xref: /openbmc/linux/drivers/net/ethernet/sfc/falcon/rx.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/socket.h>
9 #include <linux/in.h>
10 #include <linux/slab.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/prefetch.h>
16 #include <linux/moduleparam.h>
17 #include <linux/iommu.h>
18 #include <net/ip.h>
19 #include <net/checksum.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "filter.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Preferred number of descriptors to fill at once */
28 #define EF4_RX_PREFERRED_BATCH 8U
29 
30 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
31  * ring, this number is divided by the number of buffers per page to calculate
32  * the number of pages to store in the RX page recycle ring.
33  */
34 #define EF4_RECYCLE_RING_SIZE_IOMMU 4096
35 #define EF4_RECYCLE_RING_SIZE_NOIOMMU (2 * EF4_RX_PREFERRED_BATCH)
36 
37 /* Size of buffer allocated for skb header area. */
38 #define EF4_SKB_HEADERS  128u
39 
40 /* This is the percentage fill level below which new RX descriptors
41  * will be added to the RX descriptor ring.
42  */
43 static unsigned int rx_refill_threshold;
44 
45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
46 #define EF4_RX_MAX_FRAGS DIV_ROUND_UP(EF4_MAX_FRAME_LEN(EF4_MAX_MTU), \
47 				      EF4_RX_USR_BUF_SIZE)
48 
49 /*
50  * RX maximum head room required.
51  *
52  * This must be at least 1 to prevent overflow, plus one packet-worth
53  * to allow pipelined receives.
54  */
55 #define EF4_RXD_HEAD_ROOM (1 + EF4_RX_MAX_FRAGS)
56 
57 static inline u8 *ef4_rx_buf_va(struct ef4_rx_buffer *buf)
58 {
59 	return page_address(buf->page) + buf->page_offset;
60 }
61 
62 static inline u32 ef4_rx_buf_hash(struct ef4_nic *efx, const u8 *eh)
63 {
64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
65 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
66 #else
67 	const u8 *data = eh + efx->rx_packet_hash_offset;
68 	return (u32)data[0]	  |
69 	       (u32)data[1] << 8  |
70 	       (u32)data[2] << 16 |
71 	       (u32)data[3] << 24;
72 #endif
73 }
74 
75 static inline struct ef4_rx_buffer *
76 ef4_rx_buf_next(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf)
77 {
78 	if (unlikely(rx_buf == ef4_rx_buffer(rx_queue, rx_queue->ptr_mask)))
79 		return ef4_rx_buffer(rx_queue, 0);
80 	else
81 		return rx_buf + 1;
82 }
83 
84 static inline void ef4_sync_rx_buffer(struct ef4_nic *efx,
85 				      struct ef4_rx_buffer *rx_buf,
86 				      unsigned int len)
87 {
88 	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
89 				DMA_FROM_DEVICE);
90 }
91 
92 void ef4_rx_config_page_split(struct ef4_nic *efx)
93 {
94 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
95 				      EF4_RX_BUF_ALIGNMENT);
96 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
97 		((PAGE_SIZE - sizeof(struct ef4_rx_page_state)) /
98 		 efx->rx_page_buf_step);
99 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
100 		efx->rx_bufs_per_page;
101 	efx->rx_pages_per_batch = DIV_ROUND_UP(EF4_RX_PREFERRED_BATCH,
102 					       efx->rx_bufs_per_page);
103 }
104 
105 /* Check the RX page recycle ring for a page that can be reused. */
106 static struct page *ef4_reuse_page(struct ef4_rx_queue *rx_queue)
107 {
108 	struct ef4_nic *efx = rx_queue->efx;
109 	struct page *page;
110 	struct ef4_rx_page_state *state;
111 	unsigned index;
112 
113 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
114 	page = rx_queue->page_ring[index];
115 	if (page == NULL)
116 		return NULL;
117 
118 	rx_queue->page_ring[index] = NULL;
119 	/* page_remove cannot exceed page_add. */
120 	if (rx_queue->page_remove != rx_queue->page_add)
121 		++rx_queue->page_remove;
122 
123 	/* If page_count is 1 then we hold the only reference to this page. */
124 	if (page_count(page) == 1) {
125 		++rx_queue->page_recycle_count;
126 		return page;
127 	} else {
128 		state = page_address(page);
129 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
130 			       PAGE_SIZE << efx->rx_buffer_order,
131 			       DMA_FROM_DEVICE);
132 		put_page(page);
133 		++rx_queue->page_recycle_failed;
134 	}
135 
136 	return NULL;
137 }
138 
139 /**
140  * ef4_init_rx_buffers - create EF4_RX_BATCH page-based RX buffers
141  *
142  * @rx_queue:		Efx RX queue
143  *
144  * This allocates a batch of pages, maps them for DMA, and populates
145  * struct ef4_rx_buffers for each one. Return a negative error code or
146  * 0 on success. If a single page can be used for multiple buffers,
147  * then the page will either be inserted fully, or not at all.
