1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2008-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/moduleparam.h> 12 #include <linux/atomic.h> 13 #include "net_driver.h" 14 #include "nic.h" 15 #include "io.h" 16 #include "farch_regs.h" 17 #include "mcdi_pcol.h" 18 #include "phy.h" 19 20 /************************************************************************** 21 * 22 * Management-Controller-to-Driver Interface 23 * 24 ************************************************************************** 25 */ 26 27 #define MCDI_RPC_TIMEOUT (10 * HZ) 28 29 /* A reboot/assertion causes the MCDI status word to be set after the 30 * command word is set or a REBOOT event is sent. If we notice a reboot 31 * via these mechanisms then wait 250ms for the status word to be set. 32 */ 33 #define MCDI_STATUS_DELAY_US 100 34 #define MCDI_STATUS_DELAY_COUNT 2500 35 #define MCDI_STATUS_SLEEP_MS \ 36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 37 38 #define SEQ_MASK \ 39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 40 41 struct efx_mcdi_async_param { 42 struct list_head list; 43 unsigned int cmd; 44 size_t inlen; 45 size_t outlen; 46 bool quiet; 47 efx_mcdi_async_completer *complete; 48 unsigned long cookie; 49 /* followed by request/response buffer */ 50 }; 51 52 static void efx_mcdi_timeout_async(unsigned long context); 53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 54 bool *was_attached_out); 55 static bool efx_mcdi_poll_once(struct efx_nic *efx); 56 static void efx_mcdi_abandon(struct efx_nic *efx); 57 58 #ifdef CONFIG_SFC_MCDI_LOGGING 59 static bool mcdi_logging_default; 60 module_param(mcdi_logging_default, bool, 0644); 61 MODULE_PARM_DESC(mcdi_logging_default, 62 "Enable MCDI logging on newly-probed functions"); 63 #endif 64 65 int efx_mcdi_init(struct efx_nic *efx) 66 { 67 struct efx_mcdi_iface *mcdi; 68 bool already_attached; 69 int rc = -ENOMEM; 70 71 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 72 if (!efx->mcdi) 73 goto fail; 74 75 mcdi = efx_mcdi(efx); 76 mcdi->efx = efx; 77 #ifdef CONFIG_SFC_MCDI_LOGGING 78 /* consuming code assumes buffer is page-sized */ 79 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 80 if (!mcdi->logging_buffer) 81 goto fail1; 82 mcdi->logging_enabled = mcdi_logging_default; 83 #endif 84 init_waitqueue_head(&mcdi->wq); 85 spin_lock_init(&mcdi->iface_lock); 86 mcdi->state = MCDI_STATE_QUIESCENT; 87 mcdi->mode = MCDI_MODE_POLL; 88 spin_lock_init(&mcdi->async_lock); 89 INIT_LIST_HEAD(&mcdi->async_list); 90 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, 91 (unsigned long)mcdi); 92 93 (void) efx_mcdi_poll_reboot(efx); 94 mcdi->new_epoch = true; 95 96 /* Recover from a failed assertion before probing */ 97 rc = efx_mcdi_handle_assertion(efx); 98 if (rc) 99 goto fail2; 100 101 /* Let the MC (and BMC, if this is a LOM) know that the driver 102 * is loaded. We should do this before we reset the NIC. 103 */ 104 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 105 if (rc) { 106 netif_err(efx, probe, efx->net_dev, 107 "Unable to register driver with MCPU\n"); 108 goto fail2; 109 } 110 if (already_attached) 111 /* Not a fatal error */ 112 netif_err(efx, probe, efx->net_dev, 113 "Host already registered with MCPU\n"); 114 115 if (efx->mcdi->fn_flags & 116 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 117 efx->primary = efx; 118 119 return 0; 120 fail2: 121 #ifdef CONFIG_SFC_MCDI_LOGGING 122 free_page((unsigned long)mcdi->logging_buffer); 123 fail1: 124 #endif 125 kfree(efx->mcdi); 126 efx->mcdi = NULL; 127 fail: 128 return rc; 129 } 130 131 void efx_mcdi_fini(struct efx_nic *efx) 132 { 133 if (!efx->mcdi) 134 return; 135 136 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 137 138 /* Relinquish the device (back to the BMC, if this is a LOM) */ 139 efx_mcdi_drv_attach(efx, false, NULL); 140 141 #ifdef CONFIG_SFC_MCDI_LOGGING 142 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 143 #endif 144 145 kfree(efx->mcdi); 146 } 147 148 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 149 const efx_dword_t *inbuf, size_t inlen) 150 { 151 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 152 #ifdef CONFIG_SFC_MCDI_LOGGING 153 char *buf = mcdi->logging_buffer; /* page-sized */ 154 #endif 155 efx_dword_t hdr[2]; 156 size_t hdr_len; 157 u32 xflags, seqno; 158 159 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 160 161 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 162 spin_lock_bh(&mcdi->iface_lock); 163 ++mcdi->seqno; 164 spin_unlock_bh(&mcdi->iface_lock); 165 166 seqno = mcdi->seqno & SEQ_MASK; 167 xflags = 0; 168 if (mcdi->mode == MCDI_MODE_EVENTS) 169 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 170 171 if (efx->type->mcdi_max_ver == 1) { 172 /* MCDI v1 */ 173 EFX_POPULATE_DWORD_7(hdr[0], 174 MCDI_HEADER_RESPONSE, 0, 175 MCDI_HEADER_RESYNC, 1, 176 MCDI_HEADER_CODE, cmd, 177 MCDI_HEADER_DATALEN, inlen, 178 MCDI_HEADER_SEQ, seqno, 179 MCDI_HEADER_XFLAGS, xflags, 180 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 181 hdr_len = 4; 182 } else { 183 /* MCDI v2 */ 184 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 185 EFX_POPULATE_DWORD_7(hdr[0], 186 MCDI_HEADER_RESPONSE, 0, 187 MCDI_HEADER_RESYNC, 1, 188 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 189 MCDI_HEADER_DATALEN, 0, 190 MCDI_HEADER_SEQ, seqno, 191 MCDI_HEADER_XFLAGS, xflags, 192 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 193 EFX_POPULATE_DWORD_2(hdr[1], 194 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 195 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 196 hdr_len = 8; 197 } 198 199 #ifdef CONFIG_SFC_MCDI_LOGGING 200 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 201 int bytes = 0; 202 int i; 203 /* Lengths should always be a whole number of dwords, so scream 204 * if they're not. 205 */ 206 WARN_ON_ONCE(hdr_len % 4); 207 WARN_ON_ONCE(inlen % 4); 208 209 /* We own the logging buffer, as only one MCDI can be in 210 * progress on a NIC at any one time. So no need for locking. 211 */ 212 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 213 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 214 " %08x", le32_to_cpu(hdr[i].u32[0])); 215 216 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 217 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 218 " %08x", le32_to_cpu(inbuf[i].u32[0])); 219 220 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 221 } 222 #endif 223 224 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 225 226 mcdi->new_epoch = false; 227 } 228 229 static int efx_mcdi_errno(unsigned int mcdi_err) 230 { 231 switch (mcdi_err) { 232 case 0: 233 return 0; 234 #define TRANSLATE_ERROR(name) \ 235 case MC_CMD_ERR_ ## name: \ 236 return -name; 237 TRANSLATE_ERROR(EPERM); 238 TRANSLATE_ERROR(ENOENT); 239 TRANSLATE_ERROR(EINTR); 240 TRANSLATE_ERROR(EAGAIN); 241 TRANSLATE_ERROR(EACCES); 242 TRANSLATE_ERROR(EBUSY); 243 TRANSLATE_ERROR(EINVAL); 244 TRANSLATE_ERROR(EDEADLK); 245 TRANSLATE_ERROR(ENOSYS); 246 TRANSLATE_ERROR(ETIME); 247 TRANSLATE_ERROR(EALREADY); 248 TRANSLATE_ERROR(ENOSPC); 249 #undef TRANSLATE_ERROR 250 case MC_CMD_ERR_ENOTSUP: 251 return -EOPNOTSUPP; 252 case MC_CMD_ERR_ALLOC_FAIL: 253 return -ENOBUFS; 254 case MC_CMD_ERR_MAC_EXIST: 255 return -EADDRINUSE; 256 default: 257 return -EPROTO; 258 } 259 } 260 261 static void efx_mcdi_read_response_header(struct efx_nic *efx) 262 { 263 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 264 unsigned int respseq, respcmd, error; 265 #ifdef CONFIG_SFC_MCDI_LOGGING 266 char *buf = mcdi->logging_buffer; /* page-sized */ 267 #endif 268 efx_dword_t hdr; 269 270 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 271 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 272 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 273 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 274 275 if (respcmd != MC_CMD_V2_EXTN) { 276 mcdi->resp_hdr_len = 4; 277 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 278 } else { 279 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 280 mcdi->resp_hdr_len = 8; 281 mcdi->resp_data_len = 282 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 283 } 284 285 #ifdef CONFIG_SFC_MCDI_LOGGING 286 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 287 size_t hdr_len, data_len; 288 int bytes = 0; 289 int i; 290 291 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 292 hdr_len = mcdi->resp_hdr_len / 4; 293 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 294 * to dword size, and the MCDI buffer is always dword size 295 */ 296 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 297 298 /* We own the logging buffer, as only one MCDI can be in 299 * progress on a NIC at any one time. So no need for locking. 