1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/pci.h> 9 #include <linux/tcp.h> 10 #include <linux/ip.h> 11 #include <linux/in.h> 12 #include <linux/ipv6.h> 13 #include <linux/slab.h> 14 #include <net/ipv6.h> 15 #include <linux/if_ether.h> 16 #include <linux/highmem.h> 17 #include <linux/cache.h> 18 #include "net_driver.h" 19 #include "efx.h" 20 #include "io.h" 21 #include "nic.h" 22 #include "tx.h" 23 #include "workarounds.h" 24 25 static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue, 26 struct ef4_tx_buffer *buffer) 27 { 28 unsigned int index = ef4_tx_queue_get_insert_index(tx_queue); 29 struct ef4_buffer *page_buf = 30 &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)]; 31 unsigned int offset = 32 ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); 33 34 if (unlikely(!page_buf->addr) && 35 ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, 36 GFP_ATOMIC)) 37 return NULL; 38 buffer->dma_addr = page_buf->dma_addr + offset; 39 buffer->unmap_len = 0; 40 return (u8 *)page_buf->addr + offset; 41 } 42 43 u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue, 44 struct ef4_tx_buffer *buffer, size_t len) 45 { 46 if (len > EF4_TX_CB_SIZE) 47 return NULL; 48 return ef4_tx_get_copy_buffer(tx_queue, buffer); 49 } 50 51 static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue, 52 struct ef4_tx_buffer *buffer, 53 unsigned int *pkts_compl, 54 unsigned int *bytes_compl) 55 { 56 if (buffer->unmap_len) { 57 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 58 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; 59 if (buffer->flags & EF4_TX_BUF_MAP_SINGLE) 60 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, 61 DMA_TO_DEVICE); 62 else 63 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, 64 DMA_TO_DEVICE); 65 buffer->unmap_len = 0; 66 } 67 68 if (buffer->flags & EF4_TX_BUF_SKB) { 69 (*pkts_compl)++; 70 (*bytes_compl) += buffer->skb->len; 71 dev_consume_skb_any((struct sk_buff *)buffer->skb); 72 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 73 "TX queue %d transmission id %x complete\n", 74 tx_queue->queue, tx_queue->read_count); 75 } 76 77 buffer->len = 0; 78 buffer->flags = 0; 79 } 80 81 unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx) 82 { 83 /* This is probably too much since we don't have any TSO support; 84 * it's a left-over from when we had Software TSO. But it's safer 85 * to leave it as-is than try to determine a new bound. 86 */ 87 /* Header and payload descriptor for each output segment, plus 88 * one for every input fragment boundary within a segment 89 */ 90 unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; 91 92 /* Possibly one more per segment for the alignment workaround, 93 * or for option descriptors 94 */ 95 if (EF4_WORKAROUND_5391(efx)) 96 max_descs += EF4_TSO_MAX_SEGS; 97 98 /* Possibly more for PCIe page boundaries within input fragments */ 99 if (PAGE_SIZE > EF4_PAGE_SIZE) 100 max_descs += max_t(unsigned int, MAX_SKB_FRAGS, 101 DIV_ROUND_UP(GSO_MAX_SIZE, EF4_PAGE_SIZE)); 102 103 return max_descs; 104 } 105 106 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1) 107 { 108 /* We need to consider both queues that the net core sees as one */ 109 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1); 110 struct ef4_nic *efx = txq1->efx; 111 unsigned int fill_level; 112 113 fill_level = max(txq1->insert_count - txq1->old_read_count, 114 txq2->insert_count - txq2->old_read_count); 115 if (likely(fill_level < efx->txq_stop_thresh)) 116 return; 117 118 /* We used the stale old_read_count above, which gives us a 119 * pessimistic estimate of the fill level (which may even 120 * validly be >= efx->txq_entries). Now try again using 121 * read_count (more likely to be a cache miss). 