148  */
149 static int ef4_init_rx_buffers(struct ef4_rx_queue *rx_queue, bool atomic)
150 {
151 	struct ef4_nic *efx = rx_queue->efx;
152 	struct ef4_rx_buffer *rx_buf;
153 	struct page *page;
154 	unsigned int page_offset;
155 	struct ef4_rx_page_state *state;
156 	dma_addr_t dma_addr;
157 	unsigned index, count;
158 
159 	count = 0;
160 	do {
161 		page = ef4_reuse_page(rx_queue);
162 		if (page == NULL) {
163 			page = alloc_pages(__GFP_COMP |
164 					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
165 					   efx->rx_buffer_order);
166 			if (unlikely(page == NULL))
167 				return -ENOMEM;
168 			dma_addr =
169 				dma_map_page(&efx->pci_dev->dev, page, 0,
170 					     PAGE_SIZE << efx->rx_buffer_order,
171 					     DMA_FROM_DEVICE);
172 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
173 						       dma_addr))) {
174 				__free_pages(page, efx->rx_buffer_order);
175 				return -EIO;
176 			}
177 			state = page_address(page);
178 			state->dma_addr = dma_addr;
179 		} else {
180 			state = page_address(page);
181 			dma_addr = state->dma_addr;
182 		}
183 
184 		dma_addr += sizeof(struct ef4_rx_page_state);
185 		page_offset = sizeof(struct ef4_rx_page_state);
186 
187 		do {
188 			index = rx_queue->added_count & rx_queue->ptr_mask;
189 			rx_buf = ef4_rx_buffer(rx_queue, index);
190 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
191 			rx_buf->page = page;
192 			rx_buf->page_offset = page_offset + efx->rx_ip_align;
193 			rx_buf->len = efx->rx_dma_len;
194 			rx_buf->flags = 0;
195 			++rx_queue->added_count;
196 			get_page(page);
197 			dma_addr += efx->rx_page_buf_step;
198 			page_offset += efx->rx_page_buf_step;
199 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
200 
201 		rx_buf->flags = EF4_RX_BUF_LAST_IN_PAGE;
202 	} while (++count < efx->rx_pages_per_batch);
203 
204 	return 0;
205 }
206 
207 /* Unmap a DMA-mapped page.  This function is only called for the final RX
208  * buffer in a page.
209  */
210 static void ef4_unmap_rx_buffer(struct ef4_nic *efx,
211 				struct ef4_rx_buffer *rx_buf)
212 {
213 	struct page *page = rx_buf->page;
214 
215 	if (page) {
216 		struct ef4_rx_page_state *state = page_address(page);
217 		dma_unmap_page(&efx->pci_dev->dev,
218 			       state->dma_addr,
219 			       PAGE_SIZE << efx->rx_buffer_order,
220 			       DMA_FROM_DEVICE);
221 	}
222 }
223 
224 static void ef4_free_rx_buffers(struct ef4_rx_queue *rx_queue,
225 				struct ef4_rx_buffer *rx_buf,
226 				unsigned int num_bufs)
227 {
228 	do {
229 		if (rx_buf->page) {
230 			put_page(rx_buf->page);
231 			rx_buf->page = NULL;
232 		}
233 		rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
234 	} while (--num_bufs);
235 }
236 
237 /* Attempt to recycle the page if there is an RX recycle ring; the page can
238  * only be added if this is the final RX buffer, to prevent pages being used in
239  * the descriptor ring and appearing in the recycle ring simultaneously.
240  */
241 static void ef4_recycle_rx_page(struct ef4_channel *channel,
242 				struct ef4_rx_buffer *rx_buf)
243 {
244 	struct page *page = rx_buf->page;
245 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
246 	struct ef4_nic *efx = rx_queue->efx;
247 	unsigned index;
248 
249 	/* Only recycle the page after processing the final buffer. */
250 	if (!(rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE))
251 		return;
252 
253 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
254 	if (rx_queue->page_ring[index] == NULL) {
255 		unsigned read_index = rx_queue->page_remove &
256 			rx_queue->page_ptr_mask;
257 
258 		/* The next slot in the recycle ring is available, but
259 		 * increment page_remove if the read pointer currently
260 		 * points here.
