xref: /openbmc/linux/drivers/net/ethernet/sfc/io.h (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_IO_H
12 #define EFX_IO_H
13 
14 #include <linux/io.h>
15 #include <linux/spinlock.h>
16 
17 /**************************************************************************
18  *
19  * NIC register I/O
20  *
21  **************************************************************************
22  *
23  * Notes on locking strategy for the Falcon architecture:
24  *
25  * Many CSRs are very wide and cannot be read or written atomically.
26  * Writes from the host are buffered by the Bus Interface Unit (BIU)
27  * up to 128 bits.  Whenever the host writes part of such a register,
28  * the BIU collects the written value and does not write to the
29  * underlying register until all 4 dwords have been written.  A
30  * similar buffering scheme applies to host access to the NIC's 64-bit
31  * SRAM.
32  *
33  * Writes to different CSRs and 64-bit SRAM words must be serialised,
34  * since interleaved access can result in lost writes.  We use
35  * efx_nic::biu_lock for this.
36  *
37  * We also serialise reads from 128-bit CSRs and SRAM with the same
38  * spinlock.  This may not be necessary, but it doesn't really matter
39  * as there are no such reads on the fast path.
40  *
41  * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
42  * 128-bit but are special-cased in the BIU to avoid the need for
43  * locking in the host:
44  *
45  * - They are write-only.
46  * - The semantics of writing to these registers are such that
47  *   replacing the low 96 bits with zero does not affect functionality.
48  * - If the host writes to the last dword address of such a register
49  *   (i.e. the high 32 bits) the underlying register will always be
50  *   written.  If the collector and the current write together do not
51  *   provide values for all 128 bits of the register, the low 96 bits
52  *   will be written as zero.
53  * - If the host writes to the address of any other part of such a
54  *   register while the collector already holds values for some other
55  *   register, the write is discarded and the collector maintains its
56  *   current state.
57  *
58  * The EF10 architecture exposes very few registers to the host and
59  * most of them are only 32 bits wide.  The only exceptions are the MC
60  * doorbell register pair, which has its own latching, and
61  * TX_DESC_UPD, which works in a similar way to the Falcon
62  * architecture.
63  */
64 
65 #if BITS_PER_LONG == 64
66 #define EFX_USE_QWORD_IO 1
67 #endif
68 
69 /* Hardware issue requires that only 64-bit naturally aligned writes
70  * are seen by hardware. Its not strictly necessary to restrict to
71  * x86_64 arch, but done for safety since unusual write combining behaviour
72  * can break PIO.
73  */
74 #ifdef CONFIG_X86_64
75 /* PIO is a win only if write-combining is possible */
76 #ifdef ARCH_HAS_IOREMAP_WC
77 #define EFX_USE_PIO 1
78 #endif
79 #endif
80 
81 #ifdef EFX_USE_QWORD_IO
82 static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
83 				  unsigned int reg)
84 {
85 	__raw_writeq((__force u64)value, efx->membase + reg);
86 }
87 static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
88 {
89 	return (__force __le64)__raw_readq(efx->membase + reg);
90 }
91 #endif
92 
93 static inline void _efx_writed(struct efx_nic *efx, __le32 value,
94 				  unsigned int reg)
95 {
96 	__raw_writel((__force u32)value, efx->membase + reg);
97 }
98 static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
99 {
100 	return (__force __le32)__raw_readl(efx->membase + reg);
101 }
102 
103 /* Write a normal 128-bit CSR, locking as appropriate. */
104 static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
105 			      unsigned int reg)
106 {
107 	unsigned long flags __attribute__ ((unused));
108 
109 	netif_vdbg(efx, hw, efx->net_dev,
110 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
111 		   EFX_OWORD_VAL(*value));
112 
113 	spin_lock_irqsave(&efx->biu_lock, flags);
114 #ifdef EFX_USE_QWORD_IO
115 	_efx_writeq(efx, value->u64[0], reg + 0);
116 	_efx_writeq(efx, value->u64[1], reg + 8);
117 #else
118 	_efx_writed(efx, value->u32[0], reg + 0);
119 	_efx_writed(efx, value->u32[1], reg + 4);
120 	_efx_writed(efx, value->u32[2], reg + 8);
121 	_efx_writed(efx, value->u32[3], reg + 12);
122 #endif
123 	spin_unlock_irqrestore(&efx->biu_lock, flags);
124 }
125 
126 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
127 static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
128 				   const efx_qword_t *value, unsigned int index)
129 {
130 	unsigned int addr = index * sizeof(*value);
131 	unsigned long flags __attribute__ ((unused));
132 
133 	netif_vdbg(efx, hw, efx->net_dev,
134 		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
135 		   addr, EFX_QWORD_VAL(*value));
136 
137 	spin_lock_irqsave(&efx->biu_lock, flags);
138 #ifdef EFX_USE_QWORD_IO
139 	__raw_writeq((__force u64)value->u64[0], membase + addr);
140 #else
141 	__raw_writel((__force u32)value->u32[0], membase + addr);
142 	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
143 #endif
144 	spin_unlock_irqrestore(&efx->biu_lock, flags);
145 }
146 
147 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
148 static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
