1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2008-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include <asm/cmpxchg.h> 12 #include "net_driver.h" 13 #include "nic.h" 14 #include "io.h" 15 #include "farch_regs.h" 16 #include "mcdi_pcol.h" 17 #include "phy.h" 18 19 /************************************************************************** 20 * 21 * Management-Controller-to-Driver Interface 22 * 23 ************************************************************************** 24 */ 25 26 #define MCDI_RPC_TIMEOUT (10 * HZ) 27 28 /* A reboot/assertion causes the MCDI status word to be set after the 29 * command word is set or a REBOOT event is sent. If we notice a reboot 30 * via these mechanisms then wait 250ms for the status word to be set. 31 */ 32 #define MCDI_STATUS_DELAY_US 100 33 #define MCDI_STATUS_DELAY_COUNT 2500 34 #define MCDI_STATUS_SLEEP_MS \ 35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 36 37 #define SEQ_MASK \ 38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 39 40 struct efx_mcdi_async_param { 41 struct list_head list; 42 unsigned int cmd; 43 size_t inlen; 44 size_t outlen; 45 bool quiet; 46 efx_mcdi_async_completer *complete; 47 unsigned long cookie; 48 /* followed by request/response buffer */ 49 }; 50 51 static void efx_mcdi_timeout_async(unsigned long context); 52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 53 bool *was_attached_out); 54 static bool efx_mcdi_poll_once(struct efx_nic *efx); 55 56 static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx) 57 { 58 EFX_BUG_ON_PARANOID(!efx->mcdi); 59 return &efx->mcdi->iface; 60 } 61 62 int efx_mcdi_init(struct efx_nic *efx) 63 { 64 struct efx_mcdi_iface *mcdi; 65 bool already_attached; 66 int rc; 67 68 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 69 if (!efx->mcdi) 70 return -ENOMEM; 71 72 mcdi = efx_mcdi(efx); 73 mcdi->efx = efx; 74 init_waitqueue_head(&mcdi->wq); 75 spin_lock_init(&mcdi->iface_lock); 76 mcdi->state = MCDI_STATE_QUIESCENT; 77 mcdi->mode = MCDI_MODE_POLL; 78 spin_lock_init(&mcdi->async_lock); 79 INIT_LIST_HEAD(&mcdi->async_list); 80 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, 81 (unsigned long)mcdi); 82 83 (void) efx_mcdi_poll_reboot(efx); 84 mcdi->new_epoch = true; 85 86 /* Recover from a failed assertion before probing */ 87 rc = efx_mcdi_handle_assertion(efx); 88 if (rc) 89 return rc; 90 91 /* Let the MC (and BMC, if this is a LOM) know that the driver 92 * is loaded. We should do this before we reset the NIC. 93 */ 94 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 95 if (rc) { 96 netif_err(efx, probe, efx->net_dev, 97 "Unable to register driver with MCPU\n"); 98 return rc; 99 } 100 if (already_attached) 101 /* Not a fatal error */ 102 netif_err(efx, probe, efx->net_dev, 103 "Host already registered with MCPU\n"); 104 105 if (efx->mcdi->fn_flags & 106 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 107 efx->primary = efx; 108 109 return 0; 110 } 111 112 void efx_mcdi_fini(struct efx_nic *efx) 113 { 114 if (!efx->mcdi) 115 return; 116 117 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 118 119 /* Relinquish the device (back to the BMC, if this is a LOM) */ 120 efx_mcdi_drv_attach(efx, false, NULL); 121 122 kfree(efx->mcdi); 123 } 124 125 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 126 const efx_dword_t *inbuf, size_t inlen) 127 { 128 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 129 efx_dword_t hdr[2]; 130 size_t hdr_len; 131 u32 xflags, seqno; 132 133 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 134 135 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 136 spin_lock_bh(&mcdi->iface_lock); 137 ++mcdi->seqno; 138 spin_unlock_bh(&mcdi->iface_lock); 139 140 seqno = mcdi->seqno & SEQ_MASK; 141 xflags = 0; 142 if (mcdi->mode == MCDI_MODE_EVENTS) 143 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 144 145 if (efx->type->mcdi_max_ver == 1) { 146 /* MCDI v1 */ 147 EFX_POPULATE_DWORD_7(hdr[0], 148 MCDI_HEADER_RESPONSE, 0, 149 MCDI_HEADER_RESYNC, 1, 150 MCDI_HEADER_CODE, cmd, 151 MCDI_HEADER_DATALEN, inlen, 152 MCDI_HEADER_SEQ, seqno, 153 MCDI_HEADER_XFLAGS, xflags, 154 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 155 hdr_len = 4; 156 } else { 157 /* MCDI v2 */ 158 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 159 EFX_POPULATE_DWORD_7(hdr[0], 160 MCDI_HEADER_RESPONSE, 0, 161 MCDI_HEADER_RESYNC, 1, 162 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 163 MCDI_HEADER_DATALEN, 0, 164 MCDI_HEADER_SEQ, seqno, 165 MCDI_HEADER_XFLAGS, xflags, 166 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 167 EFX_POPULATE_DWORD_2(hdr[1], 168 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 169 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 170 hdr_len = 8; 171 } 172 173 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 174 175 mcdi->new_epoch = false; 176 } 177 178 static int efx_mcdi_errno(unsigned int mcdi_err) 179 { 180 switch (mcdi_err) { 181 case 0: 182 return 0; 183 #define TRANSLATE_ERROR(name) \ 184 case MC_CMD_ERR_ ## name: \ 185 return -name; 186 TRANSLATE_ERROR(EPERM); 187 TRANSLATE_ERROR(ENOENT); 188 TRANSLATE_ERROR(EINTR); 189 TRANSLATE_ERROR(EAGAIN); 190 TRANSLATE_ERROR(EACCES); 191 TRANSLATE_ERROR(EBUSY); 192 TRANSLATE_ERROR(EINVAL); 193 TRANSLATE_ERROR(EDEADLK); 194 TRANSLATE_ERROR(ENOSYS); 195 TRANSLATE_ERROR(ETIME); 196 TRANSLATE_ERROR(EALREADY); 197 TRANSLATE_ERROR(ENOSPC); 198 #undef TRANSLATE_ERROR 199 case MC_CMD_ERR_ENOTSUP: 200 return -EOPNOTSUPP; 201 case MC_CMD_ERR_ALLOC_FAIL: 202 return -ENOBUFS; 203 case MC_CMD_ERR_MAC_EXIST: 204 return -EADDRINUSE; 205 default: 206 return -EPROTO; 207 } 208 } 209 210 static void efx_mcdi_read_response_header(struct efx_nic *efx) 211 { 212 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 213 unsigned int respseq, respcmd, error; 214 efx_dword_t hdr; 215 216 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 217 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 218 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 219 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 220 221 if (respcmd != MC_CMD_V2_EXTN) { 222 mcdi->resp_hdr_len = 4; 223 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 224 } else { 225 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 226 mcdi->resp_hdr_len = 8; 227 mcdi->resp_data_len = 228 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 229 } 230 231 if (error && mcdi->resp_data_len == 0) { 232 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 233 mcdi->resprc = -EIO; 234 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 235 netif_err(efx, hw, efx->net_dev, 236 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 237 respseq, mcdi->seqno); 238 mcdi->resprc = -EIO; 239 } else if (error) { 240 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 241 mcdi->resprc = 242 efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0)); 243 } else { 244 mcdi->resprc = 0; 245 } 246 } 247 248 static bool efx_mcdi_poll_once(struct efx_nic *efx) 249 { 250 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 251 252 rmb(); 253 if (!efx->type->mcdi_poll_response(efx)) 254 return false; 255 256 spin_lock_bh(&mcdi->iface_lock); 257 efx_mcdi_read_response_header(efx); 258 spin_unlock_bh(&mcdi->iface_lock); 259 260 return true; 261 } 262 263 static int efx_mcdi_poll(struct efx_nic *efx) 264 { 265 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 266 unsigned long time, finish; 267 unsigned int spins; 268 int rc; 269 270 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 271 rc = efx_mcdi_poll_reboot(efx); 272 if (rc) { 273 spin_lock_bh(&mcdi->iface_lock); 274 mcdi->resprc = rc; 275 mcdi->resp_hdr_len = 0; 276 mcdi->resp_data_len = 0; 277 spin_unlock_bh(&mcdi->iface_lock); 278 return 0; 279 } 280 281 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 282 * because generally mcdi responses are fast. After that, back off 283 * and poll once a jiffy (approximately) 284 */ 285 spins = TICK_USEC; 286 finish = jiffies + MCDI_RPC_TIMEOUT; 287 288 while (1) { 289 if (spins != 0) { 290 --spins; 291 udelay(1); 292 } else { 293 schedule_timeout_uninterruptible(1); 294 } 295 296 time = jiffies; 297 298 if (efx_mcdi_poll_once(efx)) 299 break; 300 301 if (time_after(time, finish)) 302 return -ETIMEDOUT; 303 } 304 305 /* Return rc=0 like wait_event_timeout() */ 306 return 0; 307 } 308 309 /* Test and clear MC-rebooted flag for this port/function; reset 310 * software state as necessary. 311 */ 312 int efx_mcdi_poll_reboot(struct efx_nic *efx) 313 { 314 if (!efx->mcdi) 315 return 0; 316 317 return efx->type->mcdi_poll_reboot(efx); 318 } 319 320 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 321 { 322 return cmpxchg(&mcdi->state, 323 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 324 MCDI_STATE_QUIESCENT; 325 } 326 327 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 328 { 329 /* Wait until the interface becomes QUIESCENT and we win the race 330 * to mark it RUNNING_SYNC. 331 */ 332 wait_event(mcdi->wq, 333 cmpxchg(&mcdi->state, 334 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 335 MCDI_STATE_QUIESCENT); 336 } 337 338 static int efx_mcdi_await_completion(struct efx_nic *efx) 339 { 340 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 341 342 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 343 MCDI_RPC_TIMEOUT) == 0) 344 return -ETIMEDOUT; 345 346 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 347 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 348 * completed the request first, then we'll just end up completing the 349 * request again, which is safe. 350 * 351 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 352 * wait_event_timeout() implicitly provides. 353 */ 354 if (mcdi->mode == MCDI_MODE_POLL) 355 return efx_mcdi_poll(efx); 356 357 return 0; 358 } 359 360 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 361 * requester. Return whether this was done. Does not take any locks. 362 */ 363 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 364 { 365 if (cmpxchg(&mcdi->state, 366 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 367 MCDI_STATE_RUNNING_SYNC) { 368 wake_up(&mcdi->wq); 369 return true; 370 } 371 372 return false; 373 } 374 375 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 376 { 377 if (mcdi->mode == MCDI_MODE_EVENTS) { 378 struct efx_mcdi_async_param *async; 379 struct efx_nic *efx = mcdi->efx; 380 381 /* Process the asynchronous request queue */ 382 spin_lock_bh(&mcdi->async_lock); 383 async = list_first_entry_or_null( 384 &mcdi->async_list, struct efx_mcdi_async_param, list); 385 if (async) { 386 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 387 efx_mcdi_send_request(efx, async->cmd, 388 (const efx_dword_t *)(async + 1), 389 async->inlen); 390 mod_timer(&mcdi->async_timer, 391 jiffies + MCDI_RPC_TIMEOUT); 392 } 393 spin_unlock_bh(&mcdi->async_lock); 394 395 if (async) 396 return; 397 } 398 399 mcdi->state = MCDI_STATE_QUIESCENT; 400 wake_up(&mcdi->wq); 401 } 402 403 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 404 * asynchronous completion function, and release the interface. 405 * Return whether this was done. Must be called in bh-disabled 406 * context. Will take iface_lock and async_lock. 407 */ 408 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 409 { 410 struct efx_nic *efx = mcdi->efx; 411 struct efx_mcdi_async_param *async; 412 size_t hdr_len, data_len, err_len; 413 efx_dword_t *outbuf; 414 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0); 415 int rc; 416 417 if (cmpxchg(&mcdi->state, 418 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 419 MCDI_STATE_RUNNING_ASYNC) 420 return false; 421 422 spin_lock(&mcdi->iface_lock); 423 if (timeout) { 424 /* Ensure that if the completion event arrives later, 425 * the seqno check in efx_mcdi_ev_cpl() will fail 426 */ 427 ++mcdi->seqno; 428 ++mcdi->credits; 429 rc = -ETIMEDOUT; 430 hdr_len = 0; 431 data_len = 0; 432 } else { 433 rc = mcdi->resprc; 434 hdr_len = mcdi->resp_hdr_len; 435 data_len = mcdi->resp_data_len; 436 } 437 spin_unlock(&mcdi->iface_lock); 438 439 /* Stop the timer. In case the timer function is running, we 440 * must wait for it to return so that there is no possibility 441 * of it aborting the next request. 442 */ 443 if (!timeout) 444 del_timer_sync(&mcdi->async_timer); 445 446 spin_lock(&mcdi->async_lock); 447 async = list_first_entry(&mcdi->async_list, 448 struct efx_mcdi_async_param, list); 449 list_del(&async->list); 450 spin_unlock(&mcdi->async_lock); 451 452 outbuf = (efx_dword_t *)(async + 1); 453 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 454 min(async->outlen, data_len)); 455 if (!timeout && rc && !async->quiet) { 456 err_len = min(sizeof(errbuf), data_len); 457 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 458 sizeof(errbuf)); 459 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 460 err_len, rc); 461 } 462 async->complete(efx, async->cookie, rc, outbuf, data_len); 463 kfree(async); 464 465 efx_mcdi_release(mcdi); 466 467 return true; 468 } 469 470 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 471 unsigned int datalen, unsigned int mcdi_err) 472 { 473 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 474 bool wake = false; 475 476 spin_lock(&mcdi->iface_lock); 477 478 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 479 if (mcdi->credits) 480 /* The request has been cancelled */ 481 --mcdi->credits; 482 else 483 netif_err(efx, hw, efx->net_dev, 484 "MC response mismatch tx seq 0x%x rx " 485 "seq 0x%x\n", seqno, mcdi->seqno); 486 } else { 487 if (efx->type->mcdi_max_ver >= 2) { 488 /* MCDI v2 responses don't fit in an event */ 489 efx_mcdi_read_response_header(efx); 490 } else { 491 mcdi->resprc = efx_mcdi_errno(mcdi_err); 492 mcdi->resp_hdr_len = 4; 493 mcdi->resp_data_len = datalen; 494 } 495 496 wake = true; 497 } 498 499 spin_unlock(&mcdi->iface_lock); 500 501 if (wake) { 502 if (!efx_mcdi_complete_async(mcdi, false)) 503 (void) efx_mcdi_complete_sync(mcdi); 504 505 /* If the interface isn't RUNNING_ASYNC or 506 * RUNNING_SYNC then we've received a duplicate 507 * completion after we've already transitioned back to 508 * QUIESCENT. [A subsequent invocation would increment 509 * seqno, so would have failed the seqno check]. 