xref: /openbmc/linux/drivers/net/ethernet/sfc/mcdi.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2008-2013 Solarflare Communications Inc.
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
11 #include "nic.h"
12 #include "io.h"
13 #include "farch_regs.h"
14 #include "mcdi_pcol.h"
15 
16 /**************************************************************************
17  *
18  * Management-Controller-to-Driver Interface
19  *
20  **************************************************************************
21  */
22 
23 #define MCDI_RPC_TIMEOUT       (10 * HZ)
24 
25 /* A reboot/assertion causes the MCDI status word to be set after the
26  * command word is set or a REBOOT event is sent. If we notice a reboot
27  * via these mechanisms then wait 250ms for the status word to be set.
28  */
29 #define MCDI_STATUS_DELAY_US		100
30 #define MCDI_STATUS_DELAY_COUNT		2500
31 #define MCDI_STATUS_SLEEP_MS						\
32 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
33 
34 #define SEQ_MASK							\
35 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
36 
37 struct efx_mcdi_async_param {
38 	struct list_head list;
39 	unsigned int cmd;
40 	size_t inlen;
41 	size_t outlen;
42 	bool quiet;
43 	efx_mcdi_async_completer *complete;
44 	unsigned long cookie;
45 	/* followed by request/response buffer */
46 };
47 
48 static void efx_mcdi_timeout_async(struct timer_list *t);
49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
50 			       bool *was_attached_out);
51 static bool efx_mcdi_poll_once(struct efx_nic *efx);
52 static void efx_mcdi_abandon(struct efx_nic *efx);
53 
54 #ifdef CONFIG_SFC_MCDI_LOGGING
55 static bool mcdi_logging_default;
56 module_param(mcdi_logging_default, bool, 0644);
57 MODULE_PARM_DESC(mcdi_logging_default,
58 		 "Enable MCDI logging on newly-probed functions");
59 #endif
60 
61 int efx_mcdi_init(struct efx_nic *efx)
62 {
63 	struct efx_mcdi_iface *mcdi;
64 	bool already_attached;
65 	int rc = -ENOMEM;
66 
67 	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
68 	if (!efx->mcdi)
69 		goto fail;
70 
71 	mcdi = efx_mcdi(efx);
72 	mcdi->efx = efx;
73 #ifdef CONFIG_SFC_MCDI_LOGGING
74 	/* consuming code assumes buffer is page-sized */
75 	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
76 	if (!mcdi->logging_buffer)
77 		goto fail1;
78 	mcdi->logging_enabled = mcdi_logging_default;
79 #endif
80 	init_waitqueue_head(&mcdi->wq);
81 	init_waitqueue_head(&mcdi->proxy_rx_wq);
82 	spin_lock_init(&mcdi->iface_lock);
83 	mcdi->state = MCDI_STATE_QUIESCENT;
84 	mcdi->mode = MCDI_MODE_POLL;
85 	spin_lock_init(&mcdi->async_lock);
86 	INIT_LIST_HEAD(&mcdi->async_list);
87 	timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
88 
89 	(void) efx_mcdi_poll_reboot(efx);
90 	mcdi->new_epoch = true;
91 
92 	/* Recover from a failed assertion before probing */
93 	rc = efx_mcdi_handle_assertion(efx);
94 	if (rc)
95 		goto fail2;
96 
97 	/* Let the MC (and BMC, if this is a LOM) know that the driver
98 	 * is loaded. We should do this before we reset the NIC.
99 	 */
100 	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
101 	if (rc) {
102 		netif_err(efx, probe, efx->net_dev,
103 			  "Unable to register driver with MCPU\n");
104 		goto fail2;
105 	}
106 	if (already_attached)
107 		/* Not a fatal error */
108 		netif_err(efx, probe, efx->net_dev,
109 			  "Host already registered with MCPU\n");
110 
111 	if (efx->mcdi->fn_flags &
112 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
113 		efx->primary = efx;
114 
115 	return 0;
116 fail2:
117 #ifdef CONFIG_SFC_MCDI_LOGGING
118 	free_page((unsigned long)mcdi->logging_buffer);
119 fail1:
120 #endif
121 	kfree(efx->mcdi);
122 	efx->mcdi = NULL;
123 fail:
124 	return rc;
125 }
126 
127 void efx_mcdi_detach(struct efx_nic *efx)
128 {
129 	if (!efx->mcdi)
130 		return;
131 
132 	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
133 
134 	/* Relinquish the device (back to the BMC, if this is a LOM) */
135 	efx_mcdi_drv_attach(efx, false, NULL);
136 }
137 
138 void efx_mcdi_fini(struct efx_nic *efx)
139 {
140 	if (!efx->mcdi)
141 		return;
142 
143 #ifdef CONFIG_SFC_MCDI_LOGGING
144 	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
145 #endif
146 
147 	kfree(efx->mcdi);
148 }
149 
150 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
151 				  const efx_dword_t *inbuf, size_t inlen)
152 {
153 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
154 #ifdef CONFIG_SFC_MCDI_LOGGING
155 	char *buf = mcdi->logging_buffer; /* page-sized */
156 #endif
157 	efx_dword_t hdr[2];
158 	size_t hdr_len;
159 	u32 xflags, seqno;
160 
161 	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
162 
163 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
164 	spin_lock_bh(&mcdi->iface_lock);
165 	++mcdi->seqno;
166 	spin_unlock_bh(&mcdi->iface_lock);
167 
168 	seqno = mcdi->seqno & SEQ_MASK;
169 	xflags = 0;
170 	if (mcdi->mode == MCDI_MODE_EVENTS)
171 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
172 
173 	if (efx->type->mcdi_max_ver == 1) {
174 		/* MCDI v1 */
175 		EFX_POPULATE_DWORD_7(hdr[0],
176 				     MCDI_HEADER_RESPONSE, 0,
177 				     MCDI_HEADER_RESYNC, 1,
178 				     MCDI_HEADER_CODE, cmd,
179 				     MCDI_HEADER_DATALEN, inlen,
180 				     MCDI_HEADER_SEQ, seqno,
181 				     MCDI_HEADER_XFLAGS, xflags,
182 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
183 		hdr_len = 4;
184 	} else {
185 		/* MCDI v2 */
186 		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
187 		EFX_POPULATE_DWORD_7(hdr[0],
188 				     MCDI_HEADER_RESPONSE, 0,
189 				     MCDI_HEADER_RESYNC, 1,
190 				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
191 				     MCDI_HEADER_DATALEN, 0,
192 				     MCDI_HEADER_SEQ, seqno,
193 				     MCDI_HEADER_XFLAGS, xflags,
194 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
195 		EFX_POPULATE_DWORD_2(hdr[1],
196 				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
197 				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
198 		hdr_len = 8;
199 	}
200 
201 #ifdef CONFIG_SFC_MCDI_LOGGING
202 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
203 		int bytes = 0;
204 		int i;
205 		/* Lengths should always be a whole number of dwords, so scream
206 		 * if they're not.
207 		 */
208 		WARN_ON_ONCE(hdr_len % 4);
209 		WARN_ON_ONCE(inlen % 4);
210 
211 		/* We own the logging buffer, as only one MCDI can be in
212 		 * progress on a NIC at any one time.  So no need for locking.