300 */ 301 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 302 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 303 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 304 " %08x", le32_to_cpu(hdr.u32[0])); 305 } 306 307 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 308 efx->type->mcdi_read_response(efx, &hdr, 309 mcdi->resp_hdr_len + (i * 4), 4); 310 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 311 " %08x", le32_to_cpu(hdr.u32[0])); 312 } 313 314 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 315 } 316 #endif 317 318 if (error && mcdi->resp_data_len == 0) { 319 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 320 mcdi->resprc = -EIO; 321 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 322 netif_err(efx, hw, efx->net_dev, 323 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 324 respseq, mcdi->seqno); 325 mcdi->resprc = -EIO; 326 } else if (error) { 327 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 328 mcdi->resprc = 329 efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0)); 330 } else { 331 mcdi->resprc = 0; 332 } 333 } 334 335 static bool efx_mcdi_poll_once(struct efx_nic *efx) 336 { 337 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 338 339 rmb(); 340 if (!efx->type->mcdi_poll_response(efx)) 341 return false; 342 343 spin_lock_bh(&mcdi->iface_lock); 344 efx_mcdi_read_response_header(efx); 345 spin_unlock_bh(&mcdi->iface_lock); 346 347 return true; 348 } 349 350 static int efx_mcdi_poll(struct efx_nic *efx) 351 { 352 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 353 unsigned long time, finish; 354 unsigned int spins; 355 int rc; 356 357 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 358 rc = efx_mcdi_poll_reboot(efx); 359 if (rc) { 360 spin_lock_bh(&mcdi->iface_lock); 361 mcdi->resprc = rc; 362 mcdi->resp_hdr_len = 0; 363 mcdi->resp_data_len = 0; 364 spin_unlock_bh(&mcdi->iface_lock); 365 return 0; 366 } 367 368 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 369 * because generally mcdi responses are fast. After that, back off 370 * and poll once a jiffy (approximately) 371 */ 372 spins = TICK_USEC; 373 finish = jiffies + MCDI_RPC_TIMEOUT; 374 375 while (1) { 376 if (spins != 0) { 377 --spins; 378 udelay(1); 379 } else { 380 schedule_timeout_uninterruptible(1); 381 } 382 383 time = jiffies; 384 385 if (efx_mcdi_poll_once(efx)) 386 break; 387 388 if (time_after(time, finish)) 389 return -ETIMEDOUT; 390 } 391 392 /* Return rc=0 like wait_event_timeout() */ 393 return 0; 394 } 395 396 /* Test and clear MC-rebooted flag for this port/function; reset 397 * software state as necessary. 398 */ 399 int efx_mcdi_poll_reboot(struct efx_nic *efx) 400 { 401 if (!efx->mcdi) 402 return 0; 403 404 return efx->type->mcdi_poll_reboot(efx); 405 } 406 407 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 408 { 409 return cmpxchg(&mcdi->state, 410 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 411 MCDI_STATE_QUIESCENT; 412 } 413 414 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 415 { 416 /* Wait until the interface becomes QUIESCENT and we win the race 417 * to mark it RUNNING_SYNC. 418 */ 419 wait_event(mcdi->wq, 420 cmpxchg(&mcdi->state, 421 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 422 MCDI_STATE_QUIESCENT); 423 } 424 425 static int efx_mcdi_await_completion(struct efx_nic *efx) 426 { 427 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 428 429 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 430 MCDI_RPC_TIMEOUT) == 0) 431 return -ETIMEDOUT; 432 433 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 434 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 435 * completed the request first, then we'll just end up completing the 436 * request again, which is safe. 437 * 438 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 439 * wait_event_timeout() implicitly provides. 440 */ 441 if (mcdi->mode == MCDI_MODE_POLL) 442 return efx_mcdi_poll(efx); 443 444 return 0; 445 } 446 447 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 448 * requester. Return whether this was done. Does not take any locks. 449 */ 450 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 451 { 452 if (cmpxchg(&mcdi->state, 453 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 454 MCDI_STATE_RUNNING_SYNC) { 455 wake_up(&mcdi->wq); 456 return true; 457 } 458 459 return false; 460 } 461 462 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 463 { 464 if (mcdi->mode == MCDI_MODE_EVENTS) { 465 struct efx_mcdi_async_param *async; 466 struct efx_nic *efx = mcdi->efx; 467 468 /* Process the asynchronous request queue */ 469 spin_lock_bh(&mcdi->async_lock); 470 async = list_first_entry_or_null( 471 &mcdi->async_list, struct efx_mcdi_async_param, list); 472 if (async) { 473 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 474 efx_mcdi_send_request(efx, async->cmd, 475 (const efx_dword_t *)(async + 1), 476 async->inlen); 477 mod_timer(&mcdi->async_timer, 478 jiffies + MCDI_RPC_TIMEOUT); 479 } 480 spin_unlock_bh(&mcdi->async_lock); 481 482 if (async) 483 return; 484 } 485 486 mcdi->state = MCDI_STATE_QUIESCENT; 487 wake_up(&mcdi->wq); 488 } 489 490 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 491 * asynchronous completion function, and release the interface. 492 * Return whether this was done. Must be called in bh-disabled 493 * context. Will take iface_lock and async_lock. 494 */ 495 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 496 { 497 struct efx_nic *efx = mcdi->efx; 498 struct efx_mcdi_async_param *async; 499 size_t hdr_len, data_len, err_len; 500 efx_dword_t *outbuf; 501 MCDI_DECLARE_BUF_ERR(errbuf); 502 int rc; 503 504 if (cmpxchg(&mcdi->state, 505 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 506 MCDI_STATE_RUNNING_ASYNC) 507 return false; 508 509 spin_lock(&mcdi->iface_lock); 510 if (timeout) { 511 /* Ensure that if the completion event arrives later, 512 * the seqno check in efx_mcdi_ev_cpl() will fail 513 */ 514 ++mcdi->seqno; 515 ++mcdi->credits; 516 rc = -ETIMEDOUT; 517 hdr_len = 0; 518 data_len = 0; 519 } else { 520 rc = mcdi->resprc; 521 hdr_len = mcdi->resp_hdr_len; 522 data_len = mcdi->resp_data_len; 523 } 524 spin_unlock(&mcdi->iface_lock); 525 526 /* Stop the timer. In case the timer function is running, we 527 * must wait for it to return so that there is no possibility 528 * of it aborting the next request. 