xref: /openbmc/linux/drivers/net/ethernet/sfc/falcon/farch.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25 
26 /* Falcon-architecture (SFC4000) support */
27 
28 /**************************************************************************
29  *
30  * Configurable values
31  *
32  **************************************************************************
33  */
34 
35 /* This is set to 16 for a good reason.  In summary, if larger than
36  * 16, the descriptor cache holds more than a default socket
37  * buffer's worth of packets (for UDP we can only have at most one
38  * socket buffer's worth outstanding).  This combined with the fact
39  * that we only get 1 TX event per descriptor cache means the NIC
40  * goes idle.
41  */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44 
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47 
48 /* If EF4_MAX_INT_ERRORS internal errors occur within
49  * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50  * disable it.
51  */
52 #define EF4_INT_ERROR_EXPIRE 3600
53 #define EF4_MAX_INT_ERRORS 5
54 
55 /* Depth of RX flush request fifo */
56 #define EF4_RX_FLUSH_COUNT 4
57 
58 /* Driver generated events */
59 #define _EF4_CHANNEL_MAGIC_TEST		0x000101
60 #define _EF4_CHANNEL_MAGIC_FILL		0x000102
61 #define _EF4_CHANNEL_MAGIC_RX_DRAIN	0x000103
62 #define _EF4_CHANNEL_MAGIC_TX_DRAIN	0x000104
63 
64 #define _EF4_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
65 #define _EF4_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
66 
67 #define EF4_CHANNEL_MAGIC_TEST(_channel)				\
68 	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue)				\
70 	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL,			\
71 			   ef4_rx_queue_index(_rx_queue))
72 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
73 	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN,			\
74 			   ef4_rx_queue_index(_rx_queue))
75 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
76 	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN,			\
77 			   (_tx_queue)->queue)
78 
79 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
80 
81 /**************************************************************************
82  *
83  * Hardware access
84  *
85  **************************************************************************/
86 
87 static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
88 				     unsigned int index)
89 {
90 	ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 			value, index);
92 }
93 
94 static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
95 				     const ef4_oword_t *mask)
96 {
97 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100 
101 int ef4_farch_test_registers(struct ef4_nic *efx,
102 			     const struct ef4_farch_register_test *regs,
103 			     size_t n_regs)
104 {
105 	unsigned address = 0;
106 	int i, j;
107 	ef4_oword_t mask, imask, original, reg, buf;
108 
109 	for (i = 0; i < n_regs; ++i) {
110 		address = regs[i].address;
111 		mask = imask = regs[i].mask;
112 		EF4_INVERT_OWORD(imask);
113 
114 		ef4_reado(efx, &original, address);
115 
116 		/* bit sweep on and off */
117 		for (j = 0; j < 128; j++) {
118 			if (!EF4_EXTRACT_OWORD32(mask, j, j))
119 				continue;
120 
121 			/* Test this testable bit can be set in isolation */
122 			EF4_AND_OWORD(reg, original, mask);
123 			EF4_SET_OWORD32(reg, j, j, 1);
124 
125 			ef4_writeo(efx, &reg, address);
126 			ef4_reado(efx, &buf, address);
127 
128 			if (ef4_masked_compare_oword(&reg, &buf, &mask))
129 				goto fail;
130 
131 			/* Test this testable bit can be cleared in isolation */
132 			EF4_OR_OWORD(reg, original, mask);
133 			EF4_SET_OWORD32(reg, j, j, 0);
134 
135 			ef4_writeo(efx, &reg, address);
136 			ef4_reado(efx, &buf, address);
137 
138 			if (ef4_masked_compare_oword(&reg, &buf, &mask))
139 				goto fail;
140 		}
141 
142 		ef4_writeo(efx, &original, address);
143 	}
144 
145 	return 0;
146 
147 fail:
148 	netif_err(efx, hw, efx->net_dev,
149 		  "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
150 		  " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
151 		  EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
152 	return -EIO;
153 }
154 
155 /**************************************************************************
156  *
157  * Special buffer handling
158  * Special buffers are used for event queues and the TX and RX
159  * descriptor rings.
160  *
161  *************************************************************************/
162 
163 /*
164  * Initialise a special buffer
165  *
166  * This will define a buffer (previously allocated via
167  * ef4_alloc_special_buffer()) in the buffer table, allowing
168  * it to be used for event queues, descriptor rings etc.
169  */
170 static void
171 ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
172 {
173 	ef4_qword_t buf_desc;
174 	unsigned int index;
175 	dma_addr_t dma_addr;
176 	int i;
177 
178 	EF4_BUG_ON_PARANOID(!buffer->buf.addr);
179 
180 	/* Write buffer descriptors to NIC */
181 	for (i = 0; i < buffer->entries; i++) {
182 		index = buffer->index + i;
183 		dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
184 		netif_dbg(efx, probe, efx->net_dev,
185 			  "mapping special buffer %d at %llx\n",
186 			  index, (unsigned long long)dma_addr);
187 		EF4_POPULATE_QWORD_3(buf_desc,
188 				     FRF_AZ_BUF_ADR_REGION, 0,
189 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
190 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
191 		ef4_write_buf_tbl(efx, &buf_desc, index);
192 	}
193 }
194 
195 /* Unmaps a buffer and clears the buffer table entries */
196 static void
197 ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
198 {
199 	ef4_oword_t buf_tbl_upd;
200 	unsigned int start = buffer->index;
201 	unsigned int end = (buffer->index + buffer->entries - 1);
202 
203 	if (!buffer->entries)
204 		return;
205 
206 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
207 		  buffer->index, buffer->index + buffer->entries - 1);
208 
209 	EF4_POPULATE_OWORD_4(buf_tbl_upd,
210 			     FRF_AZ_BUF_UPD_CMD, 0,
211 			     FRF_AZ_BUF_CLR_CMD, 1,
212 			     FRF_AZ_BUF_CLR_END_ID, end,
213 			     FRF_AZ_BUF_CLR_START_ID, start);
214 	ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
215 }
216 
217 /*
218  * Allocate a new special buffer
219  *
220  * This allocates memory for a new buffer, clears it and allocates a
221  * new buffer ID range.  It does not write into the buffer table.
222  *
223  * This call will allocate 4KB buffers, since 8KB buffers can't be
224  * used for event queues and descriptor rings.
225  */
226 static int ef4_alloc_special_buffer(struct ef4_nic *efx,
227 				    struct ef4_special_buffer *buffer,
228 				    unsigned int len)
229 {
230 	len = ALIGN(len, EF4_BUF_SIZE);
231 
232 	if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
233 		return -ENOMEM;
234 	buffer->entries = len / EF4_BUF_SIZE;
235 	BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
236 
237 	/* Select new buffer ID */
238 	buffer->index = efx->next_buffer_table;
239 	efx->next_buffer_table += buffer->entries;
240 
241 	netif_dbg(efx, probe, efx->net_dev,
242 		  "allocating special buffers %d-%d at %llx+%x "
243 		  "(virt %p phys %llx)\n", buffer->index,
244 		  buffer->index + buffer->entries - 1,
245 		  (u64)buffer->buf.dma_addr, len,
246 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
247 
248 	return 0;
249 }
250 
251 static void
252 ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
253 {
254 	if (!buffer->buf.addr)
255 		return;
256 
257 	netif_dbg(efx, hw, efx->net_dev,
258 		  "deallocating special buffers %d-%d at %llx+%x "
259 		  "(virt %p phys %llx)\n", buffer->index,
260 		  buffer->index + buffer->entries - 1,
261 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
262 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
263 
264 	ef4_nic_free_buffer(efx, &buffer->buf);
265 	buffer->entries = 0;
266 }
267 
268 /**************************************************************************
269  *
270  * TX path
271  *
272  **************************************************************************/
273 
274 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
275 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
276 {
277 	unsigned write_ptr;
278 	ef4_dword_t reg;
279 
280 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
281 	EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
282 	ef4_writed_page(tx_queue->efx, &reg,
283 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
284 }
285 
286 /* Write pointer and first descriptor for TX descriptor ring */
287 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
288 					  const ef4_qword_t *txd)
289 {
290 	unsigned write_ptr;
291 	ef4_oword_t reg;
292 
293 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
294 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
295 
296 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
297 	EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
298 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
299 	reg.qword[0] = *txd;
300 	ef4_writeo_page(tx_queue->efx, &reg,
301 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
302 }
303 
304 
305 /* For each entry inserted into the software descriptor ring, create a
306  * descriptor in the hardware TX descriptor ring (in host memory), and
307  * write a doorbell.
