xref: /openbmc/linux/drivers/net/ethernet/sfc/mcdi.c (revision 160b8e75)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2008-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18 
19 /**************************************************************************
20  *
21  * Management-Controller-to-Driver Interface
22  *
23  **************************************************************************
24  */
25 
26 #define MCDI_RPC_TIMEOUT       (10 * HZ)
27 
28 /* A reboot/assertion causes the MCDI status word to be set after the
29  * command word is set or a REBOOT event is sent. If we notice a reboot
30  * via these mechanisms then wait 250ms for the status word to be set.
31  */
32 #define MCDI_STATUS_DELAY_US		100
33 #define MCDI_STATUS_DELAY_COUNT		2500
34 #define MCDI_STATUS_SLEEP_MS						\
35 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36 
37 #define SEQ_MASK							\
38 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39 
40 struct efx_mcdi_async_param {
41 	struct list_head list;
42 	unsigned int cmd;
43 	size_t inlen;
44 	size_t outlen;
45 	bool quiet;
46 	efx_mcdi_async_completer *complete;
47 	unsigned long cookie;
48 	/* followed by request/response buffer */
49 };
50 
51 static void efx_mcdi_timeout_async(struct timer_list *t);
52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 			       bool *was_attached_out);
54 static bool efx_mcdi_poll_once(struct efx_nic *efx);
55 static void efx_mcdi_abandon(struct efx_nic *efx);
56 
57 #ifdef CONFIG_SFC_MCDI_LOGGING
58 static bool mcdi_logging_default;
59 module_param(mcdi_logging_default, bool, 0644);
60 MODULE_PARM_DESC(mcdi_logging_default,
61 		 "Enable MCDI logging on newly-probed functions");
62 #endif
63 
64 int efx_mcdi_init(struct efx_nic *efx)
65 {
66 	struct efx_mcdi_iface *mcdi;
67 	bool already_attached;
68 	int rc = -ENOMEM;
69 
70 	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
71 	if (!efx->mcdi)
72 		goto fail;
73 
74 	mcdi = efx_mcdi(efx);
75 	mcdi->efx = efx;
76 #ifdef CONFIG_SFC_MCDI_LOGGING
77 	/* consuming code assumes buffer is page-sized */
78 	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
79 	if (!mcdi->logging_buffer)
80 		goto fail1;
81 	mcdi->logging_enabled = mcdi_logging_default;
82 #endif
83 	init_waitqueue_head(&mcdi->wq);
84 	init_waitqueue_head(&mcdi->proxy_rx_wq);
85 	spin_lock_init(&mcdi->iface_lock);
86 	mcdi->state = MCDI_STATE_QUIESCENT;
87 	mcdi->mode = MCDI_MODE_POLL;
88 	spin_lock_init(&mcdi->async_lock);
89 	INIT_LIST_HEAD(&mcdi->async_list);
90 	timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
91 
92 	(void) efx_mcdi_poll_reboot(efx);
93 	mcdi->new_epoch = true;
94 
95 	/* Recover from a failed assertion before probing */
96 	rc = efx_mcdi_handle_assertion(efx);
97 	if (rc)
98 		goto fail2;
99 
100 	/* Let the MC (and BMC, if this is a LOM) know that the driver
101 	 * is loaded. We should do this before we reset the NIC.
102 	 */
103 	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
104 	if (rc) {
105 		netif_err(efx, probe, efx->net_dev,
106 			  "Unable to register driver with MCPU\n");
107 		goto fail2;
108 	}
109 	if (already_attached)
110 		/* Not a fatal error */
111 		netif_err(efx, probe, efx->net_dev,
112 			  "Host already registered with MCPU\n");
113 
114 	if (efx->mcdi->fn_flags &
115 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
116 		efx->primary = efx;
117 
118 	return 0;
119 fail2:
120 #ifdef CONFIG_SFC_MCDI_LOGGING
121 	free_page((unsigned long)mcdi->logging_buffer);
122 fail1:
123 #endif
124 	kfree(efx->mcdi);
125 	efx->mcdi = NULL;
126 fail:
127 	return rc;
128 }
129 
130 void efx_mcdi_detach(struct efx_nic *efx)
131 {
132 	if (!efx->mcdi)
133 		return;
134 
135 	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
136 
137 	/* Relinquish the device (back to the BMC, if this is a LOM) */
138 	efx_mcdi_drv_attach(efx, false, NULL);
139 }
140 
141 void efx_mcdi_fini(struct efx_nic *efx)
142 {
143 	if (!efx->mcdi)
144 		return;
145 
146 #ifdef CONFIG_SFC_MCDI_LOGGING
147 	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
148 #endif
149 
150 	kfree(efx->mcdi);
151 }
152 
153 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
154 				  const efx_dword_t *inbuf, size_t inlen)
155 {
156 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
157 #ifdef CONFIG_SFC_MCDI_LOGGING
158 	char *buf = mcdi->logging_buffer; /* page-sized */
159 #endif
160 	efx_dword_t hdr[2];
161 	size_t hdr_len;
162 	u32 xflags, seqno;
163 
164 	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
165 
166 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
167 	spin_lock_bh(&mcdi->iface_lock);
168 	++mcdi->seqno;
169 	spin_unlock_bh(&mcdi->iface_lock);
170 
171 	seqno = mcdi->seqno & SEQ_MASK;
172 	xflags = 0;
173 	if (mcdi->mode == MCDI_MODE_EVENTS)
174 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
175 
176 	if (efx->type->mcdi_max_ver == 1) {
177 		/* MCDI v1 */
178 		EFX_POPULATE_DWORD_7(hdr[0],
179 				     MCDI_HEADER_RESPONSE, 0,
180 				     MCDI_HEADER_RESYNC, 1,
181 				     MCDI_HEADER_CODE, cmd,
182 				     MCDI_HEADER_DATALEN, inlen,
183 				     MCDI_HEADER_SEQ, seqno,
184 				     MCDI_HEADER_XFLAGS, xflags,
185 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
186 		hdr_len = 4;
187 	} else {
188 		/* MCDI v2 */
189 		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
190 		EFX_POPULATE_DWORD_7(hdr[0],
191 				     MCDI_HEADER_RESPONSE, 0,
192 				     MCDI_HEADER_RESYNC, 1,
193 				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
194 				     MCDI_HEADER_DATALEN, 0,
195 				     MCDI_HEADER_SEQ, seqno,
196 				     MCDI_HEADER_XFLAGS, xflags,
197 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
198 		EFX_POPULATE_DWORD_2(hdr[1],
199 				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
200 				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
201 		hdr_len = 8;
202 	}
203 
204 #ifdef CONFIG_SFC_MCDI_LOGGING
205 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
206 		int bytes = 0;
207 		int i;
208 		/* Lengths should always be a whole number of dwords, so scream
209 		 * if they're not.
210 		 */
211 		WARN_ON_ONCE(hdr_len % 4);
212 		WARN_ON_ONCE(inlen % 4);
213 
214 		/* We own the logging buffer, as only one MCDI can be in
215 		 * progress on a NIC at any one time.  So no need for locking.
