't actually execute a reset, it waits for the controlling
1047  * function to reset it).
1048  */
1049 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1050 {
1051 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1052 
1053 	spin_lock(&mcdi->iface_lock);
1054 	efx->mc_bist_for_other_fn = true;
1055 	if (efx_mcdi_complete_sync(mcdi)) {
1056 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1057 			mcdi->resprc = -EIO;
1058 			mcdi->resp_hdr_len = 0;
1059 			mcdi->resp_data_len = 0;
1060 			++mcdi->credits;
1061 		}
1062 	}
1063 	mcdi->new_epoch = true;
1064 	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1065 	spin_unlock(&mcdi->iface_lock);
1066 }
1067 
1068 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1069  * to recover.
1070  */
1071 static void efx_mcdi_abandon(struct efx_nic *efx)
1072 {
1073 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1074 
1075 	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1076 		return; /* it had already been done */
1077 	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1078 	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1079 }
1080 
1081 /* Called from  falcon_process_eventq for MCDI events */
1082 void efx_mcdi_process_event(struct efx_channel *channel,
1083 			    efx_qword_t *event)
1084 {
1085 	struct efx_nic *efx = channel->efx;
1086 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1087 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1088 
1089 	switch (code) {
1090 	case MCDI_EVENT_CODE_BADSSERT:
1091 		netif_err(efx, hw, efx->net_dev,
1092 			  "MC watchdog or assertion failure at 0x%x\n", data);
1093 		efx_mcdi_ev_death(efx, -EINTR);
1094 		break;
1095 
1096 	case MCDI_EVENT_CODE_PMNOTICE:
1097 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1098 		break;
1099 
1100 	case MCDI_EVENT_CODE_CMDDONE:
1101 		efx_mcdi_ev_cpl(efx,
1102 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1103 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1104 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1105 		break;
1106 
1107 	case MCDI_EVENT_CODE_LINKCHANGE:
1108 		efx_mcdi_process_link_change(efx, event);
1109 		break;
1110 	case MCDI_EVENT_CODE_SENSOREVT:
1111 		efx_mcdi_sensor_event(efx, event);
1112 		break;
1113 	case MCDI_EVENT_CODE_SCHEDERR:
1114 		netif_dbg(efx, hw, efx->net_dev,
1115 			  "MC Scheduler alert (0x%x)\n", data);
1116 		break;
1117 	case MCDI_EVENT_CODE_REBOOT:
1118 	case MCDI_EVENT_CODE_MC_REBOOT:
1119 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1120 		efx_mcdi_ev_death(efx, -EIO);
1121 		break;
1122 	case MCDI_EVENT_CODE_MC_BIST:
1123 		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1124 		efx_mcdi_ev_bist(efx);
1125 		break;
1126 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1127 		/* MAC stats are gather lazily.  We can ignore this. */
1128 		break;
1129 	case MCDI_EVENT_CODE_FLR:
1130 		if (efx->type->sriov_flr)
1131 			efx->type->sriov_flr(efx,
1132 					     MCDI_EVENT_FIELD(*event, FLR_VF));
1133 		break;
1134 	case MCDI_EVENT_CODE_PTP_RX:
1135 	case MCDI_EVENT_CODE_PTP_FAULT:
1136 	case MCDI_EVENT_CODE_PTP_PPS:
1137 		efx_ptp_event(efx, event);
1138 		break;
1139 	case MCDI_EVENT_CODE_PTP_TIME:
1140 		efx_time_sync_event(channel, event);
1141 		break;
1142 	case MCDI_EVENT_CODE_TX_FLUSH:
1143 	case MCDI_EVENT_CODE_RX_FLUSH:
1144 		/* Two flush events will be sent: one to the same event
1145 		 * queue as completions, and one to event queue 0.
1146 		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1147 		 * flag will be set, and we should ignore the event
1148 		 * because we want to wait for all completions.
