1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 /* Common definitions for all Efx net driver code */
9 
10 #ifndef EF4_NET_DRIVER_H
11 #define EF4_NET_DRIVER_H
12 
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/if_vlan.h>
17 #include <linux/timer.h>
18 #include <linux/mdio.h>
19 #include <linux/list.h>
20 #include <linux/pci.h>
21 #include <linux/device.h>
22 #include <linux/highmem.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/i2c.h>
28 #include <linux/mtd/mtd.h>
29 #include <net/busy_poll.h>
30 
31 #include "enum.h"
32 #include "bitfield.h"
33 #include "filter.h"
34 
35 /**************************************************************************
36  *
37  * Build definitions
38  *
39  **************************************************************************/
40 
41 #define EF4_DRIVER_VERSION	"4.1"
42 
43 #ifdef DEBUG
44 #define EF4_BUG_ON_PARANOID(x) BUG_ON(x)
45 #define EF4_WARN_ON_PARANOID(x) WARN_ON(x)
46 #else
47 #define EF4_BUG_ON_PARANOID(x) do {} while (0)
48 #define EF4_WARN_ON_PARANOID(x) do {} while (0)
49 #endif
50 
51 /**************************************************************************
52  *
53  * Efx data structures
54  *
55  **************************************************************************/
56 
57 #define EF4_MAX_CHANNELS 32U
58 #define EF4_MAX_RX_QUEUES EF4_MAX_CHANNELS
59 #define EF4_EXTRA_CHANNEL_IOV	0
60 #define EF4_EXTRA_CHANNEL_PTP	1
61 #define EF4_MAX_EXTRA_CHANNELS	2U
62 
63 /* Checksum generation is a per-queue option in hardware, so each
64  * queue visible to the networking core is backed by two hardware TX
65  * queues. */
66 #define EF4_MAX_TX_TC		2
67 #define EF4_MAX_CORE_TX_QUEUES	(EF4_MAX_TX_TC * EF4_MAX_CHANNELS)
68 #define EF4_TXQ_TYPE_OFFLOAD	1	/* flag */
69 #define EF4_TXQ_TYPE_HIGHPRI	2	/* flag */
70 #define EF4_TXQ_TYPES		4
71 #define EF4_MAX_TX_QUEUES	(EF4_TXQ_TYPES * EF4_MAX_CHANNELS)
72 
73 /* Maximum possible MTU the driver supports */
74 #define EF4_MAX_MTU (9 * 1024)
75 
76 /* Minimum MTU, from RFC791 (IP) */
77 #define EF4_MIN_MTU 68
78 
79 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
80  * and should be a multiple of the cache line size.
81  */
82 #define EF4_RX_USR_BUF_SIZE	(2048 - 256)
83 
84 /* If possible, we should ensure cache line alignment at start and end
85  * of every buffer.  Otherwise, we just need to ensure 4-byte
86  * alignment of the network header.
87  */
88 #if NET_IP_ALIGN == 0
89 #define EF4_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
90 #else
91 #define EF4_RX_BUF_ALIGNMENT	4
92 #endif
93 
94 struct ef4_self_tests;
95 
96 /**
97  * struct ef4_buffer - A general-purpose DMA buffer
98  * @addr: host base address of the buffer
99  * @dma_addr: DMA base address of the buffer
100  * @len: Buffer length, in bytes
101  *
102  * The NIC uses these buffers for its interrupt status registers and
103  * MAC stats dumps.
104  */
105 struct ef4_buffer {
106 	void *addr;
107 	dma_addr_t dma_addr;
108 	unsigned int len;
109 };
110 
111 /**
112  * struct ef4_special_buffer - DMA buffer entered into buffer table
113  * @buf: Standard &struct ef4_buffer
114  * @index: Buffer index within controller;s buffer table
115  * @entries: Number of buffer table entries
116  *
117  * The NIC has a buffer table that maps buffers of size %EF4_BUF_SIZE.
118  * Event and descriptor rings are addressed via one or more buffer
119  * table entries (and so can be physically non-contiguous, although we
120  * currently do not take advantage of that).  On Falcon and Siena we
121  * have to take care of allocating and initialising the entries
122  * ourselves.  On later hardware this is managed by the firmware and
123  * @index and @entries are left as 0.
124  */
125 struct ef4_special_buffer {
126 	struct ef4_buffer buf;
127 	unsigned int index;
128 	unsigned int entries;
129 };
130 
131 /**
132  * struct ef4_tx_buffer - buffer state for a TX descriptor
133  * @skb: When @flags & %EF4_TX_BUF_SKB, the associated socket buffer to be
134  *	freed when descriptor completes
135  * @option: When @flags & %EF4_TX_BUF_OPTION, a NIC-specific option descriptor.
136  * @dma_addr: DMA address of the fragment.
137  * @flags: Flags for allocation and DMA mapping type
138  * @len: Length of this fragment.
139  *	This field is zero when the queue slot is empty.
140  * @unmap_len: Length of this fragment to unmap
141  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
142  * Only valid if @unmap_len != 0.
143  */
144 struct ef4_tx_buffer {
145 	const struct sk_buff *skb;
146 	union {
147 		ef4_qword_t option;
148 		dma_addr_t dma_addr;
149 	};
150 	unsigned short flags;
151 	unsigned short len;
152 	unsigned short unmap_len;
153 	unsigned short dma_offset;
154 };
155 #define EF4_TX_BUF_CONT		1	/* not last descriptor of packet */
156 #define EF4_TX_BUF_SKB		2	/* buffer is last part of skb */
157 #define EF4_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
158 #define EF4_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
159 
160 /**
161  * struct ef4_tx_queue - An Efx TX queue
162  *
163  * This is a ring buffer of TX fragments.
164  * Since the TX completion path always executes on the same
165  * CPU and the xmit path can operate on different CPUs,
166  * performance is increased by ensuring that the completion
167  * path and the xmit path operate on different cache lines.
168  * This is particularly important if the xmit path is always
169  * executing on one CPU which is different from the completion
170  * path.  There is also a cache line for members which are
171  * read but not written on the fast path.
172  *
173  * @efx: The associated Efx NIC
174  * @queue: DMA queue number
175  * @channel: The associated channel
176  * @core_txq: The networking core TX queue structure
177  * @buffer: The software buffer ring
178  * @cb_page: Array of pages of copy buffers.  Carved up according to
179  *	%EF4_TX_CB_ORDER into %EF4_TX_CB_SIZE-sized chunks.
180  * @txd: The hardware descriptor ring
181  * @ptr_mask: The size of the ring minus 1.
182  * @initialised: Has hardware queue been initialised?
183  * @tx_min_size: Minimum transmit size for this queue. Depends on HW.
184  * @read_count: Current read pointer.
185  *	This is the number of buffers that have been removed from both rings.
186  * @old_write_count: The value of @write_count when last checked.
187  *	This is here for performance reasons.  The xmit path will
188  *	only get the up-to-date value of @write_count if this
189  *	variable indicates that the queue is empty.  This is to
190  *	avoid cache-line ping-pong between the xmit path and the
191  *	completion path.
