xref: /openbmc/linux/drivers/net/ethernet/sfc/falcon/tx.c (revision fcc8487d)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "tx.h"
26 #include "workarounds.h"
27 
28 static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
29 					 struct ef4_tx_buffer *buffer)
30 {
31 	unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
32 	struct ef4_buffer *page_buf =
33 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
34 	unsigned int offset =
35 		((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
36 
37 	if (unlikely(!page_buf->addr) &&
38 	    ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
39 				 GFP_ATOMIC))
40 		return NULL;
41 	buffer->dma_addr = page_buf->dma_addr + offset;
42 	buffer->unmap_len = 0;
43 	return (u8 *)page_buf->addr + offset;
44 }
45 
46 u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue,
47 				   struct ef4_tx_buffer *buffer, size_t len)
48 {
49 	if (len > EF4_TX_CB_SIZE)
50 		return NULL;
51 	return ef4_tx_get_copy_buffer(tx_queue, buffer);
52 }
53 
54 static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
55 			       struct ef4_tx_buffer *buffer,
56 			       unsigned int *pkts_compl,
57 			       unsigned int *bytes_compl)
58 {
59 	if (buffer->unmap_len) {
60 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
61 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
62 		if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
63 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
64 					 DMA_TO_DEVICE);
65 		else
66 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
67 				       DMA_TO_DEVICE);
68 		buffer->unmap_len = 0;
69 	}
70 
71 	if (buffer->flags & EF4_TX_BUF_SKB) {
72 		(*pkts_compl)++;
73 		(*bytes_compl) += buffer->skb->len;
74 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
75 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
76 			   "TX queue %d transmission id %x complete\n",
77 			   tx_queue->queue, tx_queue->read_count);
78 	}
79 
80 	buffer->len = 0;
81 	buffer->flags = 0;
82 }
83 
84 unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
85 {
86 	/* This is probably too much since we don't have any TSO support;
87 	 * it's a left-over from when we had Software TSO.  But it's safer
88 	 * to leave it as-is than try to determine a new bound.
89 	 */
90 	/* Header and payload descriptor for each output segment, plus
91 	 * one for every input fragment boundary within a segment
92 	 */
93 	unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
94 
95 	/* Possibly one more per segment for the alignment workaround,
96 	 * or for option descriptors
97 	 */
98 	if (EF4_WORKAROUND_5391(efx))
99 		max_descs += EF4_TSO_MAX_SEGS;
100 
101 	/* Possibly more for PCIe page boundaries within input fragments */
102 	if (PAGE_SIZE > EF4_PAGE_SIZE)
103 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
104 				   DIV_ROUND_UP(GSO_MAX_SIZE, EF4_PAGE_SIZE));
105 
106 	return max_descs;
107 }
108 
109 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
110 {
111 	/* We need to consider both queues that the net core sees as one */
112 	struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
113 	struct ef4_nic *efx = txq1->efx;
114 	unsigned int fill_level;
115 
116 	fill_level = max(txq1->insert_count - txq1->old_read_count,
117 			 txq2->insert_count - txq2->old_read_count);
118 	if (likely(fill_level < efx->txq_stop_thresh))
119 		return;
120 
121 	/* We used the stale old_read_count above, which gives us a
122 	 * pessimistic estimate of the fill level (which may even
123 	 * validly be >= efx->txq_entries).  Now try again using
124 	 * read_count (more likely to be a cache miss).
125 	 *
126 	 * If we read read_count and then conditionally stop the
127 	 * queue, it is possible for the completion path to race with
128 	 * us and complete all outstanding descriptors in the middle,
129 	 * after which there will be no more completions to wake it.
130 	 * Therefore we stop the queue first, then read read_count
131 	 * (with a memory barrier to ensure the ordering), then
132 	 * restart the queue if the fill level turns out to be low
133 	 * enough.