1149 		 */
1150 		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1151 			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1152 		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1153 			efx_ef10_handle_drain_event(efx);
1154 		break;
1155 	case MCDI_EVENT_CODE_TX_ERR:
1156 	case MCDI_EVENT_CODE_RX_ERR:
1157 		netif_err(efx, hw, efx->net_dev,
1158 			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1159 			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1160 			  EFX_QWORD_VAL(*event));
1161 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1162 		break;
1163 	default:
1164 		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1165 			  code);
1166 	}
1167 }
1168 
1169 /**************************************************************************
1170  *
1171  * Specific request functions
1172  *
1173  **************************************************************************
1174  */
1175 
1176 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1177 {
1178 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1179 	size_t outlength;
1180 	const __le16 *ver_words;
1181 	size_t offset;
1182 	int rc;
1183 
1184 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1185 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1186 			  outbuf, sizeof(outbuf), &outlength);
1187 	if (rc)
1188 		goto fail;
1189 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1190 		rc = -EIO;
1191 		goto fail;
1192 	}
1193 
1194 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1195 	offset = snprintf(buf, len, "%u.%u.%u.%u",
1196 			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1197 			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1198 
1199 	/* EF10 may have multiple datapath firmware variants within a
1200 	 * single version.  Report which variants are running.
1201 	 */
1202 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1203 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1204 
1205 		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1206 				   nic_data->rx_dpcpu_fw_id,
1207 				   nic_data->tx_dpcpu_fw_id);
1208 
1209 		/* It's theoretically possible for the string to exceed 31
1210 		 * characters, though in practice the first three version
1211 		 * components are short enough that this doesn't happen.
1212 		 */
1213 		if (WARN_ON(offset >= len))
1214 			buf[0] = 0;
1215 	}
1216 
1217 	return;
1218 
1219 fail:
1220 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1221 	buf[0] = 0;
1222 }
1223 
1224 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1225 			       bool *was_attached)
1226 {
1227 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1228 	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1229 	size_t outlen;
1230 	int rc;
1231 
1232 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1233 		       driver_operating ? 1 : 0);
1234 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1235 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1236 
1237 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1238 				outbuf, sizeof(outbuf), &outlen);
1239 	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1240 	 * specified will fail with EPERM, and we have to tell the MC we don't
1241 	 * care what firmware we get.
1242 	 */
1243 	if (rc == -EPERM) {
1244 		netif_dbg(efx, probe, efx->net_dev,
1245 			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1246 		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1247 			       MC_CMD_FW_DONT_CARE);
1248 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1249 					sizeof(inbuf), outbuf, sizeof(outbuf),
1250 					&outlen);
1251 	}
1252 	if (rc) {
1253 		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1254 				       outbuf, outlen, rc);
1255 		goto fail;
1256 	}
1257 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1258 		rc = -EIO;
1259 		goto fail;
1260 	}
1261 
1262 	if (driver_operating) {
1263 		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1264 			efx->mcdi->fn_flags =
1265 				MCDI_DWORD(outbuf,
1266 					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1267 		} else {
1268 			/* Synthesise flags for Siena */
1269 			efx->mcdi->fn_flags =
1270 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1271 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1272 				(efx_port_num(efx) == 0) <<
1273 				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1274 		}
1275 	}
1276 
1277 	/* We currently assume we have control of the external link
1278 	 * and are completely trusted by firmware.  Abort probing
1279 	 * if that's not true for this function.
1280 	 */
1281 
1282 	if (was_attached != NULL)
1283 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1284 	return 0;
1285 
1286 fail:
1287 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1288 	return rc;
1289 }
1290 
1291 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1292 			   u16 *fw_subtype_list, u32 *capabilities)
1293 {
1294 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1295 	size_t outlen, i;
1296 	int port_num = efx_port_num(efx);
1297 	int rc;
1298 
1299 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1300 	/* we need __aligned(2) for ether_addr_copy */
1301 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1302 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1303 
1304 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1305 			  outbuf, sizeof(outbuf), &outlen);
1306 	if (rc)
1307 		goto fail;
1308 
1309 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1310 		rc = -EIO;
1311 		goto fail;
1312 	}
1313 
1314 	if (mac_address)
1315 		ether_addr_copy(mac_address,
1316 				port_num ?