213 		 */
214 		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
215 			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
216 					   " %08x",
217 					   le32_to_cpu(hdr[i].u32[0]));
218 
219 		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
220 			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
221 					   " %08x",
222 					   le32_to_cpu(inbuf[i].u32[0]));
223 
224 		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
225 	}
226 #endif
227 
228 	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
229 
230 	mcdi->new_epoch = false;
231 }
232 
233 static int efx_mcdi_errno(unsigned int mcdi_err)
234 {
235 	switch (mcdi_err) {
236 	case 0:
237 		return 0;
238 #define TRANSLATE_ERROR(name)					\
239 	case MC_CMD_ERR_ ## name:				\
240 		return -name;
241 	TRANSLATE_ERROR(EPERM);
242 	TRANSLATE_ERROR(ENOENT);
243 	TRANSLATE_ERROR(EINTR);
244 	TRANSLATE_ERROR(EAGAIN);
245 	TRANSLATE_ERROR(EACCES);
246 	TRANSLATE_ERROR(EBUSY);
247 	TRANSLATE_ERROR(EINVAL);
248 	TRANSLATE_ERROR(EDEADLK);
249 	TRANSLATE_ERROR(ENOSYS);
250 	TRANSLATE_ERROR(ETIME);
251 	TRANSLATE_ERROR(EALREADY);
252 	TRANSLATE_ERROR(ENOSPC);
253 #undef TRANSLATE_ERROR
254 	case MC_CMD_ERR_ENOTSUP:
255 		return -EOPNOTSUPP;
256 	case MC_CMD_ERR_ALLOC_FAIL:
257 		return -ENOBUFS;
258 	case MC_CMD_ERR_MAC_EXIST:
259 		return -EADDRINUSE;
260 	default:
261 		return -EPROTO;
262 	}
263 }
264 
265 static void efx_mcdi_read_response_header(struct efx_nic *efx)
266 {
267 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
268 	unsigned int respseq, respcmd, error;
269 #ifdef CONFIG_SFC_MCDI_LOGGING
270 	char *buf = mcdi->logging_buffer; /* page-sized */
271 #endif
272 	efx_dword_t hdr;
273 
274 	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
275 	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
276 	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
277 	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
278 
279 	if (respcmd != MC_CMD_V2_EXTN) {
280 		mcdi->resp_hdr_len = 4;
281 		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
282 	} else {
283 		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
284 		mcdi->resp_hdr_len = 8;
285 		mcdi->resp_data_len =
286 			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
287 	}
288 
289 #ifdef CONFIG_SFC_MCDI_LOGGING
290 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
291 		size_t hdr_len, data_len;
292 		int bytes = 0;
293 		int i;
294 
295 		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
296 		hdr_len = mcdi->resp_hdr_len / 4;
297 		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
298 		 * to dword size, and the MCDI buffer is always dword size
299 		 */
300 		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
301 
302 		/* We own the logging buffer, as only one MCDI can be in
303 		 * progress on a NIC at any one time.  So no need for locking.
304 		 */
305 		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
306 			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
307 			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
308 					   " %08x", le32_to_cpu(hdr.u32[0]));
309 		}
310 
311 		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
312 			efx->type->mcdi_read_response(efx, &hdr,
313 					mcdi->resp_hdr_len + (i * 4), 4);
314 			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
315 					   " %08x", le32_to_cpu(hdr.u32[0]));
316 		}
317 
318 		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
319 	}
320 #endif
321 
322 	mcdi->resprc_raw = 0;
323 	if (error && mcdi->resp_data_len == 0) {
324 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
325 		mcdi->resprc = -EIO;
326 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
327 		netif_err(efx, hw, efx->net_dev,
328 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
329 			  respseq, mcdi->seqno);
330 		mcdi->resprc = -EIO;
331 	} else if (error) {
332 		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
333 		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
334 		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
335 	} else {
336 		mcdi->resprc = 0;
337 	}
338 }
339 
340 static bool efx_mcdi_poll_once(struct efx_nic *efx)
341 {
342 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
343 
344 	rmb();
345 	if (!efx->type->mcdi_poll_response(efx))
346 		return false;
347 
348 	spin_lock_bh(&mcdi->iface_lock);
349 	efx_mcdi_read_response_header(efx);
350 	spin_unlock_bh(&mcdi->iface_lock);
351 
352 	return true;
353 }
354 
355 static int efx_mcdi_poll(struct efx_nic *efx)
356 {
357 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
358 	unsigned long time, finish;
359 	unsigned int spins;
360 	int rc;
361 
362 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
363 	rc = efx_mcdi_poll_reboot(efx);
364 	if (rc) {
365 		spin_lock_bh(&mcdi->iface_lock);
366 		mcdi->resprc = rc;
367 		mcdi->resp_hdr_len = 0;
368 		mcdi->resp_data_len = 0;
369 		spin_unlock_bh(&mcdi->iface_lock);
370 		return 0;
371 	}
372 
373 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
374 	 * because generally mcdi responses are fast. After that, back off
375 	 * and poll once a jiffy (approximately)
376 	 */
377 	spins = USER_TICK_USEC;
378 	finish = jiffies + MCDI_RPC_TIMEOUT;
379 
380 	while (1) {
381 		if (spins != 0) {
382 			--spins;
383 			udelay(1);
384 		} else {
385 			schedule_timeout_uninterruptible(1);
386 		}
387 
388 		time = jiffies;
389 
390 		if (efx_mcdi_poll_once(efx))
391 			break;
392 
393 		if (time_after(time, finish))
394 			return -ETIMEDOUT;
395 	}
396 
397 	/* Return rc=0 like wait_event_timeout() */
398 	return 0;
399 }
400 
401 /* Test and clear MC-rebooted flag for this port/function; reset
402  * software state as necessary.
403  */
404 int efx_mcdi_poll_reboot(struct efx_nic *efx)
405 {
406 	if (!efx->mcdi)
407 		return 0;
408 
409 	return efx->type->mcdi_poll_reboot(efx);
410 }
411 
412 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
413 {
414 	return cmpxchg(&mcdi->state,
415 		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
416 		MCDI_STATE_QUIESCENT;
417 }
418 
419 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
420 {
421 	/* Wait until the interface becomes QUIESCENT and we win the race
422 	 * to mark it RUNNING_SYNC.
423 	 */
424 	wait_event(mcdi->wq,
425 		   cmpxchg(&mcdi->state,
426 			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
427 		   MCDI_STATE_QUIESCENT);
428 }
429 
430 static int efx_mcdi_await_completion(struct efx_nic *efx)
431 {
432 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
433 
434 	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
435 			       MCDI_RPC_TIMEOUT) == 0)
436 		return -ETIMEDOUT;
437 
438 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
439 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
440 	 * completed the request first, then we'll just end up completing the
441 	 * request again, which is safe.
442 	 *
443 	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
444 	 * wait_event_timeout() implicitly provides.
445 	 */
446 	if (mcdi->mode == MCDI_MODE_POLL)
447 		return efx_mcdi_poll(efx);
448 
449 	return 0;
450 }
451 
452 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
453  * requester.  Return whether this was done.  Does not take any locks.
454  */
455 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
456 {
457 	if (cmpxchg(&mcdi->state,
458 		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
459 	    MCDI_STATE_RUNNING_SYNC) {
460 		wake_up(&mcdi->wq);
461 		return true;
462 	}
463 
464 	return false;
465 }
466 
467 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
468 {
469 	if (mcdi->mode == MCDI_MODE_EVENTS) {
470 		struct efx_mcdi_async_param *async;
471 		struct efx_nic *efx = mcdi->efx;
472 
473 		/* Process the asynchronous request queue */
474 		spin_lock_bh(&mcdi->async_lock);
475 		async = list_first_entry_or_null(
476 			&mcdi->async_list, struct efx_mcdi_async_param, list);
477 		if (async) {
478 			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
479 			efx_mcdi_send_request(efx, async->cmd,
480 					      (const efx_dword_t *)(async + 1),
481 					      async->inlen);
482 			mod_timer(&mcdi->async_timer,
483 				  jiffies + MCDI_RPC_TIMEOUT);
484 		}
485 		spin_unlock_bh(&mcdi->async_lock);
486 
487 		if (async)
488 			return;
489 	}
490 
491 	mcdi->state = MCDI_STATE_QUIESCENT;
492 	wake_up(&mcdi->wq);
493 }
494 
495 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
496  * asynchronous completion function, and release the interface.
497  * Return whether this was done.  Must be called in bh-disabled
498  * context.  Will take iface_lock and async_lock.
499  */
500 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
501 {
502 	struct efx_nic *efx = mcdi->efx;
503 	struct efx_mcdi_async_param *async;
504 	size_t hdr_len, data_len, err_len;
505 	efx_dword_t *outbuf;
506 	MCDI_DECLARE_BUF_ERR(errbuf);
507 	int rc;
508 
509 	if (cmpxchg(&mcdi->state,
510 		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
511 	    MCDI_STATE_RUNNING_ASYNC)
512 		return false;
513 
514 	spin_lock(&mcdi->iface_lock);
515 	if (timeout) {
516 		/* Ensure that if the completion event arrives later,
517 		 * the seqno check in efx_mcdi_ev_cpl() will fail
518 		 */
519 		++mcdi->seqno;
520 		++mcdi->credits;
521 		rc = -ETIMEDOUT;
522 		hdr_len = 0;
523 		data_len = 0;
524 	} else {
525 		rc = mcdi->resprc;
526 		hdr_len = mcdi->resp_hdr_len;
527 		data_len = mcdi->resp_data_len;
528 	}
529 	spin_unlock(&mcdi->iface_lock);
530 
531 	/* Stop the timer.  In case the timer function is running, we
532 	 * must wait for it to return so that there is no possibility
533 	 * of it aborting the next request.