216 		 */
217 		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
218 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
219 					  " %08x", le32_to_cpu(hdr[i].u32[0]));
220 
221 		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
222 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
223 					  " %08x", le32_to_cpu(inbuf[i].u32[0]));
224 
225 		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
226 	}
227 #endif
228 
229 	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
230 
231 	mcdi->new_epoch = false;
232 }
233 
234 static int efx_mcdi_errno(unsigned int mcdi_err)
235 {
236 	switch (mcdi_err) {
237 	case 0:
238 		return 0;
239 #define TRANSLATE_ERROR(name)					\
240 	case MC_CMD_ERR_ ## name:				\
241 		return -name;
242 	TRANSLATE_ERROR(EPERM);
243 	TRANSLATE_ERROR(ENOENT);
244 	TRANSLATE_ERROR(EINTR);
245 	TRANSLATE_ERROR(EAGAIN);
246 	TRANSLATE_ERROR(EACCES);
247 	TRANSLATE_ERROR(EBUSY);
248 	TRANSLATE_ERROR(EINVAL);
249 	TRANSLATE_ERROR(EDEADLK);
250 	TRANSLATE_ERROR(ENOSYS);
251 	TRANSLATE_ERROR(ETIME);
252 	TRANSLATE_ERROR(EALREADY);
253 	TRANSLATE_ERROR(ENOSPC);
254 #undef TRANSLATE_ERROR
255 	case MC_CMD_ERR_ENOTSUP:
256 		return -EOPNOTSUPP;
257 	case MC_CMD_ERR_ALLOC_FAIL:
258 		return -ENOBUFS;
259 	case MC_CMD_ERR_MAC_EXIST:
260 		return -EADDRINUSE;
261 	default:
262 		return -EPROTO;
263 	}
264 }
265 
266 static void efx_mcdi_read_response_header(struct efx_nic *efx)
267 {
268 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
269 	unsigned int respseq, respcmd, error;
270 #ifdef CONFIG_SFC_MCDI_LOGGING
271 	char *buf = mcdi->logging_buffer; /* page-sized */
272 #endif
273 	efx_dword_t hdr;
274 
275 	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
276 	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
277 	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
278 	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
279 
280 	if (respcmd != MC_CMD_V2_EXTN) {
281 		mcdi->resp_hdr_len = 4;
282 		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
283 	} else {
284 		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
285 		mcdi->resp_hdr_len = 8;
286 		mcdi->resp_data_len =
287 			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
288 	}
289 
290 #ifdef CONFIG_SFC_MCDI_LOGGING
291 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
292 		size_t hdr_len, data_len;
293 		int bytes = 0;
294 		int i;
295 
296 		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
297 		hdr_len = mcdi->resp_hdr_len / 4;
298 		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
299 		 * to dword size, and the MCDI buffer is always dword size
300 		 */
301 		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
302 
303 		/* We own the logging buffer, as only one MCDI can be in
304 		 * progress on a NIC at any one time.  So no need for locking.
305 		 */
306 		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
307 			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
308 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
309 					  " %08x", le32_to_cpu(hdr.u32[0]));
310 		}
311 
312 		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
313 			efx->type->mcdi_read_response(efx, &hdr,
314 					mcdi->resp_hdr_len + (i * 4), 4);
315 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
316 					  " %08x", le32_to_cpu(hdr.u32[0]));
317 		}
318 
319 		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
320 	}
321 #endif
322 
323 	mcdi->resprc_raw = 0;
324 	if (error && mcdi->resp_data_len == 0) {
325 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
326 		mcdi->resprc = -EIO;
327 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
328 		netif_err(efx, hw, efx->net_dev,
329 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
330 			  respseq, mcdi->seqno);
331 		mcdi->resprc = -EIO;
332 	} else if (error) {
333 		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
334 		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
335 		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
336 	} else {
337 		mcdi->resprc = 0;
338 	}
339 }
340 
341 static bool efx_mcdi_poll_once(struct efx_nic *efx)
342 {
343 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
344 
345 	rmb();
346 	if (!efx->type->mcdi_poll_response(efx))
347 		return false;
348 
349 	spin_lock_bh(&mcdi->iface_lock);
350 	efx_mcdi_read_response_header(efx);
351 	spin_unlock_bh(&mcdi->iface_lock);
352 
353 	return true;
354 }
355 
356 static int efx_mcdi_poll(struct efx_nic *efx)
357 {
358 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
359 	unsigned long time, finish;
360 	unsigned int spins;
361 	int rc;
362 
363 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
364 	rc = efx_mcdi_poll_reboot(efx);
365 	if (rc) {
366 		spin_lock_bh(&mcdi->iface_lock);
367 		mcdi->resprc = rc;
368 		mcdi->resp_hdr_len = 0;
369 		mcdi->resp_data_len = 0;
370 		spin_unlock_bh(&mcdi->iface_lock);
371 		return 0;
372 	}
373 
374 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
375 	 * because generally mcdi responses are fast. After that, back off
376 	 * and poll once a jiffy (approximately)
377 	 */
378 	spins = TICK_USEC;
379 	finish = jiffies + MCDI_RPC_TIMEOUT;
380 
381 	while (1) {
382 		if (spins != 0) {
383 			--spins;
384 			udelay(1);
385 		} else {
386 			schedule_timeout_uninterruptible(1);
387 		}
388 
389 		time = jiffies;
390 
391 		if (efx_mcdi_poll_once(efx))
392 			break;
393 
394 		if (time_after(time, finish))
395 			return -ETIMEDOUT;
396 	}
397 
398 	/* Return rc=0 like wait_event_timeout() */
399 	return 0;
400 }
401 
402 /* Test and clear MC-rebooted flag for this port/function; reset
403  * software state as necessary.
404  */
405 int efx_mcdi_poll_reboot(struct efx_nic *efx)
406 {
407 	if (!efx->mcdi)
408 		return 0;
409 
410 	return efx->type->mcdi_poll_reboot(efx);
411 }
412 
413 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
414 {
415 	return cmpxchg(&mcdi->state,
416 		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
417 		MCDI_STATE_QUIESCENT;
418 }
419 
420 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
421 {
422 	/* Wait until the interface becomes QUIESCENT and we win the race
423 	 * to mark it RUNNING_SYNC.
424 	 */
425 	wait_event(mcdi->wq,
426 		   cmpxchg(&mcdi->state,
427 			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
428 		   MCDI_STATE_QUIESCENT);
429 }
430 
431 static int efx_mcdi_await_completion(struct efx_nic *efx)
432 {
433 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
434 
435 	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
436 			       MCDI_RPC_TIMEOUT) == 0)
437 		return -ETIMEDOUT;
438 
439 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
440 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
441 	 * completed the request first, then we'll just end up completing the
442 	 * request again, which is safe.
443 	 *
444 	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
445 	 * wait_event_timeout() implicitly provides.
446 	 */
447 	if (mcdi->mode == MCDI_MODE_POLL)
448 		return efx_mcdi_poll(efx);
449 
450 	return 0;
451 }
452 
453 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
454  * requester.  Return whether this was done.  Does not take any locks.
455  */
456 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
457 {
458 	if (cmpxchg(&mcdi->state,
459 		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
460 	    MCDI_STATE_RUNNING_SYNC) {
461 		wake_up(&mcdi->wq);
462 		return true;
463 	}
464 
465 	return false;
466 }
467 
468 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
469 {
470 	if (mcdi->mode == MCDI_MODE_EVENTS) {
471 		struct efx_mcdi_async_param *async;
472 		struct efx_nic *efx = mcdi->efx;
473 
474 		/* Process the asynchronous request queue */
475 		spin_lock_bh(&mcdi->async_lock);
476 		async = list_first_entry_or_null(
477 			&mcdi->async_list, struct efx_mcdi_async_param, list);
478 		if (async) {
479 			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
480 			efx_mcdi_send_request(efx, async->cmd,
481 					      (const efx_dword_t *)(async + 1),
482 					      async->inlen);
483 			mod_timer(&mcdi->async_timer,
484 				  jiffies + MCDI_RPC_TIMEOUT);
485 		}
486 		spin_unlock_bh(&mcdi->async_lock);
487 
488 		if (async)
489 			return;
490 	}
491 
492 	mcdi->state = MCDI_STATE_QUIESCENT;
493 	wake_up(&mcdi->wq);
494 }
495 
496 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
497  * asynchronous completion function, and release the interface.
498  * Return whether this was done.  Must be called in bh-disabled
499  * context.  Will take iface_lock and async_lock.
500  */
501 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
502 {
503 	struct efx_nic *efx = mcdi->efx;
504 	struct efx_mcdi_async_param *async;
505 	size_t hdr_len, data_len, err_len;
506 	efx_dword_t *outbuf;
507 	MCDI_DECLARE_BUF_ERR(errbuf);
508 	int rc;
509 
510 	if (cmpxchg(&mcdi->state,
511 		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
512 	    MCDI_STATE_RUNNING_ASYNC)
513 		return false;
514 
515 	spin_lock(&mcdi->iface_lock);
516 	if (timeout) {
517 		/* Ensure that if the completion event arrives later,
518 		 * the seqno check in efx_mcdi_ev_cpl() will fail
519 		 */
520 		++mcdi->seqno;
521 		++mcdi->credits;
522 		rc = -ETIMEDOUT;
523 		hdr_len = 0;
524 		data_len = 0;
525 	} else {
526 		rc = mcdi->resprc;
527 		hdr_len = mcdi->resp_hdr_len;
528 		data_len = mcdi->resp_data_len;
529 	}
530 	spin_unlock(&mcdi->iface_lock);
531 
532 	/* Stop the timer.  In case the timer function is running, we
533 	 * must wait for it to return so that there is no possibility
534 	 * of it aborting the next request.