1317 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1318 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1319 	if (fw_subtype_list) {
1320 		for (i = 0;
1321 		     i < MCDI_VAR_ARRAY_LEN(outlen,
1322 					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1323 		     i++)
1324 			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1325 				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1326 		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1327 			fw_subtype_list[i] = 0;
1328 	}
1329 	if (capabilities) {
1330 		if (port_num)
1331 			*capabilities = MCDI_DWORD(outbuf,
1332 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1333 		else
1334 			*capabilities = MCDI_DWORD(outbuf,
1335 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1336 	}
1337 
1338 	return 0;
1339 
1340 fail:
1341 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1342 		  __func__, rc, (int)outlen);
1343 
1344 	return rc;
1345 }
1346 
1347 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1348 {
1349 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1350 	u32 dest = 0;
1351 	int rc;
1352 
1353 	if (uart)
1354 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1355 	if (evq)
1356 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1357 
1358 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1359 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1360 
1361 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1362 
1363 	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1364 			  NULL, 0, NULL);
1365 	return rc;
1366 }
1367 
1368 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1369 {
1370 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1371 	size_t outlen;
1372 	int rc;
1373 
1374 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1375 
1376 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1377 			  outbuf, sizeof(outbuf), &outlen);
1378 	if (rc)
1379 		goto fail;
1380 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1381 		rc = -EIO;
1382 		goto fail;
1383 	}
1384 
1385 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1386 	return 0;
1387 
1388 fail:
1389 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1390 		  __func__, rc);
1391 	return rc;
1392 }
1393 
1394 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1395 			size_t *size_out, size_t *erase_size_out,
1396 			bool *protected_out)
1397 {
1398 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1399 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1400 	size_t outlen;
1401 	int rc;
1402 
1403 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1404 
1405 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1406 			  outbuf, sizeof(outbuf), &outlen);
1407 	if (rc)
1408 		goto fail;
1409 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1410 		rc = -EIO;
1411 		goto fail;
1412 	}
1413 
1414 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1415 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1416 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1417 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1418 	return 0;
1419 
1420 fail:
1421 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1422 	return rc;
1423 }
1424 
1425 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1426 {
1427 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1428 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1429 	int rc;
1430 
1431 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1432 
1433 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1434 			  outbuf, sizeof(outbuf), NULL);
1435 	if (rc)
1436 		return rc;
1437 
1438 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1439 	case MC_CMD_NVRAM_TEST_PASS:
1440 	case MC_CMD_NVRAM_TEST_NOTSUPP:
1441 		return 0;
1442 	default:
1443 		return -EIO;
1444 	}
1445 }
1446 
1447 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1448 {
1449 	u32 nvram_types;
1450 	unsigned int type;
1451 	int rc;
1452 
1453 	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1454 	if (rc)
1455 		goto fail1;
1456 
1457 	type = 0;
1458 	while (nvram_types != 0) {
1459 		if (nvram_types & 1) {
1460 			rc = efx_mcdi_nvram_test(efx, type);
1461 			if (rc)
1462 				goto fail2;
1463 		}
1464 		type++;
1465 		nvram_types >>= 1;
1466 	}
1467 
1468 	return 0;
1469 
1470 fail2:
1471 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1472 		  __func__, type);
1473 fail1:
1474 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1475 	return rc;
1476 }
1477 
1478 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1479  * negative on error.
