xref: /openbmc/linux/drivers/net/ethernet/sfc/io.h (revision b34e08d5)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_IO_H
12 #define EFX_IO_H
13 
14 #include <linux/io.h>
15 #include <linux/spinlock.h>
16 
17 /**************************************************************************
18  *
19  * NIC register I/O
20  *
21  **************************************************************************
22  *
23  * Notes on locking strategy for the Falcon architecture:
24  *
25  * Many CSRs are very wide and cannot be read or written atomically.
26  * Writes from the host are buffered by the Bus Interface Unit (BIU)
27  * up to 128 bits.  Whenever the host writes part of such a register,
28  * the BIU collects the written value and does not write to the
29  * underlying register until all 4 dwords have been written.  A
30  * similar buffering scheme applies to host access to the NIC's 64-bit
31  * SRAM.
32  *
33  * Writes to different CSRs and 64-bit SRAM words must be serialised,
34  * since interleaved access can result in lost writes.  We use
35  * efx_nic::biu_lock for this.
36  *
37  * We also serialise reads from 128-bit CSRs and SRAM with the same
38  * spinlock.  This may not be necessary, but it doesn't really matter
39  * as there are no such reads on the fast path.
40  *
41  * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
42  * 128-bit but are special-cased in the BIU to avoid the need for
43  * locking in the host:
44  *
45  * - They are write-only.
46  * - The semantics of writing to these registers are such that
47  *   replacing the low 96 bits with zero does not affect functionality.
48  * - If the host writes to the last dword address of such a register
49  *   (i.e. the high 32 bits) the underlying register will always be
50  *   written.  If the collector and the current write together do not
51  *   provide values for all 128 bits of the register, the low 96 bits
52  *   will be written as zero.
53  * - If the host writes to the address of any other part of such a
54  *   register while the collector already holds values for some other
55  *   register, the write is discarded and the collector maintains its
56  *   current state.
57  *
58  * The EF10 architecture exposes very few registers to the host and
59  * most of them are only 32 bits wide.  The only exceptions are the MC
60  * doorbell register pair, which has its own latching, and
61  * TX_DESC_UPD, which works in a similar way to the Falcon
62  * architecture.
63  */
64 
65 #if BITS_PER_LONG == 64
66 #define EFX_USE_QWORD_IO 1
67 #endif
68 
69 /* PIO is a win only if write-combining is possible */
70 #ifdef ARCH_HAS_IOREMAP_WC
71 #define EFX_USE_PIO 1
72 #endif
73 
74 #ifdef EFX_USE_QWORD_IO
75 static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
76 				  unsigned int reg)
77 {
78 	__raw_writeq((__force u64)value, efx->membase + reg);
79 }
80 static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
81 {
82 	return (__force __le64)__raw_readq(efx->membase + reg);
83 }
84 #endif
85 
86 static inline void _efx_writed(struct efx_nic *efx, __le32 value,
87 				  unsigned int reg)
88 {
89 	__raw_writel((__force u32)value, efx->membase + reg);
90 }
91 static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
92 {
93 	return (__force __le32)__raw_readl(efx->membase + reg);
94 }
95 
96 /* Write a normal 128-bit CSR, locking as appropriate. */
97 static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
98 			      unsigned int reg)
99 {
100 	unsigned long flags __attribute__ ((unused));
101 
102 	netif_vdbg(efx, hw, efx->net_dev,
103 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
104 		   EFX_OWORD_VAL(*value));
105 
106 	spin_lock_irqsave(&efx->biu_lock, flags);
107 #ifdef EFX_USE_QWORD_IO
108 	_efx_writeq(efx, value->u64[0], reg + 0);
109 	_efx_writeq(efx, value->u64[1], reg + 8);
110 #else
111 	_efx_writed(efx, value->u32[0], reg + 0);
112 	_efx_writed(efx, value->u32[1], reg + 4);
113 	_efx_writed(efx, value->u32[2], reg + 8);
114 	_efx_writed(efx, value->u32[3], reg + 12);
115 #endif
116 	mmiowb();
117 	spin_unlock_irqrestore(&efx->biu_lock, flags);
118 }
119 
120 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
121 static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
122 				   const efx_qword_t *value, unsigned int index)
123 {
124 	unsigned int addr = index * sizeof(*value);
125 	unsigned long flags __attribute__ ((unused));
126 
127 	netif_vdbg(efx, hw, efx->net_dev,
128 		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
129 		   addr, EFX_QWORD_VAL(*value));
130 
131 	spin_lock_irqsave(&efx->biu_lock, flags);
132 #ifdef EFX_USE_QWORD_IO
133 	__raw_writeq((__force u64)value->u64[0], membase + addr);
134 #else
135 	__raw_writel((__force u32)value->u32[0], membase + addr);
136 	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
137 #endif
138 	mmiowb();
139 	spin_unlock_irqrestore(&efx->biu_lock, flags);
140 }
141 
142 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
143 static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
144 			      unsigned int reg)
145 {