308  */
309 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
310 {
311 	struct ef4_tx_buffer *buffer;
312 	ef4_qword_t *txd;
313 	unsigned write_ptr;
314 	unsigned old_write_count = tx_queue->write_count;
315 
316 	tx_queue->xmit_more_available = false;
317 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
318 		return;
319 
320 	do {
321 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
322 		buffer = &tx_queue->buffer[write_ptr];
323 		txd = ef4_tx_desc(tx_queue, write_ptr);
324 		++tx_queue->write_count;
325 
326 		EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
327 
328 		/* Create TX descriptor ring entry */
329 		BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
330 		EF4_POPULATE_QWORD_4(*txd,
331 				     FSF_AZ_TX_KER_CONT,
332 				     buffer->flags & EF4_TX_BUF_CONT,
333 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
334 				     FSF_AZ_TX_KER_BUF_REGION, 0,
335 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
336 	} while (tx_queue->write_count != tx_queue->insert_count);
337 
338 	wmb(); /* Ensure descriptors are written before they are fetched */
339 
340 	if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
341 		txd = ef4_tx_desc(tx_queue,
342 				  old_write_count & tx_queue->ptr_mask);
343 		ef4_farch_push_tx_desc(tx_queue, txd);
344 		++tx_queue->pushes;
345 	} else {
346 		ef4_farch_notify_tx_desc(tx_queue);
347 	}
348 }
349 
350 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
351 				    dma_addr_t dma_addr, unsigned int len)
352 {
353 	/* Don't cross 4K boundaries with descriptors. */
354 	unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
355 
356 	len = min(limit, len);
357 
358 	if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
359 		len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
360 
361 	return len;
362 }
363 
364 
365 /* Allocate hardware resources for a TX queue */
366 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
367 {
368 	struct ef4_nic *efx = tx_queue->efx;
369 	unsigned entries;
370 
371 	entries = tx_queue->ptr_mask + 1;
372 	return ef4_alloc_special_buffer(efx, &tx_queue->txd,
373 					entries * sizeof(ef4_qword_t));
374 }
375 
376 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
377 {
378 	struct ef4_nic *efx = tx_queue->efx;
379 	ef4_oword_t reg;
380 
381 	/* Pin TX descriptor ring */
382 	ef4_init_special_buffer(efx, &tx_queue->txd);
383 
384 	/* Push TX descriptor ring to card */
385 	EF4_POPULATE_OWORD_10(reg,
386 			      FRF_AZ_TX_DESCQ_EN, 1,
387 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
388 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
389 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
390 			      FRF_AZ_TX_DESCQ_EVQ_ID,
391 			      tx_queue->channel->channel,
392 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
393 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
394 			      FRF_AZ_TX_DESCQ_SIZE,
395 			      __ffs(tx_queue->txd.entries),
396 			      FRF_AZ_TX_DESCQ_TYPE, 0,
397 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
398 
399 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
400 		int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
401 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
402 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
403 				    !csum);
404 	}
405 
406 	ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
407 			 tx_queue->queue);
408 
409 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
410 		/* Only 128 bits in this register */
411 		BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
412 
413 		ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
414 		if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
415 			__clear_bit_le(tx_queue->queue, &reg);
416 		else
417 			__set_bit_le(tx_queue->queue, &reg);
418 		ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
419 	}
420 
421 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
422 		EF4_POPULATE_OWORD_1(reg,
423 				     FRF_BZ_TX_PACE,
424 				     (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
425 				     FFE_BZ_TX_PACE_OFF :
426 				     FFE_BZ_TX_PACE_RESERVED);
427 		ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
428 				 tx_queue->queue);
429 	}
430 }
431 
432 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
433 {
434 	struct ef4_nic *efx = tx_queue->efx;
435 	ef4_oword_t tx_flush_descq;
436 
437 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
438 	atomic_set(&tx_queue->flush_outstanding, 1);
439 
440 	EF4_POPULATE_OWORD_2(tx_flush_descq,
441 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
442 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
443 	ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
444 }
445 
446 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
447 {
448 	struct ef4_nic *efx = tx_queue->efx;
449 	ef4_oword_t tx_desc_ptr;
450 
451 	/* Remove TX descriptor ring from card */
452 	EF4_ZERO_OWORD(tx_desc_ptr);
453 	ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
454 			 tx_queue->queue);
455 
456 	/* Unpin TX descriptor ring */
457 	ef4_fini_special_buffer(efx, &tx_queue->txd);
458 }
459 
460 /* Free buffers backing TX queue */
461 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
462 {
463 	ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
464 }
465 
466 /**************************************************************************
467  *
468  * RX path
469  *
470  **************************************************************************/
471 
472 /* This creates an entry in the RX descriptor queue */
473 static inline void
474 ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
475 {
476 	struct ef4_rx_buffer *rx_buf;
477 	ef4_qword_t *rxd;
478 
479 	rxd = ef4_rx_desc(rx_queue, index);
480 	rx_buf = ef4_rx_buffer(rx_queue, index);
481 	EF4_POPULATE_QWORD_3(*rxd,
482 			     FSF_AZ_RX_KER_BUF_SIZE,
483 			     rx_buf->len -
484 			     rx_queue->efx->type->rx_buffer_padding,
485 			     FSF_AZ_RX_KER_BUF_REGION, 0,
486 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
487 }
488 
489 /* This writes to the RX_DESC_WPTR register for the specified receive
490  * descriptor ring.
491  */
492 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
493 {
494 	struct ef4_nic *efx = rx_queue->efx;
495 	ef4_dword_t reg;
496 	unsigned write_ptr;
497 
498 	while (rx_queue->notified_count != rx_queue->added_count) {
499 		ef4_farch_build_rx_desc(
500 			rx_queue,
501 			rx_queue->notified_count & rx_queue->ptr_mask);
502 		++rx_queue->notified_count;
503 	}
504 
505 	wmb();
506 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
507 	EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
508 	ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
509 			ef4_rx_queue_index(rx_queue));
510 }
511 
512 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
513 {
514 	struct ef4_nic *efx = rx_queue->efx;
515 	unsigned entries;
516 
517 	entries = rx_queue->ptr_mask + 1;
518 	return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
519 					entries * sizeof(ef4_qword_t));
520 }
521 
522 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
523 {
524 	ef4_oword_t rx_desc_ptr;
525 	struct ef4_nic *efx = rx_queue->efx;
526 	bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
527 	bool iscsi_digest_en = is_b0;
528 	bool jumbo_en;
529 
530 	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
531 	 * DMA to continue after a PCIe page boundary (and scattering
532 	 * is not possible).  In Falcon B0 and Siena, it enables
533 	 * scatter.