535 	 */
536 	if (!timeout)
537 		del_timer_sync(&mcdi->async_timer);
538 
539 	spin_lock(&mcdi->async_lock);
540 	async = list_first_entry(&mcdi->async_list,
541 				 struct efx_mcdi_async_param, list);
542 	list_del(&async->list);
543 	spin_unlock(&mcdi->async_lock);
544 
545 	outbuf = (efx_dword_t *)(async + 1);
546 	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
547 				      min(async->outlen, data_len));
548 	if (!timeout && rc && !async->quiet) {
549 		err_len = min(sizeof(errbuf), data_len);
550 		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
551 					      sizeof(errbuf));
552 		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
553 				       err_len, rc);
554 	}
555 
556 	if (async->complete)
557 		async->complete(efx, async->cookie, rc, outbuf,
558 				min(async->outlen, data_len));
559 	kfree(async);
560 
561 	efx_mcdi_release(mcdi);
562 
563 	return true;
564 }
565 
566 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
567 			    unsigned int datalen, unsigned int mcdi_err)
568 {
569 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
570 	bool wake = false;
571 
572 	spin_lock(&mcdi->iface_lock);
573 
574 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
575 		if (mcdi->credits)
576 			/* The request has been cancelled */
577 			--mcdi->credits;
578 		else
579 			netif_err(efx, hw, efx->net_dev,
580 				  "MC response mismatch tx seq 0x%x rx "
581 				  "seq 0x%x\n", seqno, mcdi->seqno);
582 	} else {
583 		if (efx->type->mcdi_max_ver >= 2) {
584 			/* MCDI v2 responses don't fit in an event */
585 			efx_mcdi_read_response_header(efx);
586 		} else {
587 			mcdi->resprc = efx_mcdi_errno(mcdi_err);
588 			mcdi->resp_hdr_len = 4;
589 			mcdi->resp_data_len = datalen;
590 		}
591 
592 		wake = true;
593 	}
594 
595 	spin_unlock(&mcdi->iface_lock);
596 
597 	if (wake) {
598 		if (!efx_mcdi_complete_async(mcdi, false))
599 			(void) efx_mcdi_complete_sync(mcdi);
600 
601 		/* If the interface isn't RUNNING_ASYNC or
602 		 * RUNNING_SYNC then we've received a duplicate
603 		 * completion after we've already transitioned back to
604 		 * QUIESCENT. [A subsequent invocation would increment
605 		 * seqno, so would have failed the seqno check].
606 		 */
607 	}
608 }
609 
610 static void efx_mcdi_timeout_async(struct timer_list *t)
611 {
612 	struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
613 
614 	efx_mcdi_complete_async(mcdi, true);
615 }
616 
617 static int
618 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
619 {
620 	if (efx->type->mcdi_max_ver < 0 ||
621 	     (efx->type->mcdi_max_ver < 2 &&
622 	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
623 		return -EINVAL;
624 
625 	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
626 	    (efx->type->mcdi_max_ver < 2 &&
627 	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
628 		return -EMSGSIZE;
629 
630 	return 0;
631 }
632 
633 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
634 				      size_t hdr_len, size_t data_len,
635 				      u32 *proxy_handle)
636 {
637 	MCDI_DECLARE_BUF_ERR(testbuf);
638 	const size_t buflen = sizeof(testbuf);
639 
640 	if (!proxy_handle || data_len < buflen)
641 		return false;
642 
643 	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
644 	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
645 		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
646 		return true;
647 	}
648 
649 	return false;
650 }
651 
652 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
653 				size_t inlen,
654 				efx_dword_t *outbuf, size_t outlen,
655 				size_t *outlen_actual, bool quiet,
656 				u32 *proxy_handle, int *raw_rc)
657 {
658 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
659 	MCDI_DECLARE_BUF_ERR(errbuf);
660 	int rc;
661 
662 	if (mcdi->mode == MCDI_MODE_POLL)
663 		rc = efx_mcdi_poll(efx);
664 	else
665 		rc = efx_mcdi_await_completion(efx);
666 
667 	if (rc != 0) {
668 		netif_err(efx, hw, efx->net_dev,
669 			  "MC command 0x%x inlen %d mode %d timed out\n",
670 			  cmd, (int)inlen, mcdi->mode);
671 
672 		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
673 			netif_err(efx, hw, efx->net_dev,
674 				  "MCDI request was completed without an event\n");
675 			rc = 0;
676 		}
677 
678 		efx_mcdi_abandon(efx);
679 
680 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
681 		 * and completing a request we've just cancelled, by ensuring
682 		 * that the seqno check therein fails.
683 		 */
684 		spin_lock_bh(&mcdi->iface_lock);
685 		++mcdi->seqno;
686 		++mcdi->credits;
687 		spin_unlock_bh(&mcdi->iface_lock);
688 	}
689 
690 	if (proxy_handle)
691 		*proxy_handle = 0;
692 
693 	if (rc != 0) {
694 		if (outlen_actual)
695 			*outlen_actual = 0;
696 	} else {
697 		size_t hdr_len, data_len, err_len;
698 
699 		/* At the very least we need a memory barrier here to ensure
700 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
701 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
702 		 * acquiring the iface_lock. */
703 		spin_lock_bh(&mcdi->iface_lock);
704 		rc = mcdi->resprc;
705 		if (raw_rc)
706 			*raw_rc = mcdi->resprc_raw;
707 		hdr_len = mcdi->resp_hdr_len;
708 		data_len = mcdi->resp_data_len;
709 		err_len = min(sizeof(errbuf), data_len);
710 		spin_unlock_bh(&mcdi->iface_lock);
711 
712 		BUG_ON(rc > 0);
713 
714 		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
715 					      min(outlen, data_len));
716 		if (outlen_actual)
717 			*outlen_actual = data_len;
718 
719 		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
720 
721 		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
722 			/* Don't reset if MC_CMD_REBOOT returns EIO */
723 		} else if (rc == -EIO || rc == -EINTR) {
724 			netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
725 			netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
726 				  cmd, -rc);
727 			if (efx->type->mcdi_reboot_detected)
728 				efx->type->mcdi_reboot_detected(efx);
729 			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
730 		} else if (proxy_handle && (rc == -EPROTO) &&
731 			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
732 						     proxy_handle)) {
733 			mcdi->proxy_rx_status = 0;
734 			mcdi->proxy_rx_handle = 0;
735 			mcdi->state = MCDI_STATE_PROXY_WAIT;
736 		} else if (rc && !quiet) {
737 			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
738 					       rc);
739 		}
740 
741 		if (rc == -EIO || rc == -EINTR) {
742 			msleep(MCDI_STATUS_SLEEP_MS);
743 			efx_mcdi_poll_reboot(efx);
744 			mcdi->new_epoch = true;
745 		}
746 	}
747 
748 	if (!proxy_handle || !*proxy_handle)
749 		efx_mcdi_release(mcdi);
750 	return rc;
751 }
752 
753 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
754 {
755 	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
756 		/* Interrupt the proxy wait. */
757 		mcdi->proxy_rx_status = -EINTR;
758 		wake_up(&mcdi->proxy_rx_wq);
759 	}
760 }
761 
762 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
763 				       u32 handle, int status)
764 {
765 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
766 
767 	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
768 
769 	mcdi->proxy_rx_status = efx_mcdi_errno(status);
770 	/* Ensure the status is written before we update the handle, since the
771 	 * latter is used to check if we've finished.