192  * @merge_events: Number of TX merged completion events
193  * @insert_count: Current insert pointer
194  *	This is the number of buffers that have been added to the
195  *	software ring.
196  * @write_count: Current write pointer
197  *	This is the number of buffers that have been added to the
198  *	hardware ring.
199  * @old_read_count: The value of read_count when last checked.
200  *	This is here for performance reasons.  The xmit path will
201  *	only get the up-to-date value of read_count if this
202  *	variable indicates that the queue is full.  This is to
203  *	avoid cache-line ping-pong between the xmit path and the
204  *	completion path.
205  * @pushes: Number of times the TX push feature has been used
206  * @xmit_more_available: Are any packets waiting to be pushed to the NIC
207  * @cb_packets: Number of times the TX copybreak feature has been used
208  * @empty_read_count: If the completion path has seen the queue as empty
209  *	and the transmission path has not yet checked this, the value of
210  *	@read_count bitwise-added to %EF4_EMPTY_COUNT_VALID; otherwise 0.
211  */
212 struct ef4_tx_queue {
213 	/* Members which don't change on the fast path */
214 	struct ef4_nic *efx ____cacheline_aligned_in_smp;
215 	unsigned queue;
216 	struct ef4_channel *channel;
217 	struct netdev_queue *core_txq;
218 	struct ef4_tx_buffer *buffer;
219 	struct ef4_buffer *cb_page;
220 	struct ef4_special_buffer txd;
221 	unsigned int ptr_mask;
222 	bool initialised;
223 	unsigned int tx_min_size;
224 
225 	/* Function pointers used in the fast path. */
226 	int (*handle_tso)(struct ef4_tx_queue*, struct sk_buff*, bool *);
227 
228 	/* Members used mainly on the completion path */
229 	unsigned int read_count ____cacheline_aligned_in_smp;
230 	unsigned int old_write_count;
231 	unsigned int merge_events;
232 	unsigned int bytes_compl;
233 	unsigned int pkts_compl;
234 
235 	/* Members used only on the xmit path */
236 	unsigned int insert_count ____cacheline_aligned_in_smp;
237 	unsigned int write_count;
238 	unsigned int old_read_count;
239 	unsigned int pushes;
240 	bool xmit_more_available;
241 	unsigned int cb_packets;
242 	/* Statistics to supplement MAC stats */
243 	unsigned long tx_packets;
244 
245 	/* Members shared between paths and sometimes updated */
246 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
247 #define EF4_EMPTY_COUNT_VALID 0x80000000
248 	atomic_t flush_outstanding;
249 };
250 
251 #define EF4_TX_CB_ORDER	7
252 #define EF4_TX_CB_SIZE	(1 << EF4_TX_CB_ORDER) - NET_IP_ALIGN
253 
254 /**
255  * struct ef4_rx_buffer - An Efx RX data buffer
256  * @dma_addr: DMA base address of the buffer
257  * @page: The associated page buffer.
258  *	Will be %NULL if the buffer slot is currently free.
259  * @page_offset: If pending: offset in @page of DMA base address.
260  *	If completed: offset in @page of Ethernet header.
261  * @len: If pending: length for DMA descriptor.
262  *	If completed: received length, excluding hash prefix.
263  * @flags: Flags for buffer and packet state.  These are only set on the
264  *	first buffer of a scattered packet.
265  */
266 struct ef4_rx_buffer {
267 	dma_addr_t dma_addr;
268 	struct page *page;
269 	u16 page_offset;
270 	u16 len;
271 	u16 flags;
272 };
273 #define EF4_RX_BUF_LAST_IN_PAGE	0x0001
274 #define EF4_RX_PKT_CSUMMED	0x0002
275 #define EF4_RX_PKT_DISCARD	0x0004
276 #define EF4_RX_PKT_TCP		0x0040
277 #define EF4_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
278 
279 /**
280  * struct ef4_rx_page_state - Page-based rx buffer state
281  *
282  * Inserted at the start of every page allocated for receive buffers.
283  * Used to facilitate sharing dma mappings between recycled rx buffers
284  * and those passed up to the kernel.
285  *
286  * @dma_addr: The dma address of this page.
287  */
288 struct ef4_rx_page_state {
289 	dma_addr_t dma_addr;
290 
291 	unsigned int __pad[] ____cacheline_aligned;
292 };
293 
294 /**
295  * struct ef4_rx_queue - An Efx RX queue
296  * @efx: The associated Efx NIC
297  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
298  *	is associated with a real RX queue.
299  * @buffer: The software buffer ring
300  * @rxd: The hardware descriptor ring
301  * @ptr_mask: The size of the ring minus 1.
302  * @refill_enabled: Enable refill whenever fill level is low
303  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
304  *	@rxq_flush_pending.
305  * @added_count: Number of buffers added to the receive queue.
306  * @notified_count: Number of buffers given to NIC (<= @added_count).
307  * @removed_count: Number of buffers removed from the receive queue.
308  * @scatter_n: Used by NIC specific receive code.
309  * @scatter_len: Used by NIC specific receive code.
310  * @page_ring: The ring to store DMA mapped pages for reuse.
311  * @page_add: Counter to calculate the write pointer for the recycle ring.
312  * @page_remove: Counter to calculate the read pointer for the recycle ring.
313  * @page_recycle_count: The number of pages that have been recycled.
314  * @page_recycle_failed: The number of pages that couldn't be recycled because
315  *      the kernel still held a reference to them.
316  * @page_recycle_full: The number of pages that were released because the
317  *      recycle ring was full.
318  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
319  * @max_fill: RX descriptor maximum fill level (<= ring size)
320  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
321  *	(<= @max_fill)
322  * @min_fill: RX descriptor minimum non-zero fill level.
323  *	This records the minimum fill level observed when a ring
324  *	refill was triggered.
325  * @recycle_count: RX buffer recycle counter.
326  * @slow_fill: Timer used to defer ef4_nic_generate_fill_event().
327  */
328 struct ef4_rx_queue {
329 	struct ef4_nic *efx;
330 	int core_index;
331 	struct ef4_rx_buffer *buffer;
332 	struct ef4_special_buffer rxd;
333 	unsigned int ptr_mask;
334 	bool refill_enabled;
335 	bool flush_pending;
336 
337 	unsigned int added_count;
338 	unsigned int notified_count;
339 	unsigned int removed_count;
340 	unsigned int scatter_n;
341 	unsigned int scatter_len;
342 	struct page **page_ring;
343 	unsigned int page_add;
344 	unsigned int page_remove;
345 	unsigned int page_recycle_count;
346 	unsigned int page_recycle_failed;
347 	unsigned int page_recycle_full;
348 	unsigned int page_ptr_mask;
349 	unsigned int max_fill;
350 	unsigned int fast_fill_trigger;
351 	unsigned int min_fill;
352 	unsigned int min_overfill;
353 	unsigned int recycle_count;
354 	struct timer_list slow_fill;
355 	unsigned int slow_fill_count;
356 	/* Statistics to supplement MAC stats */
357 	unsigned long rx_packets;
358 };
359 
360 /**
361  * struct ef4_channel - An Efx channel
362  *
363  * A channel comprises an event queue, at least one TX queue, at least
364  * one RX queue, and an associated tasklet for processing the event
365  * queue.
