1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2008-2011 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include "net_driver.h" 12 #include "nic.h" 13 #include "io.h" 14 #include "regs.h" 15 #include "mcdi_pcol.h" 16 #include "phy.h" 17 18 /************************************************************************** 19 * 20 * Management-Controller-to-Driver Interface 21 * 22 ************************************************************************** 23 */ 24 25 /* Software-defined structure to the shared-memory */ 26 #define CMD_NOTIFY_PORT0 0 27 #define CMD_NOTIFY_PORT1 4 28 #define CMD_PDU_PORT0 0x008 29 #define CMD_PDU_PORT1 0x108 30 #define REBOOT_FLAG_PORT0 0x3f8 31 #define REBOOT_FLAG_PORT1 0x3fc 32 33 #define MCDI_RPC_TIMEOUT 10 /*seconds */ 34 35 #define MCDI_PDU(efx) \ 36 (efx_port_num(efx) ? CMD_PDU_PORT1 : CMD_PDU_PORT0) 37 #define MCDI_DOORBELL(efx) \ 38 (efx_port_num(efx) ? CMD_NOTIFY_PORT1 : CMD_NOTIFY_PORT0) 39 #define MCDI_REBOOT_FLAG(efx) \ 40 (efx_port_num(efx) ? REBOOT_FLAG_PORT1 : REBOOT_FLAG_PORT0) 41 42 #define SEQ_MASK \ 43 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 44 45 static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx) 46 { 47 struct siena_nic_data *nic_data; 48 EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0); 49 nic_data = efx->nic_data; 50 return &nic_data->mcdi; 51 } 52 53 void efx_mcdi_init(struct efx_nic *efx) 54 { 55 struct efx_mcdi_iface *mcdi; 56 57 if (efx_nic_rev(efx) < EFX_REV_SIENA_A0) 58 return; 59 60 mcdi = efx_mcdi(efx); 61 init_waitqueue_head(&mcdi->wq); 62 spin_lock_init(&mcdi->iface_lock); 63 atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT); 64 mcdi->mode = MCDI_MODE_POLL; 65 66 (void) efx_mcdi_poll_reboot(efx); 67 } 68 69 static void efx_mcdi_copyin(struct efx_nic *efx, unsigned cmd, 70 const u8 *inbuf, size_t inlen) 71 { 72 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 73 unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx); 74 unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx); 75 unsigned int i; 76 efx_dword_t hdr; 77 u32 xflags, seqno; 78 79 BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT); 80 BUG_ON(inlen & 3 || inlen >= 0x100); 81 82 seqno = mcdi->seqno & SEQ_MASK; 83 xflags = 0; 84 if (mcdi->mode == MCDI_MODE_EVENTS) 85 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 86 87 EFX_POPULATE_DWORD_6(hdr, 88 MCDI_HEADER_RESPONSE, 0, 89 MCDI_HEADER_RESYNC, 1, 90 MCDI_HEADER_CODE, cmd, 91 MCDI_HEADER_DATALEN, inlen, 92 MCDI_HEADER_SEQ, seqno, 93 MCDI_HEADER_XFLAGS, xflags); 94 95 efx_writed(efx, &hdr, pdu); 96 97 for (i = 0; i < inlen; i += 4) 98 _efx_writed(efx, *((__le32 *)(inbuf + i)), pdu + 4 + i); 99 100 /* Ensure the payload is written out before the header */ 101 wmb(); 102 103 /* ring the doorbell with a distinctive value */ 104 _efx_writed(efx, (__force __le32) 0x45789abc, doorbell); 105 } 106 107 static void efx_mcdi_copyout(struct efx_nic *efx, u8 *outbuf, size_t outlen) 108 { 109 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 110 unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx); 111 int i; 112 113 BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT); 114 BUG_ON(outlen & 3 || outlen >= 0x100); 115 116 for (i = 0; i < outlen; i += 4) 117 *((__le32 *)(outbuf + i)) = _efx_readd(efx, pdu + 4 + i); 118 } 119 120 static int efx_mcdi_poll(struct efx_nic *efx) 121 { 122 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 123 unsigned int time, finish; 124 unsigned int respseq, respcmd, error; 125 unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx); 126 unsigned int rc, spins; 127 efx_dword_t reg; 128 129 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 130 rc = -efx_mcdi_poll_reboot(efx); 131 if (rc) 132 goto out; 133 134 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 135 * because generally mcdi responses are fast. After that, back off 136 * and poll once a jiffy (approximately) 137 */ 138 spins = TICK_USEC; 139 finish = get_seconds() + MCDI_RPC_TIMEOUT; 140 141 while (1) { 142 if (spins != 0) { 143 --spins; 144 udelay(1); 145 } else { 146 schedule_timeout_uninterruptible(1); 147 } 148 149 time = get_seconds(); 150 151 rmb(); 152 efx_readd(efx, ®, pdu); 153 154 /* All 1's indicates that shared memory is in reset (and is 