772 	 */
773 	wmb();
774 	mcdi->proxy_rx_handle = handle;
775 	wake_up(&mcdi->proxy_rx_wq);
776 }
777 
778 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
779 {
780 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
781 	int rc;
782 
783 	/* Wait for a proxy event, or timeout. */
784 	rc = wait_event_timeout(mcdi->proxy_rx_wq,
785 				mcdi->proxy_rx_handle != 0 ||
786 				mcdi->proxy_rx_status == -EINTR,
787 				MCDI_RPC_TIMEOUT);
788 
789 	if (rc <= 0) {
790 		netif_dbg(efx, hw, efx->net_dev,
791 			  "MCDI proxy timeout %d\n", handle);
792 		return -ETIMEDOUT;
793 	} else if (mcdi->proxy_rx_handle != handle) {
794 		netif_warn(efx, hw, efx->net_dev,
795 			   "MCDI proxy unexpected handle %d (expected %d)\n",
796 			   mcdi->proxy_rx_handle, handle);
797 		return -EINVAL;
798 	}
799 
800 	return mcdi->proxy_rx_status;
801 }
802 
803 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
804 			 const efx_dword_t *inbuf, size_t inlen,
805 			 efx_dword_t *outbuf, size_t outlen,
806 			 size_t *outlen_actual, bool quiet, int *raw_rc)
807 {
808 	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
809 	int rc;
810 
811 	if (inbuf && inlen && (inbuf == outbuf)) {
812 		/* The input buffer can't be aliased with the output. */
813 		WARN_ON(1);
814 		return -EINVAL;
815 	}
816 
817 	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
818 	if (rc)
819 		return rc;
820 
821 	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
822 				  outlen_actual, quiet, &proxy_handle, raw_rc);
823 
824 	if (proxy_handle) {
825 		/* Handle proxy authorisation. This allows approval of MCDI
826 		 * operations to be delegated to the admin function, allowing
827 		 * fine control over (eg) multicast subscriptions.
828 		 */
829 		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
830 
831 		netif_dbg(efx, hw, efx->net_dev,
832 			  "MCDI waiting for proxy auth %d\n",
833 			  proxy_handle);
834 		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
835 
836 		if (rc == 0) {
837 			netif_dbg(efx, hw, efx->net_dev,
838 				  "MCDI proxy retry %d\n", proxy_handle);
839 
840 			/* We now retry the original request. */
841 			mcdi->state = MCDI_STATE_RUNNING_SYNC;
842 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
843 
844 			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
845 						  outbuf, outlen, outlen_actual,
846 						  quiet, NULL, raw_rc);
847 		} else {
848 			netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
849 				       "MC command 0x%x failed after proxy auth rc=%d\n",
850 				       cmd, rc);
851 
852 			if (rc == -EINTR || rc == -EIO)
853 				efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
854 			efx_mcdi_release(mcdi);
855 		}
856 	}
857 
858 	return rc;
859 }
860 
861 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
862 				   const efx_dword_t *inbuf, size_t inlen,
863 				   efx_dword_t *outbuf, size_t outlen,
864 				   size_t *outlen_actual, bool quiet)
865 {
866 	int raw_rc = 0;
867 	int rc;
868 
869 	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
870 			   outbuf, outlen, outlen_actual, true, &raw_rc);
871 
872 	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
873 	    efx->type->is_vf) {
874 		/* If the EVB port isn't available within a VF this may
875 		 * mean the PF is still bringing the switch up. We should
876 		 * retry our request shortly.
877 		 */
878 		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
879 		unsigned int delay_us = 10000;
880 
881 		netif_dbg(efx, hw, efx->net_dev,
882 			  "%s: NO_EVB_PORT; will retry request\n",
883 			  __func__);
884 
885 		do {
886 			usleep_range(delay_us, delay_us + 10000);
887 			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
888 					   outbuf, outlen, outlen_actual,
889 					   true, &raw_rc);
890 			if (delay_us < 100000)
891 				delay_us <<= 1;
892 		} while ((rc == -EPROTO) &&
893 			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
894 			 time_before(jiffies, abort_time));
895 	}
896 
897 	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
898 		efx_mcdi_display_error(efx, cmd, inlen,
899 				       outbuf, outlen, rc);
900 
901 	return rc;
902 }
903 
904 /**
905  * efx_mcdi_rpc - Issue an MCDI command and wait for completion
906  * @efx: NIC through which to issue the command
907  * @cmd: Command type number
908  * @inbuf: Command parameters
909  * @inlen: Length of command parameters, in bytes.  Must be a multiple
910  *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
911  * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
912  * @outlen: Length of response buffer, in bytes.  If the actual
913  *	response is longer than @outlen & ~3, it will be truncated
914  *	to that length.
915  * @outlen_actual: Pointer through which to return the actual response
916  *	length.  May be %NULL if this is not needed.
917  *
918  * This function may sleep and therefore must be called in an appropriate
919  * context.
920  *
921  * Return: A negative error code, or zero if successful.  The error
922  *	code may come from the MCDI response or may indicate a failure
923  *	to communicate with the MC.  In the former case, the response
924  *	will still be copied to @outbuf and *@outlen_actual will be
925  *	set accordingly.  In the latter case, *@outlen_actual will be
926  *	set to zero.
927  */
928 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
929 		 const efx_dword_t *inbuf, size_t inlen,
930 		 efx_dword_t *outbuf, size_t outlen,
931 		 size_t *outlen_actual)
932 {
933 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
934 				       outlen_actual, false);
935 }
936 
937 /* Normally, on receiving an error code in the MCDI response,
938  * efx_mcdi_rpc will log an error message containing (among other
939  * things) the raw error code, by means of efx_mcdi_display_error.
940  * This _quiet version suppresses that; if the caller wishes to log
941  * the error conditionally on the return code, it should call this
942  * function and is then responsible for calling efx_mcdi_display_error
943  * as needed.
944  */
945 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
946 		       const efx_dword_t *inbuf, size_t inlen,
947 		       efx_dword_t *outbuf, size_t outlen,
948 		       size_t *outlen_actual)
949 {
950 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
951 				       outlen_actual, true);
952 }
953 
954 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
955 		       const efx_dword_t *inbuf, size_t inlen)
956 {
957 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
958 	int rc;
959 
960 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
961 	if (rc)
962 		return rc;
963 
964 	if (efx->mc_bist_for_other_fn)
965 		return -ENETDOWN;
966 
967 	if (mcdi->mode == MCDI_MODE_FAIL)
968 		return -ENETDOWN;
969 
970 	efx_mcdi_acquire_sync(mcdi);
971 	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
972 	return 0;
973 }
974 
975 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
976 			       const efx_dword_t *inbuf, size_t inlen,
977 			       size_t outlen,
978 			       efx_mcdi_async_completer *complete,
979 			       unsigned long cookie, bool quiet)
980 {
981 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
982 	struct efx_mcdi_async_param *async;
983 	int rc;
984 
985 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
986 	if (rc)
987 		return rc;
988 
989 	if (efx->mc_bist_for_other_fn)
990 		return -ENETDOWN;
991 
992 	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
993 			GFP_ATOMIC);
994 	if (!async)
995 		return -ENOMEM;
996 
997 	async->cmd = cmd;
998 	async->inlen = inlen;
999 	async->outlen = outlen;
1000 	async->quiet = quiet;
1001 	async->complete = complete;
1002 	async->cookie = cookie;
1003 	memcpy(async + 1, inbuf, inlen);
1004 
1005 	spin_lock_bh(&mcdi->async_lock);
1006 
1007 	if (mcdi->mode == MCDI_MODE_EVENTS) {
1008 		list_add_tail(&async->list, &mcdi->async_list);
1009 
1010 		/* If this is at the front of the queue, try to start it
1011 		 * immediately
1012 		 */
1013 		if (mcdi->async_list.next == &async->list &&
1014 		    efx_mcdi_acquire_async(mcdi)) {
1015 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1016 			mod_timer(&mcdi->async_timer,
1017 				  jiffies + MCDI_RPC_TIMEOUT);
1018 		}
1019 	} else {
1020 		kfree(async);
1021 		rc = -ENETDOWN;
1022 	}
1023 
1024 	spin_unlock_bh(&mcdi->async_lock);
1025 
1026 	return rc;
1027 }
1028 
1029 /**
1030  * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1031  * @efx: NIC through which to issue the command
1032  * @cmd: Command type number
1033  * @inbuf: Command parameters
1034  * @inlen: Length of command parameters, in bytes
1035  * @outlen: Length to allocate for response buffer, in bytes
1036  * @complete: Function to be called on completion or cancellation.