534 	 */
535 	jumbo_en = !is_b0 || efx->rx_scatter;
536 
537 	netif_dbg(efx, hw, efx->net_dev,
538 		  "RX queue %d ring in special buffers %d-%d\n",
539 		  ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
540 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
541 
542 	rx_queue->scatter_n = 0;
543 
544 	/* Pin RX descriptor ring */
545 	ef4_init_special_buffer(efx, &rx_queue->rxd);
546 
547 	/* Push RX descriptor ring to card */
548 	EF4_POPULATE_OWORD_10(rx_desc_ptr,
549 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
550 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
551 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
552 			      FRF_AZ_RX_DESCQ_EVQ_ID,
553 			      ef4_rx_queue_channel(rx_queue)->channel,
554 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
555 			      FRF_AZ_RX_DESCQ_LABEL,
556 			      ef4_rx_queue_index(rx_queue),
557 			      FRF_AZ_RX_DESCQ_SIZE,
558 			      __ffs(rx_queue->rxd.entries),
559 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
560 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
561 			      FRF_AZ_RX_DESCQ_EN, 1);
562 	ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
563 			 ef4_rx_queue_index(rx_queue));
564 }
565 
566 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
567 {
568 	struct ef4_nic *efx = rx_queue->efx;
569 	ef4_oword_t rx_flush_descq;
570 
571 	EF4_POPULATE_OWORD_2(rx_flush_descq,
572 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
573 			     FRF_AZ_RX_FLUSH_DESCQ,
574 			     ef4_rx_queue_index(rx_queue));
575 	ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
576 }
577 
578 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
579 {
580 	ef4_oword_t rx_desc_ptr;
581 	struct ef4_nic *efx = rx_queue->efx;
582 
583 	/* Remove RX descriptor ring from card */
584 	EF4_ZERO_OWORD(rx_desc_ptr);
585 	ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
586 			 ef4_rx_queue_index(rx_queue));
587 
588 	/* Unpin RX descriptor ring */
589 	ef4_fini_special_buffer(efx, &rx_queue->rxd);
590 }
591 
592 /* Free buffers backing RX queue */
593 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
594 {
595 	ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
596 }
597 
598 /**************************************************************************
599  *
600  * Flush handling
601  *
602  **************************************************************************/
603 
604 /* ef4_farch_flush_queues() must be woken up when all flushes are completed,
605  * or more RX flushes can be kicked off.
606  */
607 static bool ef4_farch_flush_wake(struct ef4_nic *efx)
608 {
609 	/* Ensure that all updates are visible to ef4_farch_flush_queues() */
610 	smp_mb();
611 
612 	return (atomic_read(&efx->active_queues) == 0 ||
613 		(atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
614 		 && atomic_read(&efx->rxq_flush_pending) > 0));
615 }
616 
617 static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
618 {
619 	bool i = true;
620 	ef4_oword_t txd_ptr_tbl;
621 	struct ef4_channel *channel;
622 	struct ef4_tx_queue *tx_queue;
623 
624 	ef4_for_each_channel(channel, efx) {
625 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
626 			ef4_reado_table(efx, &txd_ptr_tbl,
627 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
628 			if (EF4_OWORD_FIELD(txd_ptr_tbl,
629 					    FRF_AZ_TX_DESCQ_FLUSH) ||
630 			    EF4_OWORD_FIELD(txd_ptr_tbl,
631 					    FRF_AZ_TX_DESCQ_EN)) {
632 				netif_dbg(efx, hw, efx->net_dev,
633 					  "flush did not complete on TXQ %d\n",
634 					  tx_queue->queue);
635 				i = false;
636 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
637 						  1, 0)) {
638 				/* The flush is complete, but we didn't
639 				 * receive a flush completion event
640 				 */
641 				netif_dbg(efx, hw, efx->net_dev,
642 					  "flush complete on TXQ %d, so drain "
643 					  "the queue\n", tx_queue->queue);
644 				/* Don't need to increment active_queues as it
645 				 * has already been incremented for the queues
646 				 * which did not drain
647 				 */
648 				ef4_farch_magic_event(channel,
649 						      EF4_CHANNEL_MAGIC_TX_DRAIN(
650 							      tx_queue));
651 			}
652 		}
653 	}
654 
655 	return i;
656 }
657 
658 /* Flush all the transmit queues, and continue flushing receive queues until
659  * they're all flushed. Wait for the DRAIN events to be received so that there
660  * are no more RX and TX events left on any channel. */
661 static int ef4_farch_do_flush(struct ef4_nic *efx)
662 {
663 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
664 	struct ef4_channel *channel;
665 	struct ef4_rx_queue *rx_queue;
666 	struct ef4_tx_queue *tx_queue;
667 	int rc = 0;
668 
669 	ef4_for_each_channel(channel, efx) {
670 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
671 			ef4_farch_flush_tx_queue(tx_queue);
672 		}
673 		ef4_for_each_channel_rx_queue(rx_queue, channel) {
674 			rx_queue->flush_pending = true;
675 			atomic_inc(&efx->rxq_flush_pending);
676 		}
677 	}
678 
679 	while (timeout && atomic_read(&efx->active_queues) > 0) {
680 		/* The hardware supports four concurrent rx flushes, each of
681 		 * which may need to be retried if there is an outstanding
682 		 * descriptor fetch
683 		 */
684 		ef4_for_each_channel(channel, efx) {
685 			ef4_for_each_channel_rx_queue(rx_queue, channel) {
686 				if (atomic_read(&efx->rxq_flush_outstanding) >=
687 				    EF4_RX_FLUSH_COUNT)
688 					break;
689 
690 				if (rx_queue->flush_pending) {
691 					rx_queue->flush_pending = false;
692 					atomic_dec(&efx->rxq_flush_pending);
693 					atomic_inc(&efx->rxq_flush_outstanding);
694 					ef4_farch_flush_rx_queue(rx_queue);
695 				}
696 			}
697 		}
698 
699 		timeout = wait_event_timeout(efx->flush_wq,
700 					     ef4_farch_flush_wake(efx),
701 					     timeout);
702 	}
703 
704 	if (atomic_read(&efx->active_queues) &&
705 	    !ef4_check_tx_flush_complete(efx)) {
706 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
707 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
708 			  atomic_read(&efx->rxq_flush_outstanding),
709 			  atomic_read(&efx->rxq_flush_pending));
710 		rc = -ETIMEDOUT;
711 
712 		atomic_set(&efx->active_queues, 0);
713 		atomic_set(&efx->rxq_flush_pending, 0);
714 		atomic_set(&efx->rxq_flush_outstanding, 0);
715 	}
716 
717 	return rc;
718 }
719 
720 int ef4_farch_fini_dmaq(struct ef4_nic *efx)
721 {
722 	struct ef4_channel *channel;
723 	struct ef4_tx_queue *tx_queue;
724 	struct ef4_rx_queue *rx_queue;
725 	int rc = 0;
726 
727 	/* Do not attempt to write to the NIC during EEH recovery */
728 	if (efx->state != STATE_RECOVERY) {
729 		/* Only perform flush if DMA is enabled */
730 		if (efx->pci_dev->is_busmaster) {
731 			efx->type->prepare_flush(efx);
732 			rc = ef4_farch_do_flush(efx);
733 			efx->type->finish_flush(efx);
734 		}
735 
736 		ef4_for_each_channel(channel, efx) {
737 			ef4_for_each_channel_rx_queue(rx_queue, channel)
738 				ef4_farch_rx_fini(rx_queue);
739 			ef4_for_each_channel_tx_queue(tx_queue, channel)
740 				ef4_farch_tx_fini(tx_queue);
741 		}
742 	}
743 
744 	return rc;
745 }
746 
747 /* Reset queue and flush accounting after FLR
748  *
749  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
750  * mastering was disabled), in which case we don't receive (RXQ) flush
751  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
752  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
753  * events were received, and we didn't go through ef4_check_tx_flush_complete())
754  * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
755  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
756  * for batched flush requests; and the efx->active_queues gets messed up because
757  * we keep incrementing for the newly initialised queues, but it never went to
758  * zero previously.  Then we get a timeout every time we try to restart the
759  * queues, as it doesn't go back to zero when we should be flushing the queues.