534 	 */
535 	if (!timeout)
536 		del_timer_sync(&mcdi->async_timer);
537 
538 	spin_lock(&mcdi->async_lock);
539 	async = list_first_entry(&mcdi->async_list,
540 				 struct efx_mcdi_async_param, list);
541 	list_del(&async->list);
542 	spin_unlock(&mcdi->async_lock);
543 
544 	outbuf = (efx_dword_t *)(async + 1);
545 	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
546 				      min(async->outlen, data_len));
547 	if (!timeout && rc && !async->quiet) {
548 		err_len = min(sizeof(errbuf), data_len);
549 		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
550 					      sizeof(errbuf));
551 		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
552 				       err_len, rc);
553 	}
554 
555 	if (async->complete)
556 		async->complete(efx, async->cookie, rc, outbuf,
557 				min(async->outlen, data_len));
558 	kfree(async);
559 
560 	efx_mcdi_release(mcdi);
561 
562 	return true;
563 }
564 
565 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
566 			    unsigned int datalen, unsigned int mcdi_err)
567 {
568 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
569 	bool wake = false;
570 
571 	spin_lock(&mcdi->iface_lock);
572 
573 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
574 		if (mcdi->credits)
575 			/* The request has been cancelled */
576 			--mcdi->credits;
577 		else
578 			netif_err(efx, hw, efx->net_dev,
579 				  "MC response mismatch tx seq 0x%x rx "
580 				  "seq 0x%x\n", seqno, mcdi->seqno);
581 	} else {
582 		if (efx->type->mcdi_max_ver >= 2) {
583 			/* MCDI v2 responses don't fit in an event */
584 			efx_mcdi_read_response_header(efx);
585 		} else {
586 			mcdi->resprc = efx_mcdi_errno(mcdi_err);
587 			mcdi->resp_hdr_len = 4;
588 			mcdi->resp_data_len = datalen;
589 		}
590 
591 		wake = true;
592 	}
593 
594 	spin_unlock(&mcdi->iface_lock);
595 
596 	if (wake) {
597 		if (!efx_mcdi_complete_async(mcdi, false))
598 			(void) efx_mcdi_complete_sync(mcdi);
599 
600 		/* If the interface isn't RUNNING_ASYNC or
601 		 * RUNNING_SYNC then we've received a duplicate
602 		 * completion after we've already transitioned back to
603 		 * QUIESCENT. [A subsequent invocation would increment
604 		 * seqno, so would have failed the seqno check].
605 		 */
606 	}
607 }
608 
609 static void efx_mcdi_timeout_async(struct timer_list *t)
610 {
611 	struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
612 
613 	efx_mcdi_complete_async(mcdi, true);
614 }
615 
616 static int
617 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
618 {
619 	if (efx->type->mcdi_max_ver < 0 ||
620 	     (efx->type->mcdi_max_ver < 2 &&
621 	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
622 		return -EINVAL;
623 
624 	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
625 	    (efx->type->mcdi_max_ver < 2 &&
626 	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
627 		return -EMSGSIZE;
628 
629 	return 0;
630 }
631 
632 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
633 				      size_t hdr_len, size_t data_len,
634 				      u32 *proxy_handle)
635 {
636 	MCDI_DECLARE_BUF_ERR(testbuf);
637 	const size_t buflen = sizeof(testbuf);
638 
639 	if (!proxy_handle || data_len < buflen)
640 		return false;
641 
642 	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
643 	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
644 		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
645 		return true;
646 	}
647 
648 	return false;
649 }
650 
651 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
652 				size_t inlen,
653 				efx_dword_t *outbuf, size_t outlen,
654 				size_t *outlen_actual, bool quiet,
655 				u32 *proxy_handle, int *raw_rc)
656 {
657 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
658 	MCDI_DECLARE_BUF_ERR(errbuf);
659 	int rc;
660 
661 	if (mcdi->mode == MCDI_MODE_POLL)
662 		rc = efx_mcdi_poll(efx);
663 	else
664 		rc = efx_mcdi_await_completion(efx);
665 
666 	if (rc != 0) {
667 		netif_err(efx, hw, efx->net_dev,
668 			  "MC command 0x%x inlen %d mode %d timed out\n",
669 			  cmd, (int)inlen, mcdi->mode);
670 
671 		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
672 			netif_err(efx, hw, efx->net_dev,
673 				  "MCDI request was completed without an event\n");
674 			rc = 0;
675 		}
676 
677 		efx_mcdi_abandon(efx);
678 
679 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
680 		 * and completing a request we've just cancelled, by ensuring
681 		 * that the seqno check therein fails.
682 		 */
683 		spin_lock_bh(&mcdi->iface_lock);
684 		++mcdi->seqno;
685 		++mcdi->credits;
686 		spin_unlock_bh(&mcdi->iface_lock);
687 	}
688 
689 	if (proxy_handle)
690 		*proxy_handle = 0;
691 
692 	if (rc != 0) {
693 		if (outlen_actual)
694 			*outlen_actual = 0;
695 	} else {
696 		size_t hdr_len, data_len, err_len;
697 
698 		/* At the very least we need a memory barrier here to ensure
699 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
700 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
701 		 * acquiring the iface_lock. */
702 		spin_lock_bh(&mcdi->iface_lock);
703 		rc = mcdi->resprc;
704 		if (raw_rc)
705 			*raw_rc = mcdi->resprc_raw;
706 		hdr_len = mcdi->resp_hdr_len;
707 		data_len = mcdi->resp_data_len;
708 		err_len = min(sizeof(errbuf), data_len);
709 		spin_unlock_bh(&mcdi->iface_lock);
710 
711 		BUG_ON(rc > 0);
712 
713 		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
714 					      min(outlen, data_len));
715 		if (outlen_actual)
716 			*outlen_actual = data_len;
717 
718 		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
719 
720 		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
721 			/* Don't reset if MC_CMD_REBOOT returns EIO */
722 		} else if (rc == -EIO || rc == -EINTR) {
723 			netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
724 			netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
725 				  cmd, -rc);
726 			if (efx->type->mcdi_reboot_detected)
727 				efx->type->mcdi_reboot_detected(efx);
728 			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
729 		} else if (proxy_handle && (rc == -EPROTO) &&
730 			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
731 						     proxy_handle)) {
732 			mcdi->proxy_rx_status = 0;
733 			mcdi->proxy_rx_handle = 0;
734 			mcdi->state = MCDI_STATE_PROXY_WAIT;
735 		} else if (rc && !quiet) {
736 			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
737 					       rc);
738 		}
739 
740 		if (rc == -EIO || rc == -EINTR) {
741 			msleep(MCDI_STATUS_SLEEP_MS);
742 			efx_mcdi_poll_reboot(efx);
743 			mcdi->new_epoch = true;
744 		}
745 	}
746 
747 	if (!proxy_handle || !*proxy_handle)
748 		efx_mcdi_release(mcdi);
749 	return rc;
750 }
751 
752 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
753 {
754 	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
755 		/* Interrupt the proxy wait. */
756 		mcdi->proxy_rx_status = -EINTR;
757 		wake_up(&mcdi->proxy_rx_wq);
758 	}
759 }
760 
761 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
762 				       u32 handle, int status)
763 {
764 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
765 
766 	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
767 
768 	mcdi->proxy_rx_status = efx_mcdi_errno(status);
769 	/* Ensure the status is written before we update the handle, since the
770 	 * latter is used to check if we've finished.