510 */ 511 } 512 } 513 514 static void efx_mcdi_timeout_async(unsigned long context) 515 { 516 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; 517 518 efx_mcdi_complete_async(mcdi, true); 519 } 520 521 static int 522 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 523 { 524 if (efx->type->mcdi_max_ver < 0 || 525 (efx->type->mcdi_max_ver < 2 && 526 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 527 return -EINVAL; 528 529 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 530 (efx->type->mcdi_max_ver < 2 && 531 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 532 return -EMSGSIZE; 533 534 return 0; 535 } 536 537 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 538 efx_dword_t *outbuf, size_t outlen, 539 size_t *outlen_actual, bool quiet) 540 { 541 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 542 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0); 543 int rc; 544 545 if (mcdi->mode == MCDI_MODE_POLL) 546 rc = efx_mcdi_poll(efx); 547 else 548 rc = efx_mcdi_await_completion(efx); 549 550 if (rc != 0) { 551 netif_err(efx, hw, efx->net_dev, 552 "MC command 0x%x inlen %d mode %d timed out\n", 553 cmd, (int)inlen, mcdi->mode); 554 555 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 556 netif_err(efx, hw, efx->net_dev, 557 "MCDI request was completed without an event\n"); 558 rc = 0; 559 } 560 561 /* Close the race with efx_mcdi_ev_cpl() executing just too late 562 * and completing a request we've just cancelled, by ensuring 563 * that the seqno check therein fails. 564 */ 565 spin_lock_bh(&mcdi->iface_lock); 566 ++mcdi->seqno; 567 ++mcdi->credits; 568 spin_unlock_bh(&mcdi->iface_lock); 569 } 570 571 if (rc != 0) { 572 if (outlen_actual) 573 *outlen_actual = 0; 574 } else { 575 size_t hdr_len, data_len, err_len; 576 577 /* At the very least we need a memory barrier here to ensure 578 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 579 * a spurious efx_mcdi_ev_cpl() running concurrently by 580 * acquiring the iface_lock. */ 581 spin_lock_bh(&mcdi->iface_lock); 582 rc = mcdi->resprc; 583 hdr_len = mcdi->resp_hdr_len; 584 data_len = mcdi->resp_data_len; 585 err_len = min(sizeof(errbuf), data_len); 586 spin_unlock_bh(&mcdi->iface_lock); 587 588 BUG_ON(rc > 0); 589 590 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 591 min(outlen, data_len)); 592 if (outlen_actual) 593 *outlen_actual = data_len; 594 595 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 596 597 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 598 /* Don't reset if MC_CMD_REBOOT returns EIO */ 599 } else if (rc == -EIO || rc == -EINTR) { 600 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", 601 -rc); 602 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 603 } else if (rc && !quiet) { 604 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 605 rc); 606 } 607 608 if (rc == -EIO || rc == -EINTR) { 609 msleep(MCDI_STATUS_SLEEP_MS); 610 efx_mcdi_poll_reboot(efx); 611 mcdi->new_epoch = true; 612 } 613 } 614 615 efx_mcdi_release(mcdi); 616 return rc; 617 } 618 619 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 620 const efx_dword_t *inbuf, size_t inlen, 621 efx_dword_t *outbuf, size_t outlen, 622 size_t *outlen_actual, bool quiet) 623 { 624 int rc; 625 626 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 627 if (rc) { 628 if (outlen_actual) 629 *outlen_actual = 0; 630 return rc; 631 } 632 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 633 outlen_actual, quiet); 634 } 635 636 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 637 const efx_dword_t *inbuf, size_t inlen, 638 efx_dword_t *outbuf, size_t outlen, 639 size_t *outlen_actual) 640 { 641 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, 642 outlen_actual, false); 643 } 644 645 /* Normally, on receiving an error code in the MCDI response, 646 * efx_mcdi_rpc will log an error message containing (among other 647 * things) the raw error code, by means of efx_mcdi_display_error. 648 * This _quiet version suppresses that; if the caller wishes to log 649 * the error conditionally on the return code, it should call this 650 * function and is then responsible for calling efx_mcdi_display_error 651 * as needed. 652 */ 653 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 654 const efx_dword_t *inbuf, size_t inlen, 655 efx_dword_t *outbuf, size_t outlen, 656 size_t *outlen_actual) 657 { 658 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, 659 outlen_actual, true); 660 } 661 662 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 663 const efx_dword_t *inbuf, size_t inlen) 664 { 665 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 666 int rc; 667 668 rc = efx_mcdi_check_supported(efx, cmd, inlen); 669 if (rc) 670 return rc; 671 672 if (efx->mc_bist_for_other_fn) 673 return -ENETDOWN; 674 675 efx_mcdi_acquire_sync(mcdi); 676 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 677 return 0; 678 } 679 680 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 681 const efx_dword_t *inbuf, size_t inlen, 682 size_t outlen, 683 efx_mcdi_async_completer *complete, 684 unsigned long cookie, bool quiet) 685 { 686 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 687 struct efx_mcdi_async_param *async; 688 int rc; 689 690 rc = efx_mcdi_check_supported(efx, cmd, inlen); 691 if (rc) 692 return rc; 693 694 if (efx->mc_bist_for_other_fn) 695 return -ENETDOWN; 696 697 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 698 GFP_ATOMIC); 699 if (!async) 700 return -ENOMEM; 701 702 async->cmd = cmd; 703 async->inlen = inlen; 704 async->outlen = outlen; 705 async->quiet = quiet; 706 async->complete = complete; 707 async->cookie = cookie; 708 memcpy(async + 1, inbuf, inlen); 709 710 spin_lock_bh(&mcdi->async_lock); 711 712 if (mcdi->mode == MCDI_MODE_EVENTS) { 713 list_add_tail(&async->list, &mcdi->async_list); 714 715 /* If this is at the front of the queue, try to start it 716 * immediately 717 */ 718 if (mcdi->async_list.next == &async->list && 719 efx_mcdi_acquire_async(mcdi)) { 720 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 721 mod_timer(&mcdi->async_timer, 722 jiffies + MCDI_RPC_TIMEOUT); 723 } 724 } else { 725 kfree(async); 726 rc = -ENETDOWN; 727 } 728 729 spin_unlock_bh(&mcdi->async_lock); 730 731 return rc; 732 } 733 734 /** 735 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 736 * @efx: NIC through which to issue the command 737 * @cmd: Command type number 738 * @inbuf: Command parameters 739 * @inlen: Length of command parameters, in bytes 740 * @outlen: Length to allocate for response buffer, in bytes 741 * @complete: Function to be called on completion or cancellation. 