1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2008-2013 Solarflare Communications Inc. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/moduleparam.h> 9 #include <linux/atomic.h> 10 #include "net_driver.h" 11 #include "nic.h" 12 #include "io.h" 13 #include "farch_regs.h" 14 #include "mcdi_pcol.h" 15 16 /************************************************************************** 17 * 18 * Management-Controller-to-Driver Interface 19 * 20 ************************************************************************** 21 */ 22 23 #define MCDI_RPC_TIMEOUT (10 * HZ) 24 25 /* A reboot/assertion causes the MCDI status word to be set after the 26 * command word is set or a REBOOT event is sent. If we notice a reboot 27 * via these mechanisms then wait 250ms for the status word to be set. 28 */ 29 #define MCDI_STATUS_DELAY_US 100 30 #define MCDI_STATUS_DELAY_COUNT 2500 31 #define MCDI_STATUS_SLEEP_MS \ 32 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 33 34 #define SEQ_MASK \ 35 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 36 37 struct efx_mcdi_async_param { 38 struct list_head list; 39 unsigned int cmd; 40 size_t inlen; 41 size_t outlen; 42 bool quiet; 43 efx_mcdi_async_completer *complete; 44 unsigned long cookie; 45 /* followed by request/response buffer */ 46 }; 47 48 static void efx_mcdi_timeout_async(struct timer_list *t); 49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 50 bool *was_attached_out); 51 static bool efx_mcdi_poll_once(struct efx_nic *efx); 52 static void efx_mcdi_abandon(struct efx_nic *efx); 53 54 #ifdef CONFIG_SFC_MCDI_LOGGING 55 static bool mcdi_logging_default; 56 module_param(mcdi_logging_default, bool, 0644); 57 MODULE_PARM_DESC(mcdi_logging_default, 58 "Enable MCDI logging on newly-probed functions"); 59 #endif 60 61 int efx_mcdi_init(struct efx_nic *efx) 62 { 63 struct efx_mcdi_iface *mcdi; 64 bool already_attached; 65 int rc = -ENOMEM; 66 67 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 68 if (!efx->mcdi) 69 goto fail; 70 71 mcdi = efx_mcdi(efx); 72 mcdi->efx = efx; 73 #ifdef CONFIG_SFC_MCDI_LOGGING 74 /* consuming code assumes buffer is page-sized */ 75 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 76 if (!mcdi->logging_buffer) 77 goto fail1; 78 mcdi->logging_enabled = mcdi_logging_default; 79 #endif 80 init_waitqueue_head(&mcdi->wq); 81 init_waitqueue_head(&mcdi->proxy_rx_wq); 82 spin_lock_init(&mcdi->iface_lock); 83 mcdi->state = MCDI_STATE_QUIESCENT; 84 mcdi->mode = MCDI_MODE_POLL; 85 spin_lock_init(&mcdi->async_lock); 86 INIT_LIST_HEAD(&mcdi->async_list); 87 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0); 88 89 (void) efx_mcdi_poll_reboot(efx); 90 mcdi->new_epoch = true; 91 92 /* Recover from a failed assertion before probing */ 93 rc = efx_mcdi_handle_assertion(efx); 94 if (rc) 95 goto fail2; 96 97 /* Let the MC (and BMC, if this is a LOM) know that the driver 98 * is loaded. We should do this before we reset the NIC. 99 */ 100 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 101 if (rc) { 102 netif_err(efx, probe, efx->net_dev, 103 "Unable to register driver with MCPU\n"); 104 goto fail2; 105 } 106 if (already_attached) 107 /* Not a fatal error */ 108 netif_err(efx, probe, efx->net_dev, 109 "Host already registered with MCPU\n"); 110 111 if (efx->mcdi->fn_flags & 112 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 113 efx->primary = efx; 114 115 return 0; 116 fail2: 117 #ifdef CONFIG_SFC_MCDI_LOGGING 118 free_page((unsigned long)mcdi->logging_buffer); 119 fail1: 120 #endif 121 kfree(efx->mcdi); 122 efx->mcdi = NULL; 123 fail: 124 return rc; 125 } 126 127 void efx_mcdi_detach(struct efx_nic *efx) 128 { 129 if (!efx->mcdi) 130 return; 131 132 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 133 134 /* Relinquish the device (back to the BMC, if this is a LOM) */ 135 efx_mcdi_drv_attach(efx, false, NULL); 136 } 137 138 void efx_mcdi_fini(struct efx_nic *efx) 139 { 140 if (!efx->mcdi) 141 return; 142 143 #ifdef CONFIG_SFC_MCDI_LOGGING 144 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 145 #endif 146 147 kfree(efx->mcdi); 148 } 149 150 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 151 const efx_dword_t *inbuf, size_t inlen) 152 { 153 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 154 #ifdef CONFIG_SFC_MCDI_LOGGING 155 char *buf = mcdi->logging_buffer; /* page-sized */ 156 #endif 157 efx_dword_t hdr[2]; 158 size_t hdr_len; 159 u32 xflags, seqno; 160 161 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 162 163 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 164 spin_lock_bh(&mcdi->iface_lock); 165 ++mcdi->seqno; 166 spin_unlock_bh(&mcdi->iface_lock); 167 168 seqno = mcdi->seqno & SEQ_MASK; 169 xflags = 0; 170 if (mcdi->mode == MCDI_MODE_EVENTS) 171 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 172 173 if (efx->type->mcdi_max_ver == 1) { 174 /* MCDI v1 */ 175 EFX_POPULATE_DWORD_7(hdr[0], 176 MCDI_HEADER_RESPONSE, 0, 177 MCDI_HEADER_RESYNC, 1, 178 MCDI_HEADER_CODE, cmd, 179 MCDI_HEADER_DATALEN, inlen, 180 MCDI_HEADER_SEQ, seqno, 181 MCDI_HEADER_XFLAGS, xflags, 182 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 183 hdr_len = 4; 184 } else { 185 /* MCDI v2 */ 186 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 187 EFX_POPULATE_DWORD_7(hdr[0], 188 MCDI_HEADER_RESPONSE, 0, 189 MCDI_HEADER_RESYNC, 1, 190 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 191 MCDI_HEADER_DATALEN, 0, 192 MCDI_HEADER_SEQ, seqno, 193 MCDI_HEADER_XFLAGS, xflags, 194 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 195 EFX_POPULATE_DWORD_2(hdr[1], 196 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 197 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 198 hdr_len = 8; 199 } 200 201 #ifdef CONFIG_SFC_MCDI_LOGGING 202 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 203 int bytes = 0; 204 int i; 205 /* Lengths should always be a whole number of dwords, so scream 206 * if they're not. 207 */ 208 WARN_ON_ONCE(hdr_len % 4); 209 WARN_ON_ONCE(inlen % 4); 210 211 /* We own the logging buffer, as only one MCDI can be in 212 * progress on a NIC at any one time. So no need for locking. 213 */ 214 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 215 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 216 " %08x", 217 le32_to_cpu(hdr[i].u32[0])); 218 219 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 220 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 221 " %08x", 222 le32_to_cpu(inbuf[i].u32[0])); 223 224 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 225 } 226 #endif 227 228 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 229 230 mcdi->new_epoch = false; 231 } 232 233 static int efx_mcdi_errno(unsigned int mcdi_err) 234 { 235 switch (mcdi_err) { 236 case 0: 237 return 0; 238 #define TRANSLATE_ERROR(name) \ 239 case MC_CMD_ERR_ ## name: \ 240 return -name; 241 TRANSLATE_ERROR(EPERM); 242 TRANSLATE_ERROR(ENOENT); 243 TRANSLATE_ERROR(EINTR); 244 TRANSLATE_ERROR(EAGAIN); 245 TRANSLATE_ERROR(EACCES); 246 TRANSLATE_ERROR(EBUSY); 247 TRANSLATE_ERROR(EINVAL); 248 TRANSLATE_ERROR(EDEADLK); 249 TRANSLATE_ERROR(ENOSYS); 250 TRANSLATE_ERROR(ETIME); 251 TRANSLATE_ERROR(EALREADY); 252 TRANSLATE_ERROR(ENOSPC); 253 #undef TRANSLATE_ERROR 254 case MC_CMD_ERR_ENOTSUP: 255 return -EOPNOTSUPP; 256 case MC_CMD_ERR_ALLOC_FAIL: 257 return -ENOBUFS; 258 case MC_CMD_ERR_MAC_EXIST: 259 return -EADDRINUSE; 260 default: 261 return -EPROTO; 262 } 263 } 264 265 static void efx_mcdi_read_response_header(struct efx_nic *efx) 266 { 267 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 268 unsigned int respseq, respcmd, error; 269 #ifdef CONFIG_SFC_MCDI_LOGGING 270 char *buf = mcdi->logging_buffer; /* page-sized */ 271 #endif 272 efx_dword_t hdr; 273 274 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 275 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 276 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 277 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 278 279 if (respcmd != MC_CMD_V2_EXTN) { 280 mcdi->resp_hdr_len = 4; 281 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 282 } else { 283 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 284 mcdi->resp_hdr_len = 8; 285 mcdi->resp_data_len = 286 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 287 } 288 289 #ifdef CONFIG_SFC_MCDI_LOGGING 290 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 291 size_t hdr_len, data_len; 292 int bytes = 0; 293 int i; 294 295 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 296 hdr_len = mcdi->resp_hdr_len / 4; 297 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 298 * to dword size, and the MCDI buffer is always dword size 299 */ 300 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 301 302 /* We own the logging buffer, as only one MCDI can be in 303 * progress on a NIC at any one time. So no need for locking. 