1480  */
1481 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1482 {
1483 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1484 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1485 	unsigned int flags, index;
1486 	const char *reason;
1487 	size_t outlen;
1488 	int retry;
1489 	int rc;
1490 
1491 	/* Attempt to read any stored assertion state before we reboot
1492 	 * the mcfw out of the assertion handler. Retry twice, once
1493 	 * because a boot-time assertion might cause this command to fail
1494 	 * with EINTR. And once again because GET_ASSERTS can race with
1495 	 * MC_CMD_REBOOT running on the other port. */
1496 	retry = 2;
1497 	do {
1498 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1499 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1500 					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1501 					outbuf, sizeof(outbuf), &outlen);
1502 		if (rc == -EPERM)
1503 			return 0;
1504 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1505 
1506 	if (rc) {
1507 		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1508 				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1509 				       outlen, rc);
1510 		return rc;
1511 	}
1512 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1513 		return -EIO;
1514 
1515 	/* Print out any recorded assertion state */
1516 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1517 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1518 		return 0;
1519 
1520 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1521 		? "system-level assertion"
1522 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1523 		? "thread-level assertion"
1524 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1525 		? "watchdog reset"
1526 		: "unknown assertion";
1527 	netif_err(efx, hw, efx->net_dev,
1528 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1529 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1530 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1531 
1532 	/* Print out the registers */
1533 	for (index = 0;
1534 	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1535 	     index++)
1536 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1537 			  1 + index,
1538 			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1539 					   index));
1540 
1541 	return 1;
1542 }
1543 
1544 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1545 {
1546 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1547 	int rc;
1548 
1549 	/* If the MC is running debug firmware, it might now be
1550 	 * waiting for a debugger to attach, but we just want it to
1551 	 * reboot.  We set a flag that makes the command a no-op if it
1552 	 * has already done so.
1553 	 * The MCDI will thus return either 0 or -EIO.
1554 	 */
1555 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1556 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1557 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1558 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1559 				NULL, 0, NULL);
1560 	if (rc == -EIO)
1561 		rc = 0;
1562 	if (rc)
1563 		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1564 				       NULL, 0, rc);
1565 	return rc;
1566 }
1567 
1568 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1569 {
1570 	int rc;
1571 
1572 	rc = efx_mcdi_read_assertion(efx);
1573 	if (rc <= 0)
1574 		return rc;
1575 
1576 	return efx_mcdi_exit_assertion(efx);
1577 }
1578 
1579 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1580 {
1581 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1582 	int rc;
1583 
1584 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1585 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1586 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1587 
1588 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1589 
1590 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1591 
1592 	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1593 			  NULL, 0, NULL);
1594 }
1595 
1596 static int efx_mcdi_reset_func(struct efx_nic *efx)
1597 {
1598 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1599 	int rc;
1600 
1601 	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1602 	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1603 			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1604 	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1605 			  NULL, 0, NULL);
1606 	return rc;
1607 }
1608 
1609 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1610 {
1611 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1612 	int rc;
1613 
1614 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1615 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1616 	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1617 			  NULL, 0, NULL);
1618 	/* White is black, and up is down */
1619 	if (rc == -EIO)
1620 		return 0;
1621 	if (rc == 0)
1622 		rc = -EIO;
1623 	return rc;
1624 }
1625 
1626 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1627 {
1628 	return RESET_TYPE_RECOVER_OR_ALL;
1629 }
1630 
1631 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1632 {
1633 	int rc;
1634 
1635 	/* If MCDI is down, we can't handle_assertion */
1636 	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1637 		rc = pci_reset_function(efx->pci_dev);
1638 		if (rc)
1639 			return rc;
1640 		/* Re-enable polled MCDI completion */