771 	 */
772 	wmb();
773 	mcdi->proxy_rx_handle = handle;
774 	wake_up(&mcdi->proxy_rx_wq);
775 }
776 
777 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
778 {
779 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
780 	int rc;
781 
782 	/* Wait for a proxy event, or timeout. */
783 	rc = wait_event_timeout(mcdi->proxy_rx_wq,
784 				mcdi->proxy_rx_handle != 0 ||
785 				mcdi->proxy_rx_status == -EINTR,
786 				MCDI_RPC_TIMEOUT);
787 
788 	if (rc <= 0) {
789 		netif_dbg(efx, hw, efx->net_dev,
790 			  "MCDI proxy timeout %d\n", handle);
791 		return -ETIMEDOUT;
792 	} else if (mcdi->proxy_rx_handle != handle) {
793 		netif_warn(efx, hw, efx->net_dev,
794 			   "MCDI proxy unexpected handle %d (expected %d)\n",
795 			   mcdi->proxy_rx_handle, handle);
796 		return -EINVAL;
797 	}
798 
799 	return mcdi->proxy_rx_status;
800 }
801 
802 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
803 			 const efx_dword_t *inbuf, size_t inlen,
804 			 efx_dword_t *outbuf, size_t outlen,
805 			 size_t *outlen_actual, bool quiet, int *raw_rc)
806 {
807 	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
808 	int rc;
809 
810 	if (inbuf && inlen && (inbuf == outbuf)) {
811 		/* The input buffer can't be aliased with the output. */
812 		WARN_ON(1);
813 		return -EINVAL;
814 	}
815 
816 	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
817 	if (rc)
818 		return rc;
819 
820 	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
821 				  outlen_actual, quiet, &proxy_handle, raw_rc);
822 
823 	if (proxy_handle) {
824 		/* Handle proxy authorisation. This allows approval of MCDI
825 		 * operations to be delegated to the admin function, allowing
826 		 * fine control over (eg) multicast subscriptions.
827 		 */
828 		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
829 
830 		netif_dbg(efx, hw, efx->net_dev,
831 			  "MCDI waiting for proxy auth %d\n",
832 			  proxy_handle);
833 		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
834 
835 		if (rc == 0) {
836 			netif_dbg(efx, hw, efx->net_dev,
837 				  "MCDI proxy retry %d\n", proxy_handle);
838 
839 			/* We now retry the original request. */
840 			mcdi->state = MCDI_STATE_RUNNING_SYNC;
841 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
842 
843 			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
844 						  outbuf, outlen, outlen_actual,
845 						  quiet, NULL, raw_rc);
846 		} else {
847 			netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
848 				       "MC command 0x%x failed after proxy auth rc=%d\n",
849 				       cmd, rc);
850 
851 			if (rc == -EINTR || rc == -EIO)
852 				efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
853 			efx_mcdi_release(mcdi);
854 		}
855 	}
856 
857 	return rc;
858 }
859 
860 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
861 				   const efx_dword_t *inbuf, size_t inlen,
862 				   efx_dword_t *outbuf, size_t outlen,
863 				   size_t *outlen_actual, bool quiet)
864 {
865 	int raw_rc = 0;
866 	int rc;
867 
868 	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
869 			   outbuf, outlen, outlen_actual, true, &raw_rc);
870 
871 	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
872 	    efx->type->is_vf) {
873 		/* If the EVB port isn't available within a VF this may
874 		 * mean the PF is still bringing the switch up. We should
875 		 * retry our request shortly.
876 		 */
877 		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
878 		unsigned int delay_us = 10000;
879 
880 		netif_dbg(efx, hw, efx->net_dev,
881 			  "%s: NO_EVB_PORT; will retry request\n",
882 			  __func__);
883 
884 		do {
885 			usleep_range(delay_us, delay_us + 10000);
886 			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
887 					   outbuf, outlen, outlen_actual,
888 					   true, &raw_rc);
889 			if (delay_us < 100000)
890 				delay_us <<= 1;
891 		} while ((rc == -EPROTO) &&
892 			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
893 			 time_before(jiffies, abort_time));
894 	}
895 
896 	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
897 		efx_mcdi_display_error(efx, cmd, inlen,
898 				       outbuf, outlen, rc);
899 
900 	return rc;
901 }
902 
903 /**
904  * efx_mcdi_rpc - Issue an MCDI command and wait for completion
905  * @efx: NIC through which to issue the command
906  * @cmd: Command type number
907  * @inbuf: Command parameters
908  * @inlen: Length of command parameters, in bytes.  Must be a multiple
909  *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
910  * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
911  * @outlen: Length of response buffer, in bytes.  If the actual
912  *	response is longer than @outlen & ~3, it will be truncated
913  *	to that length.
914  * @outlen_actual: Pointer through which to return the actual response
915  *	length.  May be %NULL if this is not needed.
916  *
917  * This function may sleep and therefore must be called in an appropriate
918  * context.
919  *
920  * Return: A negative error code, or zero if successful.  The error
921  *	code may come from the MCDI response or may indicate a failure
922  *	to communicate with the MC.  In the former case, the response
923  *	will still be copied to @outbuf and *@outlen_actual will be
924  *	set accordingly.  In the latter case, *@outlen_actual will be
925  *	set to zero.
926  */
927 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
928 		 const efx_dword_t *inbuf, size_t inlen,
929 		 efx_dword_t *outbuf, size_t outlen,
930 		 size_t *outlen_actual)
931 {
932 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
933 				       outlen_actual, false);
934 }
935 
936 /* Normally, on receiving an error code in the MCDI response,
937  * efx_mcdi_rpc will log an error message containing (among other
938  * things) the raw error code, by means of efx_mcdi_display_error.
939  * This _quiet version suppresses that; if the caller wishes to log
940  * the error conditionally on the return code, it should call this
941  * function and is then responsible for calling efx_mcdi_display_error
942  * as needed.
943  */
944 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
945 		       const efx_dword_t *inbuf, size_t inlen,
946 		       efx_dword_t *outbuf, size_t outlen,
947 		       size_t *outlen_actual)
948 {
949 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
950 				       outlen_actual, true);
951 }
952 
953 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
954 		       const efx_dword_t *inbuf, size_t inlen)
955 {
956 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
957 	int rc;
958 
959 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
960 	if (rc)
961 		return rc;
962 
963 	if (efx->mc_bist_for_other_fn)
964 		return -ENETDOWN;
965 
966 	if (mcdi->mode == MCDI_MODE_FAIL)
967 		return -ENETDOWN;
968 
969 	efx_mcdi_acquire_sync(mcdi);
970 	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
971 	return 0;
972 }
973 
974 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
975 			       const efx_dword_t *inbuf, size_t inlen,
976 			       size_t outlen,
977 			       efx_mcdi_async_completer *complete,
978 			       unsigned long cookie, bool quiet)
979 {
980 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
981 	struct efx_mcdi_async_param *async;
982 	int rc;
983 
984 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
985 	if (rc)
986 		return rc;
987 
988 	if (efx->mc_bist_for_other_fn)
989 		return -ENETDOWN;
990 
991 	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
992 			GFP_ATOMIC);
993 	if (!async)
994 		return -ENOMEM;
995 
996 	async->cmd = cmd;
997 	async->inlen = inlen;
998 	async->outlen = outlen;
999 	async->quiet = quiet;
1000 	async->complete = complete;
1001 	async->cookie = cookie;
1002 	memcpy(async + 1, inbuf, inlen);
1003 
1004 	spin_lock_bh(&mcdi->async_lock);
1005 
1006 	if (mcdi->mode == MCDI_MODE_EVENTS) {
1007 		list_add_tail(&async->list, &mcdi->async_list);
1008 
1009 		/* If this is at the front of the queue, try to start it
1010 		 * immediately
1011 		 */
1012 		if (mcdi->async_list.next == &async->list &&
1013 		    efx_mcdi_acquire_async(mcdi)) {
1014 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1015 			mod_timer(&mcdi->async_timer,
1016 				  jiffies + MCDI_RPC_TIMEOUT);
1017 		}
1018 	} else {
1019 		kfree(async);
1020 		rc = -ENETDOWN;
1021 	}
1022 
1023 	spin_unlock_bh(&mcdi->async_lock);
1024 
1025 	return rc;
1026 }
1027 
1028 /**
1029  * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1030  * @efx: NIC through which to issue the command
1031  * @cmd: Command type number
1032  * @inbuf: Command parameters
1033  * @inlen: Length of command parameters, in bytes
1034  * @outlen: Length to allocate for response buffer, in bytes
1035  * @complete: Function to be called on completion or cancellation.
1036  * @cookie: Arbitrary value to be passed to @complete.
1037  *
1038  * This function does not sleep and therefore may be called in atomic
1039  * context.  It will fail if event queues are disabled or if MCDI
1040  * event completions have been disabled due to an error.