1037  * @cookie: Arbitrary value to be passed to @complete.
1038  *
1039  * This function does not sleep and therefore may be called in atomic
1040  * context.  It will fail if event queues are disabled or if MCDI
1041  * event completions have been disabled due to an error.
1042  *
1043  * If it succeeds, the @complete function will be called exactly once
1044  * in atomic context, when one of the following occurs:
1045  * (a) the completion event is received (in NAPI context)
1046  * (b) event queues are disabled (in the process that disables them)
1047  * (c) the request times-out (in timer context)
1048  */
1049 int
1050 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1051 		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1052 		   efx_mcdi_async_completer *complete, unsigned long cookie)
1053 {
1054 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1055 				   cookie, false);
1056 }
1057 
1058 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1059 			     const efx_dword_t *inbuf, size_t inlen,
1060 			     size_t outlen, efx_mcdi_async_completer *complete,
1061 			     unsigned long cookie)
1062 {
1063 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1064 				   cookie, true);
1065 }
1066 
1067 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1068 			efx_dword_t *outbuf, size_t outlen,
1069 			size_t *outlen_actual)
1070 {
1071 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1072 				    outlen_actual, false, NULL, NULL);
1073 }
1074 
1075 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1076 			      efx_dword_t *outbuf, size_t outlen,
1077 			      size_t *outlen_actual)
1078 {
1079 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1080 				    outlen_actual, true, NULL, NULL);
1081 }
1082 
1083 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1084 			    size_t inlen, efx_dword_t *outbuf,
1085 			    size_t outlen, int rc)
1086 {
1087 	int code = 0, err_arg = 0;
1088 
1089 	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1090 		code = MCDI_DWORD(outbuf, ERR_CODE);
1091 	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1092 		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1093 	netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1094 		       "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1095 		       cmd, inlen, rc, code, err_arg);
1096 }
1097 
1098 /* Switch to polled MCDI completions.  This can be called in various
1099  * error conditions with various locks held, so it must be lockless.
1100  * Caller is responsible for flushing asynchronous requests later.
1101  */
1102 void efx_mcdi_mode_poll(struct efx_nic *efx)
1103 {
1104 	struct efx_mcdi_iface *mcdi;
1105 
1106 	if (!efx->mcdi)
1107 		return;
1108 
1109 	mcdi = efx_mcdi(efx);
1110 	/* If already in polling mode, nothing to do.
1111 	 * If in fail-fast state, don't switch to polled completion.
1112 	 * FLR recovery will do that later.
1113 	 */
1114 	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1115 		return;
1116 
1117 	/* We can switch from event completion to polled completion, because
1118 	 * mcdi requests are always completed in shared memory. We do this by
1119 	 * switching the mode to POLL'd then completing the request.
1120 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1121 	 *
1122 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1123 	 * which efx_mcdi_complete_sync() provides for us.
1124 	 */
1125 	mcdi->mode = MCDI_MODE_POLL;
1126 
1127 	efx_mcdi_complete_sync(mcdi);
1128 }
1129 
1130 /* Flush any running or queued asynchronous requests, after event processing
1131  * is stopped
1132  */
1133 void efx_mcdi_flush_async(struct efx_nic *efx)
1134 {
1135 	struct efx_mcdi_async_param *async, *next;
1136 	struct efx_mcdi_iface *mcdi;
1137 
1138 	if (!efx->mcdi)
1139 		return;
1140 
1141 	mcdi = efx_mcdi(efx);
1142 
1143 	/* We must be in poll or fail mode so no more requests can be queued */
1144 	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1145 
1146 	del_timer_sync(&mcdi->async_timer);
1147 
1148 	/* If a request is still running, make sure we give the MC
1149 	 * time to complete it so that the response won't overwrite our
1150 	 * next request.
1151 	 */
1152 	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1153 		efx_mcdi_poll(efx);
1154 		mcdi->state = MCDI_STATE_QUIESCENT;
1155 	}
1156 
1157 	/* Nothing else will access the async list now, so it is safe
1158 	 * to walk it without holding async_lock.  If we hold it while
1159 	 * calling a completer then lockdep may warn that we have
1160 	 * acquired locks in the wrong order.
1161 	 */
1162 	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1163 		if (async->complete)
1164 			async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1165 		list_del(&async->list);
1166 		kfree(async);
1167 	}
1168 }
1169 
1170 void efx_mcdi_mode_event(struct efx_nic *efx)
1171 {
1172 	struct efx_mcdi_iface *mcdi;
1173 
1174 	if (!efx->mcdi)
1175 		return;
1176 
1177 	mcdi = efx_mcdi(efx);
1178 	/* If already in event completion mode, nothing to do.
1179 	 * If in fail-fast state, don't switch to event completion.  FLR
1180 	 * recovery will do that later.
1181 	 */
1182 	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1183 		return;
1184 
1185 	/* We can't switch from polled to event completion in the middle of a
1186 	 * request, because the completion method is specified in the request.
1187 	 * So acquire the interface to serialise the requestors. We don't need
1188 	 * to acquire the iface_lock to change the mode here, but we do need a
1189 	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1190 	 * efx_mcdi_acquire() provides.
1191 	 */
1192 	efx_mcdi_acquire_sync(mcdi);
1193 	mcdi->mode = MCDI_MODE_EVENTS;
1194 	efx_mcdi_release(mcdi);
1195 }
1196 
1197 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1198 {
1199 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1200 
1201 	/* If there is an outstanding MCDI request, it has been terminated
1202 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1203 	 * in polled mode, then do nothing because the MC reboot handler will
1204 	 * set the header correctly. However, if the mcdi interface is waiting
1205 	 * for a CMDDONE event it won't receive it [and since all MCDI events
1206 	 * are sent to the same queue, we can't be racing with
1207 	 * efx_mcdi_ev_cpl()]
1208 	 *
1209 	 * If there is an outstanding asynchronous request, we can't
1210 	 * complete it now (efx_mcdi_complete() would deadlock).  The
1211 	 * reset process will take care of this.
1212 	 *
1213 	 * There's a race here with efx_mcdi_send_request(), because
1214 	 * we might receive a REBOOT event *before* the request has
1215 	 * been copied out. In polled mode (during startup) this is
1216 	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1217 	 * event mode, this condition is just an edge-case of
1218 	 * receiving a REBOOT event after posting the MCDI
1219 	 * request. Did the mc reboot before or after the copyout? The
1220 	 * best we can do always is just return failure.
1221 	 *
1222 	 * If there is an outstanding proxy response expected it is not going
1223 	 * to arrive. We should thus abort it.
1224 	 */
1225 	spin_lock(&mcdi->iface_lock);
1226 	efx_mcdi_proxy_abort(mcdi);
1227 
1228 	if (efx_mcdi_complete_sync(mcdi)) {
1229 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1230 			mcdi->resprc = rc;
1231 			mcdi->resp_hdr_len = 0;
1232 			mcdi->resp_data_len = 0;
1233 			++mcdi->credits;
1234 		}
1235 	} else {
1236 		int count;
1237 
1238 		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1239 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1240 			rc = efx_mcdi_poll_reboot(efx);
1241 			if (rc)
1242 				break;
1243 			udelay(MCDI_STATUS_DELAY_US);
1244 		}
1245 
1246 		/* On EF10, a CODE_MC_REBOOT event can be received without the
1247 		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1248 		 * If zero was returned from the final call to
1249 		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1250 		 * MC has definitely rebooted so prepare for the reset.