1641 		if (efx->mcdi) {
1642 			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1643 			mcdi->mode = MCDI_MODE_POLL;
1644 		}
1645 		return 0;
1646 	}
1647 
1648 	/* Recover from a failed assertion pre-reset */
1649 	rc = efx_mcdi_handle_assertion(efx);
1650 	if (rc)
1651 		return rc;
1652 
1653 	if (method == RESET_TYPE_DATAPATH)
1654 		return 0;
1655 	else if (method == RESET_TYPE_WORLD)
1656 		return efx_mcdi_reset_mc(efx);
1657 	else
1658 		return efx_mcdi_reset_func(efx);
1659 }
1660 
1661 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1662 				   const u8 *mac, int *id_out)
1663 {
1664 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1665 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1666 	size_t outlen;
1667 	int rc;
1668 
1669 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1670 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1671 		       MC_CMD_FILTER_MODE_SIMPLE);
1672 	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1673 
1674 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1675 			  outbuf, sizeof(outbuf), &outlen);
1676 	if (rc)
1677 		goto fail;
1678 
1679 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1680 		rc = -EIO;
1681 		goto fail;
1682 	}
1683 
1684 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1685 
1686 	return 0;
1687 
1688 fail:
1689 	*id_out = -1;
1690 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1691 	return rc;
1692 
1693 }
1694 
1695 
1696 int
1697 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1698 {
1699 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1700 }
1701 
1702 
1703 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1704 {
1705 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1706 	size_t outlen;
1707 	int rc;
1708 
1709 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1710 			  outbuf, sizeof(outbuf), &outlen);
1711 	if (rc)
1712 		goto fail;
1713 
1714 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1715 		rc = -EIO;
1716 		goto fail;
1717 	}
1718 
1719 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1720 
1721 	return 0;
1722 
1723 fail:
1724 	*id_out = -1;
1725 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1726 	return rc;
1727 }
1728 
1729 
1730 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1731 {
1732 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1733 	int rc;
1734 
1735 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1736 
1737 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1738 			  NULL, 0, NULL);
1739 	return rc;
1740 }
1741 
1742 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1743 {
1744 	struct efx_channel *channel;
1745 	struct efx_rx_queue *rx_queue;
1746 	MCDI_DECLARE_BUF(inbuf,
1747 			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1748 	int rc, count;
1749 
1750 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1751 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1752 
1753 	count = 0;
1754 	efx_for_each_channel(channel, efx) {
1755 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1756 			if (rx_queue->flush_pending) {
1757 				rx_queue->flush_pending = false;
1758 				atomic_dec(&efx->rxq_flush_pending);
1759 				MCDI_SET_ARRAY_DWORD(
1760 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1761 					count, efx_rx_queue_index(rx_queue));
1762 				count++;
1763 			}
1764 		}
1765 	}
1766 
1767 	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1768 			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1769 	WARN_ON(rc < 0);
1770 
1771 	return rc;
1772 }
1773 
1774 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1775 {
1776 	int rc;
1777 
1778 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1779 	return rc;
1780 }
1781 
1782 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
1783 			    unsigned int *flags)
1784 {
1785 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1786 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
1787 	size_t outlen;
1788 	int rc;
1789 
1790 	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1791 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1792 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1793 	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1794 			  outbuf, sizeof(outbuf), &outlen);
1795 	if (rc)
1796 		return rc;
1797 
1798 	if (!flags)
1799 		return 0;
1800 
1801 	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
1802 		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
1803 	else
1804 		*flags = 0;
1805 
1806 	return 0;
1807 }
1808 
1809 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
1810 			     unsigned int *enabled_out)
1811 {
1812 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
1813 	size_t outlen;
1814 	int rc;
1815 
1816 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
1817 			  outbuf, sizeof(outbuf), &outlen);
1818 	if (rc)
1819 		goto fail;
1820 
1821 	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
1822 		rc = -EIO;
1823 		goto fail;
1824 	}
1825 
1826 	if (impl_out)
1827 		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
1828 
1829 	if (enabled_out)
1830 		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
1831 
1832 	return 0;
1833 
1834 fail:
1835 	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
1836 	 * terrifying.  The call site will have to deal with it though.
