1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2006-2012 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 /*
10  * Driver for AMCC QT202x SFP+ and XFP adapters; see www.amcc.com for details
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/timer.h>
15 #include <linux/delay.h>
16 #include "efx.h"
17 #include "mdio_10g.h"
18 #include "phy.h"
19 #include "nic.h"
20 
21 #define QT202X_REQUIRED_DEVS (MDIO_DEVS_PCS |		\
22 			      MDIO_DEVS_PMAPMD |	\
23 			      MDIO_DEVS_PHYXS)
24 
25 #define QT202X_LOOPBACKS ((1 << LOOPBACK_PCS) |		\
26 			  (1 << LOOPBACK_PMAPMD) |	\
27 			  (1 << LOOPBACK_PHYXS_WS))
28 
29 /****************************************************************************/
30 /* Quake-specific MDIO registers */
31 #define MDIO_QUAKE_LED0_REG	(0xD006)
32 
33 /* QT2025C only */
34 #define PCS_FW_HEARTBEAT_REG	0xd7ee
35 #define PCS_FW_HEARTB_LBN	0
36 #define PCS_FW_HEARTB_WIDTH	8
37 #define PCS_FW_PRODUCT_CODE_1	0xd7f0
38 #define PCS_FW_VERSION_1	0xd7f3
39 #define PCS_FW_BUILD_1		0xd7f6
40 #define PCS_UC8051_STATUS_REG	0xd7fd
41 #define PCS_UC_STATUS_LBN	0
42 #define PCS_UC_STATUS_WIDTH	8
43 #define PCS_UC_STATUS_FW_SAVE	0x20
44 #define PMA_PMD_MODE_REG	0xc301
45 #define PMA_PMD_RXIN_SEL_LBN	6
46 #define PMA_PMD_FTX_CTRL2_REG	0xc309
47 #define PMA_PMD_FTX_STATIC_LBN	13
48 #define PMA_PMD_VEND1_REG	0xc001
49 #define PMA_PMD_VEND1_LBTXD_LBN	15
50 #define PCS_VEND1_REG		0xc000
51 #define PCS_VEND1_LBTXD_LBN	5
52 
53 void falcon_qt202x_set_led(struct ef4_nic *p, int led, int mode)
54 {
55 	int addr = MDIO_QUAKE_LED0_REG + led;
56 	ef4_mdio_write(p, MDIO_MMD_PMAPMD, addr, mode);
57 }
58 
59 struct qt202x_phy_data {
60 	enum ef4_phy_mode phy_mode;
61 	bool bug17190_in_bad_state;
62 	unsigned long bug17190_timer;
63 	u32 firmware_ver;
64 };
65 
66 #define QT2022C2_MAX_RESET_TIME 500
67 #define QT2022C2_RESET_WAIT 10
68 
69 #define QT2025C_MAX_HEARTB_TIME (5 * HZ)
70 #define QT2025C_HEARTB_WAIT 100
71 #define QT2025C_MAX_FWSTART_TIME (25 * HZ / 10)
72 #define QT2025C_FWSTART_WAIT 100
73 
74 #define BUG17190_INTERVAL (2 * HZ)
75 
76 static int qt2025c_wait_heartbeat(struct ef4_nic *efx)
77 {
78 	unsigned long timeout = jiffies + QT2025C_MAX_HEARTB_TIME;
79 	int reg, old_counter = 0;
80 
81 	/* Wait for firmware heartbeat to start */
82 	for (;;) {
83 		int counter;
84 		reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_FW_HEARTBEAT_REG);
85 		if (reg < 0)
86 			return reg;
87 		counter = ((reg >> PCS_FW_HEARTB_LBN) &
88 			    ((1 << PCS_FW_HEARTB_WIDTH) - 1));
89 		if (old_counter == 0)
90 			old_counter = counter;
91 		else if (counter != old_counter)
92 			break;
93 		if (time_after(jiffies, timeout)) {
94 			/* Some cables have EEPROMs that conflict with the
95 			 * PHY's on-board EEPROM so it cannot load firmware */
96 			netif_err(efx, hw, efx->net_dev,
97 				  "If an SFP+ direct attach cable is"
98 				  " connected, please check that it complies"