304 */ 305 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 306 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 307 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 308 " %08x", le32_to_cpu(hdr.u32[0])); 309 } 310 311 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 312 efx->type->mcdi_read_response(efx, &hdr, 313 mcdi->resp_hdr_len + (i * 4), 4); 314 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 315 " %08x", le32_to_cpu(hdr.u32[0])); 316 } 317 318 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 319 } 320 #endif 321 322 mcdi->resprc_raw = 0; 323 if (error && mcdi->resp_data_len == 0) { 324 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 325 mcdi->resprc = -EIO; 326 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 327 netif_err(efx, hw, efx->net_dev, 328 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 329 respseq, mcdi->seqno); 330 mcdi->resprc = -EIO; 331 } else if (error) { 332 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 333 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); 334 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); 335 } else { 336 mcdi->resprc = 0; 337 } 338 } 339 340 static bool efx_mcdi_poll_once(struct efx_nic *efx) 341 { 342 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 343 344 rmb(); 345 if (!efx->type->mcdi_poll_response(efx)) 346 return false; 347 348 spin_lock_bh(&mcdi->iface_lock); 349 efx_mcdi_read_response_header(efx); 350 spin_unlock_bh(&mcdi->iface_lock); 351 352 return true; 353 } 354 355 static int efx_mcdi_poll(struct efx_nic *efx) 356 { 357 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 358 unsigned long time, finish; 359 unsigned int spins; 360 int rc; 361 362 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 363 rc = efx_mcdi_poll_reboot(efx); 364 if (rc) { 365 spin_lock_bh(&mcdi->iface_lock); 366 mcdi->resprc = rc; 367 mcdi->resp_hdr_len = 0; 368 mcdi->resp_data_len = 0; 369 spin_unlock_bh(&mcdi->iface_lock); 370 return 0; 371 } 372 373 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 374 * because generally mcdi responses are fast. After that, back off 375 * and poll once a jiffy (approximately) 376 */ 377 spins = USER_TICK_USEC; 378 finish = jiffies + MCDI_RPC_TIMEOUT; 379 380 while (1) { 381 if (spins != 0) { 382 --spins; 383 udelay(1); 384 } else { 385 schedule_timeout_uninterruptible(1); 386 } 387 388 time = jiffies; 389 390 if (efx_mcdi_poll_once(efx)) 391 break; 392 393 if (time_after(time, finish)) 394 return -ETIMEDOUT; 395 } 396 397 /* Return rc=0 like wait_event_timeout() */ 398 return 0; 399 } 400 401 /* Test and clear MC-rebooted flag for this port/function; reset 402 * software state as necessary. 403 */ 404 int efx_mcdi_poll_reboot(struct efx_nic *efx) 405 { 406 if (!efx->mcdi) 407 return 0; 408 409 return efx->type->mcdi_poll_reboot(efx); 410 } 411 412 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 413 { 414 return cmpxchg(&mcdi->state, 415 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 416 MCDI_STATE_QUIESCENT; 417 } 418 419 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 420 { 421 /* Wait until the interface becomes QUIESCENT and we win the race 422 * to mark it RUNNING_SYNC. 423 */ 424 wait_event(mcdi->wq, 425 cmpxchg(&mcdi->state, 426 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 427 MCDI_STATE_QUIESCENT); 428 } 429 430 static int efx_mcdi_await_completion(struct efx_nic *efx) 431 { 432 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 433 434 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 435 MCDI_RPC_TIMEOUT) == 0) 436 return -ETIMEDOUT; 437 438 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 439 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 440 * completed the request first, then we'll just end up completing the 441 * request again, which is safe. 442 * 443 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 444 * wait_event_timeout() implicitly provides. 445 */ 446 if (mcdi->mode == MCDI_MODE_POLL) 447 return efx_mcdi_poll(efx); 448 449 return 0; 450 } 451 452 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 453 * requester. Return whether this was done. Does not take any locks. 454 */ 455 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 456 { 457 if (cmpxchg(&mcdi->state, 458 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 459 MCDI_STATE_RUNNING_SYNC) { 460 wake_up(&mcdi->wq); 461 return true; 462 } 463 464 return false; 465 } 466 467 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 468 { 469 if (mcdi->mode == MCDI_MODE_EVENTS) { 470 struct efx_mcdi_async_param *async; 471 struct efx_nic *efx = mcdi->efx; 472 473 /* Process the asynchronous request queue */ 474 spin_lock_bh(&mcdi->async_lock); 475 async = list_first_entry_or_null( 476 &mcdi->async_list, struct efx_mcdi_async_param, list); 477 if (async) { 478 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 479 efx_mcdi_send_request(efx, async->cmd, 480 (const efx_dword_t *)(async + 1), 481 async->inlen); 482 mod_timer(&mcdi->async_timer, 483 jiffies + MCDI_RPC_TIMEOUT); 484 } 485 spin_unlock_bh(&mcdi->async_lock); 486 487 if (async) 488 return; 489 } 490 491 mcdi->state = MCDI_STATE_QUIESCENT; 492 wake_up(&mcdi->wq); 493 } 494 495 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 496 * asynchronous completion function, and release the interface. 497 * Return whether this was done. Must be called in bh-disabled 498 * context. Will take iface_lock and async_lock. 499 */ 500 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 501 { 502 struct efx_nic *efx = mcdi->efx; 503 struct efx_mcdi_async_param *async; 504 size_t hdr_len, data_len, err_len; 505 efx_dword_t *outbuf; 506 MCDI_DECLARE_BUF_ERR(errbuf); 507 int rc; 508 509 if (cmpxchg(&mcdi->state, 510 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 511 MCDI_STATE_RUNNING_ASYNC) 512 return false; 513 514 spin_lock(&mcdi->iface_lock); 515 if (timeout) { 516 /* Ensure that if the completion event arrives later, 517 * the seqno check in efx_mcdi_ev_cpl() will fail 518 */ 519 ++mcdi->seqno; 520 ++mcdi->credits; 521 rc = -ETIMEDOUT; 522 hdr_len = 0; 523 data_len = 0; 524 } else { 525 rc = mcdi->resprc; 526 hdr_len = mcdi->resp_hdr_len; 527 data_len = mcdi->resp_data_len; 528 } 529 spin_unlock(&mcdi->iface_lock); 530 531 /* Stop the timer. In case the timer function is running, we 532 * must wait for it to return so that there is no possibility 533 * of it aborting the next request. 534 */ 535 if (!timeout) 536 del_timer_sync(&mcdi->async_timer); 537 538 spin_lock(&mcdi->async_lock); 539 async = list_first_entry(&mcdi->async_list, 540 struct efx_mcdi_async_param, list); 541 list_del(&async->list); 542 spin_unlock(&mcdi->async_lock); 543 544 outbuf = (efx_dword_t *)(async + 1); 545 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 546 min(async->outlen, data_len)); 547 if (!timeout && rc && !async->quiet) { 548 err_len = min(sizeof(errbuf), data_len); 549 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 550 sizeof(errbuf)); 551 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 552 err_len, rc); 553 } 554 555 if (async->complete) 556 async->complete(efx, async->cookie, rc, outbuf, 557 min(async->outlen, data_len)); 558 kfree(async); 559 560 efx_mcdi_release(mcdi); 561 562 return true; 563 } 564 565 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 566 unsigned int datalen, unsigned int mcdi_err) 567 { 568 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 569 bool wake = false; 570 571 spin_lock(&mcdi->iface_lock); 572 573 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 574 if (mcdi->credits) 575 /* The request has been cancelled */ 576 --mcdi->credits; 577 else 578 netif_err(efx, hw, efx->net_dev, 579 "MC response mismatch tx seq 0x%x rx " 580 "seq 0x%x\n", seqno, mcdi->seqno); 581 } else { 582 if (efx->type->mcdi_max_ver >= 2) { 583 /* MCDI v2 responses don't fit in an event */ 584 efx_mcdi_read_response_header(efx); 585 } else { 586 mcdi->resprc = efx_mcdi_errno(mcdi_err); 587 mcdi->resp_hdr_len = 4; 588 mcdi->resp_data_len = datalen; 589 } 590 591 wake = true; 592 } 593 594 spin_unlock(&mcdi->iface_lock); 595 596 if (wake) { 597 if (!efx_mcdi_complete_async(mcdi, false)) 598 (void) efx_mcdi_complete_sync(mcdi); 599 600 /* If the interface isn't RUNNING_ASYNC or 601 * RUNNING_SYNC then we've received a duplicate 602 * completion after we've already transitioned back to 603 * QUIESCENT. [A subsequent invocation would increment 604 * seqno, so would have failed the seqno check]. 