1041  *
1042  * If it succeeds, the @complete function will be called exactly once
1043  * in atomic context, when one of the following occurs:
1044  * (a) the completion event is received (in NAPI context)
1045  * (b) event queues are disabled (in the process that disables them)
1046  * (c) the request times-out (in timer context)
1047  */
1048 int
1049 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1050 		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1051 		   efx_mcdi_async_completer *complete, unsigned long cookie)
1052 {
1053 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1054 				   cookie, false);
1055 }
1056 
1057 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1058 			     const efx_dword_t *inbuf, size_t inlen,
1059 			     size_t outlen, efx_mcdi_async_completer *complete,
1060 			     unsigned long cookie)
1061 {
1062 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1063 				   cookie, true);
1064 }
1065 
1066 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1067 			efx_dword_t *outbuf, size_t outlen,
1068 			size_t *outlen_actual)
1069 {
1070 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1071 				    outlen_actual, false, NULL, NULL);
1072 }
1073 
1074 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1075 			      efx_dword_t *outbuf, size_t outlen,
1076 			      size_t *outlen_actual)
1077 {
1078 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1079 				    outlen_actual, true, NULL, NULL);
1080 }
1081 
1082 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1083 			    size_t inlen, efx_dword_t *outbuf,
1084 			    size_t outlen, int rc)
1085 {
1086 	int code = 0, err_arg = 0;
1087 
1088 	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1089 		code = MCDI_DWORD(outbuf, ERR_CODE);
1090 	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1091 		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1092 	netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1093 		       "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1094 		       cmd, inlen, rc, code, err_arg);
1095 }
1096 
1097 /* Switch to polled MCDI completions.  This can be called in various
1098  * error conditions with various locks held, so it must be lockless.
1099  * Caller is responsible for flushing asynchronous requests later.
1100  */
1101 void efx_mcdi_mode_poll(struct efx_nic *efx)
1102 {
1103 	struct efx_mcdi_iface *mcdi;
1104 
1105 	if (!efx->mcdi)
1106 		return;
1107 
1108 	mcdi = efx_mcdi(efx);
1109 	/* If already in polling mode, nothing to do.
1110 	 * If in fail-fast state, don't switch to polled completion.
1111 	 * FLR recovery will do that later.
1112 	 */
1113 	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1114 		return;
1115 
1116 	/* We can switch from event completion to polled completion, because
1117 	 * mcdi requests are always completed in shared memory. We do this by
1118 	 * switching the mode to POLL'd then completing the request.
1119 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1120 	 *
1121 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1122 	 * which efx_mcdi_complete_sync() provides for us.
1123 	 */
1124 	mcdi->mode = MCDI_MODE_POLL;
1125 
1126 	efx_mcdi_complete_sync(mcdi);
1127 }
1128 
1129 /* Flush any running or queued asynchronous requests, after event processing
1130  * is stopped
1131  */
1132 void efx_mcdi_flush_async(struct efx_nic *efx)
1133 {
1134 	struct efx_mcdi_async_param *async, *next;
1135 	struct efx_mcdi_iface *mcdi;
1136 
1137 	if (!efx->mcdi)
1138 		return;
1139 
1140 	mcdi = efx_mcdi(efx);
1141 
1142 	/* We must be in poll or fail mode so no more requests can be queued */
1143 	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1144 
1145 	del_timer_sync(&mcdi->async_timer);
1146 
1147 	/* If a request is still running, make sure we give the MC
1148 	 * time to complete it so that the response won't overwrite our
1149 	 * next request.
1150 	 */
1151 	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1152 		efx_mcdi_poll(efx);
1153 		mcdi->state = MCDI_STATE_QUIESCENT;
1154 	}
1155 
1156 	/* Nothing else will access the async list now, so it is safe
1157 	 * to walk it without holding async_lock.  If we hold it while
1158 	 * calling a completer then lockdep may warn that we have
1159 	 * acquired locks in the wrong order.
1160 	 */
1161 	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1162 		if (async->complete)
1163 			async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1164 		list_del(&async->list);
1165 		kfree(async);
1166 	}
1167 }
1168 
1169 void efx_mcdi_mode_event(struct efx_nic *efx)
1170 {
1171 	struct efx_mcdi_iface *mcdi;
1172 
1173 	if (!efx->mcdi)
1174 		return;
1175 
1176 	mcdi = efx_mcdi(efx);
1177 	/* If already in event completion mode, nothing to do.
1178 	 * If in fail-fast state, don't switch to event completion.  FLR
1179 	 * recovery will do that later.
1180 	 */
1181 	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1182 		return;
1183 
1184 	/* We can't switch from polled to event completion in the middle of a
1185 	 * request, because the completion method is specified in the request.
1186 	 * So acquire the interface to serialise the requestors. We don't need
1187 	 * to acquire the iface_lock to change the mode here, but we do need a
1188 	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1189 	 * efx_mcdi_acquire() provides.
1190 	 */
1191 	efx_mcdi_acquire_sync(mcdi);
1192 	mcdi->mode = MCDI_MODE_EVENTS;
1193 	efx_mcdi_release(mcdi);
1194 }
1195 
1196 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1197 {
1198 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1199 
1200 	/* If there is an outstanding MCDI request, it has been terminated
1201 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1202 	 * in polled mode, then do nothing because the MC reboot handler will
1203 	 * set the header correctly. However, if the mcdi interface is waiting
1204 	 * for a CMDDONE event it won't receive it [and since all MCDI events
1205 	 * are sent to the same queue, we can't be racing with
1206 	 * efx_mcdi_ev_cpl()]
1207 	 *
1208 	 * If there is an outstanding asynchronous request, we can't
1209 	 * complete it now (efx_mcdi_complete() would deadlock).  The
1210 	 * reset process will take care of this.
1211 	 *
1212 	 * There's a race here with efx_mcdi_send_request(), because
1213 	 * we might receive a REBOOT event *before* the request has
1214 	 * been copied out. In polled mode (during startup) this is
1215 	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1216 	 * event mode, this condition is just an edge-case of
1217 	 * receiving a REBOOT event after posting the MCDI
1218 	 * request. Did the mc reboot before or after the copyout? The
1219 	 * best we can do always is just return failure.
1220 	 *
1221 	 * If there is an outstanding proxy response expected it is not going
1222 	 * to arrive. We should thus abort it.
1223 	 */
1224 	spin_lock(&mcdi->iface_lock);
1225 	efx_mcdi_proxy_abort(mcdi);
1226 
1227 	if (efx_mcdi_complete_sync(mcdi)) {
1228 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1229 			mcdi->resprc = rc;
1230 			mcdi->resp_hdr_len = 0;
1231 			mcdi->resp_data_len = 0;
1232 			++mcdi->credits;
1233 		}
1234 	} else {
1235 		int count;
1236 
1237 		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1238 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1239 			rc = efx_mcdi_poll_reboot(efx);
1240 			if (rc)
1241 				break;
1242 			udelay(MCDI_STATUS_DELAY_US);
1243 		}
1244 
1245 		/* On EF10, a CODE_MC_REBOOT event can be received without the
1246 		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1247 		 * If zero was returned from the final call to
1248 		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1249 		 * MC has definitely rebooted so prepare for the reset.
1250 		 */
1251 		if (!rc && efx->type->mcdi_reboot_detected)
1252 			efx->type->mcdi_reboot_detected(efx);
1253 
1254 		mcdi->new_epoch = true;
1255 
1256 		/* Nobody was waiting for an MCDI request, so trigger a reset */
1257 		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1258 	}
1259 
1260 	spin_unlock(&mcdi->iface_lock);
1261 }
1262 
1263 /* The MC is going down in to BIST mode. set the BIST flag to block
1264  * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1265  * (which doesn't actually execute a reset, it waits for the controlling
1266  * function to reset it).
1267  */
1268 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1269 {
1270 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1271 
1272 	spin_lock(&mcdi->iface_lock);
1273 	efx->mc_bist_for_other_fn = true;
1274 	efx_mcdi_proxy_abort(mcdi);
1275 
1276 	if (efx_mcdi_complete_sync(mcdi)) {
1277 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1278 			mcdi->resprc = -EIO;
1279 			mcdi->resp_hdr_len = 0;
1280 			mcdi->resp_data_len = 0;
1281 			++mcdi->credits;
1282 		}
1283 	}
1284 	mcdi->new_epoch = true;
1285 	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1286 	spin_unlock(&mcdi->iface_lock);
1287 }
1288 
1289 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1290  * to recover.