155 * not a valid header). Wait for it to come out reset before 156 * completing the command */ 157 if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) != 0xffffffff && 158 EFX_DWORD_FIELD(reg, MCDI_HEADER_RESPONSE)) 159 break; 160 161 if (time >= finish) 162 return -ETIMEDOUT; 163 } 164 165 mcdi->resplen = EFX_DWORD_FIELD(reg, MCDI_HEADER_DATALEN); 166 respseq = EFX_DWORD_FIELD(reg, MCDI_HEADER_SEQ); 167 respcmd = EFX_DWORD_FIELD(reg, MCDI_HEADER_CODE); 168 error = EFX_DWORD_FIELD(reg, MCDI_HEADER_ERROR); 169 170 if (error && mcdi->resplen == 0) { 171 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 172 rc = EIO; 173 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 174 netif_err(efx, hw, efx->net_dev, 175 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 176 respseq, mcdi->seqno); 177 rc = EIO; 178 } else if (error) { 179 efx_readd(efx, ®, pdu + 4); 180 switch (EFX_DWORD_FIELD(reg, EFX_DWORD_0)) { 181 #define TRANSLATE_ERROR(name) \ 182 case MC_CMD_ERR_ ## name: \ 183 rc = name; \ 184 break 185 TRANSLATE_ERROR(ENOENT); 186 TRANSLATE_ERROR(EINTR); 187 TRANSLATE_ERROR(EACCES); 188 TRANSLATE_ERROR(EBUSY); 189 TRANSLATE_ERROR(EINVAL); 190 TRANSLATE_ERROR(EDEADLK); 191 TRANSLATE_ERROR(ENOSYS); 192 TRANSLATE_ERROR(ETIME); 193 #undef TRANSLATE_ERROR 194 default: 195 rc = EIO; 196 break; 197 } 198 } else 199 rc = 0; 200 201 out: 202 mcdi->resprc = rc; 203 if (rc) 204 mcdi->resplen = 0; 205 206 /* Return rc=0 like wait_event_timeout() */ 207 return 0; 208 } 209 210 /* Test and clear MC-rebooted flag for this port/function */ 211 int efx_mcdi_poll_reboot(struct efx_nic *efx) 212 { 213 unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_REBOOT_FLAG(efx); 214 efx_dword_t reg; 215 uint32_t value; 216 217 if (efx_nic_rev(efx) < EFX_REV_SIENA_A0) 218 return false; 219 220 efx_readd(efx, ®, addr); 221 value = EFX_DWORD_FIELD(reg, EFX_DWORD_0); 222 223 if (value == 0) 224 return 0; 225 226 EFX_ZERO_DWORD(reg); 227 efx_writed(efx, ®, addr); 228 229 if (value == MC_STATUS_DWORD_ASSERT) 230 return -EINTR; 231 else 232 return -EIO; 233 } 234 235 static void efx_mcdi_acquire(struct efx_mcdi_iface *mcdi) 236 { 237 /* Wait until the interface becomes QUIESCENT and we win the race 238 * to mark it RUNNING. */ 239 wait_event(mcdi->wq, 240 atomic_cmpxchg(&mcdi->state, 241 MCDI_STATE_QUIESCENT, 242 MCDI_STATE_RUNNING) 243 == MCDI_STATE_QUIESCENT); 244 } 245 246 static int efx_mcdi_await_completion(struct efx_nic *efx) 247 { 248 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 249 250 if (wait_event_timeout( 251 mcdi->wq, 252 atomic_read(&mcdi->state) == MCDI_STATE_COMPLETED, 253 msecs_to_jiffies(MCDI_RPC_TIMEOUT * 1000)) == 0) 254 return -ETIMEDOUT; 255 256 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 257 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 258 * completed the request first, then we'll just end up completing the 259 * request again, which is safe. 260 * 261 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 262 * wait_event_timeout() implicitly provides. 263 */ 264 if (mcdi->mode == MCDI_MODE_POLL) 265 return efx_mcdi_poll(efx); 266 267 return 0; 268 } 269 270 static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi) 271 { 272 /* If the interface is RUNNING, then move to COMPLETED and wake any 273 * waiters. If the interface isn't in RUNNING then we've received a 274 * duplicate completion after we've already transitioned back to 275 * QUIESCENT. [A subsequent invocation would increment seqno, so would 276 * have failed the seqno check]. 277 */ 278 if (atomic_cmpxchg(&mcdi->state, 279 MCDI_STATE_RUNNING, 280 MCDI_STATE_COMPLETED) == MCDI_STATE_RUNNING) { 281 wake_up(&mcdi->wq); 282 return true; 283 } 284 285 return false; 286 } 287 288 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 289 { 290 atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT); 291 wake_up(&mcdi->wq); 292 } 293 294 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 295 unsigned int datalen, unsigned int errno) 296 { 297 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 298 bool wake = false; 299 300 spin_lock(&mcdi->iface_lock); 301 302 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 303 if (mcdi->credits) 304 /* The request has been cancelled */ 305 --mcdi->credits; 