529 */ 530 if (!timeout) 531 del_timer_sync(&mcdi->async_timer); 532 533 spin_lock(&mcdi->async_lock); 534 async = list_first_entry(&mcdi->async_list, 535 struct efx_mcdi_async_param, list); 536 list_del(&async->list); 537 spin_unlock(&mcdi->async_lock); 538 539 outbuf = (efx_dword_t *)(async + 1); 540 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 541 min(async->outlen, data_len)); 542 if (!timeout && rc && !async->quiet) { 543 err_len = min(sizeof(errbuf), data_len); 544 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 545 sizeof(errbuf)); 546 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 547 err_len, rc); 548 } 549 async->complete(efx, async->cookie, rc, outbuf, data_len); 550 kfree(async); 551 552 efx_mcdi_release(mcdi); 553 554 return true; 555 } 556 557 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 558 unsigned int datalen, unsigned int mcdi_err) 559 { 560 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 561 bool wake = false; 562 563 spin_lock(&mcdi->iface_lock); 564 565 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 566 if (mcdi->credits) 567 /* The request has been cancelled */ 568 --mcdi->credits; 569 else 570 netif_err(efx, hw, efx->net_dev, 571 "MC response mismatch tx seq 0x%x rx " 572 "seq 0x%x\n", seqno, mcdi->seqno); 573 } else { 574 if (efx->type->mcdi_max_ver >= 2) { 575 /* MCDI v2 responses don't fit in an event */ 576 efx_mcdi_read_response_header(efx); 577 } else { 578 mcdi->resprc = efx_mcdi_errno(mcdi_err); 579 mcdi->resp_hdr_len = 4; 580 mcdi->resp_data_len = datalen; 581 } 582 583 wake = true; 584 } 585 586 spin_unlock(&mcdi->iface_lock); 587 588 if (wake) { 589 if (!efx_mcdi_complete_async(mcdi, false)) 590 (void) efx_mcdi_complete_sync(mcdi); 591 592 /* If the interface isn't RUNNING_ASYNC or 593 * RUNNING_SYNC then we've received a duplicate 594 * completion after we've already transitioned back to 595 * QUIESCENT. [A subsequent invocation would increment 596 * seqno, so would have failed the seqno check]. 597 */ 598 } 599 } 600 601 static void efx_mcdi_timeout_async(unsigned long context) 602 { 603 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; 604 605 efx_mcdi_complete_async(mcdi, true); 606 } 607 608 static int 609 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 610 { 611 if (efx->type->mcdi_max_ver < 0 || 612 (efx->type->mcdi_max_ver < 2 && 613 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 614 return -EINVAL; 615 616 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 617 (efx->type->mcdi_max_ver < 2 && 618 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 619 return -EMSGSIZE; 620 621 return 0; 622 } 623 624 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 625 efx_dword_t *outbuf, size_t outlen, 626 size_t *outlen_actual, bool quiet) 627 { 628 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 629 MCDI_DECLARE_BUF_ERR(errbuf); 630 int rc; 631 632 if (mcdi->mode == MCDI_MODE_POLL) 633 rc = efx_mcdi_poll(efx); 634 else 635 rc = efx_mcdi_await_completion(efx); 636 637 if (rc != 0) { 638 netif_err(efx, hw, efx->net_dev, 639 "MC command 0x%x inlen %d mode %d timed out\n", 640 cmd, (int)inlen, mcdi->mode); 641 642 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 643 netif_err(efx, hw, efx->net_dev, 644 "MCDI request was completed without an event\n"); 645 rc = 0; 646 } 647 648 efx_mcdi_abandon(efx); 649 650 /* Close the race with efx_mcdi_ev_cpl() executing just too late 651 * and completing a request we've just cancelled, by ensuring 652 * that the seqno check therein fails. 653 */ 654 spin_lock_bh(&mcdi->iface_lock); 655 ++mcdi->seqno; 656 ++mcdi->credits; 657 spin_unlock_bh(&mcdi->iface_lock); 658 } 659 660 if (rc != 0) { 661 if (outlen_actual) 662 *outlen_actual = 0; 663 } else { 664 size_t hdr_len, data_len, err_len; 665 666 /* At the very least we need a memory barrier here to ensure 667 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 668 * a spurious efx_mcdi_ev_cpl() running concurrently by 669 * acquiring the iface_lock. */ 670 spin_lock_bh(&mcdi->iface_lock); 671 rc = mcdi->resprc; 672 hdr_len = mcdi->resp_hdr_len; 673 data_len = mcdi->resp_data_len; 674 err_len = min(sizeof(errbuf), data_len); 675 spin_unlock_bh(&mcdi->iface_lock); 676 677 BUG_ON(rc > 0); 678 679 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 680 min(outlen, data_len)); 681 if (outlen_actual) 682 *outlen_actual = data_len; 683 684 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 685 686 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 687 /* Don't reset if MC_CMD_REBOOT returns EIO */ 688 } else if (rc == -EIO || rc == -EINTR) { 689 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", 690 -rc); 691 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 692 } else if (rc && !quiet) { 693 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 694 rc); 695 } 696 697 if (rc == -EIO || rc == -EINTR) { 698 msleep(MCDI_STATUS_SLEEP_MS); 699 efx_mcdi_poll_reboot(efx); 700 mcdi->new_epoch = true; 701 } 702 } 703 704 efx_mcdi_release(mcdi); 705 return rc; 706 } 707 708 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 709 const efx_dword_t *inbuf, size_t inlen, 710 efx_dword_t *outbuf, size_t outlen, 711 size_t *outlen_actual, bool quiet) 712 { 713 int rc; 714 715 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 716 if (rc) { 717 if (outlen_actual) 718 *outlen_actual = 0; 719 return rc; 720 } 721 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 722 outlen_actual, quiet); 723 } 724 725 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 726 const efx_dword_t *inbuf, size_t inlen, 727 efx_dword_t *outbuf, size_t outlen, 728 size_t *outlen_actual) 729 { 730 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, 731 outlen_actual, false); 732 } 733 734 /* Normally, on receiving an error code in the MCDI response, 735 * efx_mcdi_rpc will log an error message containing (among other 736 * things) the raw error code, by means of efx_mcdi_display_error. 737 * This _quiet version suppresses that; if the caller wishes to log 738 * the error conditionally on the return code, it should call this 739 * function and is then responsible for calling efx_mcdi_display_error 740 * as needed. 741 */ 742 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 743 const efx_dword_t *inbuf, size_t inlen, 744 efx_dword_t *outbuf, size_t outlen, 745 size_t *outlen_actual) 746 { 747 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, 748 outlen_actual, true); 749 } 750 751 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 752 const efx_dword_t *inbuf, size_t inlen) 753 { 754 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 755 int rc; 756 757 rc = efx_mcdi_check_supported(efx, cmd, inlen); 758 if (rc) 759 return rc; 760 761 if (efx->mc_bist_for_other_fn) 762 return -ENETDOWN; 763 764 if (mcdi->mode == MCDI_MODE_FAIL) 765 return -ENETDOWN; 766 767 efx_mcdi_acquire_sync(mcdi); 768 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 769 return 0; 770 } 771 772 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 773 const efx_dword_t *inbuf, size_t inlen, 774 size_t outlen, 775 efx_mcdi_async_completer *complete, 776 unsigned long cookie, bool quiet) 777 { 778 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 779 struct efx_mcdi_async_param *async; 780 int rc; 781 782 rc = efx_mcdi_check_supported(efx, cmd, inlen); 783 if (rc) 784 return rc; 785 786 if (efx->mc_bist_for_other_fn) 787 return -ENETDOWN; 788 789 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 790 GFP_ATOMIC); 791 if (!async) 792 return -ENOMEM; 793 794 async->cmd = cmd; 795 async->inlen = inlen; 796 async->outlen = outlen; 797 async->quiet = quiet; 798 async->complete = complete; 799 async->cookie = cookie; 800 memcpy(async + 1, inbuf, inlen); 801 802 spin_lock_bh(&mcdi->async_lock); 803 804 if (mcdi->mode == MCDI_MODE_EVENTS) { 805 list_add_tail(&async->list, &mcdi->async_list); 806 807 /* If this is at the front of the queue, try to start it 808 * immediately 809 */ 810 if (mcdi->async_list.next == &async->list && 811 efx_mcdi_acquire_async(mcdi)) { 812 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 813 mod_timer(&mcdi->async_timer, 814 jiffies + MCDI_RPC_TIMEOUT); 815 } 816 } else { 817 kfree(async); 818 rc = -ENETDOWN; 819 } 820 821 spin_unlock_bh(&mcdi->async_lock); 822 823 return rc; 824 } 825 826 /** 827 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 828 * @efx: NIC through which to issue the command 829 * @cmd: Command type number 830 * @inbuf: Command parameters 831 * @inlen: Length of command parameters, in bytes 832 * @outlen: Length to allocate for response buffer, in bytes 833 * @complete: Function to be called on completion or cancellation. 