1291  */
1292 static void efx_mcdi_abandon(struct efx_nic *efx)
1293 {
1294 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1295 
1296 	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1297 		return; /* it had already been done */
1298 	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1299 	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1300 }
1301 
1302 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1303 void efx_mcdi_process_event(struct efx_channel *channel,
1304 			    efx_qword_t *event)
1305 {
1306 	struct efx_nic *efx = channel->efx;
1307 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1308 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1309 
1310 	switch (code) {
1311 	case MCDI_EVENT_CODE_BADSSERT:
1312 		netif_err(efx, hw, efx->net_dev,
1313 			  "MC watchdog or assertion failure at 0x%x\n", data);
1314 		efx_mcdi_ev_death(efx, -EINTR);
1315 		break;
1316 
1317 	case MCDI_EVENT_CODE_PMNOTICE:
1318 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1319 		break;
1320 
1321 	case MCDI_EVENT_CODE_CMDDONE:
1322 		efx_mcdi_ev_cpl(efx,
1323 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1324 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1325 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1326 		break;
1327 
1328 	case MCDI_EVENT_CODE_LINKCHANGE:
1329 		efx_mcdi_process_link_change(efx, event);
1330 		break;
1331 	case MCDI_EVENT_CODE_SENSOREVT:
1332 		efx_mcdi_sensor_event(efx, event);
1333 		break;
1334 	case MCDI_EVENT_CODE_SCHEDERR:
1335 		netif_dbg(efx, hw, efx->net_dev,
1336 			  "MC Scheduler alert (0x%x)\n", data);
1337 		break;
1338 	case MCDI_EVENT_CODE_REBOOT:
1339 	case MCDI_EVENT_CODE_MC_REBOOT:
1340 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1341 		efx_mcdi_ev_death(efx, -EIO);
1342 		break;
1343 	case MCDI_EVENT_CODE_MC_BIST:
1344 		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1345 		efx_mcdi_ev_bist(efx);
1346 		break;
1347 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1348 		/* MAC stats are gather lazily.  We can ignore this. */
1349 		break;
1350 	case MCDI_EVENT_CODE_FLR:
1351 		if (efx->type->sriov_flr)
1352 			efx->type->sriov_flr(efx,
1353 					     MCDI_EVENT_FIELD(*event, FLR_VF));
1354 		break;
1355 	case MCDI_EVENT_CODE_PTP_RX:
1356 	case MCDI_EVENT_CODE_PTP_FAULT:
1357 	case MCDI_EVENT_CODE_PTP_PPS:
1358 		efx_ptp_event(efx, event);
1359 		break;
1360 	case MCDI_EVENT_CODE_PTP_TIME:
1361 		efx_time_sync_event(channel, event);
1362 		break;
1363 	case MCDI_EVENT_CODE_TX_FLUSH:
1364 	case MCDI_EVENT_CODE_RX_FLUSH:
1365 		/* Two flush events will be sent: one to the same event
1366 		 * queue as completions, and one to event queue 0.
1367 		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1368 		 * flag will be set, and we should ignore the event
1369 		 * because we want to wait for all completions.
1370 		 */
1371 		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1372 			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1373 		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1374 			efx_ef10_handle_drain_event(efx);
1375 		break;
1376 	case MCDI_EVENT_CODE_TX_ERR:
1377 	case MCDI_EVENT_CODE_RX_ERR:
1378 		netif_err(efx, hw, efx->net_dev,
1379 			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1380 			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1381 			  EFX_QWORD_VAL(*event));
1382 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1383 		break;
1384 	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1385 		efx_mcdi_ev_proxy_response(efx,
1386 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1387 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1388 		break;
1389 	default:
1390 		netif_err(efx, hw, efx->net_dev,
1391 			  "Unknown MCDI event " EFX_QWORD_FMT "\n",
1392 			  EFX_QWORD_VAL(*event));
1393 	}
1394 }
1395 
1396 /**************************************************************************
1397  *
1398  * Specific request functions
1399  *
1400  **************************************************************************
1401  */
1402 
1403 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1404 {
1405 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1406 	size_t outlength;
1407 	const __le16 *ver_words;
1408 	size_t offset;
1409 	int rc;
1410 
1411 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1412 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1413 			  outbuf, sizeof(outbuf), &outlength);
1414 	if (rc)
1415 		goto fail;
1416 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1417 		rc = -EIO;
1418 		goto fail;
1419 	}
1420 
1421 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1422 	offset = scnprintf(buf, len, "%u.%u.%u.%u",
1423 			   le16_to_cpu(ver_words[0]),
1424 			   le16_to_cpu(ver_words[1]),
1425 			   le16_to_cpu(ver_words[2]),
1426 			   le16_to_cpu(ver_words[3]));
1427 
1428 	/* EF10 may have multiple datapath firmware variants within a
1429 	 * single version.  Report which variants are running.
1430 	 */
1431 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1432 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1433 
1434 		offset += scnprintf(buf + offset, len - offset, " rx%x tx%x",
1435 				    nic_data->rx_dpcpu_fw_id,
1436 				    nic_data->tx_dpcpu_fw_id);
1437 
1438 		/* It's theoretically possible for the string to exceed 31
1439 		 * characters, though in practice the first three version
1440 		 * components are short enough that this doesn't happen.
1441 		 */
1442 		if (WARN_ON(offset >= len))
1443 			buf[0] = 0;
1444 	}
1445 
1446 	return;
1447 
1448 fail:
1449 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1450 	buf[0] = 0;
1451 }
1452 
1453 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1454 			       bool *was_attached)
1455 {
1456 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1457 	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1458 	size_t outlen;
1459 	int rc;
1460 
1461 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1462 		       driver_operating ? 1 : 0);
1463 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1464 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1465 
1466 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1467 				outbuf, sizeof(outbuf), &outlen);
1468 	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1469 	 * specified will fail with EPERM, and we have to tell the MC we don't
1470 	 * care what firmware we get.
1471 	 */
1472 	if (rc == -EPERM) {
1473 		netif_dbg(efx, probe, efx->net_dev,
1474 			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1475 		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1476 			       MC_CMD_FW_DONT_CARE);
1477 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1478 					sizeof(inbuf), outbuf, sizeof(outbuf),
1479 					&outlen);
1480 	}
1481 	if (rc) {
1482 		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1483 				       outbuf, outlen, rc);
1484 		goto fail;
1485 	}
1486 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1487 		rc = -EIO;
1488 		goto fail;
1489 	}
1490 
1491 	if (driver_operating) {
1492 		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1493 			efx->mcdi->fn_flags =
1494 				MCDI_DWORD(outbuf,
1495 					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1496 		} else {
1497 			/* Synthesise flags for Siena */
1498 			efx->mcdi->fn_flags =
1499 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1500 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1501 				(efx_port_num(efx) == 0) <<
1502 				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1503 		}
1504 	}
1505 
1506 	/* We currently assume we have control of the external link
1507 	 * and are completely trusted by firmware.  Abort probing
1508 	 * if that's not true for this function.
1509 	 */
1510 
1511 	if (was_attached != NULL)
1512 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1513 	return 0;
1514 
1515 fail:
1516 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1517 	return rc;
1518 }
1519 
1520 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1521 			   u16 *fw_subtype_list, u32 *capabilities)
1522 {
1523 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1524 	size_t outlen, i;
1525 	int port_num = efx_port_num(efx);
1526 	int rc;
1527 
1528 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1529 	/* we need __aligned(2) for ether_addr_copy */
1530 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1531 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1532 
1533 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1534 			  outbuf, sizeof(outbuf), &outlen);
1535 	if (rc)
1536 		goto fail;
1537 
1538 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1539 		rc = -EIO;
1540 		goto fail;
1541 	}
1542 
1543 	if (mac_address)
1544 		ether_addr_copy(mac_address,
1545 				port_num ?
