xref: /openbmc/linux/drivers/net/ethernet/sfc/falcon/tx.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "workarounds.h"
24 
25 static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
26 					 struct ef4_tx_buffer *buffer)
27 {
28 	unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
29 	struct ef4_buffer *page_buf =
30 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
31 	unsigned int offset =
32 		((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
33 
34 	if (unlikely(!page_buf->addr) &&
35 	    ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
36 				 GFP_ATOMIC))
37 		return NULL;
38 	buffer->dma_addr = page_buf->dma_addr + offset;
39 	buffer->unmap_len = 0;
40 	return (u8 *)page_buf->addr + offset;
41 }
42 
43 u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue,
44 				   struct ef4_tx_buffer *buffer, size_t len)
45 {
46 	if (len > EF4_TX_CB_SIZE)
47 		return NULL;
48 	return ef4_tx_get_copy_buffer(tx_queue, buffer);
49 }
50 
51 static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
52 			       struct ef4_tx_buffer *buffer,
53 			       unsigned int *pkts_compl,
54 			       unsigned int *bytes_compl)
55 {
56 	if (buffer->unmap_len) {
57 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
58 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
59 		if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
60 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
61 					 DMA_TO_DEVICE);
62 		else
63 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
64 				       DMA_TO_DEVICE);
65 		buffer->unmap_len = 0;
66 	}
67 
68 	if (buffer->flags & EF4_TX_BUF_SKB) {
69 		(*pkts_compl)++;
70 		(*bytes_compl) += buffer->skb->len;
71 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
72 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
73 			   "TX queue %d transmission id %x complete\n",
74 			   tx_queue->queue, tx_queue->read_count);
75 	}
76 
77 	buffer->len = 0;
78 	buffer->flags = 0;
79 }
80 
81 unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
82 {
83 	/* This is probably too much since we don't have any TSO support;
84 	 * it's a left-over from when we had Software TSO.  But it's safer
85 	 * to leave it as-is than try to determine a new bound.
86 	 */
87 	/* Header and payload descriptor for each output segment, plus
88 	 * one for every input fragment boundary within a segment
89 	 */
90 	unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
91 
92 	/* Possibly one more per segment for the alignment workaround,
93 	 * or for option descriptors
94 	 */
95 	if (EF4_WORKAROUND_5391(efx))
96 		max_descs += EF4_TSO_MAX_SEGS;
97 
98 	/* Possibly more for PCIe page boundaries within input fragments */
99 	if (PAGE_SIZE > EF4_PAGE_SIZE)
100 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
101 				   DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
102 						EF4_PAGE_SIZE));
103 
104 	return max_descs;
105 }
106 
107 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
108 {
109 	/* We need to consider both queues that the net core sees as one */
110 	struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
111 	struct ef4_nic *efx = txq1->efx;
112 	unsigned int fill_level;
113 
114 	fill_level = max(txq1->insert_count - txq1->old_read_count,
115 			 txq2->insert_count - txq2->old_read_count);
116 	if (likely(fill_level < efx->txq_stop_thresh))
117 		return;
118 
119 	/* We used the stale old_read_count above, which gives us a
120 	 * pessimistic estimate of the fill level (which may even
121 	 * validly be >= efx->txq_entries).  Now try again using
122 	 * read_count (more likely to be a cache miss).
123 	 *
124 	 * If we read read_count and then conditionally stop the
125 	 * queue, it is possible for the completion path to race with
126 	 * us and complete all outstanding descriptors in the middle,
127 	 * after which there will be no more completions to wake it.
128 	 * Therefore we stop the queue first, then read read_count
129 	 * (with a memory barrier to ensure the ordering), then
130 	 * restart the queue if the fill level turns out to be low
131 	 * enough.