134 	 */
135 	netif_tx_stop_queue(txq1->core_txq);
136 	smp_mb();
137 	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
138 	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
139 
140 	fill_level = max(txq1->insert_count - txq1->old_read_count,
141 			 txq2->insert_count - txq2->old_read_count);
142 	EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
143 	if (likely(fill_level < efx->txq_stop_thresh)) {
144 		smp_mb();
145 		if (likely(!efx->loopback_selftest))
146 			netif_tx_start_queue(txq1->core_txq);
147 	}
148 }
149 
150 static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
151 				struct sk_buff *skb)
152 {
153 	unsigned int min_len = tx_queue->tx_min_size;
154 	unsigned int copy_len = skb->len;
155 	struct ef4_tx_buffer *buffer;
156 	u8 *copy_buffer;
157 	int rc;
158 
159 	EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
160 
161 	buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
162 
163 	copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
164 	if (unlikely(!copy_buffer))
165 		return -ENOMEM;
166 
167 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
168 	EF4_WARN_ON_PARANOID(rc);
169 	if (unlikely(copy_len < min_len)) {
170 		memset(copy_buffer + copy_len, 0, min_len - copy_len);
171 		buffer->len = min_len;
172 	} else {
173 		buffer->len = copy_len;
174 	}
175 
176 	buffer->skb = skb;
177 	buffer->flags = EF4_TX_BUF_SKB;
178 
179 	++tx_queue->insert_count;
180 	return rc;
181 }
182 
183 static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
184 					      dma_addr_t dma_addr,
185 					      size_t len)
186 {
187 	const struct ef4_nic_type *nic_type = tx_queue->efx->type;
188 	struct ef4_tx_buffer *buffer;
189 	unsigned int dma_len;
190 
191 	/* Map the fragment taking account of NIC-dependent DMA limits. */
192 	do {
193 		buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
194 		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
195 
196 		buffer->len = dma_len;
197 		buffer->dma_addr = dma_addr;
198 		buffer->flags = EF4_TX_BUF_CONT;
199 		len -= dma_len;
200 		dma_addr += dma_len;
201 		++tx_queue->insert_count;
202 	} while (len);
203 
204 	return buffer;
205 }
206 
207 /* Map all data from an SKB for DMA and create descriptors on the queue.
208  */
209 static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
210 {
211 	struct ef4_nic *efx = tx_queue->efx;
212 	struct device *dma_dev = &efx->pci_dev->dev;
213 	unsigned int frag_index, nr_frags;
214 	dma_addr_t dma_addr, unmap_addr;
215 	unsigned short dma_flags;
216 	size_t len, unmap_len;
217 
218 	nr_frags = skb_shinfo(skb)->nr_frags;
219 	frag_index = 0;
220 
221 	/* Map header data. */
222 	len = skb_headlen(skb);
223 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
224 	dma_flags = EF4_TX_BUF_MAP_SINGLE;
225 	unmap_len = len;
226 	unmap_addr = dma_addr;
227 
228 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
229 		return -EIO;
230 
231 	/* Add descriptors for each fragment. */
232 	do {
233 		struct ef4_tx_buffer *buffer;
234 		skb_frag_t *fragment;
235 
236 		buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
237 
238 		/* The final descriptor for a fragment is responsible for
239 		 * unmapping the whole fragment.
240 		 */
241 		buffer->flags = EF4_TX_BUF_CONT | dma_flags;
242 		buffer->unmap_len = unmap_len;
243 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
244 
245 		if (frag_index >= nr_frags) {
246 			/* Store SKB details with the final buffer for
247 			 * the completion.
248 			 */
249 			buffer->skb = skb;
250 			buffer->flags = EF4_TX_BUF_SKB | dma_flags;
251 			return 0;
252 		}
253 
254 		/* Move on to the next fragment. */
255 		fragment = &skb_shinfo(skb)->frags[frag_index++];
256 		len = skb_frag_size(fragment);
257 		dma_addr = skb_frag_dma_map(dma_dev, fragment,
258 				0, len, DMA_TO_DEVICE);
259 		dma_flags = 0;
260 		unmap_len = len;
261 		unmap_addr = dma_addr;
262 
263 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
264 			return -EIO;
265 	} while (1);
266 }
267 
268 /* Remove buffers put into a tx_queue.  None of the buffers must have
269  * an skb attached.