99 				  " with the SFP+ specification\n");
100 			return -ETIMEDOUT;
101 		}
102 		msleep(QT2025C_HEARTB_WAIT);
103 	}
104 
105 	return 0;
106 }
107 
108 static int qt2025c_wait_fw_status_good(struct ef4_nic *efx)
109 {
110 	unsigned long timeout = jiffies + QT2025C_MAX_FWSTART_TIME;
111 	int reg;
112 
113 	/* Wait for firmware status to look good */
114 	for (;;) {
115 		reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_UC8051_STATUS_REG);
116 		if (reg < 0)
117 			return reg;
118 		if ((reg &
119 		     ((1 << PCS_UC_STATUS_WIDTH) - 1) << PCS_UC_STATUS_LBN) >=
120 		    PCS_UC_STATUS_FW_SAVE)
121 			break;
122 		if (time_after(jiffies, timeout))
123 			return -ETIMEDOUT;
124 		msleep(QT2025C_FWSTART_WAIT);
125 	}
126 
127 	return 0;
128 }
129 
130 static void qt2025c_restart_firmware(struct ef4_nic *efx)
131 {
132 	/* Restart microcontroller execution of firmware from RAM */
133 	ef4_mdio_write(efx, 3, 0xe854, 0x00c0);
134 	ef4_mdio_write(efx, 3, 0xe854, 0x0040);
135 	msleep(50);
136 }
137 
138 static int qt2025c_wait_reset(struct ef4_nic *efx)
139 {
140 	int rc;
141 
142 	rc = qt2025c_wait_heartbeat(efx);
143 	if (rc != 0)
144 		return rc;
145 
146 	rc = qt2025c_wait_fw_status_good(efx);
147 	if (rc == -ETIMEDOUT) {
148 		/* Bug 17689: occasionally heartbeat starts but firmware status
149 		 * code never progresses beyond 0x00.  Try again, once, after
150 		 * restarting execution of the firmware image. */
151 		netif_dbg(efx, hw, efx->net_dev,
152 			  "bashing QT2025C microcontroller\n");
153 		qt2025c_restart_firmware(efx);
154 		rc = qt2025c_wait_heartbeat(efx);
155 		if (rc != 0)
156 			return rc;
157 		rc = qt2025c_wait_fw_status_good(efx);
158 	}
159 
160 	return rc;
161 }
162 
163 static void qt2025c_firmware_id(struct ef4_nic *efx)
164 {
165 	struct qt202x_phy_data *phy_data = efx->phy_data;
166 	u8 firmware_id[9];
167 	size_t i;
168 
169 	for (i = 0; i < sizeof(firmware_id); i++)
170 		firmware_id[i] = ef4_mdio_read(efx, MDIO_MMD_PCS,
171 					       PCS_FW_PRODUCT_CODE_1 + i);
172 	netif_info(efx, probe, efx->net_dev,
173 		   "QT2025C firmware %xr%d v%d.%d.%d.%d [20%02d-%02d-%02d]\n",
174 		   (firmware_id[0] << 8) | firmware_id[1], firmware_id[2],
175 		   firmware_id[3] >> 4, firmware_id[3] & 0xf,
176 		   firmware_id[4], firmware_id[5],
177 		   firmware_id[6], firmware_id[7], firmware_id[8]);
178 	phy_data->firmware_ver = ((firmware_id[3] & 0xf0) << 20) |
179 				 ((firmware_id[3] & 0x0f) << 16) |
180 				 (firmware_id[4] << 8) | firmware_id[5];
181 }
182 
183 static void qt2025c_bug17190_workaround(struct ef4_nic *efx)
184 {
185 	struct qt202x_phy_data *phy_data = efx->phy_data;
186 
187 	/* The PHY can get stuck in a state where it reports PHY_XS and PMA/PMD
188 	 * layers up, but PCS down (no block_lock).  If we notice this state
189 	 * persisting for a couple of seconds, we switch PMA/PMD loopback
190 	 * briefly on and then off again, which is normally sufficient to
191 	 * recover it.