122 * 123 * If we read read_count and then conditionally stop the 124 * queue, it is possible for the completion path to race with 125 * us and complete all outstanding descriptors in the middle, 126 * after which there will be no more completions to wake it. 127 * Therefore we stop the queue first, then read read_count 128 * (with a memory barrier to ensure the ordering), then 129 * restart the queue if the fill level turns out to be low 130 * enough. 131 */ 132 netif_tx_stop_queue(txq1->core_txq); 133 smp_mb(); 134 txq1->old_read_count = READ_ONCE(txq1->read_count); 135 txq2->old_read_count = READ_ONCE(txq2->read_count); 136 137 fill_level = max(txq1->insert_count - txq1->old_read_count, 138 txq2->insert_count - txq2->old_read_count); 139 EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries); 140 if (likely(fill_level < efx->txq_stop_thresh)) { 141 smp_mb(); 142 if (likely(!efx->loopback_selftest)) 143 netif_tx_start_queue(txq1->core_txq); 144 } 145 } 146 147 static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue, 148 struct sk_buff *skb) 149 { 150 unsigned int min_len = tx_queue->tx_min_size; 151 unsigned int copy_len = skb->len; 152 struct ef4_tx_buffer *buffer; 153 u8 *copy_buffer; 154 int rc; 155 156 EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE); 157 158 buffer = ef4_tx_queue_get_insert_buffer(tx_queue); 159 160 copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer); 161 if (unlikely(!copy_buffer)) 162 return -ENOMEM; 163 164 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); 165 EF4_WARN_ON_PARANOID(rc); 166 if (unlikely(copy_len < min_len)) { 167 memset(copy_buffer + copy_len, 0, min_len - copy_len); 168 buffer->len = min_len; 169 } else { 170 buffer->len = copy_len; 171 } 172 173 buffer->skb = skb; 174 buffer->flags = EF4_TX_BUF_SKB; 175 176 ++tx_queue->insert_count; 177 return rc; 178 } 179 180 static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue, 181 dma_addr_t dma_addr, 182 size_t len) 183 { 184 const struct ef4_nic_type *nic_type = tx_queue->efx->type; 185 struct ef4_tx_buffer *buffer; 186 unsigned int dma_len; 187 188 /* Map the fragment taking account of NIC-dependent DMA limits. */ 189 do { 190 buffer = ef4_tx_queue_get_insert_buffer(tx_queue); 191 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); 192 193 buffer->len = dma_len; 194 buffer->dma_addr = dma_addr; 195 buffer->flags = EF4_TX_BUF_CONT; 196 len -= dma_len; 197 dma_addr += dma_len; 198 ++tx_queue->insert_count; 199 } while (len); 200 201 return buffer; 202 } 203 204 /* Map all data from an SKB for DMA and create descriptors on the queue. 205 */ 206 static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) 207 { 208 struct ef4_nic *efx = tx_queue->efx; 209 struct device *dma_dev = &efx->pci_dev->dev; 210 unsigned int frag_index, nr_frags; 211 dma_addr_t dma_addr, unmap_addr; 212 unsigned short dma_flags; 213 size_t len, unmap_len; 214 215 nr_frags = skb_shinfo(skb)->nr_frags; 216 frag_index = 0; 217 218 /* Map header data. */ 219 len = skb_headlen(skb); 220 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); 221 dma_flags = EF4_TX_BUF_MAP_SINGLE; 222 unmap_len = len; 223 unmap_addr = dma_addr; 224 225 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 226 return -EIO; 227 228 /* Add descriptors for each fragment. */ 229 do { 230 struct ef4_tx_buffer *buffer; 231 skb_frag_t *fragment; 232 233 buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len); 234 235 /* The final descriptor for a fragment is responsible for 236 * unmapping the whole fragment. 237 */ 238 buffer->flags = EF4_TX_BUF_CONT | dma_flags; 239 buffer->unmap_len = unmap_len; 240 buffer->dma_offset = buffer->dma_addr - unmap_addr; 241 242 if (frag_index >= nr_frags) { 243 /* Store SKB details with the final buffer for 244 * the completion. 245 */ 246 buffer->skb = skb; 247 buffer->flags = EF4_TX_BUF_SKB | dma_flags; 248 return 0; 249 } 250 251 /* Move on to the next fragment. */ 252 fragment = &skb_shinfo(skb)->frags[frag_index++]; 253 len = skb_frag_size(fragment); 254 dma_addr = skb_frag_dma_map(dma_dev, fragment, 255 0, len, DMA_TO_DEVICE); 256 dma_flags = 0; 257 unmap_len = len; 258 unmap_addr = dma_addr; 259 260 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 261 return -EIO; 262 } while (1); 263 } 264 265 /* Remove buffers put into a tx_queue. None of the buffers must have 266 * an skb attached. 