760  */
761 void ef4_farch_finish_flr(struct ef4_nic *efx)
762 {
763 	atomic_set(&efx->rxq_flush_pending, 0);
764 	atomic_set(&efx->rxq_flush_outstanding, 0);
765 	atomic_set(&efx->active_queues, 0);
766 }
767 
768 
769 /**************************************************************************
770  *
771  * Event queue processing
772  * Event queues are processed by per-channel tasklets.
773  *
774  **************************************************************************/
775 
776 /* Update a channel's event queue's read pointer (RPTR) register
777  *
778  * This writes the EVQ_RPTR_REG register for the specified channel's
779  * event queue.
780  */
781 void ef4_farch_ev_read_ack(struct ef4_channel *channel)
782 {
783 	ef4_dword_t reg;
784 	struct ef4_nic *efx = channel->efx;
785 
786 	EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
787 			     channel->eventq_read_ptr & channel->eventq_mask);
788 
789 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
790 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
791 	 */
792 	ef4_writed(efx, &reg,
793 		   efx->type->evq_rptr_tbl_base +
794 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
795 }
796 
797 /* Use HW to insert a SW defined event */
798 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
799 			      ef4_qword_t *event)
800 {
801 	ef4_oword_t drv_ev_reg;
802 
803 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
804 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
805 	drv_ev_reg.u32[0] = event->u32[0];
806 	drv_ev_reg.u32[1] = event->u32[1];
807 	drv_ev_reg.u32[2] = 0;
808 	drv_ev_reg.u32[3] = 0;
809 	EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
810 	ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
811 }
812 
813 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
814 {
815 	ef4_qword_t event;
816 
817 	EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
818 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
819 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
820 	ef4_farch_generate_event(channel->efx, channel->channel, &event);
821 }
822 
823 /* Handle a transmit completion event
824  *
825  * The NIC batches TX completion events; the message we receive is of
826  * the form "complete all TX events up to this index".
827  */
828 static int
829 ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
830 {
831 	unsigned int tx_ev_desc_ptr;
832 	unsigned int tx_ev_q_label;
833 	struct ef4_tx_queue *tx_queue;
834 	struct ef4_nic *efx = channel->efx;
835 	int tx_packets = 0;
836 
837 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
838 		return 0;
839 
840 	if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
841 		/* Transmit completion */
842 		tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
843 		tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
844 		tx_queue = ef4_channel_get_tx_queue(
845 			channel, tx_ev_q_label % EF4_TXQ_TYPES);
846 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
847 			      tx_queue->ptr_mask);
848 		ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
849 	} else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
850 		/* Rewrite the FIFO write pointer */
851 		tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
852 		tx_queue = ef4_channel_get_tx_queue(
853 			channel, tx_ev_q_label % EF4_TXQ_TYPES);
854 
855 		netif_tx_lock(efx->net_dev);
856 		ef4_farch_notify_tx_desc(tx_queue);
857 		netif_tx_unlock(efx->net_dev);
858 	} else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
859 		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
860 	} else {
861 		netif_err(efx, tx_err, efx->net_dev,
862 			  "channel %d unexpected TX event "
863 			  EF4_QWORD_FMT"\n", channel->channel,
864 			  EF4_QWORD_VAL(*event));
865 	}
866 
867 	return tx_packets;
868 }
869 
870 /* Detect errors included in the rx_evt_pkt_ok bit. */
871 static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
872 				      const ef4_qword_t *event)
873 {
874 	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
875 	struct ef4_nic *efx = rx_queue->efx;
876 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
877 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
878 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
879 	bool rx_ev_other_err, rx_ev_pause_frm;
880 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
881 	unsigned rx_ev_pkt_type;
882 
883 	rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
884 	rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
885 	rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
886 	rx_ev_pkt_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
887 	rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
888 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
889 	rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
890 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
891 	rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
892 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
893 	rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
894 	rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
895 	rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
896 			  0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
897 	rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
898 
899 	/* Every error apart from tobe_disc and pause_frm */
900 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
901 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
902 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
903 
904 	/* Count errors that are not in MAC stats.  Ignore expected
905 	 * checksum errors during self-test. */
906 	if (rx_ev_frm_trunc)
907 		++channel->n_rx_frm_trunc;
908 	else if (rx_ev_tobe_disc)
909 		++channel->n_rx_tobe_disc;
910 	else if (!efx->loopback_selftest) {
911 		if (rx_ev_ip_hdr_chksum_err)
912 			++channel->n_rx_ip_hdr_chksum_err;
913 		else if (rx_ev_tcp_udp_chksum_err)
914 			++channel->n_rx_tcp_udp_chksum_err;
915 	}
916 
917 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
918 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
919 	 * to a FIFO overflow.
920 	 */
921 #ifdef DEBUG
922 	if (rx_ev_other_err && net_ratelimit()) {
923 		netif_dbg(efx, rx_err, efx->net_dev,
924 			  " RX queue %d unexpected RX event "
925 			  EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
926 			  ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
927 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
928 			  rx_ev_ip_hdr_chksum_err ?
929 			  " [IP_HDR_CHKSUM_ERR]" : "",
930 			  rx_ev_tcp_udp_chksum_err ?
931 			  " [TCP_UDP_CHKSUM_ERR]" : "",
932 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
933 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
934 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
935 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
936 			  rx_ev_pause_frm ? " [PAUSE]" : "");
937 	}
938 #endif
939 
940 	/* The frame must be discarded if any of these are true. */
941 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
942 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
943 		EF4_RX_PKT_DISCARD : 0;
944 }
945 
946 /* Handle receive events that are not in-order. Return true if this
947  * can be handled as a partial packet discard, false if it's more
948  * serious.
949  */
950 static bool
951 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
952 {
953 	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
954 	struct ef4_nic *efx = rx_queue->efx;
955 	unsigned expected, dropped;
956 
957 	if (rx_queue->scatter_n &&
958 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
959 		      rx_queue->ptr_mask)) {
960 		++channel->n_rx_nodesc_trunc;
961 		return true;
962 	}
963 
964 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
965 	dropped = (index - expected) & rx_queue->ptr_mask;
966 	netif_info(efx, rx_err, efx->net_dev,
967 		   "dropped %d events (index=%d expected=%d)\n",
968 		   dropped, index, expected);
969 
970 	ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
971 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
972 	return false;
973 }
974 
975 /* Handle a packet received event
976  *
977  * The NIC gives a "discard" flag if it's a unicast packet with the
978  * wrong destination address
979  * Also "is multicast" and "matches multicast filter" flags can be used to
980  * discard non-matching multicast packets.
981  */
982 static void
983 ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
984 {
985 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
986 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
987 	unsigned expected_ptr;
988 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
989 	u16 flags;
990 	struct ef4_rx_queue *rx_queue;
991 	struct ef4_nic *efx = channel->efx;
992 
993 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
994 		return;
995 
996 	rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
997 	rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
998 	WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
999 		channel->channel);
1000 
1001 	rx_queue = ef4_channel_get_rx_queue(channel);
1002 
1003 	rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1004 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1005 			rx_queue->ptr_mask);
1006 
1007 	/* Check for partial drops and other errors */
1008 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1009 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1010 		if (rx_ev_desc_ptr != expected_ptr &&
1011 		    !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1012 			return;
1013 
1014 		/* Discard all pending fragments */
1015 		if (rx_queue->scatter_n) {
1016 			ef4_rx_packet(
1017 				rx_queue,
1018 				rx_queue->removed_count & rx_queue->ptr_mask,
1019 				rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1020 			rx_queue->removed_count += rx_queue->scatter_n;
1021 			rx_queue->scatter_n = 0;
1022 		}
1023 
1024 		/* Return if there is no new fragment */
1025 		if (rx_ev_desc_ptr != expected_ptr)
1026 			return;
1027 
1028 		/* Discard new fragment if not SOP */
1029 		if (!rx_ev_sop) {
1030 			ef4_rx_packet(
1031 				rx_queue,
1032 				rx_queue->removed_count & rx_queue->ptr_mask,
1033 				1, 0, EF4_RX_PKT_DISCARD);
1034 			++rx_queue->removed_count;
1035 			return;
1036 		}
1037 	}
1038 
1039 	++rx_queue->scatter_n;
1040 	if (rx_ev_cont)
1041 		return;
1042 
1043 	rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1044 	rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1045 	rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1046 
1047 	if (likely(rx_ev_pkt_ok)) {
1048 		/* If packet is marked as OK then we can rely on the
1049 		 * hardware checksum and classification.