366  *
367  * @efx: Associated Efx NIC
368  * @channel: Channel instance number
369  * @type: Channel type definition
370  * @eventq_init: Event queue initialised flag
371  * @enabled: Channel enabled indicator
372  * @irq: IRQ number (MSI and MSI-X only)
373  * @irq_moderation_us: IRQ moderation value (in microseconds)
374  * @napi_dev: Net device used with NAPI
375  * @napi_str: NAPI control structure
376  * @state: state for NAPI vs busy polling
377  * @state_lock: lock protecting @state
378  * @eventq: Event queue buffer
379  * @eventq_mask: Event queue pointer mask
380  * @eventq_read_ptr: Event queue read pointer
381  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
382  * @irq_count: Number of IRQs since last adaptive moderation decision
383  * @irq_mod_score: IRQ moderation score
384  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
385  *      indexed by filter ID
386  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
387  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
388  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
389  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
390  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
391  * @n_rx_overlength: Count of RX_OVERLENGTH errors
392  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
393  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
394  *	lack of descriptors
395  * @n_rx_merge_events: Number of RX merged completion events
396  * @n_rx_merge_packets: Number of RX packets completed by merged events
397  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
398  *	__ef4_rx_packet(), or zero if there is none
399  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
400  *	by __ef4_rx_packet(), if @rx_pkt_n_frags != 0
401  * @rx_queue: RX queue for this channel
402  * @tx_queue: TX queues for this channel
403  */
404 struct ef4_channel {
405 	struct ef4_nic *efx;
406 	int channel;
407 	const struct ef4_channel_type *type;
408 	bool eventq_init;
409 	bool enabled;
410 	int irq;
411 	unsigned int irq_moderation_us;
412 	struct net_device *napi_dev;
413 	struct napi_struct napi_str;
414 #ifdef CONFIG_NET_RX_BUSY_POLL
415 	unsigned long busy_poll_state;
416 #endif
417 	struct ef4_special_buffer eventq;
418 	unsigned int eventq_mask;
419 	unsigned int eventq_read_ptr;
420 	int event_test_cpu;
421 
422 	unsigned int irq_count;
423 	unsigned int irq_mod_score;
424 #ifdef CONFIG_RFS_ACCEL
425 	unsigned int rfs_filters_added;
426 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
427 	u32 *rps_flow_id;
428 #endif
429 
430 	unsigned n_rx_tobe_disc;
431 	unsigned n_rx_ip_hdr_chksum_err;
432 	unsigned n_rx_tcp_udp_chksum_err;
433 	unsigned n_rx_mcast_mismatch;
434 	unsigned n_rx_frm_trunc;
435 	unsigned n_rx_overlength;
436 	unsigned n_skbuff_leaks;
437 	unsigned int n_rx_nodesc_trunc;
438 	unsigned int n_rx_merge_events;
439 	unsigned int n_rx_merge_packets;
440 
441 	unsigned int rx_pkt_n_frags;
442 	unsigned int rx_pkt_index;
443 
444 	struct ef4_rx_queue rx_queue;
445 	struct ef4_tx_queue tx_queue[EF4_TXQ_TYPES];
446 };
447 
448 /**
449  * struct ef4_msi_context - Context for each MSI
450  * @efx: The associated NIC
451  * @index: Index of the channel/IRQ
452  * @name: Name of the channel/IRQ
453  *
454  * Unlike &struct ef4_channel, this is never reallocated and is always
455  * safe for the IRQ handler to access.
456  */
457 struct ef4_msi_context {
458 	struct ef4_nic *efx;
459 	unsigned int index;
460 	char name[IFNAMSIZ + 6];
461 };
462 
463 /**
464  * struct ef4_channel_type - distinguishes traffic and extra channels
465  * @handle_no_channel: Handle failure to allocate an extra channel
466  * @pre_probe: Set up extra state prior to initialisation
467  * @post_remove: Tear down extra state after finalisation, if allocated.
468  *	May be called on channels that have not been probed.
469  * @get_name: Generate the channel's name (used for its IRQ handler)
470  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
471  *	reallocation is not supported.
472  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
473  * @keep_eventq: Flag for whether event queue should be kept initialised
474  *	while the device is stopped
475  */
476 struct ef4_channel_type {
477 	void (*handle_no_channel)(struct ef4_nic *);
478 	int (*pre_probe)(struct ef4_channel *);
479 	void (*post_remove)(struct ef4_channel *);
480 	void (*get_name)(struct ef4_channel *, char *buf, size_t len);
481 	struct ef4_channel *(*copy)(const struct ef4_channel *);
482 	bool (*receive_skb)(struct ef4_channel *, struct sk_buff *);
483 	bool keep_eventq;
484 };
485 
486 enum ef4_led_mode {
487 	EF4_LED_OFF	= 0,
488 	EF4_LED_ON	= 1,
489 	EF4_LED_DEFAULT	= 2
490 };
491 
492 #define STRING_TABLE_LOOKUP(val, member) \
493 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
494 
495 extern const char *const ef4_loopback_mode_names[];
496 extern const unsigned int ef4_loopback_mode_max;
497 #define LOOPBACK_MODE(efx) \
498 	STRING_TABLE_LOOKUP((efx)->loopback_mode, ef4_loopback_mode)
499 
500 extern const char *const ef4_reset_type_names[];
501 extern const unsigned int ef4_reset_type_max;
502 #define RESET_TYPE(type) \
503 	STRING_TABLE_LOOKUP(type, ef4_reset_type)
504 
505 enum ef4_int_mode {
506 	/* Be careful if altering to correct macro below */
507 	EF4_INT_MODE_MSIX = 0,
508 	EF4_INT_MODE_MSI = 1,
509 	EF4_INT_MODE_LEGACY = 2,
510 	EF4_INT_MODE_MAX	/* Insert any new items before this */
511 };
512 #define EF4_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EF4_INT_MODE_MSI)
513 
514 enum nic_state {
515 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
516 	STATE_READY = 1,	/* hardware ready and netdev registered */
517 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
518 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
519 };
520 
521 /* Forward declaration */
522 struct ef4_nic;
523 
524 /* Pseudo bit-mask flow control field */
525 #define EF4_FC_RX	FLOW_CTRL_RX
526 #define EF4_FC_TX	FLOW_CTRL_TX
527 #define EF4_FC_AUTO	4
528 
529 /**
530  * struct ef4_link_state - Current state of the link
531  * @up: Link is up
532  * @fd: Link is full-duplex
533  * @fc: Actual flow control flags
534  * @speed: Link speed (Mbps)
535  */
536 struct ef4_link_state {
537 	bool up;
538 	bool fd;
539 	u8 fc;
540 	unsigned int speed;
541 };
542 
543 static inline bool ef4_link_state_equal(const struct ef4_link_state *left,
544 					const struct ef4_link_state *right)
545 {
546 	return left->up == right->up && left->fd == right->fd &&
547 		left->fc == right->fc && left->speed == right->speed;
548 }
549 
550 /**
551  * struct ef4_phy_operations - Efx PHY operations table
552  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
553  *	efx->loopback_modes.