261 		 */
262 		if (read_index == index)
263 			++rx_queue->page_remove;
264 		rx_queue->page_ring[index] = page;
265 		++rx_queue->page_add;
266 		return;
267 	}
268 	++rx_queue->page_recycle_full;
269 	ef4_unmap_rx_buffer(efx, rx_buf);
270 	put_page(rx_buf->page);
271 }
272 
273 static void ef4_fini_rx_buffer(struct ef4_rx_queue *rx_queue,
274 			       struct ef4_rx_buffer *rx_buf)
275 {
276 	/* Release the page reference we hold for the buffer. */
277 	if (rx_buf->page)
278 		put_page(rx_buf->page);
279 
280 	/* If this is the last buffer in a page, unmap and free it. */
281 	if (rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE) {
282 		ef4_unmap_rx_buffer(rx_queue->efx, rx_buf);
283 		ef4_free_rx_buffers(rx_queue, rx_buf, 1);
284 	}
285 	rx_buf->page = NULL;
286 }
287 
288 /* Recycle the pages that are used by buffers that have just been received. */
289 static void ef4_recycle_rx_pages(struct ef4_channel *channel,
290 				 struct ef4_rx_buffer *rx_buf,
291 				 unsigned int n_frags)
292 {
293 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
294 
295 	do {
296 		ef4_recycle_rx_page(channel, rx_buf);
297 		rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
298 	} while (--n_frags);
299 }
300 
301 static void ef4_discard_rx_packet(struct ef4_channel *channel,
302 				  struct ef4_rx_buffer *rx_buf,
303 				  unsigned int n_frags)
304 {
305 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
306 
307 	ef4_recycle_rx_pages(channel, rx_buf, n_frags);
308 
309 	ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
310 }
311 
312 /**
313  * ef4_fast_push_rx_descriptors - push new RX descriptors quickly
314  * @rx_queue:		RX descriptor queue
315  *
316  * This will aim to fill the RX descriptor queue up to
317  * @rx_queue->@max_fill. If there is insufficient atomic
318  * memory to do so, a slow fill will be scheduled.
319  *
320  * The caller must provide serialisation (none is used here). In practise,
321  * this means this function must run from the NAPI handler, or be called
322  * when NAPI is disabled.
323  */
324 void ef4_fast_push_rx_descriptors(struct ef4_rx_queue *rx_queue, bool atomic)
325 {
326 	struct ef4_nic *efx = rx_queue->efx;
327 	unsigned int fill_level, batch_size;
328 	int space, rc = 0;
329 
330 	if (!rx_queue->refill_enabled)
331 		return;
332 
333 	/* Calculate current fill level, and exit if we don't need to fill */
334 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
335 	EF4_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
336 	if (fill_level >= rx_queue->fast_fill_trigger)
337 		goto out;
338 
339 	/* Record minimum fill level */
340 	if (unlikely(fill_level < rx_queue->min_fill)) {
341 		if (fill_level)
342 			rx_queue->min_fill = fill_level;
343 	}
344 
345 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
346 	space = rx_queue->max_fill - fill_level;
347 	EF4_BUG_ON_PARANOID(space < batch_size);
348 
349 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
350 		   "RX queue %d fast-filling descriptor ring from"
351 		   " level %d to level %d\n",
352 		   ef4_rx_queue_index(rx_queue), fill_level,
353 		   rx_queue->max_fill);
354 
355 
356 	do {
357 		rc = ef4_init_rx_buffers(rx_queue, atomic);
358 		if (unlikely(rc)) {
359 			/* Ensure that we don't leave the rx queue empty */
360 			if (rx_queue->added_count == rx_queue->removed_count)
361 				ef4_schedule_slow_fill(rx_queue);
362 			goto out;
363 		}
364 	} while ((space -= batch_size) >= batch_size);
365 
366 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
367 		   "RX queue %d fast-filled descriptor ring "
368 		   "to level %d\n", ef4_rx_queue_index(rx_queue),
369 		   rx_queue->added_count - rx_queue->removed_count);
370 
371  out:
372 	if (rx_queue->notified_count != rx_queue->added_count)
373 		ef4_nic_notify_rx_desc(rx_queue);
374 }
375 
376 void ef4_rx_slow_fill(struct timer_list *t)