132 	 */
133 	netif_tx_stop_queue(txq1->core_txq);
134 	smp_mb();
135 	txq1->old_read_count = READ_ONCE(txq1->read_count);
136 	txq2->old_read_count = READ_ONCE(txq2->read_count);
137 
138 	fill_level = max(txq1->insert_count - txq1->old_read_count,
139 			 txq2->insert_count - txq2->old_read_count);
140 	EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
141 	if (likely(fill_level < efx->txq_stop_thresh)) {
142 		smp_mb();
143 		if (likely(!efx->loopback_selftest))
144 			netif_tx_start_queue(txq1->core_txq);
145 	}
146 }
147 
148 static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
149 				struct sk_buff *skb)
150 {
151 	unsigned int min_len = tx_queue->tx_min_size;
152 	unsigned int copy_len = skb->len;
153 	struct ef4_tx_buffer *buffer;
154 	u8 *copy_buffer;
155 	int rc;
156 
157 	EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
158 
159 	buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
160 
161 	copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
162 	if (unlikely(!copy_buffer))
163 		return -ENOMEM;
164 
165 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
166 	EF4_WARN_ON_PARANOID(rc);
167 	if (unlikely(copy_len < min_len)) {
168 		memset(copy_buffer + copy_len, 0, min_len - copy_len);
169 		buffer->len = min_len;
170 	} else {
171 		buffer->len = copy_len;
172 	}
173 
174 	buffer->skb = skb;
175 	buffer->flags = EF4_TX_BUF_SKB;
176 
177 	++tx_queue->insert_count;
178 	return rc;
179 }
180 
181 static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
182 					      dma_addr_t dma_addr,
183 					      size_t len)
184 {
185 	const struct ef4_nic_type *nic_type = tx_queue->efx->type;
186 	struct ef4_tx_buffer *buffer;
187 	unsigned int dma_len;
188 
189 	/* Map the fragment taking account of NIC-dependent DMA limits. */
190 	do {
191 		buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
192 		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
193 
194 		buffer->len = dma_len;
195 		buffer->dma_addr = dma_addr;
196 		buffer->flags = EF4_TX_BUF_CONT;
197 		len -= dma_len;
198 		dma_addr += dma_len;
199 		++tx_queue->insert_count;
200 	} while (len);
201 
202 	return buffer;
203 }
204 
205 /* Map all data from an SKB for DMA and create descriptors on the queue.
206  */
207 static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
208 {
209 	struct ef4_nic *efx = tx_queue->efx;
210 	struct device *dma_dev = &efx->pci_dev->dev;
211 	unsigned int frag_index, nr_frags;
212 	dma_addr_t dma_addr, unmap_addr;
213 	unsigned short dma_flags;
214 	size_t len, unmap_len;
215 
216 	nr_frags = skb_shinfo(skb)->nr_frags;
217 	frag_index = 0;
218 
219 	/* Map header data. */
220 	len = skb_headlen(skb);
221 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
222 	dma_flags = EF4_TX_BUF_MAP_SINGLE;
223 	unmap_len = len;
224 	unmap_addr = dma_addr;
225 
226 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
227 		return -EIO;
228 
229 	/* Add descriptors for each fragment. */
230 	do {
231 		struct ef4_tx_buffer *buffer;
232 		skb_frag_t *fragment;
233 
234 		buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
235 
236 		/* The final descriptor for a fragment is responsible for
237 		 * unmapping the whole fragment.
238 		 */
239 		buffer->flags = EF4_TX_BUF_CONT | dma_flags;
240 		buffer->unmap_len = unmap_len;
241 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
242 
243 		if (frag_index >= nr_frags) {
244 			/* Store SKB details with the final buffer for
245 			 * the completion.
246 			 */
247 			buffer->skb = skb;
248 			buffer->flags = EF4_TX_BUF_SKB | dma_flags;
249 			return 0;
250 		}
251 
252 		/* Move on to the next fragment. */
253 		fragment = &skb_shinfo(skb)->frags[frag_index++];
254 		len = skb_frag_size(fragment);
255 		dma_addr = skb_frag_dma_map(dma_dev, fragment,
256 				0, len, DMA_TO_DEVICE);
257 		dma_flags = 0;
258 		unmap_len = len;
259 		unmap_addr = dma_addr;
260 
261 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
262 			return -EIO;
263 	} while (1);
264 }
265 
266 /* Remove buffers put into a tx_queue.  None of the buffers must have
267  * an skb attached.