267 */ 268 static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue) 269 { 270 struct ef4_tx_buffer *buffer; 271 272 /* Work backwards until we hit the original insert pointer value */ 273 while (tx_queue->insert_count != tx_queue->write_count) { 274 --tx_queue->insert_count; 275 buffer = __ef4_tx_queue_get_insert_buffer(tx_queue); 276 ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL); 277 } 278 } 279 280 /* 281 * Add a socket buffer to a TX queue 282 * 283 * This maps all fragments of a socket buffer for DMA and adds them to 284 * the TX queue. The queue's insert pointer will be incremented by 285 * the number of fragments in the socket buffer. 286 * 287 * If any DMA mapping fails, any mapped fragments will be unmapped, 288 * the queue's insert pointer will be restored to its original value. 289 * 290 * This function is split out from ef4_hard_start_xmit to allow the 291 * loopback test to direct packets via specific TX queues. 292 * 293 * Returns NETDEV_TX_OK. 294 * You must hold netif_tx_lock() to call this function. 295 */ 296 netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) 297 { 298 bool data_mapped = false; 299 unsigned int skb_len; 300 301 skb_len = skb->len; 302 EF4_WARN_ON_PARANOID(skb_is_gso(skb)); 303 304 if (skb_len < tx_queue->tx_min_size || 305 (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) { 306 /* Pad short packets or coalesce short fragmented packets. */ 307 if (ef4_enqueue_skb_copy(tx_queue, skb)) 308 goto err; 309 tx_queue->cb_packets++; 310 data_mapped = true; 311 } 312 313 /* Map for DMA and create descriptors if we haven't done so already. */ 314 if (!data_mapped && (ef4_tx_map_data(tx_queue, skb))) 315 goto err; 316 317 /* Update BQL */ 318 netdev_tx_sent_queue(tx_queue->core_txq, skb_len); 319 320 /* Pass off to hardware */ 321 if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) { 322 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue); 323 324 /* There could be packets left on the partner queue if those 325 * SKBs had skb->xmit_more set. If we do not push those they 326 * could be left for a long time and cause a netdev watchdog. 327 */ 328 if (txq2->xmit_more_available) 329 ef4_nic_push_buffers(txq2); 330 331 ef4_nic_push_buffers(tx_queue); 332 } else { 333 tx_queue->xmit_more_available = netdev_xmit_more(); 334 } 335 336 tx_queue->tx_packets++; 337 338 ef4_tx_maybe_stop_queue(tx_queue); 339 340 return NETDEV_TX_OK; 341 342 343 err: 344 ef4_enqueue_unwind(tx_queue); 345 dev_kfree_skb_any(skb); 346 return NETDEV_TX_OK; 347 } 348 349 /* Remove packets from the TX queue 350 * 351 * This removes packets from the TX queue, up to and including the 352 * specified index. 353 */ 354 static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue, 355 unsigned int index, 356 unsigned int *pkts_compl, 357 unsigned int *bytes_compl) 358 { 359 struct ef4_nic *efx = tx_queue->efx; 360 unsigned int stop_index, read_ptr; 361 362 stop_index = (index + 1) & tx_queue->ptr_mask; 363 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 364 365 while (read_ptr != stop_index) { 366 struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 367 368 if (!(buffer->flags & EF4_TX_BUF_OPTION) && 369 unlikely(buffer->len == 0)) { 370 netif_err(efx, tx_err, efx->net_dev, 371 "TX queue %d spurious TX completion id %x\n", 372 tx_queue->queue, read_ptr); 373 ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP); 374 return; 375 } 376 377 ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 378 379 ++tx_queue->read_count; 380 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 381 } 382 } 383 384 /* Initiate a packet transmission. We use one channel per CPU 385 * (sharing when we have more CPUs than channels). On Falcon, the TX 386 * completion events will be directed back to the CPU that transmitted 387 * the packet, which should be cache-efficient. 