306 else 307 netif_err(efx, hw, efx->net_dev, 308 "MC response mismatch tx seq 0x%x rx " 309 "seq 0x%x\n", seqno, mcdi->seqno); 310 } else { 311 mcdi->resprc = errno; 312 mcdi->resplen = datalen; 313 314 wake = true; 315 } 316 317 spin_unlock(&mcdi->iface_lock); 318 319 if (wake) 320 efx_mcdi_complete(mcdi); 321 } 322 323 /* Issue the given command by writing the data into the shared memory PDU, 324 * ring the doorbell and wait for completion. Copyout the result. */ 325 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 326 const u8 *inbuf, size_t inlen, u8 *outbuf, size_t outlen, 327 size_t *outlen_actual) 328 { 329 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 330 int rc; 331 BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0); 332 333 efx_mcdi_acquire(mcdi); 334 335 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 336 spin_lock_bh(&mcdi->iface_lock); 337 ++mcdi->seqno; 338 spin_unlock_bh(&mcdi->iface_lock); 339 340 efx_mcdi_copyin(efx, cmd, inbuf, inlen); 341 342 if (mcdi->mode == MCDI_MODE_POLL) 343 rc = efx_mcdi_poll(efx); 344 else 345 rc = efx_mcdi_await_completion(efx); 346 347 if (rc != 0) { 348 /* Close the race with efx_mcdi_ev_cpl() executing just too late 349 * and completing a request we've just cancelled, by ensuring 350 * that the seqno check therein fails. 351 */ 352 spin_lock_bh(&mcdi->iface_lock); 353 ++mcdi->seqno; 354 ++mcdi->credits; 355 spin_unlock_bh(&mcdi->iface_lock); 356 357 netif_err(efx, hw, efx->net_dev, 358 "MC command 0x%x inlen %d mode %d timed out\n", 359 cmd, (int)inlen, mcdi->mode); 360 } else { 361 size_t resplen; 362 363 /* At the very least we need a memory barrier here to ensure 364 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 365 * a spurious efx_mcdi_ev_cpl() running concurrently by 366 * acquiring the iface_lock. */ 367 spin_lock_bh(&mcdi->iface_lock); 368 rc = -mcdi->resprc; 369 resplen = mcdi->resplen; 370 spin_unlock_bh(&mcdi->iface_lock); 371 372 if (rc == 0) { 373 efx_mcdi_copyout(efx, outbuf, 374 min(outlen, mcdi->resplen + 3) & ~0x3); 375 if (outlen_actual != NULL) 376 *outlen_actual = resplen; 377 } else if (cmd == MC_CMD_REBOOT && rc == -EIO) 378 ; /* Don't reset if MC_CMD_REBOOT returns EIO */ 379 else if (rc == -EIO || rc == -EINTR) { 380 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", 381 -rc); 382 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 383 } else 384 netif_dbg(efx, hw, efx->net_dev, 385 "MC command 0x%x inlen %d failed rc=%d\n", 386 cmd, (int)inlen, -rc); 387 } 388 389 efx_mcdi_release(mcdi); 390 return rc; 391 } 392 393 void efx_mcdi_mode_poll(struct efx_nic *efx) 394 { 395 struct efx_mcdi_iface *mcdi; 396 397 if (efx_nic_rev(efx) < EFX_REV_SIENA_A0) 398 return; 399 400 mcdi = efx_mcdi(efx); 401 if (mcdi->mode == MCDI_MODE_POLL) 402 return; 403 404 /* We can switch from event completion to polled completion, because 405 * mcdi requests are always completed in shared memory. We do this by 406 * switching the mode to POLL'd then completing the request. 407 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 408 * 409 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 410 * which efx_mcdi_complete() provides for us. 411 */ 412 mcdi->mode = MCDI_MODE_POLL; 413 414 efx_mcdi_complete(mcdi); 415 } 416 417 void efx_mcdi_mode_event(struct efx_nic *efx) 418 { 419 struct efx_mcdi_iface *mcdi; 420 421 if (efx_nic_rev(efx) < EFX_REV_SIENA_A0) 422 return; 423 424 mcdi = efx_mcdi(efx); 425 426 if (mcdi->mode == MCDI_MODE_EVENTS) 427 return; 428 429 /* We can't switch from polled to event completion in the middle of a 430 * request, because the completion method is specified in the request. 431 * So acquire the interface to serialise the requestors. We don't need 432 * to acquire the iface_lock to change the mode here, but we do need a 433 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 434 * efx_mcdi_acquire() provides. 