268  */
269 static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
270 {
271 	struct ef4_tx_buffer *buffer;
272 
273 	/* Work backwards until we hit the original insert pointer value */
274 	while (tx_queue->insert_count != tx_queue->write_count) {
275 		--tx_queue->insert_count;
276 		buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
277 		ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
278 	}
279 }
280 
281 /*
282  * Add a socket buffer to a TX queue
283  *
284  * This maps all fragments of a socket buffer for DMA and adds them to
285  * the TX queue.  The queue's insert pointer will be incremented by
286  * the number of fragments in the socket buffer.
287  *
288  * If any DMA mapping fails, any mapped fragments will be unmapped,
289  * the queue's insert pointer will be restored to its original value.
290  *
291  * This function is split out from ef4_hard_start_xmit to allow the
292  * loopback test to direct packets via specific TX queues.
293  *
294  * Returns NETDEV_TX_OK.
295  * You must hold netif_tx_lock() to call this function.
296  */
297 netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
298 {
299 	bool data_mapped = false;
300 	unsigned int skb_len;
301 
302 	skb_len = skb->len;
303 	EF4_WARN_ON_PARANOID(skb_is_gso(skb));
304 
305 	if (skb_len < tx_queue->tx_min_size ||
306 			(skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
307 		/* Pad short packets or coalesce short fragmented packets. */
308 		if (ef4_enqueue_skb_copy(tx_queue, skb))
309 			goto err;
310 		tx_queue->cb_packets++;
311 		data_mapped = true;
312 	}
313 
314 	/* Map for DMA and create descriptors if we haven't done so already. */
315 	if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
316 		goto err;
317 
318 	/* Update BQL */
319 	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
320 
321 	/* Pass off to hardware */
322 	if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) {
323 		struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
324 
325 		/* There could be packets left on the partner queue if those
326 		 * SKBs had skb->xmit_more set. If we do not push those they
327 		 * could be left for a long time and cause a netdev watchdog.
328 		 */
329 		if (txq2->xmit_more_available)
330 			ef4_nic_push_buffers(txq2);
331 
332 		ef4_nic_push_buffers(tx_queue);
333 	} else {
334 		tx_queue->xmit_more_available = netdev_xmit_more();
335 	}
336 
337 	tx_queue->tx_packets++;
338 
339 	ef4_tx_maybe_stop_queue(tx_queue);
340 
341 	return NETDEV_TX_OK;
342 
343 
344 err:
345 	ef4_enqueue_unwind(tx_queue);
346 	dev_kfree_skb_any(skb);
347 	return NETDEV_TX_OK;
348 }
349 
350 /* Remove packets from the TX queue
351  *
352  * This removes packets from the TX queue, up to and including the
353  * specified index.
354  */
355 static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
356 				unsigned int index,
357 				unsigned int *pkts_compl,
358 				unsigned int *bytes_compl)
359 {
360 	struct ef4_nic *efx = tx_queue->efx;
361 	unsigned int stop_index, read_ptr;
362 
363 	stop_index = (index + 1) & tx_queue->ptr_mask;
364 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
365 
366 	while (read_ptr != stop_index) {
367 		struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
368 
369 		if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
370 		    unlikely(buffer->len == 0)) {
371 			netif_err(efx, tx_err, efx->net_dev,
372 				  "TX queue %d spurious TX completion id %x\n",
373 				  tx_queue->queue, read_ptr);
374 			ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
375 			return;
376 		}
377 
378 		ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
379 
380 		++tx_queue->read_count;
381 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
382 	}
383 }
384 
385 /* Initiate a packet transmission.  We use one channel per CPU
386  * (sharing when we have more CPUs than channels).  On Falcon, the TX
387  * completion events will be directed back to the CPU that transmitted
388  * the packet, which should be cache-efficient.
389  *
390  * Context: non-blocking.