605 */ 606 } 607 } 608 609 static void efx_mcdi_timeout_async(struct timer_list *t) 610 { 611 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer); 612 613 efx_mcdi_complete_async(mcdi, true); 614 } 615 616 static int 617 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 618 { 619 if (efx->type->mcdi_max_ver < 0 || 620 (efx->type->mcdi_max_ver < 2 && 621 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 622 return -EINVAL; 623 624 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 625 (efx->type->mcdi_max_ver < 2 && 626 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 627 return -EMSGSIZE; 628 629 return 0; 630 } 631 632 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, 633 size_t hdr_len, size_t data_len, 634 u32 *proxy_handle) 635 { 636 MCDI_DECLARE_BUF_ERR(testbuf); 637 const size_t buflen = sizeof(testbuf); 638 639 if (!proxy_handle || data_len < buflen) 640 return false; 641 642 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); 643 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { 644 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); 645 return true; 646 } 647 648 return false; 649 } 650 651 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 652 size_t inlen, 653 efx_dword_t *outbuf, size_t outlen, 654 size_t *outlen_actual, bool quiet, 655 u32 *proxy_handle, int *raw_rc) 656 { 657 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 658 MCDI_DECLARE_BUF_ERR(errbuf); 659 int rc; 660 661 if (mcdi->mode == MCDI_MODE_POLL) 662 rc = efx_mcdi_poll(efx); 663 else 664 rc = efx_mcdi_await_completion(efx); 665 666 if (rc != 0) { 667 netif_err(efx, hw, efx->net_dev, 668 "MC command 0x%x inlen %d mode %d timed out\n", 669 cmd, (int)inlen, mcdi->mode); 670 671 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 672 netif_err(efx, hw, efx->net_dev, 673 "MCDI request was completed without an event\n"); 674 rc = 0; 675 } 676 677 efx_mcdi_abandon(efx); 678 679 /* Close the race with efx_mcdi_ev_cpl() executing just too late 680 * and completing a request we've just cancelled, by ensuring 681 * that the seqno check therein fails. 682 */ 683 spin_lock_bh(&mcdi->iface_lock); 684 ++mcdi->seqno; 685 ++mcdi->credits; 686 spin_unlock_bh(&mcdi->iface_lock); 687 } 688 689 if (proxy_handle) 690 *proxy_handle = 0; 691 692 if (rc != 0) { 693 if (outlen_actual) 694 *outlen_actual = 0; 695 } else { 696 size_t hdr_len, data_len, err_len; 697 698 /* At the very least we need a memory barrier here to ensure 699 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 700 * a spurious efx_mcdi_ev_cpl() running concurrently by 701 * acquiring the iface_lock. */ 702 spin_lock_bh(&mcdi->iface_lock); 703 rc = mcdi->resprc; 704 if (raw_rc) 705 *raw_rc = mcdi->resprc_raw; 706 hdr_len = mcdi->resp_hdr_len; 707 data_len = mcdi->resp_data_len; 708 err_len = min(sizeof(errbuf), data_len); 709 spin_unlock_bh(&mcdi->iface_lock); 710 711 BUG_ON(rc > 0); 712 713 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 714 min(outlen, data_len)); 715 if (outlen_actual) 716 *outlen_actual = data_len; 717 718 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 719 720 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 721 /* Don't reset if MC_CMD_REBOOT returns EIO */ 722 } else if (rc == -EIO || rc == -EINTR) { 723 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n"); 724 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n", 725 cmd, -rc); 726 if (efx->type->mcdi_reboot_detected) 727 efx->type->mcdi_reboot_detected(efx); 728 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 729 } else if (proxy_handle && (rc == -EPROTO) && 730 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, 731 proxy_handle)) { 732 mcdi->proxy_rx_status = 0; 733 mcdi->proxy_rx_handle = 0; 734 mcdi->state = MCDI_STATE_PROXY_WAIT; 735 } else if (rc && !quiet) { 736 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 737 rc); 738 } 739 740 if (rc == -EIO || rc == -EINTR) { 741 msleep(MCDI_STATUS_SLEEP_MS); 742 efx_mcdi_poll_reboot(efx); 743 mcdi->new_epoch = true; 744 } 745 } 746 747 if (!proxy_handle || !*proxy_handle) 748 efx_mcdi_release(mcdi); 749 return rc; 750 } 751 752 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) 753 { 754 if (mcdi->state == MCDI_STATE_PROXY_WAIT) { 755 /* Interrupt the proxy wait. */ 756 mcdi->proxy_rx_status = -EINTR; 757 wake_up(&mcdi->proxy_rx_wq); 758 } 759 } 760 761 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, 762 u32 handle, int status) 763 { 764 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 765 766 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); 767 768 mcdi->proxy_rx_status = efx_mcdi_errno(status); 769 /* Ensure the status is written before we update the handle, since the 770 * latter is used to check if we've finished. 771 */ 772 wmb(); 773 mcdi->proxy_rx_handle = handle; 774 wake_up(&mcdi->proxy_rx_wq); 775 } 776 777 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) 778 { 779 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 780 int rc; 781 782 /* Wait for a proxy event, or timeout. */ 783 rc = wait_event_timeout(mcdi->proxy_rx_wq, 784 mcdi->proxy_rx_handle != 0 || 785 mcdi->proxy_rx_status == -EINTR, 786 MCDI_RPC_TIMEOUT); 787 788 if (rc <= 0) { 789 netif_dbg(efx, hw, efx->net_dev, 790 "MCDI proxy timeout %d\n", handle); 791 return -ETIMEDOUT; 792 } else if (mcdi->proxy_rx_handle != handle) { 793 netif_warn(efx, hw, efx->net_dev, 794 "MCDI proxy unexpected handle %d (expected %d)\n", 795 mcdi->proxy_rx_handle, handle); 796 return -EINVAL; 797 } 798 799 return mcdi->proxy_rx_status; 800 } 801 802 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 803 const efx_dword_t *inbuf, size_t inlen, 804 efx_dword_t *outbuf, size_t outlen, 805 size_t *outlen_actual, bool quiet, int *raw_rc) 806 { 807 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ 808 int rc; 809 810 if (inbuf && inlen && (inbuf == outbuf)) { 811 /* The input buffer can't be aliased with the output. */ 812 WARN_ON(1); 813 return -EINVAL; 814 } 815 816 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 817 if (rc) 818 return rc; 819 820 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 821 outlen_actual, quiet, &proxy_handle, raw_rc); 822 823 if (proxy_handle) { 824 /* Handle proxy authorisation. This allows approval of MCDI 825 * operations to be delegated to the admin function, allowing 826 * fine control over (eg) multicast subscriptions. 827 */ 828 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 829 830 netif_dbg(efx, hw, efx->net_dev, 831 "MCDI waiting for proxy auth %d\n", 832 proxy_handle); 833 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); 834 835 if (rc == 0) { 836 netif_dbg(efx, hw, efx->net_dev, 837 "MCDI proxy retry %d\n", proxy_handle); 838 839 /* We now retry the original request. */ 840 mcdi->state = MCDI_STATE_RUNNING_SYNC; 841 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 842 843 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, 844 outbuf, outlen, outlen_actual, 845 quiet, NULL, raw_rc); 846 } else { 847 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 848 "MC command 0x%x failed after proxy auth rc=%d\n", 849 cmd, rc); 850 851 if (rc == -EINTR || rc == -EIO) 852 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 853 efx_mcdi_release(mcdi); 854 } 855 } 856 857 return rc; 858 } 859 860 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, 861 const efx_dword_t *inbuf, size_t inlen, 862 efx_dword_t *outbuf, size_t outlen, 863 size_t *outlen_actual, bool quiet) 864 { 865 int raw_rc = 0; 866 int rc; 867 868 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 869 outbuf, outlen, outlen_actual, true, &raw_rc); 870 871 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 872 efx->type->is_vf) { 873 /* If the EVB port isn't available within a VF this may 874 * mean the PF is still bringing the switch up. We should 875 * retry our request shortly. 876 */ 877 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; 878 unsigned int delay_us = 10000; 879 880 netif_dbg(efx, hw, efx->net_dev, 881 "%s: NO_EVB_PORT; will retry request\n", 882 __func__); 883 884 do { 885 usleep_range(delay_us, delay_us + 10000); 886 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 887 outbuf, outlen, outlen_actual, 888 true, &raw_rc); 889 if (delay_us < 100000) 890 delay_us <<= 1; 891 } while ((rc == -EPROTO) && 892 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 893 time_before(jiffies, abort_time)); 894 } 895 896 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) 897 efx_mcdi_display_error(efx, cmd, inlen, 898 outbuf, outlen, rc); 899 900 return rc; 901 } 902 903 /** 904 * efx_mcdi_rpc - Issue an MCDI command and wait for completion 905 * @efx: NIC through which to issue the command 906 * @cmd: Command type number 907 * @inbuf: Command parameters 908 * @inlen: Length of command parameters, in bytes. Must be a multiple 909 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. 