834 * @cookie: Arbitrary value to be passed to @complete. 835 * 836 * This function does not sleep and therefore may be called in atomic 837 * context. It will fail if event queues are disabled or if MCDI 838 * event completions have been disabled due to an error. 839 * 840 * If it succeeds, the @complete function will be called exactly once 841 * in atomic context, when one of the following occurs: 842 * (a) the completion event is received (in NAPI context) 843 * (b) event queues are disabled (in the process that disables them) 844 * (c) the request times-out (in timer context) 845 */ 846 int 847 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 848 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 849 efx_mcdi_async_completer *complete, unsigned long cookie) 850 { 851 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 852 cookie, false); 853 } 854 855 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 856 const efx_dword_t *inbuf, size_t inlen, 857 size_t outlen, efx_mcdi_async_completer *complete, 858 unsigned long cookie) 859 { 860 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 861 cookie, true); 862 } 863 864 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 865 efx_dword_t *outbuf, size_t outlen, 866 size_t *outlen_actual) 867 { 868 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 869 outlen_actual, false); 870 } 871 872 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 873 efx_dword_t *outbuf, size_t outlen, 874 size_t *outlen_actual) 875 { 876 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 877 outlen_actual, true); 878 } 879 880 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 881 size_t inlen, efx_dword_t *outbuf, 882 size_t outlen, int rc) 883 { 884 int code = 0, err_arg = 0; 885 886 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 887 code = MCDI_DWORD(outbuf, ERR_CODE); 888 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 889 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 890 netif_err(efx, hw, efx->net_dev, 891 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n", 892 cmd, (int)inlen, rc, code, err_arg); 893 } 894 895 /* Switch to polled MCDI completions. This can be called in various 896 * error conditions with various locks held, so it must be lockless. 897 * Caller is responsible for flushing asynchronous requests later. 898 */ 899 void efx_mcdi_mode_poll(struct efx_nic *efx) 900 { 901 struct efx_mcdi_iface *mcdi; 902 903 if (!efx->mcdi) 904 return; 905 906 mcdi = efx_mcdi(efx); 907 /* If already in polling mode, nothing to do. 908 * If in fail-fast state, don't switch to polled completion. 909 * FLR recovery will do that later. 910 */ 911 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 912 return; 913 914 /* We can switch from event completion to polled completion, because 915 * mcdi requests are always completed in shared memory. We do this by 916 * switching the mode to POLL'd then completing the request. 917 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 918 * 919 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 920 * which efx_mcdi_complete_sync() provides for us. 921 */ 922 mcdi->mode = MCDI_MODE_POLL; 923 924 efx_mcdi_complete_sync(mcdi); 925 } 926 927 /* Flush any running or queued asynchronous requests, after event processing 928 * is stopped 929 */ 930 void efx_mcdi_flush_async(struct efx_nic *efx) 931 { 932 struct efx_mcdi_async_param *async, *next; 933 struct efx_mcdi_iface *mcdi; 934 935 if (!efx->mcdi) 936 return; 937 938 mcdi = efx_mcdi(efx); 939 940 /* We must be in poll or fail mode so no more requests can be queued */ 941 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 942 943 del_timer_sync(&mcdi->async_timer); 944 945 /* If a request is still running, make sure we give the MC 946 * time to complete it so that the response won't overwrite our 947 * next request. 948 */ 949 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 950 efx_mcdi_poll(efx); 951 mcdi->state = MCDI_STATE_QUIESCENT; 952 } 953 954 /* Nothing else will access the async list now, so it is safe 955 * to walk it without holding async_lock. If we hold it while 956 * calling a completer then lockdep may warn that we have 957 * acquired locks in the wrong order. 958 */ 959 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 960 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 961 list_del(&async->list); 962 kfree(async); 963 } 964 } 965 966 void efx_mcdi_mode_event(struct efx_nic *efx) 967 { 968 struct efx_mcdi_iface *mcdi; 969 970 if (!efx->mcdi) 971 return; 972 973 mcdi = efx_mcdi(efx); 974 /* If already in event completion mode, nothing to do. 975 * If in fail-fast state, don't switch to event completion. FLR 976 * recovery will do that later. 977 */ 978 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 979 return; 980 981 /* We can't switch from polled to event completion in the middle of a 982 * request, because the completion method is specified in the request. 983 * So acquire the interface to serialise the requestors. We don't need 984 * to acquire the iface_lock to change the mode here, but we do need a 985 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 986 * efx_mcdi_acquire() provides. 987 */ 988 efx_mcdi_acquire_sync(mcdi); 989 mcdi->mode = MCDI_MODE_EVENTS; 990 efx_mcdi_release(mcdi); 991 } 992 993 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 994 { 995 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 996 997 /* If there is an outstanding MCDI request, it has been terminated 998 * either by a BADASSERT or REBOOT event. If the mcdi interface is 999 * in polled mode, then do nothing because the MC reboot handler will 1000 * set the header correctly. However, if the mcdi interface is waiting 1001 * for a CMDDONE event it won't receive it [and since all MCDI events 1002 * are sent to the same queue, we can't be racing with 1003 * efx_mcdi_ev_cpl()] 1004 * 1005 * If there is an outstanding asynchronous request, we can't 1006 * complete it now (efx_mcdi_complete() would deadlock). The 1007 * reset process will take care of this. 1008 * 1009 * There's a race here with efx_mcdi_send_request(), because 1010 * we might receive a REBOOT event *before* the request has 1011 * been copied out. In polled mode (during startup) this is 1012 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1013 * event mode, this condition is just an edge-case of 1014 * receiving a REBOOT event after posting the MCDI 1015 * request. Did the mc reboot before or after the copyout? The 1016 * best we can do always is just return failure. 