742 * @cookie: Arbitrary value to be passed to @complete. 743 * 744 * This function does not sleep and therefore may be called in atomic 745 * context. It will fail if event queues are disabled or if MCDI 746 * event completions have been disabled due to an error. 747 * 748 * If it succeeds, the @complete function will be called exactly once 749 * in atomic context, when one of the following occurs: 750 * (a) the completion event is received (in NAPI context) 751 * (b) event queues are disabled (in the process that disables them) 752 * (c) the request times-out (in timer context) 753 */ 754 int 755 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 756 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 757 efx_mcdi_async_completer *complete, unsigned long cookie) 758 { 759 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 760 cookie, false); 761 } 762 763 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 764 const efx_dword_t *inbuf, size_t inlen, 765 size_t outlen, efx_mcdi_async_completer *complete, 766 unsigned long cookie) 767 { 768 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 769 cookie, true); 770 } 771 772 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 773 efx_dword_t *outbuf, size_t outlen, 774 size_t *outlen_actual) 775 { 776 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 777 outlen_actual, false); 778 } 779 780 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 781 efx_dword_t *outbuf, size_t outlen, 782 size_t *outlen_actual) 783 { 784 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 785 outlen_actual, true); 786 } 787 788 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 789 size_t inlen, efx_dword_t *outbuf, 790 size_t outlen, int rc) 791 { 792 int code = 0, err_arg = 0; 793 794 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 795 code = MCDI_DWORD(outbuf, ERR_CODE); 796 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 797 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 798 netif_err(efx, hw, efx->net_dev, 799 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n", 800 cmd, (int)inlen, rc, code, err_arg); 801 } 802 803 /* Switch to polled MCDI completions. This can be called in various 804 * error conditions with various locks held, so it must be lockless. 805 * Caller is responsible for flushing asynchronous requests later. 806 */ 807 void efx_mcdi_mode_poll(struct efx_nic *efx) 808 { 809 struct efx_mcdi_iface *mcdi; 810 811 if (!efx->mcdi) 812 return; 813 814 mcdi = efx_mcdi(efx); 815 if (mcdi->mode == MCDI_MODE_POLL) 816 return; 817 818 /* We can switch from event completion to polled completion, because 819 * mcdi requests are always completed in shared memory. We do this by 820 * switching the mode to POLL'd then completing the request. 821 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 822 * 823 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 824 * which efx_mcdi_complete_sync() provides for us. 825 */ 826 mcdi->mode = MCDI_MODE_POLL; 827 828 efx_mcdi_complete_sync(mcdi); 829 } 830 831 /* Flush any running or queued asynchronous requests, after event processing 832 * is stopped 833 */ 834 void efx_mcdi_flush_async(struct efx_nic *efx) 835 { 836 struct efx_mcdi_async_param *async, *next; 837 struct efx_mcdi_iface *mcdi; 838 839 if (!efx->mcdi) 840 return; 841 842 mcdi = efx_mcdi(efx); 843 844 /* We must be in polling mode so no more requests can be queued */ 845 BUG_ON(mcdi->mode != MCDI_MODE_POLL); 846 847 del_timer_sync(&mcdi->async_timer); 848 849 /* If a request is still running, make sure we give the MC 850 * time to complete it so that the response won't overwrite our 851 * next request. 852 */ 853 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 854 efx_mcdi_poll(efx); 855 mcdi->state = MCDI_STATE_QUIESCENT; 856 } 857 858 /* Nothing else will access the async list now, so it is safe 859 * to walk it without holding async_lock. If we hold it while 860 * calling a completer then lockdep may warn that we have 861 * acquired locks in the wrong order. 862 */ 863 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 864 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 865 list_del(&async->list); 866 kfree(async); 867 } 868 } 869 870 void efx_mcdi_mode_event(struct efx_nic *efx) 871 { 872 struct efx_mcdi_iface *mcdi; 873 874 if (!efx->mcdi) 875 return; 876 877 mcdi = efx_mcdi(efx); 878 879 if (mcdi->mode == MCDI_MODE_EVENTS) 880 return; 881 882 /* We can't switch from polled to event completion in the middle of a 883 * request, because the completion method is specified in the request. 884 * So acquire the interface to serialise the requestors. We don't need 885 * to acquire the iface_lock to change the mode here, but we do need a 886 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 887 * efx_mcdi_acquire() provides. 888 */ 889 efx_mcdi_acquire_sync(mcdi); 890 mcdi->mode = MCDI_MODE_EVENTS; 891 efx_mcdi_release(mcdi); 892 } 893 894 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 895 { 896 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 897 898 /* If there is an outstanding MCDI request, it has been terminated 899 * either by a BADASSERT or REBOOT event. If the mcdi interface is 900 * in polled mode, then do nothing because the MC reboot handler will 901 * set the header correctly. However, if the mcdi interface is waiting 902 * for a CMDDONE event it won't receive it [and since all MCDI events 903 * are sent to the same queue, we can't be racing with 904 * efx_mcdi_ev_cpl()] 905 * 906 * If there is an outstanding asynchronous request, we can't 907 * complete it now (efx_mcdi_complete() would deadlock). The 908 * reset process will take care of this. 909 * 910 * There's a race here with efx_mcdi_send_request(), because 911 * we might receive a REBOOT event *before* the request has 912 * been copied out. In polled mode (during startup) this is 913 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 914 * event mode, this condition is just an edge-case of 915 * receiving a REBOOT event after posting the MCDI 916 * request. Did the mc reboot before or after the copyout? The 917 * best we can do always is just return failure. 