554  * @init: Initialise PHY
555  * @fini: Shut down PHY
556  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
557  * @poll: Update @link_state and report whether it changed.
558  *	Serialised by the mac_lock.
559  * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
560  * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
561  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
562  *	(only needed where AN bit is set in mmds)
563  * @test_alive: Test that PHY is 'alive' (online)
564  * @test_name: Get the name of a PHY-specific test/result
565  * @run_tests: Run tests and record results as appropriate (offline).
566  *	Flags are the ethtool tests flags.
567  */
568 struct ef4_phy_operations {
569 	int (*probe) (struct ef4_nic *efx);
570 	int (*init) (struct ef4_nic *efx);
571 	void (*fini) (struct ef4_nic *efx);
572 	void (*remove) (struct ef4_nic *efx);
573 	int (*reconfigure) (struct ef4_nic *efx);
574 	bool (*poll) (struct ef4_nic *efx);
575 	void (*get_link_ksettings)(struct ef4_nic *efx,
576 				   struct ethtool_link_ksettings *cmd);
577 	int (*set_link_ksettings)(struct ef4_nic *efx,
578 				  const struct ethtool_link_ksettings *cmd);
579 	void (*set_npage_adv) (struct ef4_nic *efx, u32);
580 	int (*test_alive) (struct ef4_nic *efx);
581 	const char *(*test_name) (struct ef4_nic *efx, unsigned int index);
582 	int (*run_tests) (struct ef4_nic *efx, int *results, unsigned flags);
583 	int (*get_module_eeprom) (struct ef4_nic *efx,
584 			       struct ethtool_eeprom *ee,
585 			       u8 *data);
586 	int (*get_module_info) (struct ef4_nic *efx,
587 				struct ethtool_modinfo *modinfo);
588 };
589 
590 /**
591  * enum ef4_phy_mode - PHY operating mode flags
592  * @PHY_MODE_NORMAL: on and should pass traffic
593  * @PHY_MODE_TX_DISABLED: on with TX disabled
594  * @PHY_MODE_LOW_POWER: set to low power through MDIO
595  * @PHY_MODE_OFF: switched off through external control
596  * @PHY_MODE_SPECIAL: on but will not pass traffic
597  */
598 enum ef4_phy_mode {
599 	PHY_MODE_NORMAL		= 0,
600 	PHY_MODE_TX_DISABLED	= 1,
601 	PHY_MODE_LOW_POWER	= 2,
602 	PHY_MODE_OFF		= 4,
603 	PHY_MODE_SPECIAL	= 8,
604 };
605 
606 static inline bool ef4_phy_mode_disabled(enum ef4_phy_mode mode)
607 {
608 	return !!(mode & ~PHY_MODE_TX_DISABLED);
609 }
610 
611 /**
612  * struct ef4_hw_stat_desc - Description of a hardware statistic
613  * @name: Name of the statistic as visible through ethtool, or %NULL if
614  *	it should not be exposed
615  * @dma_width: Width in bits (0 for non-DMA statistics)
616  * @offset: Offset within stats (ignored for non-DMA statistics)
617  */
618 struct ef4_hw_stat_desc {
619 	const char *name;
620 	u16 dma_width;
621 	u16 offset;
622 };
623 
624 /* Number of bits used in a multicast filter hash address */
625 #define EF4_MCAST_HASH_BITS 8
626 
627 /* Number of (single-bit) entries in a multicast filter hash */
628 #define EF4_MCAST_HASH_ENTRIES (1 << EF4_MCAST_HASH_BITS)
629 
630 /* An Efx multicast filter hash */
631 union ef4_multicast_hash {
632 	u8 byte[EF4_MCAST_HASH_ENTRIES / 8];
633 	ef4_oword_t oword[EF4_MCAST_HASH_ENTRIES / sizeof(ef4_oword_t) / 8];
634 };
635 
636 /**
637  * struct ef4_nic - an Efx NIC
638  * @name: Device name (net device name or bus id before net device registered)
639  * @pci_dev: The PCI device
640  * @node: List node for maintaining primary/secondary function lists
641  * @primary: &struct ef4_nic instance for the primary function of this
642  *	controller.  May be the same structure, and may be %NULL if no
643  *	primary function is bound.  Serialised by rtnl_lock.
644  * @secondary_list: List of &struct ef4_nic instances for the secondary PCI
645  *	functions of the controller, if this is for the primary function.
646  *	Serialised by rtnl_lock.
647  * @type: Controller type attributes
648  * @legacy_irq: IRQ number
649  * @workqueue: Workqueue for port reconfigures and the HW monitor.
650  *	Work items do not hold and must not acquire RTNL.
651  * @workqueue_name: Name of workqueue
652  * @reset_work: Scheduled reset workitem
653  * @membase_phys: Memory BAR value as physical address
654  * @membase: Memory BAR value
655  * @interrupt_mode: Interrupt mode
656  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
657  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
658  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
659  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
660  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
661  * @msg_enable: Log message enable flags
662  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
663  * @reset_pending: Bitmask for pending resets
664  * @tx_queue: TX DMA queues
665  * @rx_queue: RX DMA queues
666  * @channel: Channels
667  * @msi_context: Context for each MSI
668  * @extra_channel_types: Types of extra (non-traffic) channels that
669  *	should be allocated for this NIC
670  * @rxq_entries: Size of receive queues requested by user.
671  * @txq_entries: Size of transmit queues requested by user.
672  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
673  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
674  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
675  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
676  * @sram_lim_qw: Qword address limit of SRAM
677  * @next_buffer_table: First available buffer table id
678  * @n_channels: Number of channels in use
679  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
680  * @n_tx_channels: Number of channels used for TX
681  * @rx_ip_align: RX DMA address offset to have IP header aligned in
682  *	accordance with NET_IP_ALIGN
683  * @rx_dma_len: Current maximum RX DMA length
684  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
685  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
686  *	for use in sk_buff::truesize
687  * @rx_prefix_size: Size of RX prefix before packet data
688  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
689  *	(valid only if @rx_prefix_size != 0; always negative)
690  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
691  *	(valid only for NICs that set %EF4_RX_PKT_PREFIX_LEN; always negative)
692  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
693  *	(valid only if channel->sync_timestamps_enabled; always negative)
694  * @rx_hash_key: Toeplitz hash key for RSS
695  * @rx_indir_table: Indirection table for RSS
696  * @rx_scatter: Scatter mode enabled for receives
697  * @int_error_count: Number of internal errors seen recently
698  * @int_error_expire: Time at which error count will be expired
699  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
700  *	acknowledge but do nothing else.
701  * @irq_status: Interrupt status buffer
702  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
703  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
704  * @selftest_work: Work item for asynchronous self-test
705  * @mtd_list: List of MTDs attached to the NIC
706  * @nic_data: Hardware dependent state
707  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
708  *	ef4_monitor() and ef4_reconfigure_port()
709  * @port_enabled: Port enabled indicator.