1251 		 */
1252 		if (!rc && efx->type->mcdi_reboot_detected)
1253 			efx->type->mcdi_reboot_detected(efx);
1254 
1255 		mcdi->new_epoch = true;
1256 
1257 		/* Nobody was waiting for an MCDI request, so trigger a reset */
1258 		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1259 	}
1260 
1261 	spin_unlock(&mcdi->iface_lock);
1262 }
1263 
1264 /* The MC is going down in to BIST mode. set the BIST flag to block
1265  * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1266  * (which doesn't actually execute a reset, it waits for the controlling
1267  * function to reset it).
1268  */
1269 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1270 {
1271 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1272 
1273 	spin_lock(&mcdi->iface_lock);
1274 	efx->mc_bist_for_other_fn = true;
1275 	efx_mcdi_proxy_abort(mcdi);
1276 
1277 	if (efx_mcdi_complete_sync(mcdi)) {
1278 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1279 			mcdi->resprc = -EIO;
1280 			mcdi->resp_hdr_len = 0;
1281 			mcdi->resp_data_len = 0;
1282 			++mcdi->credits;
1283 		}
1284 	}
1285 	mcdi->new_epoch = true;
1286 	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1287 	spin_unlock(&mcdi->iface_lock);
1288 }
1289 
1290 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1291  * to recover.
1292  */
1293 static void efx_mcdi_abandon(struct efx_nic *efx)
1294 {
1295 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1296 
1297 	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1298 		return; /* it had already been done */
1299 	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1300 	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1301 }
1302 
1303 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1304 void efx_mcdi_process_event(struct efx_channel *channel,
1305 			    efx_qword_t *event)
1306 {
1307 	struct efx_nic *efx = channel->efx;
1308 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1309 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1310 
1311 	switch (code) {
1312 	case MCDI_EVENT_CODE_BADSSERT:
1313 		netif_err(efx, hw, efx->net_dev,
1314 			  "MC watchdog or assertion failure at 0x%x\n", data);
1315 		efx_mcdi_ev_death(efx, -EINTR);
1316 		break;
1317 
1318 	case MCDI_EVENT_CODE_PMNOTICE:
1319 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1320 		break;
1321 
1322 	case MCDI_EVENT_CODE_CMDDONE:
1323 		efx_mcdi_ev_cpl(efx,
1324 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1325 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1326 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1327 		break;
1328 
1329 	case MCDI_EVENT_CODE_LINKCHANGE:
1330 		efx_mcdi_process_link_change(efx, event);
1331 		break;
1332 	case MCDI_EVENT_CODE_SENSOREVT:
1333 		efx_mcdi_sensor_event(efx, event);
1334 		break;
1335 	case MCDI_EVENT_CODE_SCHEDERR:
1336 		netif_dbg(efx, hw, efx->net_dev,
1337 			  "MC Scheduler alert (0x%x)\n", data);
1338 		break;
1339 	case MCDI_EVENT_CODE_REBOOT:
1340 	case MCDI_EVENT_CODE_MC_REBOOT:
1341 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1342 		efx_mcdi_ev_death(efx, -EIO);
1343 		break;
1344 	case MCDI_EVENT_CODE_MC_BIST:
1345 		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1346 		efx_mcdi_ev_bist(efx);
1347 		break;
1348 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1349 		/* MAC stats are gather lazily.  We can ignore this. */
1350 		break;
1351 	case MCDI_EVENT_CODE_FLR:
1352 		if (efx->type->sriov_flr)
1353 			efx->type->sriov_flr(efx,
1354 					     MCDI_EVENT_FIELD(*event, FLR_VF));
1355 		break;
1356 	case MCDI_EVENT_CODE_PTP_RX:
1357 	case MCDI_EVENT_CODE_PTP_FAULT:
1358 	case MCDI_EVENT_CODE_PTP_PPS:
1359 		efx_ptp_event(efx, event);
1360 		break;
1361 	case MCDI_EVENT_CODE_PTP_TIME:
1362 		efx_time_sync_event(channel, event);
1363 		break;
1364 	case MCDI_EVENT_CODE_TX_FLUSH:
1365 	case MCDI_EVENT_CODE_RX_FLUSH:
1366 		/* Two flush events will be sent: one to the same event
1367 		 * queue as completions, and one to event queue 0.
1368 		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1369 		 * flag will be set, and we should ignore the event
1370 		 * because we want to wait for all completions.
1371 		 */
1372 		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1373 			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1374 		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1375 			efx_ef10_handle_drain_event(efx);
1376 		break;
1377 	case MCDI_EVENT_CODE_TX_ERR:
1378 	case MCDI_EVENT_CODE_RX_ERR:
1379 		netif_err(efx, hw, efx->net_dev,
1380 			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1381 			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1382 			  EFX_QWORD_VAL(*event));
1383 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1384 		break;
1385 	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1386 		efx_mcdi_ev_proxy_response(efx,
1387 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1388 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1389 		break;
1390 	default:
1391 		netif_err(efx, hw, efx->net_dev,
1392 			  "Unknown MCDI event " EFX_QWORD_FMT "\n",
1393 			  EFX_QWORD_VAL(*event));
1394 	}
1395 }
1396 
1397 /**************************************************************************
1398  *
1399  * Specific request functions
1400  *
1401  **************************************************************************
1402  */
1403 
1404 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1405 {
1406 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1407 	size_t outlength;
1408 	const __le16 *ver_words;
1409 	size_t offset;
1410 	int rc;
1411 
1412 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1413 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1414 			  outbuf, sizeof(outbuf), &outlength);
1415 	if (rc)
1416 		goto fail;
1417 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1418 		rc = -EIO;
1419 		goto fail;
1420 	}
1421 
1422 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1423 	offset = snprintf(buf, len, "%u.%u.%u.%u",
1424 			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1425 			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1426 
1427 	/* EF10 may have multiple datapath firmware variants within a
1428 	 * single version.  Report which variants are running.
1429 	 */
1430 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1431 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1432 
1433 		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1434 				   nic_data->rx_dpcpu_fw_id,
1435 				   nic_data->tx_dpcpu_fw_id);
1436 
1437 		/* It's theoretically possible for the string to exceed 31
1438 		 * characters, though in practice the first three version
1439 		 * components are short enough that this doesn't happen.
1440 		 */
1441 		if (WARN_ON(offset >= len))
1442 			buf[0] = 0;
1443 	}
1444 
1445 	return;
1446 
1447 fail:
1448 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1449 	buf[0] = 0;
1450 }
1451 
1452 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1453 			       bool *was_attached)
1454 {
1455 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1456 	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1457 	size_t outlen;
1458 	int rc;
1459 
1460 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1461 		       driver_operating ? 1 : 0);
1462 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1463 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1464 
1465 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1466 				outbuf, sizeof(outbuf), &outlen);
1467 	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1468 	 * specified will fail with EPERM, and we have to tell the MC we don't
1469 	 * care what firmware we get.
1470 	 */
1471 	if (rc == -EPERM) {
1472 		netif_dbg(efx, probe, efx->net_dev,
1473 			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1474 		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1475 			       MC_CMD_FW_DONT_CARE);
1476 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1477 					sizeof(inbuf), outbuf, sizeof(outbuf),
1478 					&outlen);
1479 	}
1480 	if (rc) {
1481 		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1482 				       outbuf, outlen, rc);
1483 		goto fail;
1484 	}
1485 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1486 		rc = -EIO;
1487 		goto fail;
1488 	}
1489 
1490 	if (driver_operating) {
1491 		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1492 			efx->mcdi->fn_flags =
1493 				MCDI_DWORD(outbuf,
1494 					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1495 		} else {
1496 			/* Synthesise flags for Siena */
1497 			efx->mcdi->fn_flags =
1498 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1499 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1500 				(efx_port_num(efx) == 0) <<
1501 				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1502 		}
1503 	}
1504 
1505 	/* We currently assume we have control of the external link
1506 	 * and are completely trusted by firmware.  Abort probing
1507 	 * if that's not true for this function.