391  * Note that returning anything other than NETDEV_TX_OK will cause the
392  * OS to free the skb.
393  */
394 netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
395 				struct net_device *net_dev)
396 {
397 	struct ef4_nic *efx = netdev_priv(net_dev);
398 	struct ef4_tx_queue *tx_queue;
399 	unsigned index, type;
400 
401 	EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
402 
403 	index = skb_get_queue_mapping(skb);
404 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
405 	if (index >= efx->n_tx_channels) {
406 		index -= efx->n_tx_channels;
407 		type |= EF4_TXQ_TYPE_HIGHPRI;
408 	}
409 	tx_queue = ef4_get_tx_queue(efx, index, type);
410 
411 	return ef4_enqueue_skb(tx_queue, skb);
412 }
413 
414 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
415 {
416 	struct ef4_nic *efx = tx_queue->efx;
417 
418 	/* Must be inverse of queue lookup in ef4_hard_start_xmit() */
419 	tx_queue->core_txq =
420 		netdev_get_tx_queue(efx->net_dev,
421 				    tx_queue->queue / EF4_TXQ_TYPES +
422 				    ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
423 				     efx->n_tx_channels : 0));
424 }
425 
426 int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
427 		 void *type_data)
428 {
429 	struct ef4_nic *efx = netdev_priv(net_dev);
430 	struct tc_mqprio_qopt *mqprio = type_data;
431 	struct ef4_channel *channel;
432 	struct ef4_tx_queue *tx_queue;
433 	unsigned tc, num_tc;
434 	int rc;
435 
436 	if (type != TC_SETUP_QDISC_MQPRIO)
437 		return -EOPNOTSUPP;
438 
439 	num_tc = mqprio->num_tc;
440 
441 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
442 		return -EINVAL;
443 
444 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
445 
446 	if (num_tc == net_dev->num_tc)
447 		return 0;
448 
449 	for (tc = 0; tc < num_tc; tc++) {
450 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
451 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
452 	}
453 
454 	if (num_tc > net_dev->num_tc) {
455 		/* Initialise high-priority queues as necessary */
456 		ef4_for_each_channel(channel, efx) {
457 			ef4_for_each_possible_channel_tx_queue(tx_queue,
458 							       channel) {
459 				if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
460 					continue;
461 				if (!tx_queue->buffer) {
462 					rc = ef4_probe_tx_queue(tx_queue);
463 					if (rc)
464 						return rc;
465 				}
466 				if (!tx_queue->initialised)
467 					ef4_init_tx_queue(tx_queue);
468 				ef4_init_tx_queue_core_txq(tx_queue);
469 			}
470 		}
471 	} else {
472 		/* Reduce number of classes before number of queues */
473 		net_dev->num_tc = num_tc;
474 	}
475 
476 	rc = netif_set_real_num_tx_queues(net_dev,
477 					  max_t(int, num_tc, 1) *
478 					  efx->n_tx_channels);
479 	if (rc)
480 		return rc;
481 
482 	/* Do not destroy high-priority queues when they become
483 	 * unused.  We would have to flush them first, and it is
484 	 * fairly difficult to flush a subset of TX queues.  Leave
485 	 * it to ef4_fini_channels().
486 	 */
487 
488 	net_dev->num_tc = num_tc;
489 	return 0;
490 }
491 
492 void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
493 {
494 	unsigned fill_level;
495 	struct ef4_nic *efx = tx_queue->efx;
496 	struct ef4_tx_queue *txq2;
497 	unsigned int pkts_compl = 0, bytes_compl = 0;
498 
499 	EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
500 
501 	ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
502 	tx_queue->pkts_compl += pkts_compl;
503 	tx_queue->bytes_compl += bytes_compl;
504 
505 	if (pkts_compl > 1)
506 		++tx_queue->merge_events;
507 
508 	/* See if we need to restart the netif queue.  This memory
509 	 * barrier ensures that we write read_count (inside
510 	 * ef4_dequeue_buffers()) before reading the queue status.