910 * @outbuf: Response buffer. May be %NULL if @outlen is 0. 911 * @outlen: Length of response buffer, in bytes. If the actual 912 * response is longer than @outlen & ~3, it will be truncated 913 * to that length. 914 * @outlen_actual: Pointer through which to return the actual response 915 * length. May be %NULL if this is not needed. 916 * 917 * This function may sleep and therefore must be called in an appropriate 918 * context. 919 * 920 * Return: A negative error code, or zero if successful. The error 921 * code may come from the MCDI response or may indicate a failure 922 * to communicate with the MC. In the former case, the response 923 * will still be copied to @outbuf and *@outlen_actual will be 924 * set accordingly. In the latter case, *@outlen_actual will be 925 * set to zero. 926 */ 927 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 928 const efx_dword_t *inbuf, size_t inlen, 929 efx_dword_t *outbuf, size_t outlen, 930 size_t *outlen_actual) 931 { 932 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 933 outlen_actual, false); 934 } 935 936 /* Normally, on receiving an error code in the MCDI response, 937 * efx_mcdi_rpc will log an error message containing (among other 938 * things) the raw error code, by means of efx_mcdi_display_error. 939 * This _quiet version suppresses that; if the caller wishes to log 940 * the error conditionally on the return code, it should call this 941 * function and is then responsible for calling efx_mcdi_display_error 942 * as needed. 943 */ 944 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 945 const efx_dword_t *inbuf, size_t inlen, 946 efx_dword_t *outbuf, size_t outlen, 947 size_t *outlen_actual) 948 { 949 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 950 outlen_actual, true); 951 } 952 953 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 954 const efx_dword_t *inbuf, size_t inlen) 955 { 956 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 957 int rc; 958 959 rc = efx_mcdi_check_supported(efx, cmd, inlen); 960 if (rc) 961 return rc; 962 963 if (efx->mc_bist_for_other_fn) 964 return -ENETDOWN; 965 966 if (mcdi->mode == MCDI_MODE_FAIL) 967 return -ENETDOWN; 968 969 efx_mcdi_acquire_sync(mcdi); 970 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 971 return 0; 972 } 973 974 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 975 const efx_dword_t *inbuf, size_t inlen, 976 size_t outlen, 977 efx_mcdi_async_completer *complete, 978 unsigned long cookie, bool quiet) 979 { 980 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 981 struct efx_mcdi_async_param *async; 982 int rc; 983 984 rc = efx_mcdi_check_supported(efx, cmd, inlen); 985 if (rc) 986 return rc; 987 988 if (efx->mc_bist_for_other_fn) 989 return -ENETDOWN; 990 991 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 992 GFP_ATOMIC); 993 if (!async) 994 return -ENOMEM; 995 996 async->cmd = cmd; 997 async->inlen = inlen; 998 async->outlen = outlen; 999 async->quiet = quiet; 1000 async->complete = complete; 1001 async->cookie = cookie; 1002 memcpy(async + 1, inbuf, inlen); 1003 1004 spin_lock_bh(&mcdi->async_lock); 1005 1006 if (mcdi->mode == MCDI_MODE_EVENTS) { 1007 list_add_tail(&async->list, &mcdi->async_list); 1008 1009 /* If this is at the front of the queue, try to start it 1010 * immediately 1011 */ 1012 if (mcdi->async_list.next == &async->list && 1013 efx_mcdi_acquire_async(mcdi)) { 1014 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 1015 mod_timer(&mcdi->async_timer, 1016 jiffies + MCDI_RPC_TIMEOUT); 1017 } 1018 } else { 1019 kfree(async); 1020 rc = -ENETDOWN; 1021 } 1022 1023 spin_unlock_bh(&mcdi->async_lock); 1024 1025 return rc; 1026 } 1027 1028 /** 1029 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 1030 * @efx: NIC through which to issue the command 1031 * @cmd: Command type number 1032 * @inbuf: Command parameters 1033 * @inlen: Length of command parameters, in bytes 1034 * @outlen: Length to allocate for response buffer, in bytes 1035 * @complete: Function to be called on completion or cancellation. 1036 * @cookie: Arbitrary value to be passed to @complete. 1037 * 1038 * This function does not sleep and therefore may be called in atomic 1039 * context. It will fail if event queues are disabled or if MCDI 1040 * event completions have been disabled due to an error. 1041 * 1042 * If it succeeds, the @complete function will be called exactly once 1043 * in atomic context, when one of the following occurs: 1044 * (a) the completion event is received (in NAPI context) 1045 * (b) event queues are disabled (in the process that disables them) 1046 * (c) the request times-out (in timer context) 1047 */ 1048 int 1049 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 1050 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 1051 efx_mcdi_async_completer *complete, unsigned long cookie) 1052 { 1053 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1054 cookie, false); 1055 } 1056 1057 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 1058 const efx_dword_t *inbuf, size_t inlen, 1059 size_t outlen, efx_mcdi_async_completer *complete, 1060 unsigned long cookie) 1061 { 1062 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1063 cookie, true); 1064 } 1065 1066 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 1067 efx_dword_t *outbuf, size_t outlen, 1068 size_t *outlen_actual) 1069 { 1070 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1071 outlen_actual, false, NULL, NULL); 1072 } 1073 1074 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 1075 efx_dword_t *outbuf, size_t outlen, 1076 size_t *outlen_actual) 1077 { 1078 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1079 outlen_actual, true, NULL, NULL); 1080 } 1081 1082 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 1083 size_t inlen, efx_dword_t *outbuf, 1084 size_t outlen, int rc) 1085 { 1086 int code = 0, err_arg = 0; 1087 1088 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 1089 code = MCDI_DWORD(outbuf, ERR_CODE); 1090 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 1091 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 1092 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 1093 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", 1094 cmd, inlen, rc, code, err_arg); 1095 } 1096 1097 /* Switch to polled MCDI completions. This can be called in various 1098 * error conditions with various locks held, so it must be lockless. 1099 * Caller is responsible for flushing asynchronous requests later. 1100 */ 1101 void efx_mcdi_mode_poll(struct efx_nic *efx) 1102 { 1103 struct efx_mcdi_iface *mcdi; 1104 1105 if (!efx->mcdi) 1106 return; 1107 1108 mcdi = efx_mcdi(efx); 1109 /* If already in polling mode, nothing to do. 1110 * If in fail-fast state, don't switch to polled completion. 1111 * FLR recovery will do that later. 1112 */ 1113 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 1114 return; 1115 1116 /* We can switch from event completion to polled completion, because 1117 * mcdi requests are always completed in shared memory. We do this by 1118 * switching the mode to POLL'd then completing the request. 1119 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 1120 * 1121 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 1122 * which efx_mcdi_complete_sync() provides for us. 1123 */ 1124 mcdi->mode = MCDI_MODE_POLL; 1125 1126 efx_mcdi_complete_sync(mcdi); 1127 } 1128 1129 /* Flush any running or queued asynchronous requests, after event processing 1130 * is stopped 1131 */ 1132 void efx_mcdi_flush_async(struct efx_nic *efx) 1133 { 1134 struct efx_mcdi_async_param *async, *next; 1135 struct efx_mcdi_iface *mcdi; 1136 1137 if (!efx->mcdi) 1138 return; 1139 1140 mcdi = efx_mcdi(efx); 1141 1142 /* We must be in poll or fail mode so no more requests can be queued */ 1143 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 1144 1145 del_timer_sync(&mcdi->async_timer); 1146 1147 /* If a request is still running, make sure we give the MC 1148 * time to complete it so that the response won't overwrite our 1149 * next request. 1150 */ 1151 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 1152 efx_mcdi_poll(efx); 1153 mcdi->state = MCDI_STATE_QUIESCENT; 1154 } 1155 1156 /* Nothing else will access the async list now, so it is safe 1157 * to walk it without holding async_lock. If we hold it while 1158 * calling a completer then lockdep may warn that we have 1159 * acquired locks in the wrong order. 