1050 		 */
1051 		flags = 0;
1052 		switch (rx_ev_hdr_type) {
1053 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1054 			flags |= EF4_RX_PKT_TCP;
1055 			/* fall through */
1056 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1057 			flags |= EF4_RX_PKT_CSUMMED;
1058 			/* fall through */
1059 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1060 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1061 			break;
1062 		}
1063 	} else {
1064 		flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1065 	}
1066 
1067 	/* Detect multicast packets that didn't match the filter */
1068 	rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1069 	if (rx_ev_mcast_pkt) {
1070 		unsigned int rx_ev_mcast_hash_match =
1071 			EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1072 
1073 		if (unlikely(!rx_ev_mcast_hash_match)) {
1074 			++channel->n_rx_mcast_mismatch;
1075 			flags |= EF4_RX_PKT_DISCARD;
1076 		}
1077 	}
1078 
1079 	channel->irq_mod_score += 2;
1080 
1081 	/* Handle received packet */
1082 	ef4_rx_packet(rx_queue,
1083 		      rx_queue->removed_count & rx_queue->ptr_mask,
1084 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1085 	rx_queue->removed_count += rx_queue->scatter_n;
1086 	rx_queue->scatter_n = 0;
1087 }
1088 
1089 /* If this flush done event corresponds to a &struct ef4_tx_queue, then
1090  * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1091  * of all transmit completions.
1092  */
1093 static void
1094 ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1095 {
1096 	struct ef4_tx_queue *tx_queue;
1097 	int qid;
1098 
1099 	qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1100 	if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1101 		tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1102 					    qid % EF4_TXQ_TYPES);
1103 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1104 			ef4_farch_magic_event(tx_queue->channel,
1105 					      EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1106 		}
1107 	}
1108 }
1109 
1110 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1111  * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1112  * the RX queue back to the mask of RX queues in need of flushing.
1113  */
1114 static void
1115 ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1116 {
1117 	struct ef4_channel *channel;
1118 	struct ef4_rx_queue *rx_queue;
1119 	int qid;
1120 	bool failed;
1121 
1122 	qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1123 	failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1124 	if (qid >= efx->n_channels)
1125 		return;
1126 	channel = ef4_get_channel(efx, qid);
1127 	if (!ef4_channel_has_rx_queue(channel))
1128 		return;
1129 	rx_queue = ef4_channel_get_rx_queue(channel);
1130 
1131 	if (failed) {
1132 		netif_info(efx, hw, efx->net_dev,
1133 			   "RXQ %d flush retry\n", qid);
1134 		rx_queue->flush_pending = true;
1135 		atomic_inc(&efx->rxq_flush_pending);
1136 	} else {
1137 		ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1138 				      EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1139 	}
1140 	atomic_dec(&efx->rxq_flush_outstanding);
1141 	if (ef4_farch_flush_wake(efx))
1142 		wake_up(&efx->flush_wq);
1143 }
1144 
1145 static void
1146 ef4_farch_handle_drain_event(struct ef4_channel *channel)
1147 {
1148 	struct ef4_nic *efx = channel->efx;
1149 
1150 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1151 	atomic_dec(&efx->active_queues);
1152 	if (ef4_farch_flush_wake(efx))
1153 		wake_up(&efx->flush_wq);
1154 }
1155 
1156 static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1157 					     ef4_qword_t *event)
1158 {
1159 	struct ef4_nic *efx = channel->efx;
1160 	struct ef4_rx_queue *rx_queue =
1161 		ef4_channel_has_rx_queue(channel) ?
1162 		ef4_channel_get_rx_queue(channel) : NULL;
1163 	unsigned magic, code;
1164 
1165 	magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1166 	code = _EF4_CHANNEL_MAGIC_CODE(magic);
1167 
1168 	if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1169 		channel->event_test_cpu = raw_smp_processor_id();
1170 	} else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1171 		/* The queue must be empty, so we won't receive any rx
1172 		 * events, so ef4_process_channel() won't refill the
1173 		 * queue. Refill it here */
1174 		ef4_fast_push_rx_descriptors(rx_queue, true);
1175 	} else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1176 		ef4_farch_handle_drain_event(channel);
1177 	} else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1178 		ef4_farch_handle_drain_event(channel);
1179 	} else {
1180 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1181 			  "generated event "EF4_QWORD_FMT"\n",
1182 			  channel->channel, EF4_QWORD_VAL(*event));
1183 	}
1184 }
1185 
1186 static void
1187 ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1188 {
1189 	struct ef4_nic *efx = channel->efx;
1190 	unsigned int ev_sub_code;
1191 	unsigned int ev_sub_data;
1192 
1193 	ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1194 	ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1195 
1196 	switch (ev_sub_code) {
1197 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1198 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1199 			   channel->channel, ev_sub_data);
1200 		ef4_farch_handle_tx_flush_done(efx, event);
1201 		break;
1202 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1203 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1204 			   channel->channel, ev_sub_data);
1205 		ef4_farch_handle_rx_flush_done(efx, event);
1206 		break;
1207 	case FSE_AZ_EVQ_INIT_DONE_EV:
1208 		netif_dbg(efx, hw, efx->net_dev,
1209 			  "channel %d EVQ %d initialised\n",
1210 			  channel->channel, ev_sub_data);
1211 		break;
1212 	case FSE_AZ_SRM_UPD_DONE_EV:
1213 		netif_vdbg(efx, hw, efx->net_dev,
1214 			   "channel %d SRAM update done\n", channel->channel);
1215 		break;
1216 	case FSE_AZ_WAKE_UP_EV:
1217 		netif_vdbg(efx, hw, efx->net_dev,
1218 			   "channel %d RXQ %d wakeup event\n",
1219 			   channel->channel, ev_sub_data);
1220 		break;
1221 	case FSE_AZ_TIMER_EV:
1222 		netif_vdbg(efx, hw, efx->net_dev,
1223 			   "channel %d RX queue %d timer expired\n",
1224 			   channel->channel, ev_sub_data);
1225 		break;
1226 	case FSE_AA_RX_RECOVER_EV:
1227 		netif_err(efx, rx_err, efx->net_dev,
1228 			  "channel %d seen DRIVER RX_RESET event. "
1229 			"Resetting.\n", channel->channel);
1230 		atomic_inc(&efx->rx_reset);
1231 		ef4_schedule_reset(efx,
1232 				   EF4_WORKAROUND_6555(efx) ?
1233 				   RESET_TYPE_RX_RECOVERY :
1234 				   RESET_TYPE_DISABLE);
1235 		break;
1236 	case FSE_BZ_RX_DSC_ERROR_EV:
1237 		netif_err(efx, rx_err, efx->net_dev,
1238 			  "RX DMA Q %d reports descriptor fetch error."
1239 			  " RX Q %d is disabled.\n", ev_sub_data,
1240 			  ev_sub_data);
1241 		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1242 		break;
1243 	case FSE_BZ_TX_DSC_ERROR_EV:
1244 		netif_err(efx, tx_err, efx->net_dev,
1245 			  "TX DMA Q %d reports descriptor fetch error."