918 */ 919 spin_lock(&mcdi->iface_lock); 920 if (efx_mcdi_complete_sync(mcdi)) { 921 if (mcdi->mode == MCDI_MODE_EVENTS) { 922 mcdi->resprc = rc; 923 mcdi->resp_hdr_len = 0; 924 mcdi->resp_data_len = 0; 925 ++mcdi->credits; 926 } 927 } else { 928 int count; 929 930 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 931 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 932 if (efx_mcdi_poll_reboot(efx)) 933 break; 934 udelay(MCDI_STATUS_DELAY_US); 935 } 936 mcdi->new_epoch = true; 937 938 /* Nobody was waiting for an MCDI request, so trigger a reset */ 939 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 940 } 941 942 spin_unlock(&mcdi->iface_lock); 943 } 944 945 /* The MC is going down in to BIST mode. set the BIST flag to block 946 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 947 * (which doesn't actually execute a reset, it waits for the controlling 948 * function to reset it). 949 */ 950 static void efx_mcdi_ev_bist(struct efx_nic *efx) 951 { 952 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 953 954 spin_lock(&mcdi->iface_lock); 955 efx->mc_bist_for_other_fn = true; 956 if (efx_mcdi_complete_sync(mcdi)) { 957 if (mcdi->mode == MCDI_MODE_EVENTS) { 958 mcdi->resprc = -EIO; 959 mcdi->resp_hdr_len = 0; 960 mcdi->resp_data_len = 0; 961 ++mcdi->credits; 962 } 963 } 964 mcdi->new_epoch = true; 965 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 966 spin_unlock(&mcdi->iface_lock); 967 } 968 969 /* Called from falcon_process_eventq for MCDI events */ 970 void efx_mcdi_process_event(struct efx_channel *channel, 971 efx_qword_t *event) 972 { 973 struct efx_nic *efx = channel->efx; 974 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 975 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 976 977 switch (code) { 978 case MCDI_EVENT_CODE_BADSSERT: 979 netif_err(efx, hw, efx->net_dev, 980 "MC watchdog or assertion failure at 0x%x\n", data); 981 efx_mcdi_ev_death(efx, -EINTR); 982 break; 983 984 case MCDI_EVENT_CODE_PMNOTICE: 985 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 986 break; 987 988 case MCDI_EVENT_CODE_CMDDONE: 989 efx_mcdi_ev_cpl(efx, 990 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 991 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 992 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 993 break; 994 995 case MCDI_EVENT_CODE_LINKCHANGE: 996 efx_mcdi_process_link_change(efx, event); 997 break; 998 case MCDI_EVENT_CODE_SENSOREVT: 999 efx_mcdi_sensor_event(efx, event); 1000 break; 1001 case MCDI_EVENT_CODE_SCHEDERR: 1002 netif_dbg(efx, hw, efx->net_dev, 1003 "MC Scheduler alert (0x%x)\n", data); 1004 break; 1005 case MCDI_EVENT_CODE_REBOOT: 1006 case MCDI_EVENT_CODE_MC_REBOOT: 1007 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1008 efx_mcdi_ev_death(efx, -EIO); 1009 break; 1010 case MCDI_EVENT_CODE_MC_BIST: 1011 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1012 efx_mcdi_ev_bist(efx); 1013 break; 1014 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1015 /* MAC stats are gather lazily. We can ignore this. */ 1016 break; 1017 case MCDI_EVENT_CODE_FLR: 1018 efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF)); 1019 break; 1020 case MCDI_EVENT_CODE_PTP_RX: 1021 case MCDI_EVENT_CODE_PTP_FAULT: 1022 case MCDI_EVENT_CODE_PTP_PPS: 1023 efx_ptp_event(efx, event); 1024 break; 1025 case MCDI_EVENT_CODE_PTP_TIME: 1026 efx_time_sync_event(channel, event); 1027 break; 1028 case MCDI_EVENT_CODE_TX_FLUSH: 1029 case MCDI_EVENT_CODE_RX_FLUSH: 1030 /* Two flush events will be sent: one to the same event 1031 * queue as completions, and one to event queue 0. 1032 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1033 * flag will be set, and we should ignore the event 1034 * because we want to wait for all completions. 1035 */ 1036 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1037 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1038 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1039 efx_ef10_handle_drain_event(efx); 1040 break; 1041 case MCDI_EVENT_CODE_TX_ERR: 1042 case MCDI_EVENT_CODE_RX_ERR: 1043 netif_err(efx, hw, efx->net_dev, 1044 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1045 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1046 EFX_QWORD_VAL(*event)); 1047 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1048 break; 1049 default: 1050 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", 1051 code); 1052 } 1053 } 1054 1055 /************************************************************************** 1056 * 1057 * Specific request functions 1058 * 1059 ************************************************************************** 1060 */ 1061 1062 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1063 { 1064 MCDI_DECLARE_BUF(outbuf, 1065 max(MC_CMD_GET_VERSION_OUT_LEN, 1066 MC_CMD_GET_CAPABILITIES_OUT_LEN)); 1067 size_t outlength; 1068 const __le16 *ver_words; 1069 size_t offset; 1070 int rc; 1071 1072 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1073 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1074 outbuf, sizeof(outbuf), &outlength); 1075 if (rc) 1076 goto fail; 1077 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1078 rc = -EIO; 1079 goto fail; 1080 } 1081 1082 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1083 offset = snprintf(buf, len, "%u.%u.%u.%u", 1084 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 1085 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 1086 1087 /* EF10 may have multiple datapath firmware variants within a 1088 * single version. Report which variants are running. 1089 */ 1090 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1091 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); 1092 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, 1093 outbuf, sizeof(outbuf), &outlength); 1094 if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN) 1095 offset += snprintf( 1096 buf + offset, len - offset, " rx? tx?"); 1097 else 1098 offset += snprintf( 1099 buf + offset, len - offset, " rx%x tx%x", 1100 MCDI_WORD(outbuf, 1101 GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID), 1102 MCDI_WORD(outbuf, 1103 GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID)); 1104 1105 /* It's theoretically possible for the string to exceed 31 1106 * characters, though in practice the first three version 1107 * components are short enough that this doesn't happen. 1108 */ 1109 if (WARN_ON(offset >= len)) 1110 buf[0] = 0; 1111 } 1112 1113 return; 1114 1115 fail: 1116 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1117 buf[0] = 0; 1118 } 1119 1120 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1121 bool *was_attached) 1122 { 1123 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1124 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1125 size_t outlen; 1126 int rc; 1127 1128 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1129 driver_operating ? 