1160 */ 1161 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 1162 if (async->complete) 1163 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 1164 list_del(&async->list); 1165 kfree(async); 1166 } 1167 } 1168 1169 void efx_mcdi_mode_event(struct efx_nic *efx) 1170 { 1171 struct efx_mcdi_iface *mcdi; 1172 1173 if (!efx->mcdi) 1174 return; 1175 1176 mcdi = efx_mcdi(efx); 1177 /* If already in event completion mode, nothing to do. 1178 * If in fail-fast state, don't switch to event completion. FLR 1179 * recovery will do that later. 1180 */ 1181 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 1182 return; 1183 1184 /* We can't switch from polled to event completion in the middle of a 1185 * request, because the completion method is specified in the request. 1186 * So acquire the interface to serialise the requestors. We don't need 1187 * to acquire the iface_lock to change the mode here, but we do need a 1188 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 1189 * efx_mcdi_acquire() provides. 1190 */ 1191 efx_mcdi_acquire_sync(mcdi); 1192 mcdi->mode = MCDI_MODE_EVENTS; 1193 efx_mcdi_release(mcdi); 1194 } 1195 1196 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 1197 { 1198 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1199 1200 /* If there is an outstanding MCDI request, it has been terminated 1201 * either by a BADASSERT or REBOOT event. If the mcdi interface is 1202 * in polled mode, then do nothing because the MC reboot handler will 1203 * set the header correctly. However, if the mcdi interface is waiting 1204 * for a CMDDONE event it won't receive it [and since all MCDI events 1205 * are sent to the same queue, we can't be racing with 1206 * efx_mcdi_ev_cpl()] 1207 * 1208 * If there is an outstanding asynchronous request, we can't 1209 * complete it now (efx_mcdi_complete() would deadlock). The 1210 * reset process will take care of this. 1211 * 1212 * There's a race here with efx_mcdi_send_request(), because 1213 * we might receive a REBOOT event *before* the request has 1214 * been copied out. In polled mode (during startup) this is 1215 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1216 * event mode, this condition is just an edge-case of 1217 * receiving a REBOOT event after posting the MCDI 1218 * request. Did the mc reboot before or after the copyout? The 1219 * best we can do always is just return failure. 1220 * 1221 * If there is an outstanding proxy response expected it is not going 1222 * to arrive. We should thus abort it. 1223 */ 1224 spin_lock(&mcdi->iface_lock); 1225 efx_mcdi_proxy_abort(mcdi); 1226 1227 if (efx_mcdi_complete_sync(mcdi)) { 1228 if (mcdi->mode == MCDI_MODE_EVENTS) { 1229 mcdi->resprc = rc; 1230 mcdi->resp_hdr_len = 0; 1231 mcdi->resp_data_len = 0; 1232 ++mcdi->credits; 1233 } 1234 } else { 1235 int count; 1236 1237 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1238 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1239 rc = efx_mcdi_poll_reboot(efx); 1240 if (rc) 1241 break; 1242 udelay(MCDI_STATUS_DELAY_US); 1243 } 1244 1245 /* On EF10, a CODE_MC_REBOOT event can be received without the 1246 * reboot detection in efx_mcdi_poll_reboot() being triggered. 1247 * If zero was returned from the final call to 1248 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1249 * MC has definitely rebooted so prepare for the reset. 1250 */ 1251 if (!rc && efx->type->mcdi_reboot_detected) 1252 efx->type->mcdi_reboot_detected(efx); 1253 1254 mcdi->new_epoch = true; 1255 1256 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1257 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1258 } 1259 1260 spin_unlock(&mcdi->iface_lock); 1261 } 1262 1263 /* The MC is going down in to BIST mode. set the BIST flag to block 1264 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 1265 * (which doesn't actually execute a reset, it waits for the controlling 1266 * function to reset it). 1267 */ 1268 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1269 { 1270 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1271 1272 spin_lock(&mcdi->iface_lock); 1273 efx->mc_bist_for_other_fn = true; 1274 efx_mcdi_proxy_abort(mcdi); 1275 1276 if (efx_mcdi_complete_sync(mcdi)) { 1277 if (mcdi->mode == MCDI_MODE_EVENTS) { 1278 mcdi->resprc = -EIO; 1279 mcdi->resp_hdr_len = 0; 1280 mcdi->resp_data_len = 0; 1281 ++mcdi->credits; 1282 } 1283 } 1284 mcdi->new_epoch = true; 1285 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1286 spin_unlock(&mcdi->iface_lock); 1287 } 1288 1289 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1290 * to recover. 1291 */ 1292 static void efx_mcdi_abandon(struct efx_nic *efx) 1293 { 1294 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1295 1296 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1297 return; /* it had already been done */ 1298 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1299 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1300 } 1301 1302 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */ 1303 void efx_mcdi_process_event(struct efx_channel *channel, 1304 efx_qword_t *event) 1305 { 1306 struct efx_nic *efx = channel->efx; 1307 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1308 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1309 1310 switch (code) { 1311 case MCDI_EVENT_CODE_BADSSERT: 1312 netif_err(efx, hw, efx->net_dev, 1313 "MC watchdog or assertion failure at 0x%x\n", data); 1314 efx_mcdi_ev_death(efx, -EINTR); 1315 break; 1316 1317 case MCDI_EVENT_CODE_PMNOTICE: 1318 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1319 break; 1320 1321 case MCDI_EVENT_CODE_CMDDONE: 1322 efx_mcdi_ev_cpl(efx, 1323 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1324 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1325 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1326 break; 1327 1328 case MCDI_EVENT_CODE_LINKCHANGE: 1329 efx_mcdi_process_link_change(efx, event); 1330 break; 1331 case MCDI_EVENT_CODE_SENSOREVT: 1332 efx_mcdi_sensor_event(efx, event); 1333 break; 1334 case MCDI_EVENT_CODE_SCHEDERR: 1335 netif_dbg(efx, hw, efx->net_dev, 1336 "MC Scheduler alert (0x%x)\n", data); 1337 break; 1338 case MCDI_EVENT_CODE_REBOOT: 1339 case MCDI_EVENT_CODE_MC_REBOOT: 1340 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1341 efx_mcdi_ev_death(efx, -EIO); 1342 break; 1343 case MCDI_EVENT_CODE_MC_BIST: 1344 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1345 efx_mcdi_ev_bist(efx); 1346 break; 1347 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1348 /* MAC stats are gather lazily. We can ignore this. */ 1349 break; 1350 case MCDI_EVENT_CODE_FLR: 1351 if (efx->type->sriov_flr) 1352 efx->type->sriov_flr(efx, 1353 MCDI_EVENT_FIELD(*event, FLR_VF)); 1354 break; 1355 case MCDI_EVENT_CODE_PTP_RX: 1356 case MCDI_EVENT_CODE_PTP_FAULT: 1357 case MCDI_EVENT_CODE_PTP_PPS: 1358 efx_ptp_event(efx, event); 1359 break; 1360 case MCDI_EVENT_CODE_PTP_TIME: 1361 efx_time_sync_event(channel, event); 1362 break; 1363 case MCDI_EVENT_CODE_TX_FLUSH: 1364 case MCDI_EVENT_CODE_RX_FLUSH: 1365 /* Two flush events will be sent: one to the same event 1366 * queue as completions, and one to event queue 0. 1367 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1368 * flag will be set, and we should ignore the event 1369 * because we want to wait for all completions. 1370 */ 1371 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1372 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1373 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1374 efx_ef10_handle_drain_event(efx); 1375 break; 1376 case MCDI_EVENT_CODE_TX_ERR: 1377 case MCDI_EVENT_CODE_RX_ERR: 1378 netif_err(efx, hw, efx->net_dev, 1379 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1380 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1381 EFX_QWORD_VAL(*event)); 1382 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1383 break; 1384 case MCDI_EVENT_CODE_PROXY_RESPONSE: 1385 efx_mcdi_ev_proxy_response(efx, 1386 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), 1387 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); 1388 break; 1389 default: 1390 netif_err(efx, hw, efx->net_dev, 1391 "Unknown MCDI event " EFX_QWORD_FMT "\n", 1392 EFX_QWORD_VAL(*event)); 1393 } 1394 } 1395 1396 /************************************************************************** 1397 * 1398 * Specific request functions 1399 * 1400 ************************************************************************** 1401 */ 1402 1403 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1404 { 1405 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1406 size_t outlength; 1407 const __le16 *ver_words; 1408 size_t offset; 1409 int rc; 1410 1411 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1412 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1413 outbuf, sizeof(outbuf), &outlength); 1414 if (rc) 1415 goto fail; 1416 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1417 rc = -EIO; 1418 goto fail; 1419 } 1420 1421 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1422 offset = scnprintf(buf, len, "%u.