377 {
378 	struct ef4_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
379 
380 	/* Post an event to cause NAPI to run and refill the queue */
381 	ef4_nic_generate_fill_event(rx_queue);
382 	++rx_queue->slow_fill_count;
383 }
384 
385 static void ef4_rx_packet__check_len(struct ef4_rx_queue *rx_queue,
386 				     struct ef4_rx_buffer *rx_buf,
387 				     int len)
388 {
389 	struct ef4_nic *efx = rx_queue->efx;
390 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
391 
392 	if (likely(len <= max_len))
393 		return;
394 
395 	/* The packet must be discarded, but this is only a fatal error
396 	 * if the caller indicated it was
397 	 */
398 	rx_buf->flags |= EF4_RX_PKT_DISCARD;
399 
400 	if ((len > rx_buf->len) && EF4_WORKAROUND_8071(efx)) {
401 		if (net_ratelimit())
402 			netif_err(efx, rx_err, efx->net_dev,
403 				  " RX queue %d seriously overlength "
404 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
405 				  ef4_rx_queue_index(rx_queue), len, max_len,
406 				  efx->type->rx_buffer_padding);
407 		ef4_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
408 	} else {
409 		if (net_ratelimit())
410 			netif_err(efx, rx_err, efx->net_dev,
411 				  " RX queue %d overlength RX event "
412 				  "(0x%x > 0x%x)\n",
413 				  ef4_rx_queue_index(rx_queue), len, max_len);
414 	}
415 
416 	ef4_rx_queue_channel(rx_queue)->n_rx_overlength++;
417 }
418 
419 /* Pass a received packet up through GRO.  GRO can handle pages
420  * regardless of checksum state and skbs with a good checksum.
421  */
422 static void
423 ef4_rx_packet_gro(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf,
424 		  unsigned int n_frags, u8 *eh)
425 {
426 	struct napi_struct *napi = &channel->napi_str;
427 	gro_result_t gro_result;
428 	struct ef4_nic *efx = channel->efx;
429 	struct sk_buff *skb;
430 
431 	skb = napi_get_frags(napi);
432 	if (unlikely(!skb)) {
433 		struct ef4_rx_queue *rx_queue;
434 
435 		rx_queue = ef4_channel_get_rx_queue(channel);
436 		ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
437 		return;
438 	}
439 
440 	if (efx->net_dev->features & NETIF_F_RXHASH)
441 		skb_set_hash(skb, ef4_rx_buf_hash(efx, eh),
442 			     PKT_HASH_TYPE_L3);
443 	skb->ip_summed = ((rx_buf->flags & EF4_RX_PKT_CSUMMED) ?
444 			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
445 
446 	for (;;) {
447 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
448 				   rx_buf->page, rx_buf->page_offset,
449 				   rx_buf->len);
450 		rx_buf->page = NULL;
451 		skb->len += rx_buf->len;
452 		if (skb_shinfo(skb)->nr_frags == n_frags)
453 			break;
454 
455 		rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
456 	}
457 
458 	skb->data_len = skb->len;
459 	skb->truesize += n_frags * efx->rx_buffer_truesize;
460 
461 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
462 
463 	gro_result = napi_gro_frags(napi);
464 	if (gro_result != GRO_DROP)
465 		channel->irq_mod_score += 2;
466 }
467 
468 /* Allocate and construct an SKB around page fragments */
469 static struct sk_buff *ef4_rx_mk_skb(struct ef4_channel *channel,
470 				     struct ef4_rx_buffer *rx_buf,
471 				     unsigned int n_frags,
472 				     u8 *eh, int hdr_len)
473 {
474 	struct ef4_nic *efx = channel->efx;
475 	struct sk_buff *skb;
476 
477 	/* Allocate an SKB to store the headers */
478 	skb = netdev_alloc_skb(efx->net_dev,
479 			       efx->rx_ip_align + efx->rx_prefix_size +
480 			       hdr_len);
481 	if (unlikely(skb == NULL)) {
482 		atomic_inc(&efx->n_rx_noskb_drops);
483 		return NULL;
484 	}
485 
486 	EF4_BUG_ON_PARANOID(rx_buf->len < hdr_len);
487 
488 	memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
489 	       efx->rx_prefix_size + hdr_len);
490 	skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
491 	__skb_put(skb, hdr_len);
492 
493 	/* Append the remaining page(s) onto the frag list */