710  *	Serialises ef4_stop_all(), ef4_start_all(), ef4_monitor() and
711  *	ef4_mac_work() with kernel interfaces. Safe to read under any
712  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
713  *	be held to modify it.
714  * @port_initialized: Port initialized?
715  * @net_dev: Operating system network device. Consider holding the rtnl lock
716  * @fixed_features: Features which cannot be turned off
717  * @stats_buffer: DMA buffer for statistics
718  * @phy_type: PHY type
719  * @phy_op: PHY interface
720  * @phy_data: PHY private data (including PHY-specific stats)
721  * @mdio: PHY MDIO interface
722  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
723  * @link_advertising: Autonegotiation advertising flags
724  * @link_state: Current state of the link
725  * @n_link_state_changes: Number of times the link has changed state
726  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
727  *	Protected by @mac_lock.
728  * @multicast_hash: Multicast hash table for Falcon-arch.
729  *	Protected by @mac_lock.
730  * @wanted_fc: Wanted flow control flags
731  * @fc_disable: When non-zero flow control is disabled. Typically used to
732  *	ensure that network back pressure doesn't delay dma queue flushes.
733  *	Serialised by the rtnl lock.
734  * @mac_work: Work item for changing MAC promiscuity and multicast hash
735  * @loopback_mode: Loopback status
736  * @loopback_modes: Supported loopback mode bitmask
737  * @loopback_selftest: Offline self-test private state
738  * @filter_sem: Filter table rw_semaphore, for freeing the table
739  * @filter_lock: Filter table lock, for mere content changes
740  * @filter_state: Architecture-dependent filter table state
741  * @rps_expire_channel: Next channel to check for expiry
742  * @rps_expire_index: Next index to check for expiry in
743  *	@rps_expire_channel's @rps_flow_id
744  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
745  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
746  *	Decremented when the ef4_flush_rx_queue() is called.
747  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
748  *	completed (either success or failure). Not used when MCDI is used to
749  *	flush receive queues.
750  * @flush_wq: wait queue used by ef4_nic_flush_queues() to wait for flush completions.
751  * @vpd_sn: Serial number read from VPD
752  * @monitor_work: Hardware monitor workitem
753  * @biu_lock: BIU (bus interface unit) lock
754  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
755  *	field is used by ef4_test_interrupts() to verify that an
756  *	interrupt has occurred.
757  * @stats_lock: Statistics update lock. Must be held when calling
758  *	ef4_nic_type::{update,start,stop}_stats.
759  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
760  *
761  * This is stored in the private area of the &struct net_device.
762  */
763 struct ef4_nic {
764 	/* The following fields should be written very rarely */
765 
766 	char name[IFNAMSIZ];
767 	struct list_head node;
768 	struct ef4_nic *primary;
769 	struct list_head secondary_list;
770 	struct pci_dev *pci_dev;
771 	unsigned int port_num;
772 	const struct ef4_nic_type *type;
773 	int legacy_irq;
774 	bool eeh_disabled_legacy_irq;
775 	struct workqueue_struct *workqueue;
776 	char workqueue_name[16];
777 	struct work_struct reset_work;
778 	resource_size_t membase_phys;
779 	void __iomem *membase;
780 
781 	enum ef4_int_mode interrupt_mode;
782 	unsigned int timer_quantum_ns;
783 	unsigned int timer_max_ns;
784 	bool irq_rx_adaptive;
785 	unsigned int irq_mod_step_us;
786 	unsigned int irq_rx_moderation_us;
787 	u32 msg_enable;
788 
789 	enum nic_state state;
790 	unsigned long reset_pending;
791 
792 	struct ef4_channel *channel[EF4_MAX_CHANNELS];
793 	struct ef4_msi_context msi_context[EF4_MAX_CHANNELS];
794 	const struct ef4_channel_type *
795 	extra_channel_type[EF4_MAX_EXTRA_CHANNELS];
796 
797 	unsigned rxq_entries;
798 	unsigned txq_entries;
799 	unsigned int txq_stop_thresh;
800 	unsigned int txq_wake_thresh;
801 
802 	unsigned tx_dc_base;
803 	unsigned rx_dc_base;
804 	unsigned sram_lim_qw;
805 	unsigned next_buffer_table;
806 
807 	unsigned int max_channels;
808 	unsigned int max_tx_channels;
809 	unsigned n_channels;
810 	unsigned n_rx_channels;
811 	unsigned rss_spread;
812 	unsigned tx_channel_offset;
813 	unsigned n_tx_channels;
814 	unsigned int rx_ip_align;
815 	unsigned int rx_dma_len;
816 	unsigned int rx_buffer_order;
817 	unsigned int rx_buffer_truesize;
818 	unsigned int rx_page_buf_step;
819 	unsigned int rx_bufs_per_page;
820 	unsigned int rx_pages_per_batch;
821 	unsigned int rx_prefix_size;
822 	int rx_packet_hash_offset;
823 	int rx_packet_len_offset;
824 	int rx_packet_ts_offset;
825 	u8 rx_hash_key[40];
826 	u32 rx_indir_table[128];
827 	bool rx_scatter;
828 
829 	unsigned int_error_count;
830 	unsigned long int_error_expire;
831 
832 	bool irq_soft_enabled;
833 	struct ef4_buffer irq_status;
834 	unsigned irq_zero_count;
835 	unsigned irq_level;
836 	struct delayed_work selftest_work;
837 
838 #ifdef CONFIG_SFC_FALCON_MTD
839 	struct list_head mtd_list;
840 #endif
841 
842 	void *nic_data;
843 
844 	struct mutex mac_lock;
845 	struct work_struct mac_work;
846 	bool port_enabled;
847 
848 	bool mc_bist_for_other_fn;
849 	bool port_initialized;
850 	struct net_device *net_dev;
851 
852 	netdev_features_t fixed_features;
853 
854 	struct ef4_buffer stats_buffer;
855 	u64 rx_nodesc_drops_total;
856 	u64 rx_nodesc_drops_while_down;
857 	bool rx_nodesc_drops_prev_state;
858 
859 	unsigned int phy_type;
860 	const struct ef4_phy_operations *phy_op;
861 	void *phy_data;
862 	struct mdio_if_info mdio;
863 	enum ef4_phy_mode phy_mode;
864 
865 	u32 link_advertising;
866 	struct ef4_link_state link_state;
867 	unsigned int n_link_state_changes;
868 
869 	bool unicast_filter;
870 	union ef4_multicast_hash multicast_hash;
871 	u8 wanted_fc;
872 	unsigned fc_disable;
873 
874 	atomic_t rx_reset;
875 	enum ef4_loopback_mode loopback_mode;
876 	u64 loopback_modes;
877 
878 	void *loopback_selftest;
879 
880 	struct rw_semaphore filter_sem;
881 	spinlock_t filter_lock;
882 	void *filter_state;
883 #ifdef CONFIG_RFS_ACCEL
884 	unsigned int rps_expire_channel;
885 	unsigned int rps_expire_index;
886 #endif
887 
888 	atomic_t active_queues;
889 	atomic_t rxq_flush_pending;
890 	atomic_t rxq_flush_outstanding;
891 	wait_queue_head_t flush_wq;
892 
893 	char *vpd_sn;
894 
895 	/* The following fields may be written more often */
896 
897 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
898 	spinlock_t biu_lock;
899 	int last_irq_cpu;
900 	spinlock_t stats_lock;
901 	atomic_t n_rx_noskb_drops;
902 };
903 
904 static inline int ef4_dev_registered(struct ef4_nic *efx)
905 {
906 	return efx->net_dev->reg_state == NETREG_REGISTERED;
907 }
908 
909 static inline unsigned int ef4_port_num(struct ef4_nic *efx)
910 {
911 	return efx->port_num;
912 }
913 
914 struct ef4_mtd_partition {
915 	struct list_head node;
916 	struct mtd_info mtd;
917 	const char *dev_type_name;
918 	const char *type_name;
919 	char name[IFNAMSIZ + 20];
920 };
921 
922 /**
923  * struct ef4_nic_type - Efx device type definition
924  * @mem_bar: Get the memory BAR
925  * @mem_map_size: Get memory BAR mapped size
926  * @probe: Probe the controller
927  * @remove: Free resources allocated by probe()
928  * @init: Initialise the controller
929  * @dimension_resources: Dimension controller resources (buffer table,
930  *	and VIs once the available interrupt resources are clear)
931  * @fini: Shut down the controller
932  * @monitor: Periodic function for polling link state and hardware monitor
933  * @map_reset_reason: Map ethtool reset reason to a reset method
934  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
935  * @reset: Reset the controller hardware and possibly the PHY.  This will
936  *	be called while the controller is uninitialised.