1 : 0); 1130 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1131 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1132 1133 rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1134 outbuf, sizeof(outbuf), &outlen); 1135 if (rc) 1136 goto fail; 1137 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1138 rc = -EIO; 1139 goto fail; 1140 } 1141 1142 if (driver_operating) { 1143 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1144 efx->mcdi->fn_flags = 1145 MCDI_DWORD(outbuf, 1146 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1147 } else { 1148 /* Synthesise flags for Siena */ 1149 efx->mcdi->fn_flags = 1150 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1151 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1152 (efx_port_num(efx) == 0) << 1153 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1154 } 1155 } 1156 1157 /* We currently assume we have control of the external link 1158 * and are completely trusted by firmware. Abort probing 1159 * if that's not true for this function. 1160 */ 1161 if (driver_operating && 1162 (efx->mcdi->fn_flags & 1163 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1164 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) != 1165 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1166 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) { 1167 netif_err(efx, probe, efx->net_dev, 1168 "This driver version only supports one function per port\n"); 1169 return -ENODEV; 1170 } 1171 1172 if (was_attached != NULL) 1173 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1174 return 0; 1175 1176 fail: 1177 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1178 return rc; 1179 } 1180 1181 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1182 u16 *fw_subtype_list, u32 *capabilities) 1183 { 1184 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1185 size_t outlen, i; 1186 int port_num = efx_port_num(efx); 1187 int rc; 1188 1189 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1190 1191 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1192 outbuf, sizeof(outbuf), &outlen); 1193 if (rc) 1194 goto fail; 1195 1196 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1197 rc = -EIO; 1198 goto fail; 1199 } 1200 1201 if (mac_address) 1202 memcpy(mac_address, 1203 port_num ? 1204 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1205 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0), 1206 ETH_ALEN); 1207 if (fw_subtype_list) { 1208 for (i = 0; 1209 i < MCDI_VAR_ARRAY_LEN(outlen, 1210 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1211 i++) 1212 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1213 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1214 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1215 fw_subtype_list[i] = 0; 1216 } 1217 if (capabilities) { 1218 if (port_num) 1219 *capabilities = MCDI_DWORD(outbuf, 1220 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1221 else 1222 *capabilities = MCDI_DWORD(outbuf, 1223 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1224 } 1225 1226 return 0; 1227 1228 fail: 1229 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1230 __func__, rc, (int)outlen); 1231 1232 return rc; 1233 } 1234 1235 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1236 { 1237 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1238 u32 dest = 0; 1239 int rc; 1240 1241 if (uart) 1242 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1243 if (evq) 1244 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1245 1246 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1247 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1248 1249 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1250 1251 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1252 NULL, 0, NULL); 1253 return rc; 1254 } 1255 1256 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1257 { 1258 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1259 size_t outlen; 1260 int rc; 1261 1262 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1263 1264 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1265 outbuf, sizeof(outbuf), &outlen); 1266 if (rc) 1267 goto fail; 1268 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1269 rc = -EIO; 1270 goto fail; 1271 } 1272 1273 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1274 return 0; 1275 1276 fail: 1277 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1278 __func__, rc); 1279 return rc; 1280 } 1281 1282 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1283 size_t *size_out, size_t *erase_size_out, 1284 bool *protected_out) 1285 { 1286 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1287 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1288 size_t outlen; 1289 int rc; 1290 1291 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1292 1293 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1294 outbuf, sizeof(outbuf), &outlen); 1295 if (rc) 1296 goto fail; 1297 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1298 rc = -EIO; 1299 goto fail; 1300 } 1301 1302 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1303 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1304 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1305 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1306 return 0; 1307 1308 fail: 1309 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1310 return rc; 1311 } 1312 1313 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1314 { 1315 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1316 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1317 int rc; 1318 1319 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1320 1321 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1322 outbuf, sizeof(outbuf), NULL); 1323 if (rc) 1324 return rc; 1325 1326 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1327 case MC_CMD_NVRAM_TEST_PASS: 1328 case MC_CMD_NVRAM_TEST_NOTSUPP: 1329 return 0; 1330 default: 1331 return -EIO; 1332 } 1333 } 1334 1335 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1336 { 1337 u32 nvram_types; 1338 unsigned int type; 1339 int rc; 1340 1341 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1342 if (rc) 1343 goto fail1; 1344 1345 type = 0; 1346 while (nvram_types != 0) { 1347 if (nvram_types & 1) { 1348 rc = efx_mcdi_nvram_test(efx, type); 1349 if (rc) 1350 goto fail2; 1351 } 1352 type++; 1353 nvram_types >>= 1; 1354 } 1355 1356 return 0; 1357 1358 fail2: 1359 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1360 __func__, type); 1361 fail1: 1362 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1363 return rc; 1364 } 1365 1366 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1367 { 1368 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1369 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1370 unsigned int flags, index; 1371 const char *reason; 1372 size_t outlen; 1373 int retry; 1374 int rc; 1375 1376 /* Attempt to read any stored assertion state before we reboot 1377 * the mcfw out of the assertion handler. Retry twice, once 1378 * because a boot-time assertion might cause this command to fail 1379 * with EINTR. And once again because GET_ASSERTS can race with 1380 * MC_CMD_REBOOT running on the other port. */ 