192 	 */
193 	if (efx->link_state.up ||
194 	    !ef4_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PHYXS)) {
195 		phy_data->bug17190_in_bad_state = false;
196 		return;
197 	}
198 
199 	if (!phy_data->bug17190_in_bad_state) {
200 		phy_data->bug17190_in_bad_state = true;
201 		phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL;
202 		return;
203 	}
204 
205 	if (time_after_eq(jiffies, phy_data->bug17190_timer)) {
206 		netif_dbg(efx, hw, efx->net_dev, "bashing QT2025C PMA/PMD\n");
207 		ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1,
208 				  MDIO_PMA_CTRL1_LOOPBACK, true);
209 		msleep(100);
210 		ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1,
211 				  MDIO_PMA_CTRL1_LOOPBACK, false);
212 		phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL;
213 	}
214 }
215 
216 static int qt2025c_select_phy_mode(struct ef4_nic *efx)
217 {
218 	struct qt202x_phy_data *phy_data = efx->phy_data;
219 	struct falcon_board *board = falcon_board(efx);
220 	int reg, rc, i;
221 	uint16_t phy_op_mode;
222 
223 	/* Only 2.0.1.0+ PHY firmware supports the more optimal SFP+
224 	 * Self-Configure mode.  Don't attempt any switching if we encounter
225 	 * older firmware. */
226 	if (phy_data->firmware_ver < 0x02000100)
227 		return 0;
228 
229 	/* In general we will get optimal behaviour in "SFP+ Self-Configure"
230 	 * mode; however, that powers down most of the PHY when no module is
231 	 * present, so we must use a different mode (any fixed mode will do)
232 	 * to be sure that loopbacks will work. */
233 	phy_op_mode = (efx->loopback_mode == LOOPBACK_NONE) ? 0x0038 : 0x0020;
234 
235 	/* Only change mode if really necessary */
236 	reg = ef4_mdio_read(efx, 1, 0xc319);
237 	if ((reg & 0x0038) == phy_op_mode)
238 		return 0;
239 	netif_dbg(efx, hw, efx->net_dev, "Switching PHY to mode 0x%04x\n",
240 		  phy_op_mode);
241 
242 	/* This sequence replicates the register writes configured in the boot
243 	 * EEPROM (including the differences between board revisions), except
244 	 * that the operating mode is changed, and the PHY is prevented from
245 	 * unnecessarily reloading the main firmware image again. */
246 	ef4_mdio_write(efx, 1, 0xc300, 0x0000);
247 	/* (Note: this portion of the boot EEPROM sequence, which bit-bashes 9
248 	 * STOPs onto the firmware/module I2C bus to reset it, varies across
249 	 * board revisions, as the bus is connected to different GPIO/LED
250 	 * outputs on the PHY.) */
251 	if (board->major == 0 && board->minor < 2) {
252 		ef4_mdio_write(efx, 1, 0xc303, 0x4498);
253 		for (i = 0; i < 9; i++) {
254 			ef4_mdio_write(efx, 1, 0xc303, 0x4488);
255 			ef4_mdio_write(efx, 1, 0xc303, 0x4480);
256 			ef4_mdio_write(efx, 1, 0xc303, 0x4490);
257 			ef4_mdio_write(efx, 1, 0xc303, 0x4498);
258 		}
259 	} else {
260 		ef4_mdio_write(efx, 1, 0xc303, 0x0920);
261 		ef4_mdio_write(efx, 1, 0xd008, 0x0004);
262 		for (i = 0; i < 9; i++) {
263 			ef4_mdio_write(efx, 1, 0xc303, 0x0900);
264 			ef4_mdio_write(efx, 1, 0xd008, 0x0005);
265 			ef4_mdio_write(efx, 1, 0xc303, 0x0920);
266 			ef4_mdio_write(efx, 1, 0xd008, 0x0004);
267 		}
268 		ef4_mdio_write(efx, 1, 0xc303, 0x4900);
269 	}
270 	ef4_mdio_write(efx, 1, 0xc303, 0x4900);
271 	ef4_mdio_write(efx, 1, 0xc302, 0x0004);
272 	ef4_mdio_write(efx, 1, 0xc316, 0x0013);
273 	ef4_mdio_write(efx, 1, 0xc318, 0x0054);
274 	ef4_mdio_write(efx, 1, 0xc319, phy_op_mode);