1837 	 */
1838 	netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
1839 		     efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1840 	return rc;
1841 }
1842 
1843 #ifdef CONFIG_SFC_MTD
1844 
1845 #define EFX_MCDI_NVRAM_LEN_MAX 128
1846 
1847 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1848 {
1849 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1850 	int rc;
1851 
1852 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1853 
1854 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1855 
1856 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1857 			  NULL, 0, NULL);
1858 	return rc;
1859 }
1860 
1861 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1862 			       loff_t offset, u8 *buffer, size_t length)
1863 {
1864 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1865 	MCDI_DECLARE_BUF(outbuf,
1866 			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1867 	size_t outlen;
1868 	int rc;
1869 
1870 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1871 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1872 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1873 
1874 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1875 			  outbuf, sizeof(outbuf), &outlen);
1876 	if (rc)
1877 		return rc;
1878 
1879 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1880 	return 0;
1881 }
1882 
1883 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1884 				loff_t offset, const u8 *buffer, size_t length)
1885 {
1886 	MCDI_DECLARE_BUF(inbuf,
1887 			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1888 	int rc;
1889 
1890 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1891 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1892 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1893 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1894 
1895 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1896 
1897 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1898 			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1899 			  NULL, 0, NULL);
1900 	return rc;
1901 }
1902 
1903 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1904 				loff_t offset, size_t length)
1905 {
1906 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1907 	int rc;
1908 
1909 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1910 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1911 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1912 
1913 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1914 
1915 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1916 			  NULL, 0, NULL);
1917 	return rc;
1918 }
1919 
1920 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1921 {
1922 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1923 	int rc;
1924 
1925 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1926 
1927 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1928 
1929 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1930 			  NULL, 0, NULL);
1931 	return rc;
1932 }
1933 
1934 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1935 		      size_t len, size_t *retlen, u8 *buffer)
1936 {
1937 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1938 	struct efx_nic *efx = mtd->priv;
1939 	loff_t offset = start;
1940 	loff_t end = min_t(loff_t, start + len, mtd->size);
1941 	size_t chunk;
1942 	int rc = 0;
1943 
1944 	while (offset < end) {
1945 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1946 		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1947 					 buffer, chunk);
1948 		if (rc)
1949 			goto out;
1950 		offset += chunk;
1951 		buffer += chunk;
1952 	}
1953 out:
1954 	*retlen = offset - start;
1955 	return rc;
1956 }
1957 
1958 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1959 {
1960 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1961 	struct efx_nic *efx = mtd->priv;
1962 	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1963 	loff_t end = min_t(loff_t, start + len, mtd->size);
1964 	size_t chunk = part->common.mtd.erasesize;
1965 	int rc = 0;
1966 
1967 	if (!part->updating) {
1968 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1969 		if (rc)
1970 			goto out;
1971 		part->updating = true;
1972 	}
1973 
1974 	/* The MCDI interface can in fact do multiple erase blocks at once;
1975 	 * but erasing may be slow, so we make multiple calls here to avoid
1976 	 * tripping the MCDI RPC timeout. */
1977 	while (offset < end) {
1978 		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1979 					  chunk);
1980 		if (rc)
1981 			goto out;
1982 		offset += chunk;
1983 	}
1984 out:
1985 	return rc;
1986 }
1987 
1988 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
1989 		       size_t len, size_t *retlen, const u8 *buffer)
1990 {
1991 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1992 	struct efx_nic *efx = mtd->priv;
1993 	loff_t offset = start;
1994 	loff_t end = min_t(loff_t, start + len, mtd->size);
1995 	size_t chunk;
1996 	int rc = 0;
1997 
1998 	if (!part->updating) {
1999 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2000 		if (rc)
2001 			goto out;
2002 		part->updating = true;
2003 	}
2004 
2005 	while (offset < end) {
2006 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2007 		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2008 					  buffer, chunk);
2009 		if (rc)
2010 			goto out;
2011 		offset += chunk;
2012 		buffer += chunk;
2013 	}
2014 out:
2015 	*retlen = offset - start;
2016 	return rc;
2017 }
2018 
2019 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2020 {
2021 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2022 	struct efx_nic *efx = mtd->priv;
2023 	int rc = 0;
2024 
2025 	if (part->updating) {
2026 		part->updating = false;
2027 		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2028 	}
2029 
2030 	return rc;
2031 }
2032 
2033 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2034 {
2035 	struct efx_mcdi_mtd_partition *mcdi_part =
2036 		container_of(part, struct efx_mcdi_mtd_partition, common);
2037 	struct efx_nic *efx = part->mtd.priv;
2038 
2039 	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2040 		 efx->name, part->type_name, mcdi_part->fw_subtype);
2041 }
2042 
2043 #endif /* CONFIG_SFC_MTD */
2044