1381 retry = 2; 1382 do { 1383 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1384 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1385 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1386 outbuf, sizeof(outbuf), &outlen); 1387 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1388 1389 if (rc) { 1390 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1391 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1392 outlen, rc); 1393 return rc; 1394 } 1395 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1396 return -EIO; 1397 1398 /* Print out any recorded assertion state */ 1399 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1400 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1401 return 0; 1402 1403 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1404 ? "system-level assertion" 1405 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1406 ? "thread-level assertion" 1407 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1408 ? "watchdog reset" 1409 : "unknown assertion"; 1410 netif_err(efx, hw, efx->net_dev, 1411 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1412 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1413 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1414 1415 /* Print out the registers */ 1416 for (index = 0; 1417 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1418 index++) 1419 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1420 1 + index, 1421 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1422 index)); 1423 1424 return 0; 1425 } 1426 1427 static void efx_mcdi_exit_assertion(struct efx_nic *efx) 1428 { 1429 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1430 1431 /* If the MC is running debug firmware, it might now be 1432 * waiting for a debugger to attach, but we just want it to 1433 * reboot. We set a flag that makes the command a no-op if it 1434 * has already done so. We don't know what return code to 1435 * expect (0 or -EIO), so ignore it. 1436 */ 1437 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1438 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1439 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1440 (void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1441 NULL, 0, NULL); 1442 } 1443 1444 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1445 { 1446 int rc; 1447 1448 rc = efx_mcdi_read_assertion(efx); 1449 if (rc) 1450 return rc; 1451 1452 efx_mcdi_exit_assertion(efx); 1453 1454 return 0; 1455 } 1456 1457 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1458 { 1459 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1460 int rc; 1461 1462 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1463 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1464 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1465 1466 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1467 1468 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1469 1470 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1471 NULL, 0, NULL); 1472 } 1473 1474 static int efx_mcdi_reset_func(struct efx_nic *efx) 1475 { 1476 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1477 int rc; 1478 1479 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1480 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1481 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1482 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1483 NULL, 0, NULL); 1484 return rc; 1485 } 1486 1487 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1488 { 1489 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1490 int rc; 1491 1492 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1493 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1494 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1495 NULL, 0, NULL); 1496 /* White is black, and up is down */ 1497 if (rc == -EIO) 1498 return 0; 1499 if (rc == 0) 1500 rc = -EIO; 1501 return rc; 1502 } 1503 1504 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1505 { 1506 return RESET_TYPE_RECOVER_OR_ALL; 1507 } 1508 1509 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1510 { 1511 int rc; 1512 1513 /* Recover from a failed assertion pre-reset */ 1514 rc = efx_mcdi_handle_assertion(efx); 1515 if (rc) 1516 return rc; 1517 1518 if (method == RESET_TYPE_WORLD) 1519 return efx_mcdi_reset_mc(efx); 1520 else 1521 return efx_mcdi_reset_func(efx); 1522 } 1523 1524 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1525 const u8 *mac, int *id_out) 1526 { 1527 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1528 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1529 size_t outlen; 1530 int rc; 1531 1532 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1533 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1534 MC_CMD_FILTER_MODE_SIMPLE); 1535 memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN); 1536 1537 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1538 outbuf, sizeof(outbuf), &outlen); 1539 if (rc) 1540 goto fail; 1541 1542 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1543 rc = -EIO; 1544 goto fail; 1545 } 1546 1547 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1548 1549 return 0; 1550 1551 fail: 1552 *id_out = -1; 1553 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1554 return rc; 1555 1556 } 1557 1558 1559 int 1560 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1561 { 1562 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1563 } 1564 1565 1566 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1567 { 1568 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1569 size_t outlen; 1570 int rc; 1571 1572 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1573 outbuf, sizeof(outbuf), &outlen); 1574 if (rc) 1575 goto fail; 1576 1577 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1578 rc = -EIO; 1579 goto fail; 1580 } 1581 1582 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1583 1584 return 0; 1585 1586 fail: 1587 *id_out = -1; 1588 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1589 return rc; 1590 } 1591 1592 1593 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1594 { 1595 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1596 int rc; 1597 1598 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1599 1600 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1601 NULL, 0, NULL); 1602 return rc; 1603 } 1604 1605 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1606 { 1607 struct efx_channel *channel; 1608 struct efx_rx_queue *rx_queue; 1609 MCDI_DECLARE_BUF(inbuf, 1610 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1611 int rc, count; 1612 1613 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1614 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1615 1616 count = 0; 1617 efx_for_each_channel(channel, efx) { 1618 efx_for_each_channel_rx_queue(rx_queue, channel) { 1619 if (rx_queue->flush_pending) { 