494 	if (rx_buf->len > hdr_len) {
495 		rx_buf->page_offset += hdr_len;
496 		rx_buf->len -= hdr_len;
497 
498 		for (;;) {
499 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
500 					   rx_buf->page, rx_buf->page_offset,
501 					   rx_buf->len);
502 			rx_buf->page = NULL;
503 			skb->len += rx_buf->len;
504 			skb->data_len += rx_buf->len;
505 			if (skb_shinfo(skb)->nr_frags == n_frags)
506 				break;
507 
508 			rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
509 		}
510 	} else {
511 		__free_pages(rx_buf->page, efx->rx_buffer_order);
512 		rx_buf->page = NULL;
513 		n_frags = 0;
514 	}
515 
516 	skb->truesize += n_frags * efx->rx_buffer_truesize;
517 
518 	/* Move past the ethernet header */
519 	skb->protocol = eth_type_trans(skb, efx->net_dev);
520 
521 	skb_mark_napi_id(skb, &channel->napi_str);
522 
523 	return skb;
524 }
525 
526 void ef4_rx_packet(struct ef4_rx_queue *rx_queue, unsigned int index,
527 		   unsigned int n_frags, unsigned int len, u16 flags)
528 {
529 	struct ef4_nic *efx = rx_queue->efx;
530 	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
531 	struct ef4_rx_buffer *rx_buf;
532 
533 	rx_queue->rx_packets++;
534 
535 	rx_buf = ef4_rx_buffer(rx_queue, index);
536 	rx_buf->flags |= flags;
537 
538 	/* Validate the number of fragments and completed length */
539 	if (n_frags == 1) {
540 		if (!(flags & EF4_RX_PKT_PREFIX_LEN))
541 			ef4_rx_packet__check_len(rx_queue, rx_buf, len);
542 	} else if (unlikely(n_frags > EF4_RX_MAX_FRAGS) ||
543 		   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
544 		   unlikely(len > n_frags * efx->rx_dma_len) ||
545 		   unlikely(!efx->rx_scatter)) {
546 		/* If this isn't an explicit discard request, either
547 		 * the hardware or the driver is broken.
548 		 */
549 		WARN_ON(!(len == 0 && rx_buf->flags & EF4_RX_PKT_DISCARD));
550 		rx_buf->flags |= EF4_RX_PKT_DISCARD;
551 	}
552 
553 	netif_vdbg(efx, rx_status, efx->net_dev,
554 		   "RX queue %d received ids %x-%x len %d %s%s\n",
555 		   ef4_rx_queue_index(rx_queue), index,
556 		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
557 		   (rx_buf->flags & EF4_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
558 		   (rx_buf->flags & EF4_RX_PKT_DISCARD) ? " [DISCARD]" : "");
559 
560 	/* Discard packet, if instructed to do so.  Process the
561 	 * previous receive first.
562 	 */
563 	if (unlikely(rx_buf->flags & EF4_RX_PKT_DISCARD)) {
564 		ef4_rx_flush_packet(channel);
565 		ef4_discard_rx_packet(channel, rx_buf, n_frags);
566 		return;
567 	}
568 
569 	if (n_frags == 1 && !(flags & EF4_RX_PKT_PREFIX_LEN))
570 		rx_buf->len = len;
571 
572 	/* Release and/or sync the DMA mapping - assumes all RX buffers
573 	 * consumed in-order per RX queue.
574 	 */
575 	ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
576 
577 	/* Prefetch nice and early so data will (hopefully) be in cache by
578 	 * the time we look at it.
579 	 */
580 	prefetch(ef4_rx_buf_va(rx_buf));
581 
582 	rx_buf->page_offset += efx->rx_prefix_size;
583 	rx_buf->len -= efx->rx_prefix_size;
584 
585 	if (n_frags > 1) {
586 		/* Release/sync DMA mapping for additional fragments.
587 		 * Fix length for last fragment.
588 		 */
589 		unsigned int tail_frags = n_frags - 1;
590 
591 		for (;;) {
592 			rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
593 			if (--tail_frags == 0)
594 				break;
595 			ef4_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
596 		}
597 		rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
598 		ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
599 	}
600 
601 	/* All fragments have been DMA-synced, so recycle pages. */
602 	rx_buf = ef4_rx_buffer(rx_queue, index);
603 	ef4_recycle_rx_pages(channel, rx_buf, n_frags);
604 
605 	/* Pipeline receives so that we give time for packet headers to be
606 	 * prefetched into cache.