388 * 389 * Context: non-blocking. 390 * Note that returning anything other than NETDEV_TX_OK will cause the 391 * OS to free the skb. 392 */ 393 netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb, 394 struct net_device *net_dev) 395 { 396 struct ef4_nic *efx = netdev_priv(net_dev); 397 struct ef4_tx_queue *tx_queue; 398 unsigned index, type; 399 400 EF4_WARN_ON_PARANOID(!netif_device_present(net_dev)); 401 402 index = skb_get_queue_mapping(skb); 403 type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0; 404 if (index >= efx->n_tx_channels) { 405 index -= efx->n_tx_channels; 406 type |= EF4_TXQ_TYPE_HIGHPRI; 407 } 408 tx_queue = ef4_get_tx_queue(efx, index, type); 409 410 return ef4_enqueue_skb(tx_queue, skb); 411 } 412 413 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue) 414 { 415 struct ef4_nic *efx = tx_queue->efx; 416 417 /* Must be inverse of queue lookup in ef4_hard_start_xmit() */ 418 tx_queue->core_txq = 419 netdev_get_tx_queue(efx->net_dev, 420 tx_queue->queue / EF4_TXQ_TYPES + 421 ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ? 422 efx->n_tx_channels : 0)); 423 } 424 425 int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 426 void *type_data) 427 { 428 struct ef4_nic *efx = netdev_priv(net_dev); 429 struct tc_mqprio_qopt *mqprio = type_data; 430 struct ef4_channel *channel; 431 struct ef4_tx_queue *tx_queue; 432 unsigned tc, num_tc; 433 int rc; 434 435 if (type != TC_SETUP_QDISC_MQPRIO) 436 return -EOPNOTSUPP; 437 438 num_tc = mqprio->num_tc; 439 440 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC) 441 return -EINVAL; 442 443 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 444 445 if (num_tc == net_dev->num_tc) 446 return 0; 447 448 for (tc = 0; tc < num_tc; tc++) { 449 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 450 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 451 } 452 453 if (num_tc > net_dev->num_tc) { 454 /* Initialise high-priority queues as necessary */ 455 ef4_for_each_channel(channel, efx) { 456 ef4_for_each_possible_channel_tx_queue(tx_queue, 457 channel) { 458 if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI)) 459 continue; 460 if (!tx_queue->buffer) { 461 rc = ef4_probe_tx_queue(tx_queue); 462 if (rc) 463 return rc; 464 } 465 if (!tx_queue->initialised) 466 ef4_init_tx_queue(tx_queue); 467 ef4_init_tx_queue_core_txq(tx_queue); 468 } 469 } 470 } else { 471 /* Reduce number of classes before number of queues */ 472 net_dev->num_tc = num_tc; 473 } 474 475 rc = netif_set_real_num_tx_queues(net_dev, 476 max_t(int, num_tc, 1) * 477 efx->n_tx_channels); 478 if (rc) 479 return rc; 480 481 /* Do not destroy high-priority queues when they become 482 * unused. We would have to flush them first, and it is 483 * fairly difficult to flush a subset of TX queues. Leave 484 * it to ef4_fini_channels(). 485 */ 486 487 net_dev->num_tc = num_tc; 488 return 0; 489 } 490 491 void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index) 492 { 493 unsigned fill_level; 494 struct ef4_nic *efx = tx_queue->efx; 495 struct ef4_tx_queue *txq2; 496 unsigned int pkts_compl = 0, bytes_compl = 0; 497 498 EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask); 499 500 ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 501 tx_queue->pkts_compl += pkts_compl; 502 tx_queue->bytes_compl += bytes_compl; 503 504 if (pkts_compl > 1) 505 ++tx_queue->merge_events; 506 507 /* See if we need to restart the netif queue. This memory 508 * barrier ensures that we write read_count (inside 509 * ef4_dequeue_buffers()) before reading the queue status. 