937  * @probe_port: Probe the MAC and PHY
938  * @remove_port: Free resources allocated by probe_port()
939  * @handle_global_event: Handle a "global" event (may be %NULL)
940  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
941  * @prepare_flush: Prepare the hardware for flushing the DMA queues
942  *	(for Falcon architecture)
943  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
944  *	architecture)
945  * @prepare_flr: Prepare for an FLR
946  * @finish_flr: Clean up after an FLR
947  * @describe_stats: Describe statistics for ethtool
948  * @update_stats: Update statistics not provided by event handling.
949  *	Either argument may be %NULL.
950  * @start_stats: Start the regular fetching of statistics
951  * @pull_stats: Pull stats from the NIC and wait until they arrive.
952  * @stop_stats: Stop the regular fetching of statistics
953  * @set_id_led: Set state of identifying LED or revert to automatic function
954  * @push_irq_moderation: Apply interrupt moderation value
955  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
956  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
957  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
958  *	to the hardware.  Serialised by the mac_lock.
959  * @check_mac_fault: Check MAC fault state. True if fault present.
960  * @get_wol: Get WoL configuration from driver state
961  * @set_wol: Push WoL configuration to the NIC
962  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
963  * @test_chip: Test registers.  May use ef4_farch_test_registers(), and is
964  *	expected to reset the NIC.
965  * @test_nvram: Test validity of NVRAM contents
966  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
967  *	be separately enabled after this.
968  * @irq_test_generate: Generate a test IRQ
969  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
970  *	queue must be separately disabled before this.
971  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
972  *	a pointer to the &struct ef4_msi_context for the channel.
973  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
974  *	is a pointer to the &struct ef4_nic.
975  * @tx_probe: Allocate resources for TX queue
976  * @tx_init: Initialise TX queue on the NIC
977  * @tx_remove: Free resources for TX queue
978  * @tx_write: Write TX descriptors and doorbell
979  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
980  * @rx_probe: Allocate resources for RX queue
981  * @rx_init: Initialise RX queue on the NIC
982  * @rx_remove: Free resources for RX queue
983  * @rx_write: Write RX descriptors and doorbell
984  * @rx_defer_refill: Generate a refill reminder event
985  * @ev_probe: Allocate resources for event queue
986  * @ev_init: Initialise event queue on the NIC
987  * @ev_fini: Deinitialise event queue on the NIC
988  * @ev_remove: Free resources for event queue
989  * @ev_process: Process events for a queue, up to the given NAPI quota
990  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
991  * @ev_test_generate: Generate a test event
992  * @filter_table_probe: Probe filter capabilities and set up filter software state
993  * @filter_table_restore: Restore filters removed from hardware
994  * @filter_table_remove: Remove filters from hardware and tear down software state
995  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
996  * @filter_insert: add or replace a filter
997  * @filter_remove_safe: remove a filter by ID, carefully
998  * @filter_get_safe: retrieve a filter by ID, carefully
999  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1000  *	equal to the given priority and is not %EF4_FILTER_PRI_AUTO
1001  * @filter_count_rx_used: Get the number of filters in use at a given priority
1002  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1003  * @filter_get_rx_ids: Get list of RX filters at a given priority
1004  * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1005  *	atomic.  The hardware change may be asynchronous but should
1006  *	not be delayed for long.  It may fail if this can't be done
1007  *	atomically.
1008  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1009  *	This must check whether the specified table entry is used by RFS
1010  *	and that rps_may_expire_flow() returns true for it.
1011  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1012  *	 using ef4_mtd_add()
1013  * @mtd_rename: Set an MTD partition name using the net device name
1014  * @mtd_read: Read from an MTD partition
1015  * @mtd_erase: Erase part of an MTD partition
1016  * @mtd_write: Write to an MTD partition
1017  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1018  *	also notifies the driver that a writer has finished using this
1019  *	partition.
1020  * @set_mac_address: Set the MAC address of the device
1021  * @revision: Hardware architecture revision
1022  * @txd_ptr_tbl_base: TX descriptor ring base address
1023  * @rxd_ptr_tbl_base: RX descriptor ring base address
1024  * @buf_tbl_base: Buffer table base address
1025  * @evq_ptr_tbl_base: Event queue pointer table base address
1026  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1027  * @max_dma_mask: Maximum possible DMA mask
1028  * @rx_prefix_size: Size of RX prefix before packet data
1029  * @rx_hash_offset: Offset of RX flow hash within prefix
1030  * @rx_ts_offset: Offset of timestamp within prefix
1031  * @rx_buffer_padding: Size of padding at end of RX packet
1032  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1033  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1034  * @max_interrupt_mode: Highest capability interrupt mode supported
1035  *	from &enum ef4_init_mode.