607 	 */
608 	ef4_rx_flush_packet(channel);
609 	channel->rx_pkt_n_frags = n_frags;
610 	channel->rx_pkt_index = index;
611 }
612 
613 static void ef4_rx_deliver(struct ef4_channel *channel, u8 *eh,
614 			   struct ef4_rx_buffer *rx_buf,
615 			   unsigned int n_frags)
616 {
617 	struct sk_buff *skb;
618 	u16 hdr_len = min_t(u16, rx_buf->len, EF4_SKB_HEADERS);
619 
620 	skb = ef4_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
621 	if (unlikely(skb == NULL)) {
622 		struct ef4_rx_queue *rx_queue;
623 
624 		rx_queue = ef4_channel_get_rx_queue(channel);
625 		ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
626 		return;
627 	}
628 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
629 
630 	/* Set the SKB flags */
631 	skb_checksum_none_assert(skb);
632 	if (likely(rx_buf->flags & EF4_RX_PKT_CSUMMED))
633 		skb->ip_summed = CHECKSUM_UNNECESSARY;
634 
635 	if (channel->type->receive_skb)
636 		if (channel->type->receive_skb(channel, skb))
637 			return;
638 
639 	/* Pass the packet up */
640 	netif_receive_skb(skb);
641 }
642 
643 /* Handle a received packet.  Second half: Touches packet payload. */
644 void __ef4_rx_packet(struct ef4_channel *channel)
645 {
646 	struct ef4_nic *efx = channel->efx;
647 	struct ef4_rx_buffer *rx_buf =
648 		ef4_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
649 	u8 *eh = ef4_rx_buf_va(rx_buf);
650 
651 	/* Read length from the prefix if necessary.  This already
652 	 * excludes the length of the prefix itself.
653 	 */
654 	if (rx_buf->flags & EF4_RX_PKT_PREFIX_LEN)
655 		rx_buf->len = le16_to_cpup((__le16 *)
656 					   (eh + efx->rx_packet_len_offset));
657 
658 	/* If we're in loopback test, then pass the packet directly to the
659 	 * loopback layer, and free the rx_buf here
660 	 */
661 	if (unlikely(efx->loopback_selftest)) {
662 		struct ef4_rx_queue *rx_queue;
663 
664 		ef4_loopback_rx_packet(efx, eh, rx_buf->len);
665 		rx_queue = ef4_channel_get_rx_queue(channel);
666 		ef4_free_rx_buffers(rx_queue, rx_buf,
667 				    channel->rx_pkt_n_frags);
668 		goto out;
669 	}
670 
671 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
672 		rx_buf->flags &= ~EF4_RX_PKT_CSUMMED;
673 
674 	if ((rx_buf->flags & EF4_RX_PKT_TCP) && !channel->type->receive_skb)
675 		ef4_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
676 	else
677 		ef4_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
678 out:
679 	channel->rx_pkt_n_frags = 0;
680 }
681 
682 int ef4_probe_rx_queue(struct ef4_rx_queue *rx_queue)
683 {
684 	struct ef4_nic *efx = rx_queue->efx;
685 	unsigned int entries;
686 	int rc;
687 
688 	/* Create the smallest power-of-two aligned ring */
689 	entries = max(roundup_pow_of_two(efx->rxq_entries), EF4_MIN_DMAQ_SIZE);
690 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
691 	rx_queue->ptr_mask = entries - 1;
692 
693 	netif_dbg(efx, probe, efx->net_dev,
694 		  "creating RX queue %d size %#x mask %#x\n",
695 		  ef4_rx_queue_index(rx_queue), efx->rxq_entries,
696 		  rx_queue->ptr_mask);
697 
698 	/* Allocate RX buffers */
699 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
700 				   GFP_KERNEL);
701 	if (!rx_queue->buffer)
702 		return -ENOMEM;
703 
704 	rc = ef4_nic_probe_rx(rx_queue);
705 	if (rc) {
706 		kfree(rx_queue->buffer);
707 		rx_queue->buffer = NULL;
708 	}
709 
710 	return rc;
711 }
712 
713 static void ef4_init_rx_recycle_ring(struct ef4_nic *efx,
714 				     struct ef4_rx_queue *rx_queue)
715 {
716 	unsigned int bufs_in_recycle_ring, page_ring_size;
717 
718 	/* Set the RX recycle ring size */
719 #ifdef CONFIG_PPC64
720 	bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
721 #else
722 	if (iommu_present(&pci_bus_type))
723 		bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
724 	else
725 		bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_NOIOMMU;
726 #endif /* CONFIG_PPC64 */
727 
728 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
729 					    efx->rx_bufs_per_page);
730 	rx_queue->page_ring = kcalloc(page_ring_size,