1546 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1547 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1548 	if (fw_subtype_list) {
1549 		for (i = 0;
1550 		     i < MCDI_VAR_ARRAY_LEN(outlen,
1551 					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1552 		     i++)
1553 			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1554 				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1555 		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1556 			fw_subtype_list[i] = 0;
1557 	}
1558 	if (capabilities) {
1559 		if (port_num)
1560 			*capabilities = MCDI_DWORD(outbuf,
1561 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1562 		else
1563 			*capabilities = MCDI_DWORD(outbuf,
1564 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1565 	}
1566 
1567 	return 0;
1568 
1569 fail:
1570 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1571 		  __func__, rc, (int)outlen);
1572 
1573 	return rc;
1574 }
1575 
1576 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1577 {
1578 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1579 	u32 dest = 0;
1580 	int rc;
1581 
1582 	if (uart)
1583 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1584 	if (evq)
1585 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1586 
1587 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1588 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1589 
1590 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1591 
1592 	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1593 			  NULL, 0, NULL);
1594 	return rc;
1595 }
1596 
1597 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1598 {
1599 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1600 	size_t outlen;
1601 	int rc;
1602 
1603 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1604 
1605 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1606 			  outbuf, sizeof(outbuf), &outlen);
1607 	if (rc)
1608 		goto fail;
1609 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1610 		rc = -EIO;
1611 		goto fail;
1612 	}
1613 
1614 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1615 	return 0;
1616 
1617 fail:
1618 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1619 		  __func__, rc);
1620 	return rc;
1621 }
1622 
1623 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1624 			size_t *size_out, size_t *erase_size_out,
1625 			bool *protected_out)
1626 {
1627 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1628 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1629 	size_t outlen;
1630 	int rc;
1631 
1632 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1633 
1634 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1635 			  outbuf, sizeof(outbuf), &outlen);
1636 	if (rc)
1637 		goto fail;
1638 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1639 		rc = -EIO;
1640 		goto fail;
1641 	}
1642 
1643 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1644 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1645 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1646 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1647 	return 0;
1648 
1649 fail:
1650 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1651 	return rc;
1652 }
1653 
1654 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1655 {
1656 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1657 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1658 	int rc;
1659 
1660 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1661 
1662 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1663 			  outbuf, sizeof(outbuf), NULL);
1664 	if (rc)
1665 		return rc;
1666 
1667 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1668 	case MC_CMD_NVRAM_TEST_PASS:
1669 	case MC_CMD_NVRAM_TEST_NOTSUPP:
1670 		return 0;
1671 	default:
1672 		return -EIO;
1673 	}
1674 }
1675 
1676 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1677 {
1678 	u32 nvram_types;
1679 	unsigned int type;
1680 	int rc;
1681 
1682 	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1683 	if (rc)
1684 		goto fail1;
1685 
1686 	type = 0;
1687 	while (nvram_types != 0) {
1688 		if (nvram_types & 1) {
1689 			rc = efx_mcdi_nvram_test(efx, type);
1690 			if (rc)
1691 				goto fail2;
1692 		}
1693 		type++;
1694 		nvram_types >>= 1;
1695 	}
1696 
1697 	return 0;
1698 
1699 fail2:
1700 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1701 		  __func__, type);
1702 fail1:
1703 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1704 	return rc;
1705 }
1706 
1707 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1708  * negative on error.
1709  */
1710 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1711 {
1712 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1713 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1714 	unsigned int flags, index;
1715 	const char *reason;
1716 	size_t outlen;
1717 	int retry;
1718 	int rc;
1719 
1720 	/* Attempt to read any stored assertion state before we reboot
1721 	 * the mcfw out of the assertion handler. Retry twice, once
1722 	 * because a boot-time assertion might cause this command to fail
1723 	 * with EINTR. And once again because GET_ASSERTS can race with
1724 	 * MC_CMD_REBOOT running on the other port. */
1725 	retry = 2;
1726 	do {
1727 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1728 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1729 					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1730 					outbuf, sizeof(outbuf), &outlen);
1731 		if (rc == -EPERM)
1732 			return 0;
1733 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1734 
1735 	if (rc) {
1736 		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1737 				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1738 				       outlen, rc);
1739 		return rc;
1740 	}
1741 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1742 		return -EIO;
1743 
1744 	/* Print out any recorded assertion state */
1745 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1746 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1747 		return 0;
1748 
1749 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1750 		? "system-level assertion"
1751 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1752 		? "thread-level assertion"
1753 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1754 		? "watchdog reset"
1755 		: "unknown assertion";
1756 	netif_err(efx, hw, efx->net_dev,
1757 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1758 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1759 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1760 
1761 	/* Print out the registers */
1762 	for (index = 0;
1763 	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1764 	     index++)
1765 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1766 			  1 + index,
1767 			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1768 					   index));
1769 
1770 	return 1;
1771 }
1772 
1773 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1774 {
1775 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1776 	int rc;
1777 
1778 	/* If the MC is running debug firmware, it might now be
1779 	 * waiting for a debugger to attach, but we just want it to
1780 	 * reboot.  We set a flag that makes the command a no-op if it
1781 	 * has already done so.
1782 	 * The MCDI will thus return either 0 or -EIO.
1783 	 */
1784 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1785 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1786 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1787 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1788 				NULL, 0, NULL);
1789 	if (rc == -EIO)
1790 		rc = 0;
1791 	if (rc)
1792 		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1793 				       NULL, 0, rc);
1794 	return rc;
1795 }
1796 
1797 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1798 {
1799 	int rc;
1800 
1801 	rc = efx_mcdi_read_assertion(efx);
1802 	if (rc <= 0)
1803 		return rc;
1804 
1805 	return efx_mcdi_exit_assertion(efx);
1806 }
1807 
1808 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1809 {
1810 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1811 	int rc;
1812 
1813 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1814 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1815 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1816 
1817 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1818 
1819 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1820 
1821 	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1822 			  NULL, 0, NULL);
1823 }
1824 
1825 static int efx_mcdi_reset_func(struct efx_nic *efx)
1826 {
1827 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1828 	int rc;
1829 
1830 	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1831 	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1832 			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1833 	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1834 			  NULL, 0, NULL);
1835 	return rc;
1836 }
1837 
1838 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1839 {
1840 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1841 	int rc;
1842 
1843 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1844 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1845 	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1846 			  NULL, 0, NULL);
1847 	/* White is black, and up is down */
1848 	if (rc == -EIO)
1849 		return 0;
1850 	if (rc == 0)
1851 		rc = -EIO;
1852 	return rc;
1853 }
1854 
1855 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1856 {
1857 	return RESET_TYPE_RECOVER_OR_ALL;
1858 }
1859 
1860 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1861 {
1862 	int rc;
1863 
1864 	/* If MCDI is down, we can't handle_assertion */
1865 	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1866 		rc = pci_reset_function(efx->pci_dev);
1867 		if (rc)
1868 			return rc;
1869 		/* Re-enable polled MCDI completion */
1870 		if (efx->mcdi) {
1871 			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1872 			mcdi->mode = MCDI_MODE_POLL;
1873 		}
1874 		return 0;
1875 	}
1876 
1877 	/* Recover from a failed assertion pre-reset */
1878 	rc = efx_mcdi_handle_assertion(efx);
1879 	if (rc)
1880 		return rc;
1881 
1882 	if (method == RESET_TYPE_DATAPATH)
1883 		return 0;
1884 	else if (method == RESET_TYPE_WORLD)
1885 		return efx_mcdi_reset_mc(efx);
1886 	else
1887 		return efx_mcdi_reset_func(efx);
1888 }
1889 
1890 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1891 				   const u8 *mac, int *id_out)
1892 {
1893 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1894 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1895 	size_t outlen;
1896 	int rc;
1897 
1898 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1899 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1900 		       MC_CMD_FILTER_MODE_SIMPLE);
1901 	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1902 
1903 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1904 			  outbuf, sizeof(outbuf), &outlen);
1905 	if (rc)
1906 		goto fail;
1907 
1908 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1909 		rc = -EIO;
1910 		goto fail;
1911 	}
1912 
1913 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1914 
1915 	return 0;
1916 
1917 fail:
1918 	*id_out = -1;
1919 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1920 	return rc;
1921 
1922 }
1923 
1924 
1925 int
1926 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1927 {
1928 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1929 }
1930 
1931 
1932 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1933 {
1934 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1935 	size_t outlen;