511 	 */
512 	smp_mb();
513 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
514 	    likely(efx->port_enabled) &&
515 	    likely(netif_device_present(efx->net_dev))) {
516 		txq2 = ef4_tx_queue_partner(tx_queue);
517 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
518 				 txq2->insert_count - txq2->read_count);
519 		if (fill_level <= efx->txq_wake_thresh)
520 			netif_tx_wake_queue(tx_queue->core_txq);
521 	}
522 
523 	/* Check whether the hardware queue is now empty */
524 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
525 		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
526 		if (tx_queue->read_count == tx_queue->old_write_count) {
527 			smp_mb();
528 			tx_queue->empty_read_count =
529 				tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
530 		}
531 	}
532 }
533 
534 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
535 {
536 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
537 }
538 
539 int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
540 {
541 	struct ef4_nic *efx = tx_queue->efx;
542 	unsigned int entries;
543 	int rc;
544 
545 	/* Create the smallest power-of-two aligned ring */
546 	entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
547 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
548 	tx_queue->ptr_mask = entries - 1;
549 
550 	netif_dbg(efx, probe, efx->net_dev,
551 		  "creating TX queue %d size %#x mask %#x\n",
552 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
553 
554 	/* Allocate software ring */
555 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
556 				   GFP_KERNEL);
557 	if (!tx_queue->buffer)
558 		return -ENOMEM;
559 
560 	tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
561 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
562 	if (!tx_queue->cb_page) {
563 		rc = -ENOMEM;
564 		goto fail1;
565 	}
566 
567 	/* Allocate hardware ring */
568 	rc = ef4_nic_probe_tx(tx_queue);
569 	if (rc)
570 		goto fail2;
571 
572 	return 0;
573 
574 fail2:
575 	kfree(tx_queue->cb_page);
576 	tx_queue->cb_page = NULL;
577 fail1:
578 	kfree(tx_queue->buffer);
579 	tx_queue->buffer = NULL;
580 	return rc;
581 }
582 
583 void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
584 {
585 	struct ef4_nic *efx = tx_queue->efx;
586 
587 	netif_dbg(efx, drv, efx->net_dev,
588 		  "initialising TX queue %d\n", tx_queue->queue);
589 
590 	tx_queue->insert_count = 0;
591 	tx_queue->write_count = 0;
592 	tx_queue->old_write_count = 0;
593 	tx_queue->read_count = 0;
594 	tx_queue->old_read_count = 0;
595 	tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
596 	tx_queue->xmit_more_available = false;
597 
598 	/* Some older hardware requires Tx writes larger than 32. */
599 	tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
600 
601 	/* Set up TX descriptor ring */
602 	ef4_nic_init_tx(tx_queue);
603 
604 	tx_queue->initialised = true;
605 }
606 
607 void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
608 {
609 	struct ef4_tx_buffer *buffer;
610 
611 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
612 		  "shutting down TX queue %d\n", tx_queue->queue);
613 
614 	if (!tx_queue->buffer)
615 		return;
616 
617 	/* Free any buffers left in the ring */
618 	while (tx_queue->read_count != tx_queue->write_count) {
619 		unsigned int pkts_compl = 0, bytes_compl = 0;
620 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
621 		ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
622 
623 		++tx_queue->read_count;
624 	}
625 	tx_queue->xmit_more_available = false;
626 	netdev_tx_reset_queue(tx_queue->core_txq);
627 }
628 
629 void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
630 {
631 	int i;
632 
633 	if (!tx_queue->buffer)
634 		return;
635 
636 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
637 		  "destroying TX queue %d\n", tx_queue->queue);
638 	ef4_nic_remove_tx(tx_queue);
639 
640 	if (tx_queue->cb_page) {
641 		for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
642 			ef4_nic_free_buffer(tx_queue->efx,
643 					    &tx_queue->cb_page[i]);
644 		kfree(tx_queue->cb_page);
645 		tx_queue->cb_page = NULL;
646 	}
647 
648 	kfree(tx_queue->buffer);
649 	tx_queue->buffer = NULL;
650 }
651