731 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
732 	rx_queue->page_ptr_mask = page_ring_size - 1;
733 }
734 
735 void ef4_init_rx_queue(struct ef4_rx_queue *rx_queue)
736 {
737 	struct ef4_nic *efx = rx_queue->efx;
738 	unsigned int max_fill, trigger, max_trigger;
739 
740 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
741 		  "initialising RX queue %d\n", ef4_rx_queue_index(rx_queue));
742 
743 	/* Initialise ptr fields */
744 	rx_queue->added_count = 0;
745 	rx_queue->notified_count = 0;
746 	rx_queue->removed_count = 0;
747 	rx_queue->min_fill = -1U;
748 	ef4_init_rx_recycle_ring(efx, rx_queue);
749 
750 	rx_queue->page_remove = 0;
751 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
752 	rx_queue->page_recycle_count = 0;
753 	rx_queue->page_recycle_failed = 0;
754 	rx_queue->page_recycle_full = 0;
755 
756 	/* Initialise limit fields */
757 	max_fill = efx->rxq_entries - EF4_RXD_HEAD_ROOM;
758 	max_trigger =
759 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
760 	if (rx_refill_threshold != 0) {
761 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
762 		if (trigger > max_trigger)
763 			trigger = max_trigger;
764 	} else {
765 		trigger = max_trigger;
766 	}
767 
768 	rx_queue->max_fill = max_fill;
769 	rx_queue->fast_fill_trigger = trigger;
770 	rx_queue->refill_enabled = true;
771 
772 	/* Set up RX descriptor ring */
773 	ef4_nic_init_rx(rx_queue);
774 }
775 
776 void ef4_fini_rx_queue(struct ef4_rx_queue *rx_queue)
777 {
778 	int i;
779 	struct ef4_nic *efx = rx_queue->efx;
780 	struct ef4_rx_buffer *rx_buf;
781 
782 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
783 		  "shutting down RX queue %d\n", ef4_rx_queue_index(rx_queue));
784 
785 	del_timer_sync(&rx_queue->slow_fill);
786 
787 	/* Release RX buffers from the current read ptr to the write ptr */
788 	if (rx_queue->buffer) {
789 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
790 		     i++) {
791 			unsigned index = i & rx_queue->ptr_mask;
792 			rx_buf = ef4_rx_buffer(rx_queue, index);
793 			ef4_fini_rx_buffer(rx_queue, rx_buf);
794 		}
795 	}
796 
797 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
798 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
799 		struct page *page = rx_queue->page_ring[i];
800 		struct ef4_rx_page_state *state;
801 
802 		if (page == NULL)
803 			continue;
804 
805 		state = page_address(page);
806 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
807 			       PAGE_SIZE << efx->rx_buffer_order,
808 			       DMA_FROM_DEVICE);
809 		put_page(page);
810 	}
811 	kfree(rx_queue->page_ring);
812 	rx_queue->page_ring = NULL;
813 }
814 
815 void ef4_remove_rx_queue(struct ef4_rx_queue *rx_queue)
816 {
817 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
818 		  "destroying RX queue %d\n", ef4_rx_queue_index(rx_queue));
819 
820 	ef4_nic_remove_rx(rx_queue);
821 
822 	kfree(rx_queue->buffer);
823 	rx_queue->buffer = NULL;
824 }
825 
826 
827 module_param(rx_refill_threshold, uint, 0444);
828 MODULE_PARM_DESC(rx_refill_threshold,
829 		 "RX descriptor ring refill threshold (%)");
830 
831 #ifdef CONFIG_RFS_ACCEL
832 
833 int ef4_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
834 		   u16 rxq_index, u32 flow_id)
835 {
836 	struct ef4_nic *efx = netdev_priv(net_dev);
837 	struct ef4_channel *channel;
838 	struct ef4_filter_spec spec;
839 	struct flow_keys fk;
840 	int rc;
841 
842 	if (flow_id == RPS_FLOW_ID_INVALID)
843 		return -EINVAL;
844 
845 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
846 		return -EPROTONOSUPPORT;
847 
848 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6))
849 		return -EPROTONOSUPPORT;
850 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT)
851 		return -EPROTONOSUPPORT;
852 
853 	ef4_filter_init_rx(&spec, EF4_FILTER_PRI_HINT,
854 			   efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0,
855 			   rxq_index);
856 	spec.match_flags =
857 		EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
858 		EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