1017 */ 1018 spin_lock(&mcdi->iface_lock); 1019 if (efx_mcdi_complete_sync(mcdi)) { 1020 if (mcdi->mode == MCDI_MODE_EVENTS) { 1021 mcdi->resprc = rc; 1022 mcdi->resp_hdr_len = 0; 1023 mcdi->resp_data_len = 0; 1024 ++mcdi->credits; 1025 } 1026 } else { 1027 int count; 1028 1029 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1030 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1031 rc = efx_mcdi_poll_reboot(efx); 1032 if (rc) 1033 break; 1034 udelay(MCDI_STATUS_DELAY_US); 1035 } 1036 1037 /* On EF10, a CODE_MC_REBOOT event can be received without the 1038 * reboot detection in efx_mcdi_poll_reboot() being triggered. 1039 * If zero was returned from the final call to 1040 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1041 * MC has definitely rebooted so prepare for the reset. 1042 */ 1043 if (!rc && efx->type->mcdi_reboot_detected) 1044 efx->type->mcdi_reboot_detected(efx); 1045 1046 mcdi->new_epoch = true; 1047 1048 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1049 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1050 } 1051 1052 spin_unlock(&mcdi->iface_lock); 1053 } 1054 1055 /* The MC is going down in to BIST mode. set the BIST flag to block 1056 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 1057 * (which doesn't actually execute a reset, it waits for the controlling 1058 * function to reset it). 1059 */ 1060 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1061 { 1062 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1063 1064 spin_lock(&mcdi->iface_lock); 1065 efx->mc_bist_for_other_fn = true; 1066 if (efx_mcdi_complete_sync(mcdi)) { 1067 if (mcdi->mode == MCDI_MODE_EVENTS) { 1068 mcdi->resprc = -EIO; 1069 mcdi->resp_hdr_len = 0; 1070 mcdi->resp_data_len = 0; 1071 ++mcdi->credits; 1072 } 1073 } 1074 mcdi->new_epoch = true; 1075 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1076 spin_unlock(&mcdi->iface_lock); 1077 } 1078 1079 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1080 * to recover. 1081 */ 1082 static void efx_mcdi_abandon(struct efx_nic *efx) 1083 { 1084 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1085 1086 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1087 return; /* it had already been done */ 1088 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1089 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1090 } 1091 1092 /* Called from falcon_process_eventq for MCDI events */ 1093 void efx_mcdi_process_event(struct efx_channel *channel, 1094 efx_qword_t *event) 1095 { 1096 struct efx_nic *efx = channel->efx; 1097 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1098 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1099 1100 switch (code) { 1101 case MCDI_EVENT_CODE_BADSSERT: 1102 netif_err(efx, hw, efx->net_dev, 1103 "MC watchdog or assertion failure at 0x%x\n", data); 1104 efx_mcdi_ev_death(efx, -EINTR); 1105 break; 1106 1107 case MCDI_EVENT_CODE_PMNOTICE: 1108 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1109 break; 1110 1111 case MCDI_EVENT_CODE_CMDDONE: 1112 efx_mcdi_ev_cpl(efx, 1113 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1114 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1115 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1116 break; 1117 1118 case MCDI_EVENT_CODE_LINKCHANGE: 1119 efx_mcdi_process_link_change(efx, event); 1120 break; 1121 case MCDI_EVENT_CODE_SENSOREVT: 1122 efx_mcdi_sensor_event(efx, event); 1123 break; 1124 case MCDI_EVENT_CODE_SCHEDERR: 1125 netif_dbg(efx, hw, efx->net_dev, 1126 "MC Scheduler alert (0x%x)\n", data); 1127 break; 1128 case MCDI_EVENT_CODE_REBOOT: 1129 case MCDI_EVENT_CODE_MC_REBOOT: 1130 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1131 efx_mcdi_ev_death(efx, -EIO); 1132 break; 1133 case MCDI_EVENT_CODE_MC_BIST: 1134 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1135 efx_mcdi_ev_bist(efx); 1136 break; 1137 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1138 /* MAC stats are gather lazily. We can ignore this. */ 1139 break; 1140 case MCDI_EVENT_CODE_FLR: 1141 if (efx->type->sriov_flr) 1142 efx->type->sriov_flr(efx, 1143 MCDI_EVENT_FIELD(*event, FLR_VF)); 1144 break; 1145 case MCDI_EVENT_CODE_PTP_RX: 1146 case MCDI_EVENT_CODE_PTP_FAULT: 1147 case MCDI_EVENT_CODE_PTP_PPS: 1148 efx_ptp_event(efx, event); 1149 break; 1150 case MCDI_EVENT_CODE_PTP_TIME: 1151 efx_time_sync_event(channel, event); 1152 break; 1153 case MCDI_EVENT_CODE_TX_FLUSH: 1154 case MCDI_EVENT_CODE_RX_FLUSH: 1155 /* Two flush events will be sent: one to the same event 1156 * queue as completions, and one to event queue 0. 1157 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1158 * flag will be set, and we should ignore the event 1159 * because we want to wait for all completions. 1160 */ 1161 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1162 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1163 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1164 efx_ef10_handle_drain_event(efx); 1165 break; 1166 case MCDI_EVENT_CODE_TX_ERR: 1167 case MCDI_EVENT_CODE_RX_ERR: 1168 netif_err(efx, hw, efx->net_dev, 1169 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1170 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1171 EFX_QWORD_VAL(*event)); 1172 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1173 break; 1174 default: 1175 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", 1176 code); 1177 } 1178 } 1179 1180 /************************************************************************** 1181 * 1182 * Specific request functions 1183 * 1184 ************************************************************************** 1185 */ 1186 1187 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1188 { 1189 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1190 size_t outlength; 1191 const __le16 *ver_words; 1192 size_t offset; 1193 int rc; 1194 1195 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1196 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1197 outbuf, sizeof(outbuf), &outlength); 1198 if (rc) 1199 goto fail; 1200 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1201 rc = -EIO; 1202 goto fail; 1203 } 1204 1205 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1206 offset = snprintf(buf, len, "%u.%u.%u.%u", 1207 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 1208 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 1209 1210 /* EF10 may have multiple datapath firmware variants within a 1211 * single version. Report which variants are running. 1212 */ 1213 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1214 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1215 1216 offset += snprintf(buf + offset, len - offset, " rx%x tx%x", 1217 nic_data->rx_dpcpu_fw_id, 1218 nic_data->tx_dpcpu_fw_id); 1219 1220 /* It's theoretically possible for the string to exceed 31 1221 * characters, though in practice the first three version 1222 * components are short enough that this doesn't happen. 1223 */ 1224 if (WARN_ON(offset >= len)) 1225 buf[0] = 0; 1226 } 1227 1228 return; 1229 1230 fail: 1231 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1232 buf[0] = 0; 1233 } 1234 1235 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1236 bool *was_attached) 1237 { 1238 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1239 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1240 size_t outlen; 1241 int rc; 1242 1243 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1244 driver_operating ? 