%u.%u.%u", 1423 le16_to_cpu(ver_words[0]), 1424 le16_to_cpu(ver_words[1]), 1425 le16_to_cpu(ver_words[2]), 1426 le16_to_cpu(ver_words[3])); 1427 1428 /* EF10 may have multiple datapath firmware variants within a 1429 * single version. Report which variants are running. 1430 */ 1431 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1432 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1433 1434 offset += scnprintf(buf + offset, len - offset, " rx%x tx%x", 1435 nic_data->rx_dpcpu_fw_id, 1436 nic_data->tx_dpcpu_fw_id); 1437 1438 /* It's theoretically possible for the string to exceed 31 1439 * characters, though in practice the first three version 1440 * components are short enough that this doesn't happen. 1441 */ 1442 if (WARN_ON(offset >= len)) 1443 buf[0] = 0; 1444 } 1445 1446 return; 1447 1448 fail: 1449 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1450 buf[0] = 0; 1451 } 1452 1453 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1454 bool *was_attached) 1455 { 1456 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1457 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1458 size_t outlen; 1459 int rc; 1460 1461 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1462 driver_operating ? 1 : 0); 1463 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1464 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1465 1466 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1467 outbuf, sizeof(outbuf), &outlen); 1468 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1469 * specified will fail with EPERM, and we have to tell the MC we don't 1470 * care what firmware we get. 1471 */ 1472 if (rc == -EPERM) { 1473 netif_dbg(efx, probe, efx->net_dev, 1474 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); 1475 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1476 MC_CMD_FW_DONT_CARE); 1477 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1478 sizeof(inbuf), outbuf, sizeof(outbuf), 1479 &outlen); 1480 } 1481 if (rc) { 1482 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1483 outbuf, outlen, rc); 1484 goto fail; 1485 } 1486 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1487 rc = -EIO; 1488 goto fail; 1489 } 1490 1491 if (driver_operating) { 1492 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1493 efx->mcdi->fn_flags = 1494 MCDI_DWORD(outbuf, 1495 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1496 } else { 1497 /* Synthesise flags for Siena */ 1498 efx->mcdi->fn_flags = 1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1500 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1501 (efx_port_num(efx) == 0) << 1502 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1503 } 1504 } 1505 1506 /* We currently assume we have control of the external link 1507 * and are completely trusted by firmware. Abort probing 1508 * if that's not true for this function. 1509 */ 1510 1511 if (was_attached != NULL) 1512 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1513 return 0; 1514 1515 fail: 1516 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1517 return rc; 1518 } 1519 1520 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1521 u16 *fw_subtype_list, u32 *capabilities) 1522 { 1523 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1524 size_t outlen, i; 1525 int port_num = efx_port_num(efx); 1526 int rc; 1527 1528 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1529 /* we need __aligned(2) for ether_addr_copy */ 1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1531 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1532 1533 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1534 outbuf, sizeof(outbuf), &outlen); 1535 if (rc) 1536 goto fail; 1537 1538 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1539 rc = -EIO; 1540 goto fail; 1541 } 1542 1543 if (mac_address) 1544 ether_addr_copy(mac_address, 1545 port_num ? 1546 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1547 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1548 if (fw_subtype_list) { 1549 for (i = 0; 1550 i < MCDI_VAR_ARRAY_LEN(outlen, 1551 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1552 i++) 1553 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1554 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1555 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1556 fw_subtype_list[i] = 0; 1557 } 1558 if (capabilities) { 1559 if (port_num) 1560 *capabilities = MCDI_DWORD(outbuf, 1561 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1562 else 1563 *capabilities = MCDI_DWORD(outbuf, 1564 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1565 } 1566 1567 return 0; 1568 1569 fail: 1570 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1571 __func__, rc, (int)outlen); 1572 1573 return rc; 1574 } 1575 1576 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1577 { 1578 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1579 u32 dest = 0; 1580 int rc; 1581 1582 if (uart) 1583 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1584 if (evq) 1585 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1586 1587 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1588 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1589 1590 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1591 1592 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1593 NULL, 0, NULL); 1594 return rc; 1595 } 1596 1597 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1598 { 1599 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1600 size_t outlen; 1601 int rc; 1602 1603 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1604 1605 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1606 outbuf, sizeof(outbuf), &outlen); 1607 if (rc) 1608 goto fail; 1609 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1610 rc = -EIO; 1611 goto fail; 1612 } 1613 1614 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1615 return 0; 1616 1617 fail: 1618 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1619 __func__, rc); 1620 return rc; 1621 } 1622 1623 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1624 size_t *size_out, size_t *erase_size_out, 1625 bool *protected_out) 1626 { 1627 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1628 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1629 size_t outlen; 1630 int rc; 1631 1632 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1633 1634 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1635 outbuf, sizeof(outbuf), &outlen); 1636 if (rc) 1637 goto fail; 1638 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1639 rc = -EIO; 1640 goto fail; 1641 } 1642 1643 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1644 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1645 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1646 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1647 return 0; 1648 1649 fail: 1650 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1651 return rc; 1652 } 1653 1654 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1655 { 1656 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1657 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1658 int rc; 1659 1660 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1661 1662 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1663 outbuf, sizeof(outbuf), NULL); 1664 if (rc) 1665 return rc; 1666 1667 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1668 case MC_CMD_NVRAM_TEST_PASS: 1669 case MC_CMD_NVRAM_TEST_NOTSUPP: 1670 return 0; 1671 default: 1672 return -EIO; 1673 } 1674 } 1675 1676 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1677 { 1678 u32 nvram_types; 1679 unsigned int type; 1680 int rc; 1681 1682 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1683 if (rc) 1684 goto fail1; 1685 1686 type = 0; 1687 while (nvram_types != 0) { 1688 if (nvram_types & 1) { 1689 rc = efx_mcdi_nvram_test(efx, type); 1690 if (rc) 1691 goto fail2; 1692 } 1693 type++; 1694 nvram_types >>= 1; 1695 } 1696 1697 return 0; 1698 1699 fail2: 1700 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1701 __func__, type); 1702 fail1: 1703 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1704 return rc; 1705 } 1706 1707 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1708 * negative on error. 