270  */
271 static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
272 {
273 	struct ef4_tx_buffer *buffer;
274 
275 	/* Work backwards until we hit the original insert pointer value */
276 	while (tx_queue->insert_count != tx_queue->write_count) {
277 		--tx_queue->insert_count;
278 		buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
279 		ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
280 	}
281 }
282 
283 /*
284  * Add a socket buffer to a TX queue
285  *
286  * This maps all fragments of a socket buffer for DMA and adds them to
287  * the TX queue.  The queue's insert pointer will be incremented by
288  * the number of fragments in the socket buffer.
289  *
290  * If any DMA mapping fails, any mapped fragments will be unmapped,
291  * the queue's insert pointer will be restored to its original value.
292  *
293  * This function is split out from ef4_hard_start_xmit to allow the
294  * loopback test to direct packets via specific TX queues.
295  *
296  * Returns NETDEV_TX_OK.
297  * You must hold netif_tx_lock() to call this function.
298  */
299 netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
300 {
301 	bool data_mapped = false;
302 	unsigned int skb_len;
303 
304 	skb_len = skb->len;
305 	EF4_WARN_ON_PARANOID(skb_is_gso(skb));
306 
307 	if (skb_len < tx_queue->tx_min_size ||
308 			(skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
309 		/* Pad short packets or coalesce short fragmented packets. */
310 		if (ef4_enqueue_skb_copy(tx_queue, skb))
311 			goto err;
312 		tx_queue->cb_packets++;
313 		data_mapped = true;
314 	}
315 
316 	/* Map for DMA and create descriptors if we haven't done so already. */
317 	if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
318 		goto err;
319 
320 	/* Update BQL */
321 	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
322 
323 	/* Pass off to hardware */
324 	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
325 		struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
326 
327 		/* There could be packets left on the partner queue if those
328 		 * SKBs had skb->xmit_more set. If we do not push those they
329 		 * could be left for a long time and cause a netdev watchdog.
330 		 */
331 		if (txq2->xmit_more_available)
332 			ef4_nic_push_buffers(txq2);
333 
334 		ef4_nic_push_buffers(tx_queue);
335 	} else {
336 		tx_queue->xmit_more_available = skb->xmit_more;
337 	}
338 
339 	tx_queue->tx_packets++;
340 
341 	ef4_tx_maybe_stop_queue(tx_queue);
342 
343 	return NETDEV_TX_OK;
344 
345 
346 err:
347 	ef4_enqueue_unwind(tx_queue);
348 	dev_kfree_skb_any(skb);
349 	return NETDEV_TX_OK;
350 }
351 
352 /* Remove packets from the TX queue
353  *
354  * This removes packets from the TX queue, up to and including the
355  * specified index.
356  */
357 static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
358 				unsigned int index,
359 				unsigned int *pkts_compl,
360 				unsigned int *bytes_compl)
361 {
362 	struct ef4_nic *efx = tx_queue->efx;
363 	unsigned int stop_index, read_ptr;
364 
365 	stop_index = (index + 1) & tx_queue->ptr_mask;
366 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
367 
368 	while (read_ptr != stop_index) {
369 		struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
370 
371 		if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
372 		    unlikely(buffer->len == 0)) {
373 			netif_err(efx, tx_err, efx->net_dev,
374 				  "TX queue %d spurious TX completion id %x\n",
375 				  tx_queue->queue, read_ptr);
376 			ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
377 			return;
378 		}
379 
380 		ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
381 
382 		++tx_queue->read_count;
383 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
384 	}
385 }
386 
387 /* Initiate a packet transmission.  We use one channel per CPU
388  * (sharing when we have more CPUs than channels).  On Falcon, the TX
389  * completion events will be directed back to the CPU that transmitted
390  * the packet, which should be cache-efficient.
391  *
392  * Context: non-blocking.