146 	netif_vdbg(efx, hw, efx->net_dev,
147 		   "writing register %x with "EFX_DWORD_FMT"\n",
148 		   reg, EFX_DWORD_VAL(*value));
149 
150 	/* No lock required */
151 	_efx_writed(efx, value->u32[0], reg);
152 }
153 
154 /* Read a 128-bit CSR, locking as appropriate. */
155 static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
156 			     unsigned int reg)
157 {
158 	unsigned long flags __attribute__ ((unused));
159 
160 	spin_lock_irqsave(&efx->biu_lock, flags);
161 	value->u32[0] = _efx_readd(efx, reg + 0);
162 	value->u32[1] = _efx_readd(efx, reg + 4);
163 	value->u32[2] = _efx_readd(efx, reg + 8);
164 	value->u32[3] = _efx_readd(efx, reg + 12);
165 	spin_unlock_irqrestore(&efx->biu_lock, flags);
166 
167 	netif_vdbg(efx, hw, efx->net_dev,
168 		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
169 		   EFX_OWORD_VAL(*value));
170 }
171 
172 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
173 static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
174 				  efx_qword_t *value, unsigned int index)
175 {
176 	unsigned int addr = index * sizeof(*value);
177 	unsigned long flags __attribute__ ((unused));
178 
179 	spin_lock_irqsave(&efx->biu_lock, flags);
180 #ifdef EFX_USE_QWORD_IO
181 	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
182 #else
183 	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
184 	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
185 #endif
186 	spin_unlock_irqrestore(&efx->biu_lock, flags);
187 
188 	netif_vdbg(efx, hw, efx->net_dev,
189 		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
190 		   addr, EFX_QWORD_VAL(*value));
191 }
192 
193 /* Read a 32-bit CSR or SRAM */
194 static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
195 				unsigned int reg)
196 {
197 	value->u32[0] = _efx_readd(efx, reg);
198 	netif_vdbg(efx, hw, efx->net_dev,
199 		   "read from register %x, got "EFX_DWORD_FMT"\n",
200 		   reg, EFX_DWORD_VAL(*value));
201 }
202 
203 /* Write a 128-bit CSR forming part of a table */
204 static inline void
205 efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
206 		 unsigned int reg, unsigned int index)
207 {
208 	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
209 }
210 
211 /* Read a 128-bit CSR forming part of a table */
212 static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
213 				     unsigned int reg, unsigned int index)
214 {
215 	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
216 }
217 
218 /* Page size used as step between per-VI registers */
219 #define EFX_VI_PAGE_SIZE 0x2000
220 
221 /* Calculate offset to page-mapped register */
222 #define EFX_PAGED_REG(page, reg) \
223 	((page) * EFX_VI_PAGE_SIZE + (reg))
224 
225 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
226 static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
227 				    unsigned int reg, unsigned int page)
228 {
229 	reg = EFX_PAGED_REG(page, reg);
230 
231 	netif_vdbg(efx, hw, efx->net_dev,
232 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
233 		   EFX_OWORD_VAL(*value));
234 
235 #ifdef EFX_USE_QWORD_IO
236 	_efx_writeq(efx, value->u64[0], reg + 0);
237 	_efx_writeq(efx, value->u64[1], reg + 8);
238 #else
239 	_efx_writed(efx, value->u32[0], reg + 0);
240 	_efx_writed(efx, value->u32[1], reg + 4);
241 	_efx_writed(efx, value->u32[2], reg + 8);
242 	_efx_writed(efx, value->u32[3], reg + 12);
243 #endif
244 }
245 #define efx_writeo_page(efx, value, reg, page)				\
246 	_efx_writeo_page(efx, value,					\
247 			 reg +						\
248 			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
249 			 page)
250 
251 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
252  * high bits of RX_DESC_UPD or TX_DESC_UPD)
253  */
254 static inline void
255 _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
256 		 unsigned int reg, unsigned int page)
257 {
258 	efx_writed(efx, value, EFX_PAGED_REG(page, reg));
259 }
260 #define efx_writed_page(efx, value, reg, page)				\
261 	_efx_writed_page(efx, value,					\
262 			 reg +						\
263 			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
264 					   (reg) != 0x420 &&		\
265 					   (reg) != 0x830 &&		\
266 					   (reg) != 0x83c &&		\
267 					   (reg) != 0xa18 &&		\
268 					   (reg) != 0xa1c),		\
269 			 page)
270 
271 /* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
272  * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
273  * collector register.
274  */
275 static inline void _efx_writed_page_locked(struct efx_nic *efx,
276 					   const efx_dword_t *value,
277 					   unsigned int reg,
278 					   unsigned int page)
279 {
280 	unsigned long flags __attribute__ ((unused));
281 
282 	if (page == 0) {
283 		spin_lock_irqsave(&efx->biu_lock, flags);
284 		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
285 		spin_unlock_irqrestore(&efx->biu_lock, flags);
286 	} else {
287 		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
288 	}
289 }
290 #define efx_writed_page_locked(efx, value, reg, page)			\
291 	_efx_writed_page_locked(efx, value,				\
292 				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
293 				page)
294 
295 #endif /* EFX_IO_H */
296