149 			      unsigned int reg)
150 {
151 	netif_vdbg(efx, hw, efx->net_dev,
152 		   "writing register %x with "EFX_DWORD_FMT"\n",
153 		   reg, EFX_DWORD_VAL(*value));
154 
155 	/* No lock required */
156 	_efx_writed(efx, value->u32[0], reg);
157 }
158 
159 /* Read a 128-bit CSR, locking as appropriate. */
160 static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
161 			     unsigned int reg)
162 {
163 	unsigned long flags __attribute__ ((unused));
164 
165 	spin_lock_irqsave(&efx->biu_lock, flags);
166 	value->u32[0] = _efx_readd(efx, reg + 0);
167 	value->u32[1] = _efx_readd(efx, reg + 4);
168 	value->u32[2] = _efx_readd(efx, reg + 8);
169 	value->u32[3] = _efx_readd(efx, reg + 12);
170 	spin_unlock_irqrestore(&efx->biu_lock, flags);
171 
172 	netif_vdbg(efx, hw, efx->net_dev,
173 		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
174 		   EFX_OWORD_VAL(*value));
175 }
176 
177 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
178 static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
179 				  efx_qword_t *value, unsigned int index)
180 {
181 	unsigned int addr = index * sizeof(*value);
182 	unsigned long flags __attribute__ ((unused));
183 
184 	spin_lock_irqsave(&efx->biu_lock, flags);
185 #ifdef EFX_USE_QWORD_IO
186 	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
187 #else
188 	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
189 	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
190 #endif
191 	spin_unlock_irqrestore(&efx->biu_lock, flags);
192 
193 	netif_vdbg(efx, hw, efx->net_dev,
194 		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
195 		   addr, EFX_QWORD_VAL(*value));
196 }
197 
198 /* Read a 32-bit CSR or SRAM */
199 static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
200 				unsigned int reg)
201 {
202 	value->u32[0] = _efx_readd(efx, reg);
203 	netif_vdbg(efx, hw, efx->net_dev,
204 		   "read from register %x, got "EFX_DWORD_FMT"\n",
205 		   reg, EFX_DWORD_VAL(*value));
206 }
207 
208 /* Write a 128-bit CSR forming part of a table */
209 static inline void
210 efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
211 		 unsigned int reg, unsigned int index)
212 {
213 	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
214 }
215 
216 /* Read a 128-bit CSR forming part of a table */
217 static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
218 				     unsigned int reg, unsigned int index)
219 {
220 	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
221 }
222 
223 /* default VI stride (step between per-VI registers) is 8K */
224 #define EFX_DEFAULT_VI_STRIDE 0x2000
225 
226 /* Calculate offset to page-mapped register */
227 static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
228 					 unsigned int reg)
229 {
230 	return page * efx->vi_stride + reg;
231 }
232 
233 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
234 static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
235 				    unsigned int reg, unsigned int page)
236 {
237 	reg = efx_paged_reg(efx, page, reg);
238 
239 	netif_vdbg(efx, hw, efx->net_dev,
240 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
241 		   EFX_OWORD_VAL(*value));
242 
243 #ifdef EFX_USE_QWORD_IO
244 	_efx_writeq(efx, value->u64[0], reg + 0);
245 	_efx_writeq(efx, value->u64[1], reg + 8);
246 #else
247 	_efx_writed(efx, value->u32[0], reg + 0);
248 	_efx_writed(efx, value->u32[1], reg + 4);
249 	_efx_writed(efx, value->u32[2], reg + 8);
250 	_efx_writed(efx, value->u32[3], reg + 12);
251 #endif
252 }
253 #define efx_writeo_page(efx, value, reg, page)				\
254 	_efx_writeo_page(efx, value,					\
255 			 reg +						\
256 			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
257 			 page)
258 
259 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
260  * high bits of RX_DESC_UPD or TX_DESC_UPD)
261  */
262 static inline void
263 _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
264 		 unsigned int reg, unsigned int page)
265 {
266 	efx_writed(efx, value, efx_paged_reg(efx, page, reg));
267 }
268 #define efx_writed_page(efx, value, reg, page)				\
269 	_efx_writed_page(efx, value,					\
270 			 reg +						\
271 			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
272 					   (reg) != 0x420 &&		\
273 					   (reg) != 0x830 &&		\
274 					   (reg) != 0x83c &&		\
275 					   (reg) != 0xa18 &&		\
276 					   (reg) != 0xa1c),		\
277 			 page)
278 
279 /* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
280  * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
281  * collector register.
282  */
283 static inline void _efx_writed_page_locked(struct efx_nic *efx,
284 					   const efx_dword_t *value,
285 					   unsigned int reg,
286 					   unsigned int page)
287 {
288 	unsigned long flags __attribute__ ((unused));
289 
290 	if (page == 0) {
291 		spin_lock_irqsave(&efx->biu_lock, flags);
292 		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
293 		spin_unlock_irqrestore(&efx->biu_lock, flags);
294 	} else {
295 		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
296 	}
297 }
298 #define efx_writed_page_locked(efx, value, reg, page)			\
299 	_efx_writed_page_locked(efx, value,				\
300 				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
301 				page)
302 
303 #endif /* EFX_IO_H */
304