393  * Note that returning anything other than NETDEV_TX_OK will cause the
394  * OS to free the skb.
395  */
396 netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
397 				struct net_device *net_dev)
398 {
399 	struct ef4_nic *efx = netdev_priv(net_dev);
400 	struct ef4_tx_queue *tx_queue;
401 	unsigned index, type;
402 
403 	EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
404 
405 	index = skb_get_queue_mapping(skb);
406 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
407 	if (index >= efx->n_tx_channels) {
408 		index -= efx->n_tx_channels;
409 		type |= EF4_TXQ_TYPE_HIGHPRI;
410 	}
411 	tx_queue = ef4_get_tx_queue(efx, index, type);
412 
413 	return ef4_enqueue_skb(tx_queue, skb);
414 }
415 
416 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
417 {
418 	struct ef4_nic *efx = tx_queue->efx;
419 
420 	/* Must be inverse of queue lookup in ef4_hard_start_xmit() */
421 	tx_queue->core_txq =
422 		netdev_get_tx_queue(efx->net_dev,
423 				    tx_queue->queue / EF4_TXQ_TYPES +
424 				    ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
425 				     efx->n_tx_channels : 0));
426 }
427 
428 int ef4_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
429 		 struct tc_to_netdev *ntc)
430 {
431 	struct ef4_nic *efx = netdev_priv(net_dev);
432 	struct ef4_channel *channel;
433 	struct ef4_tx_queue *tx_queue;
434 	unsigned tc, num_tc;
435 	int rc;
436 
437 	if (ntc->type != TC_SETUP_MQPRIO)
438 		return -EINVAL;
439 
440 	num_tc = ntc->mqprio->num_tc;
441 
442 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
443 		return -EINVAL;
444 
445 	ntc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
446 
447 	if (num_tc == net_dev->num_tc)
448 		return 0;
449 
450 	for (tc = 0; tc < num_tc; tc++) {
451 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
452 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
453 	}
454 
455 	if (num_tc > net_dev->num_tc) {
456 		/* Initialise high-priority queues as necessary */
457 		ef4_for_each_channel(channel, efx) {
458 			ef4_for_each_possible_channel_tx_queue(tx_queue,
459 							       channel) {
460 				if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
461 					continue;
462 				if (!tx_queue->buffer) {
463 					rc = ef4_probe_tx_queue(tx_queue);
464 					if (rc)
465 						return rc;
466 				}
467 				if (!tx_queue->initialised)
468 					ef4_init_tx_queue(tx_queue);
469 				ef4_init_tx_queue_core_txq(tx_queue);
470 			}
471 		}
472 	} else {
473 		/* Reduce number of classes before number of queues */
474 		net_dev->num_tc = num_tc;
475 	}
476 
477 	rc = netif_set_real_num_tx_queues(net_dev,
478 					  max_t(int, num_tc, 1) *
479 					  efx->n_tx_channels);
480 	if (rc)
481 		return rc;
482 
483 	/* Do not destroy high-priority queues when they become
484 	 * unused.  We would have to flush them first, and it is
485 	 * fairly difficult to flush a subset of TX queues.  Leave
486 	 * it to ef4_fini_channels().
487 	 */
488 
489 	net_dev->num_tc = num_tc;
490 	return 0;
491 }
492 
493 void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
494 {
495 	unsigned fill_level;
496 	struct ef4_nic *efx = tx_queue->efx;
497 	struct ef4_tx_queue *txq2;
498 	unsigned int pkts_compl = 0, bytes_compl = 0;
499 
500 	EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
501 
502 	ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
503 	tx_queue->pkts_compl += pkts_compl;
504 	tx_queue->bytes_compl += bytes_compl;
505 
506 	if (pkts_compl > 1)
507 		++tx_queue->merge_events;
508 
509 	/* See if we need to restart the netif queue.  This memory
510 	 * barrier ensures that we write read_count (inside
511 	 * ef4_dequeue_buffers()) before reading the queue status.