1246 			  " TX Q %d is disabled.\n", ev_sub_data,
1247 			  ev_sub_data);
1248 		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1249 		break;
1250 	default:
1251 		netif_vdbg(efx, hw, efx->net_dev,
1252 			   "channel %d unknown driver event code %d "
1253 			   "data %04x\n", channel->channel, ev_sub_code,
1254 			   ev_sub_data);
1255 		break;
1256 	}
1257 }
1258 
1259 int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1260 {
1261 	struct ef4_nic *efx = channel->efx;
1262 	unsigned int read_ptr;
1263 	ef4_qword_t event, *p_event;
1264 	int ev_code;
1265 	int tx_packets = 0;
1266 	int spent = 0;
1267 
1268 	if (budget <= 0)
1269 		return spent;
1270 
1271 	read_ptr = channel->eventq_read_ptr;
1272 
1273 	for (;;) {
1274 		p_event = ef4_event(channel, read_ptr);
1275 		event = *p_event;
1276 
1277 		if (!ef4_event_present(&event))
1278 			/* End of events */
1279 			break;
1280 
1281 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1282 			   "channel %d event is "EF4_QWORD_FMT"\n",
1283 			   channel->channel, EF4_QWORD_VAL(event));
1284 
1285 		/* Clear this event by marking it all ones */
1286 		EF4_SET_QWORD(*p_event);
1287 
1288 		++read_ptr;
1289 
1290 		ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1291 
1292 		switch (ev_code) {
1293 		case FSE_AZ_EV_CODE_RX_EV:
1294 			ef4_farch_handle_rx_event(channel, &event);
1295 			if (++spent == budget)
1296 				goto out;
1297 			break;
1298 		case FSE_AZ_EV_CODE_TX_EV:
1299 			tx_packets += ef4_farch_handle_tx_event(channel,
1300 								&event);
1301 			if (tx_packets > efx->txq_entries) {
1302 				spent = budget;
1303 				goto out;
1304 			}
1305 			break;
1306 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1307 			ef4_farch_handle_generated_event(channel, &event);
1308 			break;
1309 		case FSE_AZ_EV_CODE_DRIVER_EV:
1310 			ef4_farch_handle_driver_event(channel, &event);
1311 			break;
1312 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1313 			if (efx->type->handle_global_event &&
1314 			    efx->type->handle_global_event(channel, &event))
1315 				break;
1316 			/* else fall through */
1317 		default:
1318 			netif_err(channel->efx, hw, channel->efx->net_dev,
1319 				  "channel %d unknown event type %d (data "
1320 				  EF4_QWORD_FMT ")\n", channel->channel,
1321 				  ev_code, EF4_QWORD_VAL(event));
1322 		}
1323 	}
1324 
1325 out:
1326 	channel->eventq_read_ptr = read_ptr;
1327 	return spent;
1328 }
1329 
1330 /* Allocate buffer table entries for event queue */
1331 int ef4_farch_ev_probe(struct ef4_channel *channel)
1332 {
1333 	struct ef4_nic *efx = channel->efx;
1334 	unsigned entries;
1335 
1336 	entries = channel->eventq_mask + 1;
1337 	return ef4_alloc_special_buffer(efx, &channel->eventq,
1338 					entries * sizeof(ef4_qword_t));
1339 }
1340 
1341 int ef4_farch_ev_init(struct ef4_channel *channel)
1342 {
1343 	ef4_oword_t reg;
1344 	struct ef4_nic *efx = channel->efx;
1345 
1346 	netif_dbg(efx, hw, efx->net_dev,
1347 		  "channel %d event queue in special buffers %d-%d\n",
1348 		  channel->channel, channel->eventq.index,
1349 		  channel->eventq.index + channel->eventq.entries - 1);
1350 
1351 	/* Pin event queue buffer */
1352 	ef4_init_special_buffer(efx, &channel->eventq);
1353 
1354 	/* Fill event queue with all ones (i.e. empty events) */
1355 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1356 
1357 	/* Push event queue to card */
1358 	EF4_POPULATE_OWORD_3(reg,
1359 			     FRF_AZ_EVQ_EN, 1,
1360 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1361 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1362 	ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1363 			 channel->channel);
1364 
1365 	return 0;
1366 }
1367 
1368 void ef4_farch_ev_fini(struct ef4_channel *channel)
1369 {
1370 	ef4_oword_t reg;
1371 	struct ef4_nic *efx = channel->efx;
1372 
1373 	/* Remove event queue from card */
1374 	EF4_ZERO_OWORD(reg);
1375 	ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1376 			 channel->channel);
1377 
1378 	/* Unpin event queue */
1379 	ef4_fini_special_buffer(efx, &channel->eventq);
1380 }
1381 
1382 /* Free buffers backing event queue */
1383 void ef4_farch_ev_remove(struct ef4_channel *channel)
1384 {
1385 	ef4_free_special_buffer(channel->efx, &channel->eventq);
1386 }
1387 
1388 
1389 void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1390 {
1391 	ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1392 }
1393 
1394 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1395 {
1396 	ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1397 			      EF4_CHANNEL_MAGIC_FILL(rx_queue));
1398 }
1399 
1400 /**************************************************************************
1401  *
1402  * Hardware interrupts
1403  * The hardware interrupt handler does very little work; all the event
1404  * queue processing is carried out by per-channel tasklets.
1405  *
1406  **************************************************************************/
1407 
1408 /* Enable/disable/generate interrupts */
1409 static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1410 				      bool enabled, bool force)
1411 {
1412 	ef4_oword_t int_en_reg_ker;
1413 
1414 	EF4_POPULATE_OWORD_3(int_en_reg_ker,
1415 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1416 			     FRF_AZ_KER_INT_KER, force,
1417 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1418 	ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1419 }
1420 
1421 void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1422 {
1423 	EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1424 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1425 
1426 	ef4_farch_interrupts(efx, true, false);
1427 }
1428 
1429 void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1430 {
1431 	/* Disable interrupts */
1432 	ef4_farch_interrupts(efx, false, false);
1433 }
1434 
1435 /* Generate a test interrupt
1436  * Interrupt must already have been enabled, otherwise nasty things
1437  * may happen.
1438  */
1439 int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1440 {
1441 	ef4_farch_interrupts(efx, true, true);
1442 	return 0;
1443 }
1444 
1445 /* Process a fatal interrupt
1446  * Disable bus mastering ASAP and schedule a reset
1447  */
1448 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1449 {
1450 	struct falcon_nic_data *nic_data = efx->nic_data;
1451 	ef4_oword_t *int_ker = efx->irq_status.addr;
1452 	ef4_oword_t fatal_intr;
1453 	int error, mem_perr;
1454 
1455 	ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1456 	error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1457 
1458 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1459 		  EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1460 		  EF4_OWORD_VAL(fatal_intr),
1461 		  error ? "disabling bus mastering" : "no recognised error");
1462 
1463 	/* If this is a memory parity error dump which blocks are offending */
1464 	mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1465 		    EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1466 	if (mem_perr) {
1467 		ef4_oword_t reg;
1468 		ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1469 		netif_err(efx, hw, efx->net_dev,
1470 			  "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1471 			  EF4_OWORD_VAL(reg));
1472 	}
1473 
1474 	/* Disable both devices */
1475 	pci_clear_master(efx->pci_dev);
1476 	if (ef4_nic_is_dual_func(efx))
1477 		pci_clear_master(nic_data->pci_dev2);
1478 	ef4_farch_irq_disable_master(efx);
1479 
1480 	/* Count errors and reset or disable the NIC accordingly */
1481 	if (efx->int_error_count == 0 ||
1482 	    time_after(jiffies, efx->int_error_expire)) {
1483 		efx->int_error_count = 0;
1484 		efx->int_error_expire =
1485 			jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1486 	}
1487 	if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1488 		netif_err(efx, hw, efx->net_dev,
1489 			  "SYSTEM ERROR - reset scheduled\n");
1490 		ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1491 	} else {
1492 		netif_err(efx, hw, efx->net_dev,
1493 			  "SYSTEM ERROR - max number of errors seen."