1 : 0); 1245 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1246 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1247 1248 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1249 outbuf, sizeof(outbuf), &outlen); 1250 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1251 * specified will fail with EPERM, and we have to tell the MC we don't 1252 * care what firmware we get. 1253 */ 1254 if (rc == -EPERM) { 1255 netif_dbg(efx, probe, efx->net_dev, 1256 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); 1257 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1258 MC_CMD_FW_DONT_CARE); 1259 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1260 sizeof(inbuf), outbuf, sizeof(outbuf), 1261 &outlen); 1262 } 1263 if (rc) { 1264 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1265 outbuf, outlen, rc); 1266 goto fail; 1267 } 1268 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1269 rc = -EIO; 1270 goto fail; 1271 } 1272 1273 if (driver_operating) { 1274 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1275 efx->mcdi->fn_flags = 1276 MCDI_DWORD(outbuf, 1277 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1278 } else { 1279 /* Synthesise flags for Siena */ 1280 efx->mcdi->fn_flags = 1281 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1282 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1283 (efx_port_num(efx) == 0) << 1284 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1285 } 1286 } 1287 1288 /* We currently assume we have control of the external link 1289 * and are completely trusted by firmware. Abort probing 1290 * if that's not true for this function. 1291 */ 1292 1293 if (was_attached != NULL) 1294 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1295 return 0; 1296 1297 fail: 1298 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1299 return rc; 1300 } 1301 1302 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1303 u16 *fw_subtype_list, u32 *capabilities) 1304 { 1305 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1306 size_t outlen, i; 1307 int port_num = efx_port_num(efx); 1308 int rc; 1309 1310 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1311 /* we need __aligned(2) for ether_addr_copy */ 1312 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1313 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1314 1315 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1316 outbuf, sizeof(outbuf), &outlen); 1317 if (rc) 1318 goto fail; 1319 1320 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1321 rc = -EIO; 1322 goto fail; 1323 } 1324 1325 if (mac_address) 1326 ether_addr_copy(mac_address, 1327 port_num ? 1328 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1329 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1330 if (fw_subtype_list) { 1331 for (i = 0; 1332 i < MCDI_VAR_ARRAY_LEN(outlen, 1333 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1334 i++) 1335 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1336 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1337 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1338 fw_subtype_list[i] = 0; 1339 } 1340 if (capabilities) { 1341 if (port_num) 1342 *capabilities = MCDI_DWORD(outbuf, 1343 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1344 else 1345 *capabilities = MCDI_DWORD(outbuf, 1346 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1347 } 1348 1349 return 0; 1350 1351 fail: 1352 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1353 __func__, rc, (int)outlen); 1354 1355 return rc; 1356 } 1357 1358 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1359 { 1360 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1361 u32 dest = 0; 1362 int rc; 1363 1364 if (uart) 1365 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1366 if (evq) 1367 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1368 1369 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1370 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1371 1372 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1373 1374 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1375 NULL, 0, NULL); 1376 return rc; 1377 } 1378 1379 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1380 { 1381 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1382 size_t outlen; 1383 int rc; 1384 1385 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1386 1387 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1388 outbuf, sizeof(outbuf), &outlen); 1389 if (rc) 1390 goto fail; 1391 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1392 rc = -EIO; 1393 goto fail; 1394 } 1395 1396 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1397 return 0; 1398 1399 fail: 1400 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1401 __func__, rc); 1402 return rc; 1403 } 1404 1405 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1406 size_t *size_out, size_t *erase_size_out, 1407 bool *protected_out) 1408 { 1409 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1410 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1411 size_t outlen; 1412 int rc; 1413 1414 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1415 1416 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1417 outbuf, sizeof(outbuf), &outlen); 1418 if (rc) 1419 goto fail; 1420 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1421 rc = -EIO; 1422 goto fail; 1423 } 1424 1425 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1426 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1427 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1428 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1429 return 0; 1430 1431 fail: 1432 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1433 return rc; 1434 } 1435 1436 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1437 { 1438 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1439 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1440 int rc; 1441 1442 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1443 1444 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1445 outbuf, sizeof(outbuf), NULL); 1446 if (rc) 1447 return rc; 1448 1449 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1450 case MC_CMD_NVRAM_TEST_PASS: 1451 case MC_CMD_NVRAM_TEST_NOTSUPP: 1452 return 0; 1453 default: 1454 return -EIO; 1455 } 1456 } 1457 1458 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1459 { 1460 u32 nvram_types; 1461 unsigned int type; 1462 int rc; 1463 1464 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1465 if (rc) 1466 goto fail1; 1467 1468 type = 0; 1469 while (nvram_types != 0) { 1470 if (nvram_types & 1) { 1471 rc = efx_mcdi_nvram_test(efx, type); 1472 if (rc) 1473 goto fail2; 1474 } 1475 type++; 1476 nvram_types >>= 1; 1477 } 1478 1479 return 0; 1480 1481 fail2: 1482 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1483 __func__, type); 1484 fail1: 1485 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1486 return rc; 1487 } 1488 1489 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1490 * negative on error. 