1936 	int rc;
1937 
1938 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1939 			  outbuf, sizeof(outbuf), &outlen);
1940 	if (rc)
1941 		goto fail;
1942 
1943 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1944 		rc = -EIO;
1945 		goto fail;
1946 	}
1947 
1948 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1949 
1950 	return 0;
1951 
1952 fail:
1953 	*id_out = -1;
1954 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1955 	return rc;
1956 }
1957 
1958 
1959 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1960 {
1961 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1962 	int rc;
1963 
1964 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1965 
1966 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1967 			  NULL, 0, NULL);
1968 	return rc;
1969 }
1970 
1971 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1972 {
1973 	struct efx_channel *channel;
1974 	struct efx_rx_queue *rx_queue;
1975 	MCDI_DECLARE_BUF(inbuf,
1976 			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1977 	int rc, count;
1978 
1979 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1980 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1981 
1982 	count = 0;
1983 	efx_for_each_channel(channel, efx) {
1984 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1985 			if (rx_queue->flush_pending) {
1986 				rx_queue->flush_pending = false;
1987 				atomic_dec(&efx->rxq_flush_pending);
1988 				MCDI_SET_ARRAY_DWORD(
1989 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1990 					count, efx_rx_queue_index(rx_queue));
1991 				count++;
1992 			}
1993 		}
1994 	}
1995 
1996 	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1997 			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1998 	WARN_ON(rc < 0);
1999 
2000 	return rc;
2001 }
2002 
2003 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2004 {
2005 	int rc;
2006 
2007 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2008 	return rc;
2009 }
2010 
2011 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2012 			    unsigned int *flags)
2013 {
2014 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2015 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2016 	size_t outlen;
2017 	int rc;
2018 
2019 	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2020 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2021 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2022 	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2023 			  outbuf, sizeof(outbuf), &outlen);
2024 	if (rc)
2025 		return rc;
2026 
2027 	if (!flags)
2028 		return 0;
2029 
2030 	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2031 		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2032 	else
2033 		*flags = 0;
2034 
2035 	return 0;
2036 }
2037 
2038 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2039 			     unsigned int *enabled_out)
2040 {
2041 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2042 	size_t outlen;
2043 	int rc;
2044 
2045 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2046 			  outbuf, sizeof(outbuf), &outlen);
2047 	if (rc)
2048 		goto fail;
2049 
2050 	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2051 		rc = -EIO;
2052 		goto fail;
2053 	}
2054 
2055 	if (impl_out)
2056 		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2057 
2058 	if (enabled_out)
2059 		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2060 
2061 	return 0;
2062 
2063 fail:
2064 	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2065 	 * terrifying.  The call site will have to deal with it though.
2066 	 */
2067 	netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2068 		       "%s: failed rc=%d\n", __func__, rc);
2069 	return rc;
2070 }
2071 
2072 #ifdef CONFIG_SFC_MTD
2073 
2074 #define EFX_MCDI_NVRAM_LEN_MAX 128
2075 
2076 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2077 {
2078 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2079 	int rc;
2080 
2081 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2082 	MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2083 			      NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2084 			      1);
2085 
2086 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2087 
2088 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2089 			  NULL, 0, NULL);
2090 
2091 	return rc;
2092 }
2093 
2094 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2095 			       loff_t offset, u8 *buffer, size_t length)
2096 {
2097 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2098 	MCDI_DECLARE_BUF(outbuf,
2099 			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2100 	size_t outlen;
2101 	int rc;
2102 
2103 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2104 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2105 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2106 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2107 		       MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2108 
2109 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2110 			  outbuf, sizeof(outbuf), &outlen);
2111 	if (rc)
2112 		return rc;
2113 
2114 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2115 	return 0;
2116 }
2117 
2118 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2119 				loff_t offset, const u8 *buffer, size_t length)
2120 {
2121 	MCDI_DECLARE_BUF(inbuf,
2122 			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2123 	int rc;
2124 
2125 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2126 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2127 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2128 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2129 
2130 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2131 
2132 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2133 			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2134 			  NULL, 0, NULL);
2135 	return rc;
2136 }
2137 
2138 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2139 				loff_t offset, size_t length)
2140 {
2141 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2142 	int rc;
2143 
2144 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2145 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2146 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2147 
2148 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2149 
2150 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2151 			  NULL, 0, NULL);
2152 	return rc;
2153 }
2154 
2155 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2156 {
2157 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2158 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2159 	size_t outlen;
2160 	int rc, rc2;
2161 
2162 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2163 	/* Always set this flag. Old firmware ignores it */
2164 	MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2165 			      NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2166 			      1);
2167 
2168 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2169 			  outbuf, sizeof(outbuf), &outlen);
2170 	if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2171 		rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2172 		if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2173 			netif_err(efx, drv, efx->net_dev,
2174 				  "NVRAM update failed verification with code 0x%x\n",
2175 				  rc2);
2176 		switch (rc2) {
2177 		case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2178 			break;
2179 		case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2180 		case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2181 		case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2182 		case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2183 		case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2184 			rc = -EIO;
2185 			break;
2186 		case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2187 		case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2188 			rc = -EINVAL;
2189 			break;
2190 		case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2191 		case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2192 		case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2193 			rc = -EPERM;
2194 			break;
2195 		default:
2196 			netif_err(efx, drv, efx->net_dev,
2197 				  "Unknown response to NVRAM_UPDATE_FINISH\n");
2198 			rc = -EIO;
2199 		}
2200 	}
2201 
2202 	return rc;
2203 }
2204 
2205 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2206 		      size_t len, size_t *retlen, u8 *buffer)
2207 {
2208 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2209 	struct efx_nic *efx = mtd->priv;
2210 	loff_t offset = start;
2211 	loff_t end = min_t(loff_t, start + len, mtd->size);
2212 	size_t chunk;
2213 	int rc = 0;
2214 
2215 	while (offset < end) {
2216 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2217 		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2218 					 buffer, chunk);
2219 		if (rc)
2220 			goto out;
2221 		offset += chunk;
2222 		buffer += chunk;
2223 	}
2224 out:
2225 	*retlen = offset - start;
2226 	return rc;
2227 }
2228 
2229 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2230 {
2231 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2232 	struct efx_nic *efx = mtd->priv;
2233 	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2234 	loff_t end = min_t(loff_t, start + len, mtd->size);
2235 	size_t chunk = part->common.mtd.erasesize;
2236 	int rc = 0;
2237 
2238 	if (!part->updating) {
2239 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2240 		if (rc)
2241 			goto out;
2242 		part->updating = true;
2243 	}
2244 
2245 	/* The MCDI interface can in fact do multiple erase blocks at once;
2246 	 * but erasing may be slow, so we make multiple calls here to avoid
2247 	 * tripping the MCDI RPC timeout. */
2248 	while (offset < end) {
2249 		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2250 					  chunk);
2251 		if (rc)
2252 			goto out;
2253 		offset += chunk;
2254 	}
2255 out:
2256 	return rc;
2257 }
2258 
2259 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2260 		       size_t len, size_t *retlen, const u8 *buffer)
2261 {
2262 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2263 	struct efx_nic *efx = mtd->priv;
2264 	loff_t offset = start;
2265 	loff_t end = min_t(loff_t, start + len, mtd->size);
2266 	size_t chunk;
2267 	int rc = 0;
2268 
2269 	if (!part->updating) {
2270 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2271 		if (rc)
2272 			goto out;
2273 		part->updating = true;
2274 	}
2275 
2276 	while (offset < end) {
2277 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2278 		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2279 					  buffer, chunk);
2280 		if (rc)
2281 			goto out;
2282 		offset += chunk;
2283 		buffer += chunk;
2284 	}
2285 out:
2286 	*retlen = offset - start;
2287 	return rc;
2288 }
2289 
2290 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2291 {
2292 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2293 	struct efx_nic *efx = mtd->priv;
2294 	int rc = 0;
2295 
2296 	if (part->updating) {
2297 		part->updating = false;
2298 		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2299 	}
2300 
2301 	return rc;
2302 }
2303 
2304 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2305 {
2306 	struct efx_mcdi_mtd_partition *mcdi_part =
2307 		container_of(part, struct efx_mcdi_mtd_partition, common);
2308 	struct efx_nic *efx = part->mtd.priv;
2309 
2310 	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2311 		 efx->name, part->type_name, mcdi_part->fw_subtype);
2312 }
2313 
2314 #endif /* CONFIG_SFC_MTD */
2315