510 */ 511 smp_mb(); 512 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 513 likely(efx->port_enabled) && 514 likely(netif_device_present(efx->net_dev))) { 515 txq2 = ef4_tx_queue_partner(tx_queue); 516 fill_level = max(tx_queue->insert_count - tx_queue->read_count, 517 txq2->insert_count - txq2->read_count); 518 if (fill_level <= efx->txq_wake_thresh) 519 netif_tx_wake_queue(tx_queue->core_txq); 520 } 521 522 /* Check whether the hardware queue is now empty */ 523 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 524 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); 525 if (tx_queue->read_count == tx_queue->old_write_count) { 526 smp_mb(); 527 tx_queue->empty_read_count = 528 tx_queue->read_count | EF4_EMPTY_COUNT_VALID; 529 } 530 } 531 } 532 533 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue) 534 { 535 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER); 536 } 537 538 int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue) 539 { 540 struct ef4_nic *efx = tx_queue->efx; 541 unsigned int entries; 542 int rc; 543 544 /* Create the smallest power-of-two aligned ring */ 545 entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE); 546 EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE); 547 tx_queue->ptr_mask = entries - 1; 548 549 netif_dbg(efx, probe, efx->net_dev, 550 "creating TX queue %d size %#x mask %#x\n", 551 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 552 553 /* Allocate software ring */ 554 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), 555 GFP_KERNEL); 556 if (!tx_queue->buffer) 557 return -ENOMEM; 558 559 tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue), 560 sizeof(tx_queue->cb_page[0]), GFP_KERNEL); 561 if (!tx_queue->cb_page) { 562 rc = -ENOMEM; 563 goto fail1; 564 } 565 566 /* Allocate hardware ring */ 567 rc = ef4_nic_probe_tx(tx_queue); 568 if (rc) 569 goto fail2; 570 571 return 0; 572 573 fail2: 574 kfree(tx_queue->cb_page); 575 tx_queue->cb_page = NULL; 576 fail1: 577 kfree(tx_queue->buffer); 578 tx_queue->buffer = NULL; 579 return rc; 580 } 581 582 void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue) 583 { 584 struct ef4_nic *efx = tx_queue->efx; 585 586 netif_dbg(efx, drv, efx->net_dev, 587 "initialising TX queue %d\n", tx_queue->queue); 588 589 tx_queue->insert_count = 0; 590 tx_queue->write_count = 0; 591 tx_queue->old_write_count = 0; 592 tx_queue->read_count = 0; 593 tx_queue->old_read_count = 0; 594 tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID; 595 tx_queue->xmit_more_available = false; 596 597 /* Some older hardware requires Tx writes larger than 32. */ 598 tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0; 599 600 /* Set up TX descriptor ring */ 601 ef4_nic_init_tx(tx_queue); 602 603 tx_queue->initialised = true; 604 } 605 606 void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue) 607 { 608 struct ef4_tx_buffer *buffer; 609 610 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 611 "shutting down TX queue %d\n", tx_queue->queue); 612 613 if (!tx_queue->buffer) 614 return; 615 616 /* Free any buffers left in the ring */ 617 while (tx_queue->read_count != tx_queue->write_count) { 618 unsigned int pkts_compl = 0, bytes_compl = 0; 619 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 620 ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 621 622 ++tx_queue->read_count; 623 } 624 tx_queue->xmit_more_available = false; 625 netdev_tx_reset_queue(tx_queue->core_txq); 626 } 627 628 void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue) 629 { 630 int i; 631 632 if (!tx_queue->buffer) 633 return; 634 635 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 636 "destroying TX queue %d\n", tx_queue->queue); 637 ef4_nic_remove_tx(tx_queue); 638 639 if (tx_queue->cb_page) { 640 for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++) 641 ef4_nic_free_buffer(tx_queue->efx, 642 &tx_queue->cb_page[i]); 643 kfree(tx_queue->cb_page); 644 tx_queue->cb_page = NULL; 645 } 646 647 kfree(tx_queue->buffer); 648 tx_queue->buffer = NULL; 649 } 650