435 */ 436 efx_mcdi_acquire(mcdi); 437 mcdi->mode = MCDI_MODE_EVENTS; 438 efx_mcdi_release(mcdi); 439 } 440 441 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 442 { 443 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 444 445 /* If there is an outstanding MCDI request, it has been terminated 446 * either by a BADASSERT or REBOOT event. If the mcdi interface is 447 * in polled mode, then do nothing because the MC reboot handler will 448 * set the header correctly. However, if the mcdi interface is waiting 449 * for a CMDDONE event it won't receive it [and since all MCDI events 450 * are sent to the same queue, we can't be racing with 451 * efx_mcdi_ev_cpl()] 452 * 453 * There's a race here with efx_mcdi_rpc(), because we might receive 454 * a REBOOT event *before* the request has been copied out. In polled 455 * mode (during startup) this is irrelevant, because efx_mcdi_complete() 456 * is ignored. In event mode, this condition is just an edge-case of 457 * receiving a REBOOT event after posting the MCDI request. Did the mc 458 * reboot before or after the copyout? The best we can do always is 459 * just return failure. 460 */ 461 spin_lock(&mcdi->iface_lock); 462 if (efx_mcdi_complete(mcdi)) { 463 if (mcdi->mode == MCDI_MODE_EVENTS) { 464 mcdi->resprc = rc; 465 mcdi->resplen = 0; 466 ++mcdi->credits; 467 } 468 } else 469 /* Nobody was waiting for an MCDI request, so trigger a reset */ 470 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 471 472 spin_unlock(&mcdi->iface_lock); 473 } 474 475 static unsigned int efx_mcdi_event_link_speed[] = { 476 [MCDI_EVENT_LINKCHANGE_SPEED_100M] = 100, 477 [MCDI_EVENT_LINKCHANGE_SPEED_1G] = 1000, 478 [MCDI_EVENT_LINKCHANGE_SPEED_10G] = 10000, 479 }; 480 481 482 static void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev) 483 { 484 u32 flags, fcntl, speed, lpa; 485 486 speed = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_SPEED); 487 EFX_BUG_ON_PARANOID(speed >= ARRAY_SIZE(efx_mcdi_event_link_speed)); 488 speed = efx_mcdi_event_link_speed[speed]; 489 490 flags = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LINK_FLAGS); 491 fcntl = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_FCNTL); 492 lpa = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LP_CAP); 493 494 /* efx->link_state is only modified by efx_mcdi_phy_get_link(), 495 * which is only run after flushing the event queues. Therefore, it 496 * is safe to modify the link state outside of the mac_lock here. 497 */ 498 efx_mcdi_phy_decode_link(efx, &efx->link_state, speed, flags, fcntl); 499 500 efx_mcdi_phy_check_fcntl(efx, lpa); 501 502 efx_link_status_changed(efx); 503 } 504 505 static const char *sensor_names[] = { 506 [MC_CMD_SENSOR_CONTROLLER_TEMP] = "Controller temp. sensor", 507 [MC_CMD_SENSOR_PHY_COMMON_TEMP] = "PHY shared temp. sensor", 508 [MC_CMD_SENSOR_CONTROLLER_COOLING] = "Controller cooling", 509 [MC_CMD_SENSOR_PHY0_TEMP] = "PHY 0 temp. sensor", 510 [MC_CMD_SENSOR_PHY0_COOLING] = "PHY 0 cooling", 511 [MC_CMD_SENSOR_PHY1_TEMP] = "PHY 1 temp. sensor", 512 [MC_CMD_SENSOR_PHY1_COOLING] = "PHY 1 cooling", 513 [MC_CMD_SENSOR_IN_1V0] = "1.0V supply sensor", 514 [MC_CMD_SENSOR_IN_1V2] = "1.2V supply sensor", 515 [MC_CMD_SENSOR_IN_1V8] = "1.8V supply sensor", 516 [MC_CMD_SENSOR_IN_2V5] = "2.5V supply sensor", 517 [MC_CMD_SENSOR_IN_3V3] = "3.3V supply sensor", 518 [MC_CMD_SENSOR_IN_12V0] = "12V supply sensor" 519 }; 520 521 static const char *sensor_status_names[] = { 522 [MC_CMD_SENSOR_STATE_OK] = "OK", 523 [MC_CMD_SENSOR_STATE_WARNING] = "Warning", 524 [MC_CMD_SENSOR_STATE_FATAL] = "Fatal", 525 [MC_CMD_SENSOR_STATE_BROKEN] = "Device failure", 526 }; 527 528 static void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev) 529 { 530 unsigned int monitor, state, value; 531 const char *name, *state_txt; 532 monitor = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_MONITOR); 533 state = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_STATE); 534 value = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_VALUE); 535 /* Deal gracefully with the board having more drivers than we 536 * know about, but do not expect new sensor states. */ 537 name = (monitor >= ARRAY_SIZE(sensor_names)) 538 ? "No sensor name available" : 539 sensor_names[monitor]; 540 EFX_BUG_ON_PARANOID(state >= ARRAY_SIZE(sensor_status_names)); 541 state_txt = sensor_status_names[state]; 542 543 netif_err(efx, hw, efx->net_dev, 544 "Sensor %d (%s) reports condition '%s' for raw value %d\n", 545 monitor, name, state_txt, value); 546 } 547 548 /* Called from falcon_process_eventq for MCDI events */ 549 void efx_mcdi_process_event(struct