512 	 */
513 	smp_mb();
514 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
515 	    likely(efx->port_enabled) &&
516 	    likely(netif_device_present(efx->net_dev))) {
517 		txq2 = ef4_tx_queue_partner(tx_queue);
518 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
519 				 txq2->insert_count - txq2->read_count);
520 		if (fill_level <= efx->txq_wake_thresh)
521 			netif_tx_wake_queue(tx_queue->core_txq);
522 	}
523 
524 	/* Check whether the hardware queue is now empty */
525 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
526 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
527 		if (tx_queue->read_count == tx_queue->old_write_count) {
528 			smp_mb();
529 			tx_queue->empty_read_count =
530 				tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
531 		}
532 	}
533 }
534 
535 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
536 {
537 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
538 }
539 
540 int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
541 {
542 	struct ef4_nic *efx = tx_queue->efx;
543 	unsigned int entries;
544 	int rc;
545 
546 	/* Create the smallest power-of-two aligned ring */
547 	entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
548 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
549 	tx_queue->ptr_mask = entries - 1;
550 
551 	netif_dbg(efx, probe, efx->net_dev,
552 		  "creating TX queue %d size %#x mask %#x\n",
553 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
554 
555 	/* Allocate software ring */
556 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
557 				   GFP_KERNEL);
558 	if (!tx_queue->buffer)
559 		return -ENOMEM;
560 
561 	tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
562 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
563 	if (!tx_queue->cb_page) {
564 		rc = -ENOMEM;
565 		goto fail1;
566 	}
567 
568 	/* Allocate hardware ring */
569 	rc = ef4_nic_probe_tx(tx_queue);
570 	if (rc)
571 		goto fail2;
572 
573 	return 0;
574 
575 fail2:
576 	kfree(tx_queue->cb_page);
577 	tx_queue->cb_page = NULL;
578 fail1:
579 	kfree(tx_queue->buffer);
580 	tx_queue->buffer = NULL;
581 	return rc;
582 }
583 
584 void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
585 {
586 	struct ef4_nic *efx = tx_queue->efx;
587 
588 	netif_dbg(efx, drv, efx->net_dev,
589 		  "initialising TX queue %d\n", tx_queue->queue);
590 
591 	tx_queue->insert_count = 0;
592 	tx_queue->write_count = 0;
593 	tx_queue->old_write_count = 0;
594 	tx_queue->read_count = 0;
595 	tx_queue->old_read_count = 0;
596 	tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
597 	tx_queue->xmit_more_available = false;
598 
599 	/* Some older hardware requires Tx writes larger than 32. */
600 	tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
601 
602 	/* Set up TX descriptor ring */
603 	ef4_nic_init_tx(tx_queue);
604 
605 	tx_queue->initialised = true;
606 }
607 
608 void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
609 {
610 	struct ef4_tx_buffer *buffer;
611 
612 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
613 		  "shutting down TX queue %d\n", tx_queue->queue);
614 
615 	if (!tx_queue->buffer)
616 		return;
617 
618 	/* Free any buffers left in the ring */
619 	while (tx_queue->read_count != tx_queue->write_count) {
620 		unsigned int pkts_compl = 0, bytes_compl = 0;
621 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
622 		ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
623 
624 		++tx_queue->read_count;
625 	}
626 	tx_queue->xmit_more_available = false;
627 	netdev_tx_reset_queue(tx_queue->core_txq);
628 }
629 
630 void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
631 {
632 	int i;
633 
634 	if (!tx_queue->buffer)
635 		return;
636 
637 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
638 		  "destroying TX queue %d\n", tx_queue->queue);
639 	ef4_nic_remove_tx(tx_queue);
640 
641 	if (tx_queue->cb_page) {
642 		for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
643 			ef4_nic_free_buffer(tx_queue->efx,
644 					    &tx_queue->cb_page[i]);
645 		kfree(tx_queue->cb_page);
646 		tx_queue->cb_page = NULL;
647 	}
648 
649 	kfree(tx_queue->buffer);
650 	tx_queue->buffer = NULL;
651 }
652