1508 	 */
1509 
1510 	if (was_attached != NULL)
1511 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1512 	return 0;
1513 
1514 fail:
1515 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1516 	return rc;
1517 }
1518 
1519 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1520 			   u16 *fw_subtype_list, u32 *capabilities)
1521 {
1522 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1523 	size_t outlen, i;
1524 	int port_num = efx_port_num(efx);
1525 	int rc;
1526 
1527 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1528 	/* we need __aligned(2) for ether_addr_copy */
1529 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1530 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1531 
1532 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1533 			  outbuf, sizeof(outbuf), &outlen);
1534 	if (rc)
1535 		goto fail;
1536 
1537 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1538 		rc = -EIO;
1539 		goto fail;
1540 	}
1541 
1542 	if (mac_address)
1543 		ether_addr_copy(mac_address,
1544 				port_num ?
1545 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1546 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1547 	if (fw_subtype_list) {
1548 		for (i = 0;
1549 		     i < MCDI_VAR_ARRAY_LEN(outlen,
1550 					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1551 		     i++)
1552 			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1553 				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1554 		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1555 			fw_subtype_list[i] = 0;
1556 	}
1557 	if (capabilities) {
1558 		if (port_num)
1559 			*capabilities = MCDI_DWORD(outbuf,
1560 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1561 		else
1562 			*capabilities = MCDI_DWORD(outbuf,
1563 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1564 	}
1565 
1566 	return 0;
1567 
1568 fail:
1569 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1570 		  __func__, rc, (int)outlen);
1571 
1572 	return rc;
1573 }
1574 
1575 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1576 {
1577 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1578 	u32 dest = 0;
1579 	int rc;
1580 
1581 	if (uart)
1582 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1583 	if (evq)
1584 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1585 
1586 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1587 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1588 
1589 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1590 
1591 	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1592 			  NULL, 0, NULL);
1593 	return rc;
1594 }
1595 
1596 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1597 {
1598 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1599 	size_t outlen;
1600 	int rc;
1601 
1602 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1603 
1604 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1605 			  outbuf, sizeof(outbuf), &outlen);
1606 	if (rc)
1607 		goto fail;
1608 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1609 		rc = -EIO;
1610 		goto fail;
1611 	}
1612 
1613 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1614 	return 0;
1615 
1616 fail:
1617 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1618 		  __func__, rc);
1619 	return rc;
1620 }
1621 
1622 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1623 			size_t *size_out, size_t *erase_size_out,
1624 			bool *protected_out)
1625 {
1626 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1627 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1628 	size_t outlen;
1629 	int rc;
1630 
1631 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1632 
1633 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1634 			  outbuf, sizeof(outbuf), &outlen);
1635 	if (rc)
1636 		goto fail;
1637 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1638 		rc = -EIO;
1639 		goto fail;
1640 	}
1641 
1642 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1643 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1644 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1645 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1646 	return 0;
1647 
1648 fail:
1649 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1650 	return rc;
1651 }
1652 
1653 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1654 {
1655 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1656 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1657 	int rc;
1658 
1659 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1660 
1661 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1662 			  outbuf, sizeof(outbuf), NULL);
1663 	if (rc)
1664 		return rc;
1665 
1666 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1667 	case MC_CMD_NVRAM_TEST_PASS:
1668 	case MC_CMD_NVRAM_TEST_NOTSUPP:
1669 		return 0;
1670 	default:
1671 		return -EIO;
1672 	}
1673 }
1674 
1675 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1676 {
1677 	u32 nvram_types;
1678 	unsigned int type;
1679 	int rc;
1680 
1681 	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1682 	if (rc)
1683 		goto fail1;
1684 
1685 	type = 0;
1686 	while (nvram_types != 0) {
1687 		if (nvram_types & 1) {
1688 			rc = efx_mcdi_nvram_test(efx, type);
1689 			if (rc)
1690 				goto fail2;
1691 		}
1692 		type++;
1693 		nvram_types >>= 1;
1694 	}
1695 
1696 	return 0;
1697 
1698 fail2:
1699 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1700 		  __func__, type);
1701 fail1:
1702 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1703 	return rc;
1704 }
1705 
1706 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1707  * negative on error.
1708  */
1709 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1710 {
1711 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1712 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1713 	unsigned int flags, index;
1714 	const char *reason;
1715 	size_t outlen;
1716 	int retry;
1717 	int rc;
1718 
1719 	/* Attempt to read any stored assertion state before we reboot
1720 	 * the mcfw out of the assertion handler. Retry twice, once
1721 	 * because a boot-time assertion might cause this command to fail
1722 	 * with EINTR. And once again because GET_ASSERTS can race with
1723 	 * MC_CMD_REBOOT running on the other port. */
1724 	retry = 2;
1725 	do {
1726 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1727 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1728 					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1729 					outbuf, sizeof(outbuf), &outlen);
1730 		if (rc == -EPERM)
1731 			return 0;
1732 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1733 
1734 	if (rc) {
1735 		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1736 				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1737 				       outlen, rc);
1738 		return rc;
1739 	}
1740 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1741 		return -EIO;
1742 
1743 	/* Print out any recorded assertion state */
1744 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1745 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1746 		return 0;
1747 
1748 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1749 		? "system-level assertion"
1750 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1751 		? "thread-level assertion"
1752 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1753 		? "watchdog reset"
1754 		: "unknown assertion";
1755 	netif_err(efx, hw, efx->net_dev,
1756 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1757 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1758 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1759 
1760 	/* Print out the registers */
1761 	for (index = 0;
1762 	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1763 	     index++)
1764 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1765 			  1 + index,
1766 			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1767 					   index));
1768 
1769 	return 1;
1770 }
1771 
1772 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1773 {
1774 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1775 	int rc;
1776 
1777 	/* If the MC is running debug firmware, it might now be
1778 	 * waiting for a debugger to attach, but we just want it to
1779 	 * reboot.  We set a flag that makes the command a no-op if it
1780 	 * has already done so.
1781 	 * The MCDI will thus return either 0 or -EIO.
1782 	 */
1783 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1784 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1785 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1786 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1787 				NULL, 0, NULL);
1788 	if (rc == -EIO)
1789 		rc = 0;
1790 	if (rc)
1791 		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1792 				       NULL, 0, rc);
1793 	return rc;
1794 }
1795 
1796 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1797 {
1798 	int rc;
1799 
1800 	rc = efx_mcdi_read_assertion(efx);
1801 	if (rc <= 0)
1802 		return rc;
1803 
1804 	return efx_mcdi_exit_assertion(efx);
1805 }
1806 
1807 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1808 {
1809 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1810 	int rc;
1811 
1812 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1813 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1814 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1815 
1816 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1817 
1818 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1819 
1820 	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1821 			  NULL, 0, NULL);
1822 }
1823 
1824 static int efx_mcdi_reset_func(struct efx_nic *efx)
1825 {
1826 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1827 	int rc;
1828 
1829 	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1830 	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1831 			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1832 	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1833 			  NULL, 0, NULL);
1834 	return rc;
1835 }
1836 
1837 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1838 {
1839 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1840 	int rc;
1841 
1842 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1843 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1844 	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1845 			  NULL, 0, NULL);
1846 	/* White is black, and up is down */
1847 	if (rc == -EIO)
1848 		return 0;
1849 	if (rc == 0)
1850 		rc = -EIO;
1851 	return rc;
1852 }
1853 
1854 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1855 {
1856 	return RESET_TYPE_RECOVER_OR_ALL;
1857 }
1858 
1859 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1860 {
1861 	int rc;
1862 
1863 	/* If MCDI is down, we can't handle_assertion */
1864 	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1865 		rc = pci_reset_function(efx->pci_dev);
1866 		if (rc)
1867 			return rc;
1868 		/* Re-enable polled MCDI completion */
1869 		if (efx->mcdi) {
1870 			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1871 			mcdi->mode = MCDI_MODE_POLL;
1872 		}
1873 		return 0;
1874 	}
1875 
1876 	/* Recover from a failed assertion pre-reset */
1877 	rc = efx_mcdi_handle_assertion(efx);
1878 	if (rc)