efx_channel *channel, 550 efx_qword_t *event) 551 { 552 struct efx_nic *efx = channel->efx; 553 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 554 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 555 556 switch (code) { 557 case MCDI_EVENT_CODE_BADSSERT: 558 netif_err(efx, hw, efx->net_dev, 559 "MC watchdog or assertion failure at 0x%x\n", data); 560 efx_mcdi_ev_death(efx, EINTR); 561 break; 562 563 case MCDI_EVENT_CODE_PMNOTICE: 564 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 565 break; 566 567 case MCDI_EVENT_CODE_CMDDONE: 568 efx_mcdi_ev_cpl(efx, 569 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 570 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 571 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 572 break; 573 574 case MCDI_EVENT_CODE_LINKCHANGE: 575 efx_mcdi_process_link_change(efx, event); 576 break; 577 case MCDI_EVENT_CODE_SENSOREVT: 578 efx_mcdi_sensor_event(efx, event); 579 break; 580 case MCDI_EVENT_CODE_SCHEDERR: 581 netif_info(efx, hw, efx->net_dev, 582 "MC Scheduler error address=0x%x\n", data); 583 break; 584 case MCDI_EVENT_CODE_REBOOT: 585 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 586 efx_mcdi_ev_death(efx, EIO); 587 break; 588 case MCDI_EVENT_CODE_MAC_STATS_DMA: 589 /* MAC stats are gather lazily. We can ignore this. */ 590 break; 591 592 default: 593 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", 594 code); 595 } 596 } 597 598 /************************************************************************** 599 * 600 * Specific request functions 601 * 602 ************************************************************************** 603 */ 604 605 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 606 { 607 u8 outbuf[ALIGN(MC_CMD_GET_VERSION_V1_OUT_LEN, 4)]; 608 size_t outlength; 609 const __le16 *ver_words; 610 int rc; 611 612 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 613 614 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 615 outbuf, sizeof(outbuf), &outlength); 616 if (rc) 617 goto fail; 618 619 if (outlength < MC_CMD_GET_VERSION_V1_OUT_LEN) { 620 rc = -EIO; 621 goto fail; 622 } 623 624 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 625 snprintf(buf, len, "%u.%u.%u.%u", 626 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 627 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 628 return; 629 630 fail: 631 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 632 buf[0] = 0; 633 } 634 635 int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 636 bool *was_attached) 637 { 638 u8 inbuf[MC_CMD_DRV_ATTACH_IN_LEN]; 639 u8 outbuf[MC_CMD_DRV_ATTACH_OUT_LEN]; 640 size_t outlen; 641 int rc; 642 643 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 644 driver_operating ? 1 : 0); 645 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 646 647 rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 648 outbuf, sizeof(outbuf), &outlen); 649 if (rc) 650 goto fail; 651 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 652 rc = -EIO; 653 goto fail; 654 } 655 656 if (was_attached != NULL) 657 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 658 return 0; 659 660 fail: 661 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 662 return rc; 663 } 664 665 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 666 u16 *fw_subtype_list) 667 { 668 uint8_t outbuf[MC_CMD_GET_BOARD_CFG_OUT_LEN]; 669 size_t outlen; 670 int port_num = efx_port_num(efx); 671 int offset; 672 int rc; 673 674 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 675 676 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 677 outbuf, sizeof(outbuf), &outlen); 678 if (rc) 679 goto fail; 680 681 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LEN) { 682 rc = -EIO; 683 goto fail; 684 } 685 686 offset = (port_num) 687 ? MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST 688 : MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST; 689 if (mac_address) 690 memcpy(mac_address, outbuf + offset, ETH_ALEN); 691 if (fw_subtype_list) 692 memcpy(fw_subtype_list, 693 outbuf + MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST, 694 MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN); 695 696 return 0; 697 698 fail: 699 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 700 __func__, rc, (int)outlen); 