275 	ef4_mdio_write(efx, 1, 0xc31a, 0x0098);
276 	ef4_mdio_write(efx, 3, 0x0026, 0x0e00);
277 	ef4_mdio_write(efx, 3, 0x0027, 0x0013);
278 	ef4_mdio_write(efx, 3, 0x0028, 0xa528);
279 	ef4_mdio_write(efx, 1, 0xd006, 0x000a);
280 	ef4_mdio_write(efx, 1, 0xd007, 0x0009);
281 	ef4_mdio_write(efx, 1, 0xd008, 0x0004);
282 	/* This additional write is not present in the boot EEPROM.  It
283 	 * prevents the PHY's internal boot ROM doing another pointless (and
284 	 * slow) reload of the firmware image (the microcontroller's code
285 	 * memory is not affected by the microcontroller reset). */
286 	ef4_mdio_write(efx, 1, 0xc317, 0x00ff);
287 	/* PMA/PMD loopback sets RXIN to inverse polarity and the firmware
288 	 * restart doesn't reset it. We need to do that ourselves. */
289 	ef4_mdio_set_flag(efx, 1, PMA_PMD_MODE_REG,
290 			  1 << PMA_PMD_RXIN_SEL_LBN, false);
291 	ef4_mdio_write(efx, 1, 0xc300, 0x0002);
292 	msleep(20);
293 
294 	/* Restart microcontroller execution of firmware from RAM */
295 	qt2025c_restart_firmware(efx);
296 
297 	/* Wait for the microcontroller to be ready again */
298 	rc = qt2025c_wait_reset(efx);
299 	if (rc < 0) {
300 		netif_err(efx, hw, efx->net_dev,
301 			  "PHY microcontroller reset during mode switch "
302 			  "timed out\n");
303 		return rc;
304 	}
305 
306 	return 0;
307 }
308 
309 static int qt202x_reset_phy(struct ef4_nic *efx)
310 {
311 	int rc;
312 
313 	if (efx->phy_type == PHY_TYPE_QT2025C) {
314 		/* Wait for the reset triggered by falcon_reset_hw()
315 		 * to complete */
316 		rc = qt2025c_wait_reset(efx);
317 		if (rc < 0)
318 			goto fail;
319 	} else {
320 		/* Reset the PHYXS MMD. This is documented as doing
321 		 * a complete soft reset. */
322 		rc = ef4_mdio_reset_mmd(efx, MDIO_MMD_PHYXS,
323 					QT2022C2_MAX_RESET_TIME /
324 					QT2022C2_RESET_WAIT,
325 					QT2022C2_RESET_WAIT);
326 		if (rc < 0)
327 			goto fail;
328 	}
329 
330 	/* Wait 250ms for the PHY to complete bootup */
331 	msleep(250);
332 
333 	falcon_board(efx)->type->init_phy(efx);
334 
335 	return 0;
336 
337  fail:
338 	netif_err(efx, hw, efx->net_dev, "PHY reset timed out\n");
339 	return rc;
340 }
341 
342 static int qt202x_phy_probe(struct ef4_nic *efx)
343 {
344 	struct qt202x_phy_data *phy_data;
345 
346 	phy_data = kzalloc(sizeof(struct qt202x_phy_data), GFP_KERNEL);
347 	if (!phy_data)
348 		return -ENOMEM;
349 	efx->phy_data = phy_data;
350 	phy_data->phy_mode = efx->phy_mode;
351 	phy_data->bug17190_in_bad_state = false;
352 	phy_data->bug17190_timer = 0;
353 
354 	efx->mdio.mmds = QT202X_REQUIRED_DEVS;
355 	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
356 	efx->loopback_modes = QT202X_LOOPBACKS | FALCON_XMAC_LOOPBACKS;
357 	return 0;
358 }
359 
360 static int qt202x_phy_init(struct ef4_nic *efx)
361 {
362 	u32 devid;
363 	int rc;
364 
365 	rc = qt202x_reset_phy(efx);
366 	if (rc) {
367 		netif_err(efx, probe, efx->net_dev, "PHY init failed\n");
368 		return rc;
369 	}
370 
371 	devid = ef4_mdio_read_id(efx, MDIO_MMD_PHYXS);
372 	netif_info(efx, probe, efx->net_dev,
373 		   "PHY ID reg %x (OUI %06x model %02x revision %x)\n",
374 		   devid, ef4_mdio_id_oui(devid), ef4_mdio_id_model(devid),
375 		   ef4_mdio_id_rev(devid));
376 
377 	if (efx->phy_type == PHY_TYPE_QT2025C)
378 		qt2025c_firmware_id(efx);
379 
380 	return 0;
381 }
382 
383 static int qt202x_link_ok(struct ef4_nic *efx)