1709 */ 1710 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1711 { 1712 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1713 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1714 unsigned int flags, index; 1715 const char *reason; 1716 size_t outlen; 1717 int retry; 1718 int rc; 1719 1720 /* Attempt to read any stored assertion state before we reboot 1721 * the mcfw out of the assertion handler. Retry twice, once 1722 * because a boot-time assertion might cause this command to fail 1723 * with EINTR. And once again because GET_ASSERTS can race with 1724 * MC_CMD_REBOOT running on the other port. */ 1725 retry = 2; 1726 do { 1727 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1728 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1729 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1730 outbuf, sizeof(outbuf), &outlen); 1731 if (rc == -EPERM) 1732 return 0; 1733 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1734 1735 if (rc) { 1736 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1737 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1738 outlen, rc); 1739 return rc; 1740 } 1741 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1742 return -EIO; 1743 1744 /* Print out any recorded assertion state */ 1745 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1746 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1747 return 0; 1748 1749 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1750 ? "system-level assertion" 1751 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1752 ? "thread-level assertion" 1753 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1754 ? "watchdog reset" 1755 : "unknown assertion"; 1756 netif_err(efx, hw, efx->net_dev, 1757 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1758 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1759 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1760 1761 /* Print out the registers */ 1762 for (index = 0; 1763 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1764 index++) 1765 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1766 1 + index, 1767 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1768 index)); 1769 1770 return 1; 1771 } 1772 1773 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1774 { 1775 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1776 int rc; 1777 1778 /* If the MC is running debug firmware, it might now be 1779 * waiting for a debugger to attach, but we just want it to 1780 * reboot. We set a flag that makes the command a no-op if it 1781 * has already done so. 1782 * The MCDI will thus return either 0 or -EIO. 1783 */ 1784 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1785 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1786 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1787 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1788 NULL, 0, NULL); 1789 if (rc == -EIO) 1790 rc = 0; 1791 if (rc) 1792 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1793 NULL, 0, rc); 1794 return rc; 1795 } 1796 1797 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1798 { 1799 int rc; 1800 1801 rc = efx_mcdi_read_assertion(efx); 1802 if (rc <= 0) 1803 return rc; 1804 1805 return efx_mcdi_exit_assertion(efx); 1806 } 1807 1808 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1809 { 1810 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1811 int rc; 1812 1813 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1814 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1815 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1816 1817 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1818 1819 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1820 1821 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1822 NULL, 0, NULL); 1823 } 1824 1825 static int efx_mcdi_reset_func(struct efx_nic *efx) 1826 { 1827 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1828 int rc; 1829 1830 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1831 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1832 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1833 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1834 NULL, 0, NULL); 1835 return rc; 1836 } 1837 1838 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1839 { 1840 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1841 int rc; 1842 1843 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1844 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1845 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1846 NULL, 0, NULL); 1847 /* White is black, and up is down */ 1848 if (rc == -EIO) 1849 return 0; 1850 if (rc == 0) 1851 rc = -EIO; 1852 return rc; 1853 } 1854 1855 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1856 { 1857 return RESET_TYPE_RECOVER_OR_ALL; 1858 } 1859 1860 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1861 { 1862 int rc; 1863 1864 /* If MCDI is down, we can't handle_assertion */ 1865 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1866 rc = pci_reset_function(efx->pci_dev); 1867 if (rc) 1868 return rc; 1869 /* Re-enable polled MCDI completion */ 1870 if (efx->mcdi) { 1871 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1872 mcdi->mode = MCDI_MODE_POLL; 1873 } 1874 return 0; 1875 } 1876 1877 /* Recover from a failed assertion pre-reset */ 1878 rc = efx_mcdi_handle_assertion(efx); 1879 if (rc) 1880 return rc; 1881 1882 if (method == RESET_TYPE_DATAPATH) 1883 return 0; 1884 else if (method == RESET_TYPE_WORLD) 1885 return efx_mcdi_reset_mc(efx); 1886 else 1887 return efx_mcdi_reset_func(efx); 1888 } 1889 1890 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1891 const u8 *mac, int *id_out) 1892 { 1893 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1894 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1895 size_t outlen; 1896 int rc; 1897 1898 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1899 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1900 MC_CMD_FILTER_MODE_SIMPLE); 1901 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1902 1903 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1904 outbuf, sizeof(outbuf), &outlen); 1905 if (rc) 1906 goto fail; 1907 1908 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1909 rc = -EIO; 1910 goto fail; 1911 } 1912 1913 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1914 1915 return 0; 1916 1917 fail: 1918 *id_out = -1; 1919 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1920 return rc; 1921 1922 } 1923 1924 1925 int 1926 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1927 { 1928 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1929 } 1930 1931 1932 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1933 { 1934 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1935 size_t outlen; 1936 int rc; 1937 1938 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1939 outbuf, sizeof(outbuf), &outlen); 1940 if (rc) 1941 goto fail; 1942 1943 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1944 rc = -EIO; 1945 goto fail; 1946 } 1947 1948 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1949 1950 return 0; 1951 1952 fail: 1953 *id_out = -1; 1954 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1955 return rc; 1956 } 1957 1958 1959 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1960 { 1961 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1962 int rc; 1963 1964 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1965 1966 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1967 NULL, 0, NULL); 1968 return rc; 1969 } 1970 1971 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1972 { 1973 struct efx_channel *channel; 1974 struct efx_rx_queue *rx_queue; 1975 MCDI_DECLARE_BUF(inbuf, 1976 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1977 int rc, count; 1978 1979 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1980 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1981 1982 count = 0; 1983 efx_for_each_channel(channel, efx) { 1984 efx_for_each_channel_rx_queue(rx_queue, channel) { 1985 if (rx_queue->flush_pending) { 1986 rx_queue->flush_pending = false; 1987 atomic_dec(&efx->rxq_flush_pending); 1988 MCDI_SET_ARRAY_DWORD( 1989 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1990 count, efx_rx_queue_index(rx_queue)); 1991 count++; 1992 } 1993 } 1994 } 1995 1996 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1997 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1998 WARN_ON(rc < 0); 1999 2000 return rc; 2001 } 2002 2003 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 2004 { 2005 int rc; 2006 2007 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 2008 return rc; 2009 } 2010 2011 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, 2012 unsigned int *flags) 2013 { 2014 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 2015 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); 2016 size_t outlen; 2017 int rc; 2018 2019 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 2020 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 2021 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 2022 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 2023 outbuf, sizeof(outbuf), &outlen); 2024 if (rc) 2025 return rc; 2026 2027 if (!flags) 2028 return 0; 2029 2030 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) 2031 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); 2032 else 2033 *flags = 0; 2034 2035 return 0; 2036 } 2037 2038 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 2039 unsigned int *enabled_out) 2040 { 2041 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 2042 size_t outlen; 2043 int rc; 2044 2045 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 2046 outbuf, sizeof(outbuf), &outlen); 2047 if (rc) 2048 goto fail; 2049 2050 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 2051 rc = -EIO; 2052 goto fail; 2053 } 2054 2055 if (impl_out) 2056 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 2057 2058 if (enabled_out) 2059 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 2060 2061 return 0; 2062 2063 fail: 2064 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially 2065 * terrifying. The call site will have to deal with it though. 