701 702 return rc; 703 } 704 705 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 706 { 707 u8 inbuf[MC_CMD_LOG_CTRL_IN_LEN]; 708 u32 dest = 0; 709 int rc; 710 711 if (uart) 712 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 713 if (evq) 714 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 715 716 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 717 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 718 719 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 720 721 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 722 NULL, 0, NULL); 723 if (rc) 724 goto fail; 725 726 return 0; 727 728 fail: 729 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 730 return rc; 731 } 732 733 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 734 { 735 u8 outbuf[MC_CMD_NVRAM_TYPES_OUT_LEN]; 736 size_t outlen; 737 int rc; 738 739 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 740 741 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 742 outbuf, sizeof(outbuf), &outlen); 743 if (rc) 744 goto fail; 745 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 746 rc = -EIO; 747 goto fail; 748 } 749 750 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 751 return 0; 752 753 fail: 754 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 755 __func__, rc); 756 return rc; 757 } 758 759 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 760 size_t *size_out, size_t *erase_size_out, 761 bool *protected_out) 762 { 763 u8 inbuf[MC_CMD_NVRAM_INFO_IN_LEN]; 764 u8 outbuf[MC_CMD_NVRAM_INFO_OUT_LEN]; 765 size_t outlen; 766 int rc; 767 768 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 769 770 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 771 outbuf, sizeof(outbuf), &outlen); 772 if (rc) 773 goto fail; 774 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 775 rc = -EIO; 776 goto fail; 777 } 778 779 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 780 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 781 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 782 (1 << MC_CMD_NVRAM_PROTECTED_LBN)); 783 return 0; 784 785 fail: 786 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 787 return rc; 788 } 789 790 int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 791 { 792 u8 inbuf[MC_CMD_NVRAM_UPDATE_START_IN_LEN]; 793 int rc; 794 795 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 796 797 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 798 799 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 800 NULL, 0, NULL); 801 if (rc) 802 goto fail; 803 804 return 0; 805 806 fail: 807 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 808 return rc; 809 } 810 811 int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 812 loff_t offset, u8 *buffer, size_t length) 813 { 814 u8 inbuf[MC_CMD_NVRAM_READ_IN_LEN]; 815 u8 outbuf[MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)]; 816 size_t outlen; 817 int rc; 818 819 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 820 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 821 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 822 823 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 824 outbuf, sizeof(outbuf), &outlen); 825 if (rc) 826 goto fail; 827 828 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 829 return 0; 830 831 fail: 832 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 833 return rc; 834 } 835 836 int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 837 loff_t offset, const u8 *buffer, size_t length) 838 { 839 u8 inbuf[MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)]; 840 int rc; 841 842 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 843 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 844 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 845 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 846 847 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 848 849 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 850 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 851 NULL, 0, NULL); 852 if (rc) 853 goto fail; 854 855 return 0; 856 857 fail: 858 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 859 return rc; 860 } 861 862 int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 863 loff_t offset, size_t