1620 rx_queue->flush_pending = false; 1621 atomic_dec(&efx->rxq_flush_pending); 1622 MCDI_SET_ARRAY_DWORD( 1623 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1624 count, efx_rx_queue_index(rx_queue)); 1625 count++; 1626 } 1627 } 1628 } 1629 1630 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1631 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1632 WARN_ON(rc < 0); 1633 1634 return rc; 1635 } 1636 1637 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 1638 { 1639 int rc; 1640 1641 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 1642 return rc; 1643 } 1644 1645 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled) 1646 { 1647 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 1648 1649 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 1650 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 1651 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 1652 return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 1653 NULL, 0, NULL); 1654 } 1655 1656 #ifdef CONFIG_SFC_MTD 1657 1658 #define EFX_MCDI_NVRAM_LEN_MAX 128 1659 1660 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 1661 { 1662 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); 1663 int rc; 1664 1665 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 1666 1667 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 1668 1669 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 1670 NULL, 0, NULL); 1671 return rc; 1672 } 1673 1674 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 1675 loff_t offset, u8 *buffer, size_t length) 1676 { 1677 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); 1678 MCDI_DECLARE_BUF(outbuf, 1679 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 1680 size_t outlen; 1681 int rc; 1682 1683 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 1684 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 1685 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 1686 1687 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 1688 outbuf, sizeof(outbuf), &outlen); 1689 if (rc) 1690 return rc; 1691 1692 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 1693 return 0; 1694 } 1695 1696 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 1697 loff_t offset, const u8 *buffer, size_t length) 1698 { 1699 MCDI_DECLARE_BUF(inbuf, 1700 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 1701 int rc; 1702 1703 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 1704 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 1705 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 1706 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 1707 1708 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 1709 1710 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 1711 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 1712 NULL, 0, NULL); 1713 return rc; 1714 } 1715 1716 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 1717 loff_t offset, size_t length) 1718 { 1719 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 1720 int rc; 1721 1722 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 1723 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 1724 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 1725 1726 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 1727 1728 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 1729 NULL, 0, NULL); 1730 return rc; 1731 } 1732 1733 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 1734 { 1735 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); 1736 int rc; 1737 1738 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 1739 1740 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); 1741 1742 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 1743 NULL, 0, NULL); 1744 return rc; 1745 } 1746 1747 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 1748 size_t len, size_t *retlen, u8 *buffer) 1749 { 1750 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1751 struct efx_nic *efx = mtd->priv; 1752 loff_t offset = start; 1753 loff_t end = min_t(loff_t, start + len, mtd->size); 1754 size_t chunk; 1755 int rc = 0; 1756 1757 while (offset < end) { 1758 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 1759 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 1760 buffer, chunk); 1761 if (rc) 1762 goto out; 1763 offset += chunk; 1764 buffer += chunk; 1765 } 1766 out: 1767 *retlen = offset - start; 1768 return rc; 1769 } 1770 1771 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 1772 { 1773 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1774 struct efx_nic *efx = mtd->priv; 1775 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 1776 loff_t end = min_t(loff_t, start + len, mtd->size); 1777 size_t chunk = part->common.mtd.erasesize; 1778 int rc = 0; 1779 1780 if (!part->updating) { 1781 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 1782 if (rc) 1783 goto out; 1784 part->updating = true; 1785 } 1786 1787 /* The MCDI interface can in fact do multiple erase blocks at once; 1788 * but erasing may be slow, so we make multiple calls here to avoid 1789 * tripping the MCDI RPC timeout. */ 1790 while (offset < end) { 1791 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 1792 chunk); 1793 if (rc) 1794 goto out; 1795 offset += chunk; 1796 } 1797 out: 1798 return rc; 1799 } 1800 1801 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 1802 size_t len, size_t *retlen, const u8 *buffer) 1803 { 1804 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1805 struct efx_nic *efx = mtd->priv; 1806 loff_t offset = start; 1807 loff_t end = min_t(loff_t, start + len, mtd->size); 1808 size_t chunk; 1809 int rc = 0; 1810 1811 if (!part->updating) { 1812 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 1813 if (rc) 1814 goto out; 1815 part->updating = true; 1816 } 1817 1818 while (offset < end) { 1819 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 1820 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 1821 buffer, chunk); 1822 if (rc) 1823 goto out; 1824 offset += chunk; 1825 buffer += chunk; 1826 } 1827 out: 1828 *retlen = offset - start; 1829 return rc; 1830 } 1831 1832 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 1833 { 1834 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1835 struct efx_nic *efx = mtd->priv; 1836 int rc = 0; 1837 1838 if (part->updating) { 1839 part->updating = false; 1840 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 1841 } 1842 1843 return rc; 1844 } 1845 1846 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 1847 { 1848 struct efx_mcdi_mtd_partition *mcdi_part = 1849 container_of(part, struct efx_mcdi_mtd_partition, common); 1850 struct efx_nic *efx = part->mtd.priv; 1851 1852 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 1853 efx->name, part->type_name, mcdi_part->fw_subtype); 1854 } 1855 1856 #endif /* CONFIG_SFC_MTD */ 1857