859 		EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT;
860 	spec.ether_type = fk.basic.n_proto;
861 	spec.ip_proto = fk.basic.ip_proto;
862 
863 	if (fk.basic.n_proto == htons(ETH_P_IP)) {
864 		spec.rem_host[0] = fk.addrs.v4addrs.src;
865 		spec.loc_host[0] = fk.addrs.v4addrs.dst;
866 	} else {
867 		memcpy(spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr));
868 		memcpy(spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr));
869 	}
870 
871 	spec.rem_port = fk.ports.src;
872 	spec.loc_port = fk.ports.dst;
873 
874 	rc = efx->type->filter_rfs_insert(efx, &spec);
875 	if (rc < 0)
876 		return rc;
877 
878 	/* Remember this so we can check whether to expire the filter later */
879 	channel = ef4_get_channel(efx, rxq_index);
880 	channel->rps_flow_id[rc] = flow_id;
881 	++channel->rfs_filters_added;
882 
883 	if (spec.ether_type == htons(ETH_P_IP))
884 		netif_info(efx, rx_status, efx->net_dev,
885 			   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
886 			   (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
887 			   spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
888 			   ntohs(spec.loc_port), rxq_index, flow_id, rc);
889 	else
890 		netif_info(efx, rx_status, efx->net_dev,
891 			   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
892 			   (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
893 			   spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
894 			   ntohs(spec.loc_port), rxq_index, flow_id, rc);
895 
896 	return rc;
897 }
898 
899 bool __ef4_filter_rfs_expire(struct ef4_nic *efx, unsigned int quota)
900 {
901 	bool (*expire_one)(struct ef4_nic *efx, u32 flow_id, unsigned int index);
902 	unsigned int channel_idx, index, size;
903 	u32 flow_id;
904 
905 	if (!spin_trylock_bh(&efx->filter_lock))
906 		return false;
907 
908 	expire_one = efx->type->filter_rfs_expire_one;
909 	channel_idx = efx->rps_expire_channel;
910 	index = efx->rps_expire_index;
911 	size = efx->type->max_rx_ip_filters;
912 	while (quota--) {
913 		struct ef4_channel *channel = ef4_get_channel(efx, channel_idx);
914 		flow_id = channel->rps_flow_id[index];
915 
916 		if (flow_id != RPS_FLOW_ID_INVALID &&
917 		    expire_one(efx, flow_id, index)) {
918 			netif_info(efx, rx_status, efx->net_dev,
919 				   "expired filter %d [queue %u flow %u]\n",
920 				   index, channel_idx, flow_id);
921 			channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
922 		}
923 		if (++index == size) {
924 			if (++channel_idx == efx->n_channels)
925 				channel_idx = 0;
926 			index = 0;
927 		}
928 	}
929 	efx->rps_expire_channel = channel_idx;
930 	efx->rps_expire_index = index;
931 
932 	spin_unlock_bh(&efx->filter_lock);
933 	return true;
934 }
935 
936 #endif /* CONFIG_RFS_ACCEL */
937 
938 /**
939  * ef4_filter_is_mc_recipient - test whether spec is a multicast recipient
940  * @spec: Specification to test
941  *
942  * Return: %true if the specification is a non-drop RX filter that
943  * matches a local MAC address I/G bit value of 1 or matches a local
944  * IPv4 or IPv6 address value in the respective multicast address
945  * range.  Otherwise %false.
946  */
947 bool ef4_filter_is_mc_recipient(const struct ef4_filter_spec *spec)
948 {
949 	if (!(spec->flags & EF4_FILTER_FLAG_RX) ||
950 	    spec->dmaq_id == EF4_FILTER_RX_DMAQ_ID_DROP)
951 		return false;
952 
953 	if (spec->match_flags &
954 	    (EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_LOC_MAC_IG) &&
955 	    is_multicast_ether_addr(spec->loc_mac))
956 		return true;
957 
958 	if ((spec->match_flags &
959 	     (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) ==
960 	    (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) {
961 		if (spec->ether_type == htons(ETH_P_IP) &&
962 		    ipv4_is_multicast(spec->loc_host[0]))
963 			return true;
964 		if (spec->ether_type == htons(ETH_P_IPV6) &&
965 		    ((const u8 *)spec->loc_host)[0] == 0xff)
966 			return true;
967 	}
968 
969 	return false;
970 }
971