384 {
385 	return ef4_mdio_links_ok(efx, QT202X_REQUIRED_DEVS);
386 }
387 
388 static bool qt202x_phy_poll(struct ef4_nic *efx)
389 {
390 	bool was_up = efx->link_state.up;
391 
392 	efx->link_state.up = qt202x_link_ok(efx);
393 	efx->link_state.speed = 10000;
394 	efx->link_state.fd = true;
395 	efx->link_state.fc = efx->wanted_fc;
396 
397 	if (efx->phy_type == PHY_TYPE_QT2025C)
398 		qt2025c_bug17190_workaround(efx);
399 
400 	return efx->link_state.up != was_up;
401 }
402 
403 static int qt202x_phy_reconfigure(struct ef4_nic *efx)
404 {
405 	struct qt202x_phy_data *phy_data = efx->phy_data;
406 
407 	if (efx->phy_type == PHY_TYPE_QT2025C) {
408 		int rc = qt2025c_select_phy_mode(efx);
409 		if (rc)
410 			return rc;
411 
412 		/* There are several different register bits which can
413 		 * disable TX (and save power) on direct-attach cables
414 		 * or optical transceivers, varying somewhat between
415 		 * firmware versions.  Only 'static mode' appears to
416 		 * cover everything. */
417 		mdio_set_flag(
418 			&efx->mdio, efx->mdio.prtad, MDIO_MMD_PMAPMD,
419 			PMA_PMD_FTX_CTRL2_REG, 1 << PMA_PMD_FTX_STATIC_LBN,
420 			efx->phy_mode & PHY_MODE_TX_DISABLED ||
421 			efx->phy_mode & PHY_MODE_LOW_POWER ||
422 			efx->loopback_mode == LOOPBACK_PCS ||
423 			efx->loopback_mode == LOOPBACK_PMAPMD);
424 	} else {
425 		/* Reset the PHY when moving from tx off to tx on */
426 		if (!(efx->phy_mode & PHY_MODE_TX_DISABLED) &&
427 		    (phy_data->phy_mode & PHY_MODE_TX_DISABLED))
428 			qt202x_reset_phy(efx);
429 
430 		ef4_mdio_transmit_disable(efx);
431 	}
432 
433 	ef4_mdio_phy_reconfigure(efx);
434 
435 	phy_data->phy_mode = efx->phy_mode;
436 
437 	return 0;
438 }
439 
440 static void qt202x_phy_get_link_ksettings(struct ef4_nic *efx,
441 					  struct ethtool_link_ksettings *cmd)
442 {
443 	mdio45_ethtool_ksettings_get(&efx->mdio, cmd);
444 }
445 
446 static void qt202x_phy_remove(struct ef4_nic *efx)
447 {
448 	/* Free the context block */
449 	kfree(efx->phy_data);
450 	efx->phy_data = NULL;
451 }
452 
453 static int qt202x_phy_get_module_info(struct ef4_nic *efx,
454 				      struct ethtool_modinfo *modinfo)
455 {
456 	modinfo->type = ETH_MODULE_SFF_8079;
457 	modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
458 	return 0;
459 }
460 
461 static int qt202x_phy_get_module_eeprom(struct ef4_nic *efx,
462 					struct ethtool_eeprom *ee, u8 *data)
463 {
464 	int mmd, reg_base, rc, i;
465 
466 	if (efx->phy_type == PHY_TYPE_QT2025C) {
467 		mmd = MDIO_MMD_PCS;
468 		reg_base = 0xd000;
469 	} else {
470 		mmd = MDIO_MMD_PMAPMD;
471 		reg_base = 0x8007;
472 	}
473 
474 	for (i = 0; i < ee->len; i++) {
475 		rc = ef4_mdio_read(efx, mmd, reg_base + ee->offset + i);
476 		if (rc < 0)
477 			return rc;
478 		data[i] = rc;
479 	}
480 
481 	return 0;
482 }
483 
484 const struct ef4_phy_operations falcon_qt202x_phy_ops = {
485 	.probe		 = qt202x_phy_probe,
486 	.init		 = qt202x_phy_init,
487 	.reconfigure	 = qt202x_phy_reconfigure,
488 	.poll		 = qt202x_phy_poll,
489 	.fini		 = ef4_port_dummy_op_void,
490 	.remove		 = qt202x_phy_remove,
491 	.get_link_ksettings = qt202x_phy_get_link_ksettings,
492 	.set_link_ksettings = ef4_mdio_set_link_ksettings,
493 	.test_alive	 = ef4_mdio_test_alive,
494 	.get_module_eeprom = qt202x_phy_get_module_eeprom,
495 	.get_module_info = qt202x_phy_get_module_info,
496 };
497