1494 			  "NIC will be disabled\n");
1495 		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1496 	}
1497 
1498 	return IRQ_HANDLED;
1499 }
1500 
1501 /* Handle a legacy interrupt
1502  * Acknowledges the interrupt and schedule event queue processing.
1503  */
1504 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1505 {
1506 	struct ef4_nic *efx = dev_id;
1507 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1508 	ef4_oword_t *int_ker = efx->irq_status.addr;
1509 	irqreturn_t result = IRQ_NONE;
1510 	struct ef4_channel *channel;
1511 	ef4_dword_t reg;
1512 	u32 queues;
1513 	int syserr;
1514 
1515 	/* Read the ISR which also ACKs the interrupts */
1516 	ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1517 	queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1518 
1519 	/* Legacy interrupts are disabled too late by the EEH kernel
1520 	 * code. Disable them earlier.
1521 	 * If an EEH error occurred, the read will have returned all ones.
1522 	 */
1523 	if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1524 	    !efx->eeh_disabled_legacy_irq) {
1525 		disable_irq_nosync(efx->legacy_irq);
1526 		efx->eeh_disabled_legacy_irq = true;
1527 	}
1528 
1529 	/* Handle non-event-queue sources */
1530 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1531 		syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1532 		if (unlikely(syserr))
1533 			return ef4_farch_fatal_interrupt(efx);
1534 		efx->last_irq_cpu = raw_smp_processor_id();
1535 	}
1536 
1537 	if (queues != 0) {
1538 		efx->irq_zero_count = 0;
1539 
1540 		/* Schedule processing of any interrupting queues */
1541 		if (likely(soft_enabled)) {
1542 			ef4_for_each_channel(channel, efx) {
1543 				if (queues & 1)
1544 					ef4_schedule_channel_irq(channel);
1545 				queues >>= 1;
1546 			}
1547 		}
1548 		result = IRQ_HANDLED;
1549 
1550 	} else {
1551 		ef4_qword_t *event;
1552 
1553 		/* Legacy ISR read can return zero once (SF bug 15783) */
1554 
1555 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1556 		 * because this might be a shared interrupt. */
1557 		if (efx->irq_zero_count++ == 0)
1558 			result = IRQ_HANDLED;
1559 
1560 		/* Ensure we schedule or rearm all event queues */
1561 		if (likely(soft_enabled)) {
1562 			ef4_for_each_channel(channel, efx) {
1563 				event = ef4_event(channel,
1564 						  channel->eventq_read_ptr);
1565 				if (ef4_event_present(event))
1566 					ef4_schedule_channel_irq(channel);
1567 				else
1568 					ef4_farch_ev_read_ack(channel);
1569 			}
1570 		}
1571 	}
1572 
1573 	if (result == IRQ_HANDLED)
1574 		netif_vdbg(efx, intr, efx->net_dev,
1575 			   "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1576 			   irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1577 
1578 	return result;
1579 }
1580 
1581 /* Handle an MSI interrupt
1582  *
1583  * Handle an MSI hardware interrupt.  This routine schedules event
1584  * queue processing.  No interrupt acknowledgement cycle is necessary.
1585  * Also, we never need to check that the interrupt is for us, since
1586  * MSI interrupts cannot be shared.
1587  */
1588 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1589 {
1590 	struct ef4_msi_context *context = dev_id;
1591 	struct ef4_nic *efx = context->efx;
1592 	ef4_oword_t *int_ker = efx->irq_status.addr;
1593 	int syserr;
1594 
1595 	netif_vdbg(efx, intr, efx->net_dev,
1596 		   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1597 		   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1598 
1599 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1600 		return IRQ_HANDLED;
1601 
1602 	/* Handle non-event-queue sources */
1603 	if (context->index == efx->irq_level) {
1604 		syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1605 		if (unlikely(syserr))
1606 			return ef4_farch_fatal_interrupt(efx);
1607 		efx->last_irq_cpu = raw_smp_processor_id();
1608 	}
1609 
1610 	/* Schedule processing of the channel */
1611 	ef4_schedule_channel_irq(efx->channel[context->index]);
1612 
1613 	return IRQ_HANDLED;
1614 }
1615 
1616 /* Setup RSS indirection table.
1617  * This maps from the hash value of the packet to RXQ
1618  */
1619 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1620 {
1621 	size_t i = 0;
1622 	ef4_dword_t dword;
1623 
1624 	BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1625 
1626 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1627 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1628 
1629 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1630 		EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1631 				     efx->rx_indir_table[i]);
1632 		ef4_writed(efx, &dword,
1633 			   FR_BZ_RX_INDIRECTION_TBL +
1634 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1635 	}
1636 }
1637 
1638 /* Looks at available SRAM resources and works out how many queues we
1639  * can support, and where things like descriptor caches should live.
1640  *
1641  * SRAM is split up as follows:
1642  * 0                          buftbl entries for channels
1643  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1644  * efx->rx_dc_base            RX descriptor caches
1645  * efx->tx_dc_base            TX descriptor caches
1646  */
1647 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1648 {
1649 	unsigned vi_count, buftbl_min;
1650 
1651 	/* Account for the buffer table entries backing the datapath channels
1652 	 * and the descriptor caches for those channels.
1653 	 */
1654 	buftbl_min = ((efx->n_rx_channels * EF4_MAX_DMAQ_SIZE +
1655 		       efx->n_tx_channels * EF4_TXQ_TYPES * EF4_MAX_DMAQ_SIZE +
1656 		       efx->n_channels * EF4_MAX_EVQ_SIZE)
1657 		      * sizeof(ef4_qword_t) / EF4_BUF_SIZE);
1658 	vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1659 
1660 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1661 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1662 }
1663 
1664 u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1665 {
1666 	ef4_oword_t altera_build;
1667 	ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1668 	return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1669 }
1670 
1671 void ef4_farch_init_common(struct ef4_nic *efx)
1672 {
1673 	ef4_oword_t temp;
1674 
1675 	/* Set positions of descriptor caches in SRAM. */
1676 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1677 	ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1678 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1679 	ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1680 
1681 	/* Set TX descriptor cache size. */
1682 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1683 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1684 	ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1685 
1686 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1687 	 * this allows most efficient prefetching.
1688 	 */
1689 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1690 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1691 	ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1692 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1693 	ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1694 
1695 	/* Program INT_KER address */
1696 	EF4_POPULATE_OWORD_2(temp,
1697 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1698 			     EF4_INT_MODE_USE_MSI(efx),
1699 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1700 	ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1701 
1702 	/* Use a valid MSI-X vector */
1703 	efx->irq_level = 0;
1704 
1705 	/* Enable all the genuinely fatal interrupts.  (They are still
1706 	 * masked by the overall interrupt mask, controlled by
1707 	 * falcon_interrupts()).
1708 	 *
1709 	 * Note: All other fatal interrupts are enabled
1710 	 */
1711 	EF4_POPULATE_OWORD_3(temp,
1712 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1713 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1714 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1715 	EF4_INVERT_OWORD(temp);
1716 	ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1717 
1718 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1719 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1720 	 */
1721 	ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1722 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1723 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1724 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1725 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1726 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1727 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1728 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1729 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1730 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1731 	/* Disable hardware watchdog which can misfire */
1732 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1733 	/* Squash TX of packets of 16 bytes or less */
1734 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1735 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1736 	ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1737 
1738 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1739 		EF4_POPULATE_OWORD_4(temp,
1740 				     /* Default values */
1741 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1742 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1743 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1744 				     /* Allow large pace values in the
1745 				      * fast bin. */
1746 				     FRF_BZ_TX_PACE_BIN_TH,
1747 				     FFE_BZ_TX_PACE_RESERVED);
1748 		ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1749 	}
1750 }
1751 
1752 /**************************************************************************
1753  *
1754  * Filter tables
1755  *
1756  **************************************************************************
1757  */
1758 
1759 /* "Fudge factors" - difference between programmed value and actual depth.