1879 		return rc;
1880 
1881 	if (method == RESET_TYPE_DATAPATH)
1882 		return 0;
1883 	else if (method == RESET_TYPE_WORLD)
1884 		return efx_mcdi_reset_mc(efx);
1885 	else
1886 		return efx_mcdi_reset_func(efx);
1887 }
1888 
1889 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1890 				   const u8 *mac, int *id_out)
1891 {
1892 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1893 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1894 	size_t outlen;
1895 	int rc;
1896 
1897 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1898 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1899 		       MC_CMD_FILTER_MODE_SIMPLE);
1900 	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1901 
1902 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1903 			  outbuf, sizeof(outbuf), &outlen);
1904 	if (rc)
1905 		goto fail;
1906 
1907 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1908 		rc = -EIO;
1909 		goto fail;
1910 	}
1911 
1912 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1913 
1914 	return 0;
1915 
1916 fail:
1917 	*id_out = -1;
1918 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1919 	return rc;
1920 
1921 }
1922 
1923 
1924 int
1925 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1926 {
1927 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1928 }
1929 
1930 
1931 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1932 {
1933 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1934 	size_t outlen;
1935 	int rc;
1936 
1937 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1938 			  outbuf, sizeof(outbuf), &outlen);
1939 	if (rc)
1940 		goto fail;
1941 
1942 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1943 		rc = -EIO;
1944 		goto fail;
1945 	}
1946 
1947 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1948 
1949 	return 0;
1950 
1951 fail:
1952 	*id_out = -1;
1953 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1954 	return rc;
1955 }
1956 
1957 
1958 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1959 {
1960 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1961 	int rc;
1962 
1963 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1964 
1965 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1966 			  NULL, 0, NULL);
1967 	return rc;
1968 }
1969 
1970 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1971 {
1972 	struct efx_channel *channel;
1973 	struct efx_rx_queue *rx_queue;
1974 	MCDI_DECLARE_BUF(inbuf,
1975 			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1976 	int rc, count;
1977 
1978 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1979 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1980 
1981 	count = 0;
1982 	efx_for_each_channel(channel, efx) {
1983 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1984 			if (rx_queue->flush_pending) {
1985 				rx_queue->flush_pending = false;
1986 				atomic_dec(&efx->rxq_flush_pending);
1987 				MCDI_SET_ARRAY_DWORD(
1988 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1989 					count, efx_rx_queue_index(rx_queue));
1990 				count++;
1991 			}
1992 		}
1993 	}
1994 
1995 	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1996 			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1997 	WARN_ON(rc < 0);
1998 
1999 	return rc;
2000 }
2001 
2002 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2003 {
2004 	int rc;
2005 
2006 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2007 	return rc;
2008 }
2009 
2010 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2011 			    unsigned int *flags)
2012 {
2013 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2014 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2015 	size_t outlen;
2016 	int rc;
2017 
2018 	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2019 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2020 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2021 	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2022 			  outbuf, sizeof(outbuf), &outlen);
2023 	if (rc)
2024 		return rc;
2025 
2026 	if (!flags)
2027 		return 0;
2028 
2029 	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2030 		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2031 	else
2032 		*flags = 0;
2033 
2034 	return 0;
2035 }
2036 
2037 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2038 			     unsigned int *enabled_out)
2039 {
2040 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2041 	size_t outlen;
2042 	int rc;
2043 
2044 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2045 			  outbuf, sizeof(outbuf), &outlen);
2046 	if (rc)
2047 		goto fail;
2048 
2049 	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2050 		rc = -EIO;
2051 		goto fail;
2052 	}
2053 
2054 	if (impl_out)
2055 		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2056 
2057 	if (enabled_out)
2058 		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2059 
2060 	return 0;
2061 
2062 fail:
2063 	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2064 	 * terrifying.  The call site will have to deal with it though.
2065 	 */
2066 	netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2067 		       "%s: failed rc=%d\n", __func__, rc);
2068 	return rc;
2069 }
2070 
2071 #ifdef CONFIG_SFC_MTD
2072 
2073 #define EFX_MCDI_NVRAM_LEN_MAX 128
2074 
2075 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2076 {
2077 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2078 	int rc;
2079 
2080 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2081 
2082 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2083 
2084 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2085 			  NULL, 0, NULL);
2086 	return rc;
2087 }
2088 
2089 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2090 			       loff_t offset, u8 *buffer, size_t length)
2091 {
2092 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2093 	MCDI_DECLARE_BUF(outbuf,
2094 			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2095 	size_t outlen;
2096 	int rc;
2097 
2098 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2099 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2100 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2101 
2102 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2103 			  outbuf, sizeof(outbuf), &outlen);
2104 	if (rc)
2105 		return rc;
2106 
2107 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2108 	return 0;
2109 }
2110 
2111 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2112 				loff_t offset, const u8 *buffer, size_t length)
2113 {
2114 	MCDI_DECLARE_BUF(inbuf,
2115 			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2116 	int rc;
2117 
2118 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2119 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2120 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2121 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2122 
2123 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2124 
2125 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2126 			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2127 			  NULL, 0, NULL);
2128 	return rc;
2129 }
2130 
2131 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2132 				loff_t offset, size_t length)
2133 {
2134 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2135 	int rc;
2136 
2137 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2138 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2139 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2140 
2141 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2142 
2143 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2144 			  NULL, 0, NULL);
2145 	return rc;
2146 }
2147 
2148 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2149 {
2150 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2151 	int rc;
2152 
2153 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2154 
2155 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2156 
2157 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2158 			  NULL, 0, NULL);
2159 	return rc;
2160 }
2161 
2162 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2163 		      size_t len, size_t *retlen, u8 *buffer)
2164 {
2165 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2166 	struct efx_nic *efx = mtd->priv;
2167 	loff_t offset = start;
2168 	loff_t end = min_t(loff_t, start + len, mtd->size);
2169 	size_t chunk;
2170 	int rc = 0;
2171 
2172 	while (offset < end) {
2173 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2174 		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2175 					 buffer, chunk);
2176 		if (rc)
2177 			goto out;
2178 		offset += chunk;
2179 		buffer += chunk;
2180 	}
2181 out:
2182 	*retlen = offset - start;
2183 	return rc;
2184 }
2185 
2186 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2187 {
2188 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2189 	struct efx_nic *efx = mtd->priv;
2190 	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2191 	loff_t end = min_t(loff_t, start + len, mtd->size);
2192 	size_t chunk = part->common.mtd.erasesize;
2193 	int rc = 0;
2194 
2195 	if (!part->updating) {
2196 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2197 		if (rc)
2198 			goto out;
2199 		part->updating = true;
2200 	}
2201 
2202 	/* The MCDI interface can in fact do multiple erase blocks at once;
2203 	 * but erasing may be slow, so we make multiple calls here to avoid
2204 	 * tripping the MCDI RPC timeout. */
2205 	while (offset < end) {
2206 		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2207 					  chunk);
2208 		if (rc)
2209 			goto out;
2210 		offset += chunk;
2211 	}
2212 out:
2213 	return rc;
2214 }
2215 
2216 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2217 		       size_t len, size_t *retlen, const u8 *buffer)
2218 {
2219 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2220 	struct efx_nic *efx = mtd->priv;
2221 	loff_t offset = start;
2222 	loff_t end = min_t(loff_t, start + len, mtd->size);
2223 	size_t chunk;
2224 	int rc = 0;
2225 
2226 	if (!part->updating) {
2227 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2228 		if (rc)
2229 			goto out;
2230 		part->updating = true;
2231 	}
2232 
2233 	while (offset < end) {
2234 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2235 		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2236 					  buffer, chunk);
2237 		if (rc)
2238 			goto out;
2239 		offset += chunk;
2240 		buffer += chunk;
2241 	}
2242 out:
2243 	*retlen = offset - start;
2244 	return rc;
2245 }
2246 
2247 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2248 {
2249 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2250 	struct efx_nic *efx = mtd->priv;
2251 	int rc = 0;
2252 
2253 	if (part->updating) {
2254 		part->updating = false;
2255 		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2256 	}
2257 
2258 	return rc;
2259 }
2260 
2261 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2262 {
2263 	struct efx_mcdi_mtd_partition *mcdi_part =
2264 		container_of(part, struct efx_mcdi_mtd_partition, common);
2265 	struct efx_nic *efx = part->mtd.priv;
2266 
2267 	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2268 		 efx->name, part->type_name, mcdi_part->fw_subtype);
2269 }
2270 
2271 #endif /* CONFIG_SFC_MTD */
2272