1491 */ 1492 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1493 { 1494 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1495 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1496 unsigned int flags, index; 1497 const char *reason; 1498 size_t outlen; 1499 int retry; 1500 int rc; 1501 1502 /* Attempt to read any stored assertion state before we reboot 1503 * the mcfw out of the assertion handler. Retry twice, once 1504 * because a boot-time assertion might cause this command to fail 1505 * with EINTR. And once again because GET_ASSERTS can race with 1506 * MC_CMD_REBOOT running on the other port. */ 1507 retry = 2; 1508 do { 1509 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1510 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1511 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1512 outbuf, sizeof(outbuf), &outlen); 1513 if (rc == -EPERM) 1514 return 0; 1515 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1516 1517 if (rc) { 1518 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1519 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1520 outlen, rc); 1521 return rc; 1522 } 1523 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1524 return -EIO; 1525 1526 /* Print out any recorded assertion state */ 1527 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1528 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1529 return 0; 1530 1531 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1532 ? "system-level assertion" 1533 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1534 ? "thread-level assertion" 1535 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1536 ? "watchdog reset" 1537 : "unknown assertion"; 1538 netif_err(efx, hw, efx->net_dev, 1539 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1540 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1541 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1542 1543 /* Print out the registers */ 1544 for (index = 0; 1545 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1546 index++) 1547 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1548 1 + index, 1549 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1550 index)); 1551 1552 return 1; 1553 } 1554 1555 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1556 { 1557 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1558 int rc; 1559 1560 /* If the MC is running debug firmware, it might now be 1561 * waiting for a debugger to attach, but we just want it to 1562 * reboot. We set a flag that makes the command a no-op if it 1563 * has already done so. 1564 * The MCDI will thus return either 0 or -EIO. 1565 */ 1566 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1567 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1568 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1569 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1570 NULL, 0, NULL); 1571 if (rc == -EIO) 1572 rc = 0; 1573 if (rc) 1574 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1575 NULL, 0, rc); 1576 return rc; 1577 } 1578 1579 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1580 { 1581 int rc; 1582 1583 rc = efx_mcdi_read_assertion(efx); 1584 if (rc <= 0) 1585 return rc; 1586 1587 return efx_mcdi_exit_assertion(efx); 1588 } 1589 1590 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1591 { 1592 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1593 int rc; 1594 1595 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1596 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1597 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1598 1599 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1600 1601 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1602 1603 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1604 NULL, 0, NULL); 1605 } 1606 1607 static int efx_mcdi_reset_func(struct efx_nic *efx) 1608 { 1609 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1610 int rc; 1611 1612 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1613 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1614 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1615 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1616 NULL, 0, NULL); 1617 return rc; 1618 } 1619 1620 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1621 { 1622 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1623 int rc; 1624 1625 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1626 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1627 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1628 NULL, 0, NULL); 1629 /* White is black, and up is down */ 1630 if (rc == -EIO) 1631 return 0; 1632 if (rc == 0) 1633 rc = -EIO; 1634 return rc; 1635 } 1636 1637 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1638 { 1639 return RESET_TYPE_RECOVER_OR_ALL; 1640 } 1641 1642 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1643 { 1644 int rc; 1645 1646 /* If MCDI is down, we can't handle_assertion */ 1647 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1648 rc = pci_reset_function(efx->pci_dev); 1649 if (rc) 1650 return rc; 1651 /* Re-enable polled MCDI completion */ 1652 if (efx->mcdi) { 1653 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1654 mcdi->mode = MCDI_MODE_POLL; 1655 } 1656 return 0; 1657 } 1658 1659 /* Recover from a failed assertion pre-reset */ 1660 rc = efx_mcdi_handle_assertion(efx); 1661 if (rc) 1662 return rc; 1663 1664 if (method == RESET_TYPE_DATAPATH) 1665 return 0; 1666 else if (method == RESET_TYPE_WORLD) 1667 return efx_mcdi_reset_mc(efx); 1668 else 1669 return efx_mcdi_reset_func(efx); 1670 } 1671 1672 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1673 const u8 *mac, int *id_out) 1674 { 1675 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1676 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1677 size_t outlen; 1678 int rc; 1679 1680 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1681 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1682 MC_CMD_FILTER_MODE_SIMPLE); 1683 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1684 1685 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1686 outbuf, sizeof(outbuf), &outlen); 1687 if (rc) 1688 goto fail; 1689 1690 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1691 rc = -EIO; 1692 goto fail; 1693 } 1694 1695 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1696 1697 return 0; 1698 1699 fail: 1700 *id_out = -1; 1701 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1702 return rc; 1703 1704 } 1705 1706 1707 int 1708 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1709 { 1710 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1711 } 1712 1713 1714 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1715 { 1716 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1717 size_t outlen; 1718 int rc; 1719 1720 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1721 outbuf, sizeof(outbuf), &outlen); 1722 if (rc) 1723 goto fail; 1724 1725 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1726 rc = -EIO; 1727 goto fail; 1728 } 1729 1730 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1731 1732 return 0; 1733 1734 fail: 1735 *id_out = -1; 1736 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1737 return rc; 1738 } 1739 1740 1741 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1742 { 1743 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1744 int rc; 1745 1746 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1747 1748 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1749 NULL, 0, NULL); 1750 return rc; 1751 } 1752 1753 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1754 { 1755 struct efx_channel *channel; 1756 struct efx_rx_queue *rx_queue; 1757 MCDI_DECLARE_BUF(inbuf, 1758 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1759 int rc, count; 1760 1761 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1762 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1763 1764 count = 0; 1765 efx_for_each_channel(channel, efx) { 1766 efx_for_each_channel_rx_queue(rx_queue, channel) { 1767 if (rx_queue->flush_pending) { 1768 rx_queue->flush_pending = false; 1769 atomic_dec(&efx->rxq_flush_pending); 1770 MCDI_SET_ARRAY_DWORD( 1771 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1772 count, efx_rx_queue_index(rx_queue)); 1773 count++; 1774 } 1775 } 1776 } 1777 1778 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1779 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1780 WARN_ON(rc < 0); 1781 1782 return rc; 1783 } 1784 1785 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 1786 { 1787 int rc; 