2066 */ 2067 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err, 2068 "%s: failed rc=%d\n", __func__, rc); 2069 return rc; 2070 } 2071 2072 #ifdef CONFIG_SFC_MTD 2073 2074 #define EFX_MCDI_NVRAM_LEN_MAX 128 2075 2076 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 2077 { 2078 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN); 2079 int rc; 2080 2081 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 2082 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS, 2083 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2084 1); 2085 2086 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 2087 2088 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 2089 NULL, 0, NULL); 2090 2091 return rc; 2092 } 2093 2094 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 2095 loff_t offset, u8 *buffer, size_t length) 2096 { 2097 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN); 2098 MCDI_DECLARE_BUF(outbuf, 2099 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2100 size_t outlen; 2101 int rc; 2102 2103 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 2104 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 2105 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 2106 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE, 2107 MC_CMD_NVRAM_READ_IN_V2_DEFAULT); 2108 2109 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 2110 outbuf, sizeof(outbuf), &outlen); 2111 if (rc) 2112 return rc; 2113 2114 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 2115 return 0; 2116 } 2117 2118 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 2119 loff_t offset, const u8 *buffer, size_t length) 2120 { 2121 MCDI_DECLARE_BUF(inbuf, 2122 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2123 int rc; 2124 2125 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 2126 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 2127 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 2128 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 2129 2130 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 2131 2132 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 2133 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 2134 NULL, 0, NULL); 2135 return rc; 2136 } 2137 2138 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 2139 loff_t offset, size_t length) 2140 { 2141 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 2142 int rc; 2143 2144 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 2145 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 2146 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 2147 2148 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 2149 2150 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 2151 NULL, 0, NULL); 2152 return rc; 2153 } 2154 2155 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 2156 { 2157 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN); 2158 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN); 2159 size_t outlen; 2160 int rc, rc2; 2161 2162 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 2163 /* Always set this flag. Old firmware ignores it */ 2164 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS, 2165 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2166 1); 2167 2168 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 2169 outbuf, sizeof(outbuf), &outlen); 2170 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) { 2171 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE); 2172 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS) 2173 netif_err(efx, drv, efx->net_dev, 2174 "NVRAM update failed verification with code 0x%x\n", 2175 rc2); 2176 switch (rc2) { 2177 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS: 2178 break; 2179 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED: 2180 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED: 2181 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED: 2182 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED: 2183 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED: 2184 rc = -EIO; 2185 break; 2186 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT: 2187 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST: 2188 rc = -EINVAL; 2189 break; 2190 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES: 2191 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS: 2192 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH: 2193 rc = -EPERM; 2194 break; 2195 default: 2196 netif_err(efx, drv, efx->net_dev, 2197 "Unknown response to NVRAM_UPDATE_FINISH\n"); 2198 rc = -EIO; 2199 } 2200 } 2201 2202 return rc; 2203 } 2204 2205 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 2206 size_t len, size_t *retlen, u8 *buffer) 2207 { 2208 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2209 struct efx_nic *efx = mtd->priv; 2210 loff_t offset = start; 2211 loff_t end = min_t(loff_t, start + len, mtd->size); 2212 size_t chunk; 2213 int rc = 0; 2214 2215 while (offset < end) { 2216 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2217 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 2218 buffer, chunk); 2219 if (rc) 2220 goto out; 2221 offset += chunk; 2222 buffer += chunk; 2223 } 2224 out: 2225 *retlen = offset - start; 2226 return rc; 2227 } 2228 2229 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 2230 { 2231 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2232 struct efx_nic *efx = mtd->priv; 2233 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 2234 loff_t end = min_t(loff_t, start + len, mtd->size); 2235 size_t chunk = part->common.mtd.erasesize; 2236 int rc = 0; 2237 2238 if (!part->updating) { 2239 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2240 if (rc) 2241 goto out; 2242 part->updating = true; 2243 } 2244 2245 /* The MCDI interface can in fact do multiple erase blocks at once; 2246 * but erasing may be slow, so we make multiple calls here to avoid 2247 * tripping the MCDI RPC timeout. */ 2248 while (offset < end) { 2249 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 2250 chunk); 2251 if (rc) 2252 goto out; 2253 offset += chunk; 2254 } 2255 out: 2256 return rc; 2257 } 2258 2259 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2260 size_t len, size_t *retlen, const u8 *buffer) 2261 { 2262 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2263 struct efx_nic *efx = mtd->priv; 2264 loff_t offset = start; 2265 loff_t end = min_t(loff_t, start + len, mtd->size); 2266 size_t chunk; 2267 int rc = 0; 2268 2269 if (!part->updating) { 2270 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2271 if (rc) 2272 goto out; 2273 part->updating = true; 2274 } 2275 2276 while (offset < end) { 2277 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2278 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2279 buffer, chunk); 2280 if (rc) 2281 goto out; 2282 offset += chunk; 2283 buffer += chunk; 2284 } 2285 out: 2286 *retlen = offset - start; 2287 return rc; 2288 } 2289 2290 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2291 { 2292 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2293 struct efx_nic *efx = mtd->priv; 2294 int rc = 0; 2295 2296 if (part->updating) { 2297 part->updating = false; 2298 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2299 } 2300 2301 return rc; 2302 } 2303 2304 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2305 { 2306 struct efx_mcdi_mtd_partition *mcdi_part = 2307 container_of(part, struct efx_mcdi_mtd_partition, common); 2308 struct efx_nic *efx = part->mtd.priv; 2309 2310 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2311 efx->name, part->type_name, mcdi_part->fw_subtype); 2312 } 2313 2314 #endif /* CONFIG_SFC_MTD */ 2315