1036  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1037  * @offload_features: net_device feature flags for protocol offload
1038  *	features implemented in hardware
1039  */
1040 struct ef4_nic_type {
1041 	unsigned int mem_bar;
1042 	unsigned int (*mem_map_size)(struct ef4_nic *efx);
1043 	int (*probe)(struct ef4_nic *efx);
1044 	void (*remove)(struct ef4_nic *efx);
1045 	int (*init)(struct ef4_nic *efx);
1046 	int (*dimension_resources)(struct ef4_nic *efx);
1047 	void (*fini)(struct ef4_nic *efx);
1048 	void (*monitor)(struct ef4_nic *efx);
1049 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1050 	int (*map_reset_flags)(u32 *flags);
1051 	int (*reset)(struct ef4_nic *efx, enum reset_type method);
1052 	int (*probe_port)(struct ef4_nic *efx);
1053 	void (*remove_port)(struct ef4_nic *efx);
1054 	bool (*handle_global_event)(struct ef4_channel *channel, ef4_qword_t *);
1055 	int (*fini_dmaq)(struct ef4_nic *efx);
1056 	void (*prepare_flush)(struct ef4_nic *efx);
1057 	void (*finish_flush)(struct ef4_nic *efx);
1058 	void (*prepare_flr)(struct ef4_nic *efx);
1059 	void (*finish_flr)(struct ef4_nic *efx);
1060 	size_t (*describe_stats)(struct ef4_nic *efx, u8 *names);
1061 	size_t (*update_stats)(struct ef4_nic *efx, u64 *full_stats,
1062 			       struct rtnl_link_stats64 *core_stats);
1063 	void (*start_stats)(struct ef4_nic *efx);
1064 	void (*pull_stats)(struct ef4_nic *efx);
1065 	void (*stop_stats)(struct ef4_nic *efx);
1066 	void (*set_id_led)(struct ef4_nic *efx, enum ef4_led_mode mode);
1067 	void (*push_irq_moderation)(struct ef4_channel *channel);
1068 	int (*reconfigure_port)(struct ef4_nic *efx);
1069 	void (*prepare_enable_fc_tx)(struct ef4_nic *efx);
1070 	int (*reconfigure_mac)(struct ef4_nic *efx);
1071 	bool (*check_mac_fault)(struct ef4_nic *efx);
1072 	void (*get_wol)(struct ef4_nic *efx, struct ethtool_wolinfo *wol);
1073 	int (*set_wol)(struct ef4_nic *efx, u32 type);
1074 	void (*resume_wol)(struct ef4_nic *efx);
1075 	int (*test_chip)(struct ef4_nic *efx, struct ef4_self_tests *tests);
1076 	int (*test_nvram)(struct ef4_nic *efx);
1077 	void (*irq_enable_master)(struct ef4_nic *efx);
1078 	int (*irq_test_generate)(struct ef4_nic *efx);
1079 	void (*irq_disable_non_ev)(struct ef4_nic *efx);
1080 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1081 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1082 	int (*tx_probe)(struct ef4_tx_queue *tx_queue);
1083 	void (*tx_init)(struct ef4_tx_queue *tx_queue);
1084 	void (*tx_remove)(struct ef4_tx_queue *tx_queue);
1085 	void (*tx_write)(struct ef4_tx_queue *tx_queue);
1086 	unsigned int (*tx_limit_len)(struct ef4_tx_queue *tx_queue,
1087 				     dma_addr_t dma_addr, unsigned int len);
1088 	int (*rx_push_rss_config)(struct ef4_nic *efx, bool user,
1089 				  const u32 *rx_indir_table);
1090 	int (*rx_probe)(struct ef4_rx_queue *rx_queue);
1091 	void (*rx_init)(struct ef4_rx_queue *rx_queue);
1092 	void (*rx_remove)(struct ef4_rx_queue *rx_queue);
1093 	void (*rx_write)(struct ef4_rx_queue *rx_queue);
1094 	void (*rx_defer_refill)(struct ef4_rx_queue *rx_queue);
1095 	int (*ev_probe)(struct ef4_channel *channel);
1096 	int (*ev_init)(struct ef4_channel *channel);
1097 	void (*ev_fini)(struct ef4_channel *channel);
1098 	void (*ev_remove)(struct ef4_channel *channel);
1099 	int (*ev_process)(struct ef4_channel *channel, int quota);
1100 	void (*ev_read_ack)(struct ef4_channel *channel);
1101 	void (*ev_test_generate)(struct ef4_channel *channel);
1102 	int (*filter_table_probe)(struct ef4_nic *efx);
1103 	void (*filter_table_restore)(struct ef4_nic *efx);
1104 	void (*filter_table_remove)(struct ef4_nic *efx);
1105 	void (*filter_update_rx_scatter)(struct ef4_nic *efx);
1106 	s32 (*filter_insert)(struct ef4_nic *efx,
1107 			     struct ef4_filter_spec *spec, bool replace);
1108 	int (*filter_remove_safe)(struct ef4_nic *efx,
1109 				  enum ef4_filter_priority priority,
1110 				  u32 filter_id);
1111 	int (*filter_get_safe)(struct ef4_nic *efx,
1112 			       enum ef4_filter_priority priority,
1113 			       u32 filter_id, struct ef4_filter_spec *);
1114 	int (*filter_clear_rx)(struct ef4_nic *efx,
1115 			       enum ef4_filter_priority priority);
1116 	u32 (*filter_count_rx_used)(struct ef4_nic *efx,
1117 				    enum ef4_filter_priority priority);
1118 	u32 (*filter_get_rx_id_limit)(struct ef4_nic *efx);
1119 	s32 (*filter_get_rx_ids)(struct ef4_nic *efx,
1120 				 enum ef4_filter_priority priority,
1121 				 u32 *buf, u32 size);
1122 #ifdef CONFIG_RFS_ACCEL
1123 	s32 (*filter_rfs_insert)(struct ef4_nic *efx,
1124 				 struct ef4_filter_spec *spec);
1125 	bool (*filter_rfs_expire_one)(struct ef4_nic *efx, u32 flow_id,
1126 				      unsigned int index);
1127 #endif
1128 #ifdef CONFIG_SFC_FALCON_MTD
1129 	int (*mtd_probe)(struct ef4_nic *efx);
1130 	void (*mtd_rename)(struct ef4_mtd_partition *part);
1131 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1132 			size_t *retlen, u8 *buffer);
1133 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1134 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1135 			 size_t *retlen, const u8 *buffer);
1136 	int (*mtd_sync)(struct mtd_info *mtd);
1137 #endif
1138 	int (*get_mac_address)(struct ef4_nic *efx, unsigned char *perm_addr);
1139 	int (*set_mac_address)(struct ef4_nic *efx);
1140 
1141 	int revision;
1142 	unsigned int txd_ptr_tbl_base;
1143 	unsigned int rxd_ptr_tbl_base;
1144 	unsigned int buf_tbl_base;
1145 	unsigned int evq_ptr_tbl_base;
1146 	unsigned int evq_rptr_tbl_base;
1147 	u64 max_dma_mask;
1148 	unsigned int rx_prefix_size;
1149 	unsigned int rx_hash_offset;
1150 	unsigned int rx_ts_offset;
1151 	unsigned int rx_buffer_padding;
1152 	bool can_rx_scatter;
1153 	bool always_rx_scatter;
1154 	unsigned int max_interrupt_mode;
1155 	unsigned int timer_period_max;
1156 	netdev_features_t offload_features;
1157 	unsigned int max_rx_ip_filters;
1158 };
1159 
1160 /**************************************************************************
1161  *
1162  * Prototypes and inline functions
1163  *
1164  *************************************************************************/
1165 
1166 static inline struct ef4_channel *