1788 1789 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 1790 return rc; 1791 } 1792 1793 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, 1794 unsigned int *flags) 1795 { 1796 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 1797 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); 1798 size_t outlen; 1799 int rc; 1800 1801 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 1802 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 1803 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 1804 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 1805 outbuf, sizeof(outbuf), &outlen); 1806 if (rc) 1807 return rc; 1808 1809 if (!flags) 1810 return 0; 1811 1812 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) 1813 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); 1814 else 1815 *flags = 0; 1816 1817 return 0; 1818 } 1819 1820 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 1821 unsigned int *enabled_out) 1822 { 1823 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 1824 size_t outlen; 1825 int rc; 1826 1827 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 1828 outbuf, sizeof(outbuf), &outlen); 1829 if (rc) 1830 goto fail; 1831 1832 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 1833 rc = -EIO; 1834 goto fail; 1835 } 1836 1837 if (impl_out) 1838 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 1839 1840 if (enabled_out) 1841 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 1842 1843 return 0; 1844 1845 fail: 1846 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially 1847 * terrifying. The call site will have to deal with it though. 1848 */ 1849 netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR, 1850 efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1851 return rc; 1852 } 1853 1854 #ifdef CONFIG_SFC_MTD 1855 1856 #define EFX_MCDI_NVRAM_LEN_MAX 128 1857 1858 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 1859 { 1860 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); 1861 int rc; 1862 1863 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 1864 1865 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 1866 1867 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 1868 NULL, 0, NULL); 1869 return rc; 1870 } 1871 1872 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 1873 loff_t offset, u8 *buffer, size_t length) 1874 { 1875 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); 1876 MCDI_DECLARE_BUF(outbuf, 1877 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 1878 size_t outlen; 1879 int rc; 1880 1881 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 1882 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 1883 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 1884 1885 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 1886 outbuf, sizeof(outbuf), &outlen); 1887 if (rc) 1888 return rc; 1889 1890 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 1891 return 0; 1892 } 1893 1894 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 1895 loff_t offset, const u8 *buffer, size_t length) 1896 { 1897 MCDI_DECLARE_BUF(inbuf, 1898 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 1899 int rc; 1900 1901 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 1902 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 1903 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 1904 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 1905 1906 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 1907 1908 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 1909 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 1910 NULL, 0, NULL); 1911 return rc; 1912 } 1913 1914 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 1915 loff_t offset, size_t length) 1916 { 1917 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 1918 int rc; 1919 1920 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 1921 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 1922 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 1923 1924 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 1925 1926 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 1927 NULL, 0, NULL); 1928 return rc; 1929 } 1930 1931 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 1932 { 1933 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); 1934 int rc; 1935 1936 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 1937 1938 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); 1939 1940 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 1941 NULL, 0, NULL); 1942 return rc; 1943 } 1944 1945 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 1946 size_t len, size_t *retlen, u8 *buffer) 1947 { 1948 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1949 struct efx_nic *efx = mtd->priv; 1950 loff_t offset = start; 1951 loff_t end = min_t(loff_t, start + len, mtd->size); 1952 size_t chunk; 1953 int rc = 0; 1954 1955 while (offset < end) { 1956 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 1957 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 1958 buffer, chunk); 1959 if (rc) 1960 goto out; 1961 offset += chunk; 1962 buffer += chunk; 1963 } 1964 out: 1965 *retlen = offset - start; 1966 return rc; 1967 } 1968 1969 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 1970 { 1971 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1972 struct efx_nic *efx = mtd->priv; 1973 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 1974 loff_t end = min_t(loff_t, start + len, mtd->size); 1975 size_t chunk = part->common.mtd.erasesize; 1976 int rc = 0; 1977 1978 if (!part->updating) { 1979 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 1980 if (rc) 1981 goto out; 1982 part->updating = true; 1983 } 1984 1985 /* The MCDI interface can in fact do multiple erase blocks at once; 1986 * but erasing may be slow, so we make multiple calls here to avoid 1987 * tripping the MCDI RPC timeout. */ 1988 while (offset < end) { 1989 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 1990 chunk); 1991 if (rc) 1992 goto out; 1993 offset += chunk; 1994 } 1995 out: 1996 return rc; 1997 } 1998 1999 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2000 size_t len, size_t *retlen, const u8 *buffer) 2001 { 2002 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2003 struct efx_nic *efx = mtd->priv; 2004 loff_t offset = start; 2005 loff_t end = min_t(loff_t, start + len, mtd->size); 2006 size_t chunk; 2007 int rc = 0; 2008 2009 if (!part->updating) { 2010 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2011 if (rc) 2012 goto out; 2013 part->updating = true; 2014 } 2015 2016 while (offset < end) { 2017 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2018 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2019 buffer, chunk); 2020 if (rc) 2021 goto out; 2022 offset += chunk; 2023 buffer += chunk; 2024 } 2025 out: 2026 *retlen = offset - start; 2027 return rc; 2028 } 2029 2030 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2031 { 2032 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2033 struct efx_nic *efx = mtd->priv; 2034 int rc = 0; 2035 2036 if (part->updating) { 2037 part->updating = false; 2038 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2039 } 2040 2041 return rc; 2042 } 2043 2044 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2045 { 2046 struct efx_mcdi_mtd_partition *mcdi_part = 2047 container_of(part, struct efx_mcdi_mtd_partition, common); 2048 struct efx_nic *efx = part->mtd.priv; 2049 2050 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2051 efx->name, part->type_name, mcdi_part->fw_subtype); 2052 } 2053 2054 #endif /* CONFIG_SFC_MTD */ 2055