length) 864 { 865 u8 inbuf[MC_CMD_NVRAM_ERASE_IN_LEN]; 866 int rc; 867 868 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 869 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 870 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 871 872 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 873 874 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 875 NULL, 0, NULL); 876 if (rc) 877 goto fail; 878 879 return 0; 880 881 fail: 882 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 883 return rc; 884 } 885 886 int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 887 { 888 u8 inbuf[MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN]; 889 int rc; 890 891 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 892 893 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); 894 895 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 896 NULL, 0, NULL); 897 if (rc) 898 goto fail; 899 900 return 0; 901 902 fail: 903 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 904 return rc; 905 } 906 907 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 908 { 909 u8 inbuf[MC_CMD_NVRAM_TEST_IN_LEN]; 910 u8 outbuf[MC_CMD_NVRAM_TEST_OUT_LEN]; 911 int rc; 912 913 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 914 915 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 916 outbuf, sizeof(outbuf), NULL); 917 if (rc) 918 return rc; 919 920 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 921 case MC_CMD_NVRAM_TEST_PASS: 922 case MC_CMD_NVRAM_TEST_NOTSUPP: 923 return 0; 924 default: 925 return -EIO; 926 } 927 } 928 929 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 930 { 931 u32 nvram_types; 932 unsigned int type; 933 int rc; 934 935 rc = efx_mcdi_nvram_types(efx, &nvram_types); 936 if (rc) 937 goto fail1; 938 939 type = 0; 940 while (nvram_types != 0) { 941 if (nvram_types & 1) { 942 rc = efx_mcdi_nvram_test(efx, type); 943 if (rc) 944 goto fail2; 945 } 946 type++; 947 nvram_types >>= 1; 948 } 949 950 return 0; 951 952 fail2: 953 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 954 __func__, type); 955 fail1: 956 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 957 return rc; 958 } 959 960 static int efx_mcdi_read_assertion(struct efx_nic *efx) 961 { 962 u8 inbuf[MC_CMD_GET_ASSERTS_IN_LEN]; 963 u8 outbuf[MC_CMD_GET_ASSERTS_OUT_LEN]; 964 unsigned int flags, index, ofst; 965 const char *reason; 966 size_t outlen; 967 int retry; 968 int rc; 969 970 /* Attempt to read any stored assertion state before we reboot 971 * the mcfw out of the assertion handler. Retry twice, once 972 * because a boot-time assertion might cause this command to fail 973 * with EINTR. And once again because GET_ASSERTS can race with 974 * MC_CMD_REBOOT running on the other port. */ 975 retry = 2; 976 do { 977 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 978 rc = efx_mcdi_rpc(efx, MC_CMD_GET_ASSERTS, 979 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 980 outbuf, sizeof(outbuf), &outlen); 981 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 982 983 if (rc) 984 return rc; 985 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 986 return -EIO; 987 988 /* Print out any recorded assertion state */ 989 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 990 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 991 return 0; 992 993 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 994 ? "system-level assertion" 995 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 996 ? "thread-level assertion" 997 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 998 ? "watchdog reset" 999 : "unknown assertion"; 1000 netif_err(efx, hw, efx->net_dev, 1001 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1002 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1003 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1004 1005 /* Print out the registers */ 1006 ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST; 1007 for (index = 1; index < 32; index++) { 1008 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", index, 1009 MCDI_DWORD2(outbuf, ofst)); 1010 ofst += sizeof(efx_dword_t); 1011 } 1012 1013 return 0; 1014 } 1015 1016 static void efx_mcdi_exit_assertion(struct efx_nic *efx) 1017 { 1018 u8 inbuf[MC_CMD_REBOOT_IN_LEN]; 1019 1020 /* Atomically reboot the mcfw out of the assertion handler */ 1021 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1022 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1023 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1024 efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1025 NULL, 0, NULL); 1026 } 1027 1028 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1029 { 1030 int rc; 1031 1032 rc = efx_mcdi_read_assertion(efx); 1033 if (rc) 1034 return rc; 1035 1036 efx_mcdi_exit_assertion(efx); 1037 1038 return 0; 1039 } 1040 1041 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1042 { 1043 u8 inbuf[MC_CMD_SET_ID_LED_IN_LEN]; 1044 int rc; 1045 1046 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1047 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1048 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1049 1050 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1051 1052 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1053 1054 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1055 NULL, 0, NULL); 1056 if (rc) 1057 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1058 __func__, rc); 1059 } 1060 1061 int efx_mcdi_reset_port(struct efx_nic *efx) 1062 { 1063 int rc = efx_mcdi_rpc(efx, MC_CMD_PORT_RESET, NULL, 0, NULL, 0, NULL); 1064 if (rc) 1065 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1066 __func__, rc); 1067 return rc; 1068 } 1069 1070 int efx_mcdi_reset_mc(struct efx_nic *efx) 1071 { 1072 u8 inbuf[MC_CMD_REBOOT_IN_LEN]; 1073 int rc; 1074 1075 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1076 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1077 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1078 NULL, 0, NULL); 1079 /* White is black, and up is down */ 1080 if (rc == -EIO) 1081 return 0; 1082 if (rc == 0) 1083 rc = -EIO; 1084 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1085 return rc; 1086 } 1087 1088 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1089 const u8 *mac, int *id_out) 1090 { 1091 u8 inbuf[MC_CMD_WOL_FILTER_SET_IN_LEN]; 1092 u8 outbuf[MC_CMD_WOL_FILTER_SET_OUT_LEN]; 1093 size_t outlen; 1094 int rc; 1095 1096 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1097 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1098 MC_CMD_FILTER_MODE_SIMPLE); 1099 memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN); 1100 1101 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1102 outbuf, sizeof(outbuf), &outlen); 1103 if (rc) 1104 goto fail; 1105 1106 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1107 rc = -EIO; 1108 goto fail; 1109 } 1110 1111 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1112 1113 return 0; 1114 1115 fail: 1116 *id_out = -1; 1117 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1118 return rc; 1119 1120 } 1121 1122 1123 int 1124 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1125 { 1126 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1127 } 1128 1129 1130 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1131 { 1132 u8 outbuf[MC_CMD_WOL_FILTER_GET_OUT_LEN]; 1133 size_t outlen; 1134 int rc; 1135 1136 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1137 outbuf, sizeof(outbuf), &outlen); 1138 if (rc) 1139 goto fail; 1140 1141 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1142 rc = -EIO; 1143 goto fail; 1144 } 1145 1146 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1147 1148 return 0; 1149 1150 fail: 1151 *id_out = -1; 1152 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1153 return rc; 1154 } 1155 1156 1157 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1158 { 1159 u8 inbuf[MC_CMD_WOL_FILTER_REMOVE_IN_LEN]; 1160 int rc; 1161 1162 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1163 1164 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1165 NULL, 0, NULL); 1166 if (rc) 1167 goto fail; 1168 1169 return 0; 1170 1171 fail: 1172 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1173 return rc; 1174 } 1175 1176 1177 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 1178 { 1179 int rc; 1180 1181 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 1182 if (rc) 1183 goto fail; 1184 1185 return 0; 1186 1187 fail: 1188 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1189 return rc; 1190 } 1191 1192