1167 ef4_get_channel(struct ef4_nic *efx, unsigned index)
1168 {
1169 	EF4_BUG_ON_PARANOID(index >= efx->n_channels);
1170 	return efx->channel[index];
1171 }
1172 
1173 /* Iterate over all used channels */
1174 #define ef4_for_each_channel(_channel, _efx)				\
1175 	for (_channel = (_efx)->channel[0];				\
1176 	     _channel;							\
1177 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1178 		     (_efx)->channel[_channel->channel + 1] : NULL)
1179 
1180 /* Iterate over all used channels in reverse */
1181 #define ef4_for_each_channel_rev(_channel, _efx)			\
1182 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1183 	     _channel;							\
1184 	     _channel = _channel->channel ?				\
1185 		     (_efx)->channel[_channel->channel - 1] : NULL)
1186 
1187 static inline struct ef4_tx_queue *
1188 ef4_get_tx_queue(struct ef4_nic *efx, unsigned index, unsigned type)
1189 {
1190 	EF4_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1191 			    type >= EF4_TXQ_TYPES);
1192 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1193 }
1194 
1195 static inline bool ef4_channel_has_tx_queues(struct ef4_channel *channel)
1196 {
1197 	return channel->channel - channel->efx->tx_channel_offset <
1198 		channel->efx->n_tx_channels;
1199 }
1200 
1201 static inline struct ef4_tx_queue *
1202 ef4_channel_get_tx_queue(struct ef4_channel *channel, unsigned type)
1203 {
1204 	EF4_BUG_ON_PARANOID(!ef4_channel_has_tx_queues(channel) ||
1205 			    type >= EF4_TXQ_TYPES);
1206 	return &channel->tx_queue[type];
1207 }
1208 
1209 static inline bool ef4_tx_queue_used(struct ef4_tx_queue *tx_queue)
1210 {
1211 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1212 		 tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI);
1213 }
1214 
1215 /* Iterate over all TX queues belonging to a channel */
1216 #define ef4_for_each_channel_tx_queue(_tx_queue, _channel)		\
1217 	if (!ef4_channel_has_tx_queues(_channel))			\
1218 		;							\
1219 	else								\
1220 		for (_tx_queue = (_channel)->tx_queue;			\
1221 		     _tx_queue < (_channel)->tx_queue + EF4_TXQ_TYPES && \
1222 			     ef4_tx_queue_used(_tx_queue);		\
1223 		     _tx_queue++)
1224 
1225 /* Iterate over all possible TX queues belonging to a channel */
1226 #define ef4_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1227 	if (!ef4_channel_has_tx_queues(_channel))			\
1228 		;							\
1229 	else								\
1230 		for (_tx_queue = (_channel)->tx_queue;			\
1231 		     _tx_queue < (_channel)->tx_queue + EF4_TXQ_TYPES;	\
1232 		     _tx_queue++)
1233 
1234 static inline bool ef4_channel_has_rx_queue(struct ef4_channel *channel)
1235 {
1236 	return channel->rx_queue.core_index >= 0;
1237 }
1238 
1239 static inline struct ef4_rx_queue *
1240 ef4_channel_get_rx_queue(struct ef4_channel *channel)
1241 {
1242 	EF4_BUG_ON_PARANOID(!ef4_channel_has_rx_queue(channel));
1243 	return &channel->rx_queue;
1244 }
1245 
1246 /* Iterate over all RX queues belonging to a channel */
1247 #define ef4_for_each_channel_rx_queue(_rx_queue, _channel)		\
1248 	if (!ef4_channel_has_rx_queue(_channel))			\
1249 		;							\
1250 	else								\
1251 		for (_rx_queue = &(_channel)->rx_queue;			\
1252 		     _rx_queue;						\
1253 		     _rx_queue = NULL)
1254 
1255 static inline struct ef4_channel *
1256 ef4_rx_queue_channel(struct ef4_rx_queue *rx_queue)
1257 {
1258 	return container_of(rx_queue, struct ef4_channel, rx_queue);
1259 }
1260 
1261 static inline int ef4_rx_queue_index(struct ef4_rx_queue *rx_queue)
1262 {
1263 	return ef4_rx_queue_channel(rx_queue)->channel;
1264 }
1265 
1266 /* Returns a pointer to the specified receive buffer in the RX
1267  * descriptor queue.
1268  */
1269 static inline struct ef4_rx_buffer *ef4_rx_buffer(struct ef4_rx_queue *rx_queue,
1270 						  unsigned int index)
1271 {
1272 	return &rx_queue->buffer[index];
1273 }
1274 
1275 /**
1276  * EF4_MAX_FRAME_LEN - calculate maximum frame length
1277  *
1278  * This calculates the maximum frame length that will be used for a
1279  * given MTU.  The frame length will be equal to the MTU plus a
1280  * constant amount of header space and padding.  This is the quantity
1281  * that the net driver will program into the MAC as the maximum frame
1282  * length.
1283  *
1284  * The 10G MAC requires 8-byte alignment on the frame
1285  * length, so we round up to the nearest 8.
1286  *
1287  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1288  * XGMII cycle).  If the frame length reaches the maximum value in the
1289  * same cycle, the XMAC can miss the IPG altogether.  We work around
1290  * this by adding a further 16 bytes.
1291  */
1292 #define EF4_FRAME_PAD	16
1293 #define EF4_MAX_FRAME_LEN(mtu) \
1294 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EF4_FRAME_PAD), 8))
1295 
1296 /* Get all supported features.
1297  * If a feature is not fixed, it is present in hw_features.
1298  * If a feature is fixed, it does not present in hw_features, but
1299  * always in features.
1300  */
1301 static inline netdev_features_t ef4_supported_features(const struct ef4_nic *efx)
1302 {
1303 	const struct net_device *net_dev = efx->net_dev;
1304 
1305 	return net_dev->features | net_dev->hw_features;
1306 }
1307 
1308 /* Get the current TX queue insert index. */
1309 static inline unsigned int
1310 ef4_tx_queue_get_insert_index(const struct ef4_tx_queue *tx_queue)
1311 {
1312 	return tx_queue->insert_count & tx_queue->ptr_mask;
1313 }
1314 
1315 /* Get a TX buffer. */
1316 static inline struct ef4_tx_buffer *
1317 __ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue *tx_queue)
1318 {
1319 	return &tx_queue->buffer[ef4_tx_queue_get_insert_index(tx_queue)];
1320 }
1321 
1322 /* Get a TX buffer, checking it's not currently in use. */
1323 static inline struct ef4_tx_buffer *
1324 ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue *tx_queue)
1325 {
1326 	struct ef4_tx_buffer *buffer =
1327 		__ef4_tx_queue_get_insert_buffer(tx_queue);
1328 
1329 	EF4_BUG_ON_PARANOID(buffer->len);
1330 	EF4_BUG_ON_PARANOID(buffer->flags);
1331 	EF4_BUG_ON_PARANOID(buffer->unmap_len);
1332 
1333 	return buffer;
1334 }
1335 
1336 #endif /* EF4_NET_DRIVER_H */
1337