1760  * Due to pipelined implementation we need to program H/W with a value that
1761  * is larger than the hop limit we want.
1762  */
1763 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1764 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1765 
1766 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1767  * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1768  * table is full.
1769  */
1770 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1771 
1772 /* Don't try very hard to find space for performance hints, as this is
1773  * counter-productive. */
1774 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1775 
1776 enum ef4_farch_filter_type {
1777 	EF4_FARCH_FILTER_TCP_FULL = 0,
1778 	EF4_FARCH_FILTER_TCP_WILD,
1779 	EF4_FARCH_FILTER_UDP_FULL,
1780 	EF4_FARCH_FILTER_UDP_WILD,
1781 	EF4_FARCH_FILTER_MAC_FULL = 4,
1782 	EF4_FARCH_FILTER_MAC_WILD,
1783 	EF4_FARCH_FILTER_UC_DEF = 8,
1784 	EF4_FARCH_FILTER_MC_DEF,
1785 	EF4_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1786 };
1787 
1788 enum ef4_farch_filter_table_id {
1789 	EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1790 	EF4_FARCH_FILTER_TABLE_RX_MAC,
1791 	EF4_FARCH_FILTER_TABLE_RX_DEF,
1792 	EF4_FARCH_FILTER_TABLE_TX_MAC,
1793 	EF4_FARCH_FILTER_TABLE_COUNT,
1794 };
1795 
1796 enum ef4_farch_filter_index {
1797 	EF4_FARCH_FILTER_INDEX_UC_DEF,
1798 	EF4_FARCH_FILTER_INDEX_MC_DEF,
1799 	EF4_FARCH_FILTER_SIZE_RX_DEF,
1800 };
1801 
1802 struct ef4_farch_filter_spec {
1803 	u8	type:4;
1804 	u8	priority:4;
1805 	u8	flags;
1806 	u16	dmaq_id;
1807 	u32	data[3];
1808 };
1809 
1810 struct ef4_farch_filter_table {
1811 	enum ef4_farch_filter_table_id id;
1812 	u32		offset;		/* address of table relative to BAR */
1813 	unsigned	size;		/* number of entries */
1814 	unsigned	step;		/* step between entries */
1815 	unsigned	used;		/* number currently used */
1816 	unsigned long	*used_bitmap;
1817 	struct ef4_farch_filter_spec *spec;
1818 	unsigned	search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1819 };
1820 
1821 struct ef4_farch_filter_state {
1822 	struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1823 };
1824 
1825 static void
1826 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1827 				   struct ef4_farch_filter_table *table,
1828 				   unsigned int filter_idx);
1829 
1830 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1831  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1832 static u16 ef4_farch_filter_hash(u32 key)
1833 {
1834 	u16 tmp;
1835 
1836 	/* First 16 rounds */
1837 	tmp = 0x1fff ^ key >> 16;
1838 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1839 	tmp = tmp ^ tmp >> 9;
1840 	/* Last 16 rounds */
1841 	tmp = tmp ^ tmp << 13 ^ key;
1842 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1843 	return tmp ^ tmp >> 9;
1844 }
1845 
1846 /* To allow for hash collisions, filter search continues at these
1847  * increments from the first possible entry selected by the hash. */
1848 static u16 ef4_farch_filter_increment(u32 key)
1849 {
1850 	return key * 2 - 1;
1851 }
1852 
1853 static enum ef4_farch_filter_table_id
1854 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1855 {
1856 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1857 		     (EF4_FARCH_FILTER_TCP_FULL >> 2));
1858 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1859 		     (EF4_FARCH_FILTER_TCP_WILD >> 2));
1860 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1861 		     (EF4_FARCH_FILTER_UDP_FULL >> 2));
1862 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1863 		     (EF4_FARCH_FILTER_UDP_WILD >> 2));
1864 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1865 		     (EF4_FARCH_FILTER_MAC_FULL >> 2));
1866 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1867 		     (EF4_FARCH_FILTER_MAC_WILD >> 2));
1868 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1869 		     EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1870 	return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1871 }
1872 
1873 static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1874 {
1875 	struct ef4_farch_filter_state *state = efx->filter_state;
1876 	struct ef4_farch_filter_table *table;
1877 	ef4_oword_t filter_ctl;
1878 
1879 	ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1880 
1881 	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1882 	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1883 			    table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1884 			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1885 	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1886 			    table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1887 			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1888 	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1889 			    table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1890 			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1891 	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1892 			    table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1893 			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1894 
1895 	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1896 	if (table->size) {
1897 		EF4_SET_OWORD_FIELD(
1898 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1899 			table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1900 			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1901 		EF4_SET_OWORD_FIELD(
1902 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1903 			table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1904 			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1905 	}
1906 
1907 	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1908 	if (table->size) {
1909 		EF4_SET_OWORD_FIELD(
1910 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1911 			table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1912 		EF4_SET_OWORD_FIELD(
1913 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1914 			!!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1915 			   EF4_FILTER_FLAG_RX_RSS));
1916 		EF4_SET_OWORD_FIELD(
1917 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1918 			table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1919 		EF4_SET_OWORD_FIELD(
1920 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1921 			!!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1922 			   EF4_FILTER_FLAG_RX_RSS));
1923 
1924 		/* There is a single bit to enable RX scatter for all
1925 		 * unmatched packets.  Only set it if scatter is
1926 		 * enabled in both filter specs.
1927 		 */
1928 		EF4_SET_OWORD_FIELD(
1929 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1930 			!!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1931 			   table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1932 			   EF4_FILTER_FLAG_RX_SCATTER));
1933 	} else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1934 		/* We don't expose 'default' filters because unmatched
1935 		 * packets always go to the queue number found in the
1936 		 * RSS table.  But we still need to set the RX scatter
1937 		 * bit here.
1938 		 */
1939 		EF4_SET_OWORD_FIELD(
1940 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1941 			efx->rx_scatter);
1942 	}
1943 
1944 	ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1945 }
1946 
1947 static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1948 {
1949 	struct ef4_farch_filter_state *state = efx->filter_state;
1950 	struct ef4_farch_filter_table *table;
1951 	ef4_oword_t tx_cfg;
1952 
1953 	ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1954 
1955 	table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1956 	if (table->size) {
1957 		EF4_SET_OWORD_FIELD(
1958 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1959 			table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1960 			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1961 		EF4_SET_OWORD_FIELD(
1962 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1963 			table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1964 			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965 	}
1966 
1967 	ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1968 }
1969 
1970 static int
1971 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1972 			       const struct ef4_filter_spec *gen_spec)
1973 {
1974 	bool is_full = false;
1975 
1976 	if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1977 	    gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1978 		return -EINVAL;
1979 
1980 	spec->priority = gen_spec->priority;
1981 	spec->flags = gen_spec->flags;
1982 	spec->dmaq_id = gen_spec->dmaq_id;
1983 
1984 	switch (gen_spec->match_flags) {
1985 	case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1986 	      EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1987 	      EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1988 		is_full = true;
1989 		/* fall through */
1990 	case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1991 	      EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1992 		__be32 rhost, host1, host2;
1993 		__be16 rport, port1, port2;
1994 
1995 		EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1996 
1997 		if (gen_spec->ether_type != htons(ETH_P_IP))
1998 			return -EPROTONOSUPPORT;
1999 		if (gen_spec->loc_port == 0 ||
2000 		    (is_full && gen_spec->rem_port == 0))
2001 			return -EADDRNOTAVAIL;
2002 		switch (gen_spec->ip_proto) {
2003 		case IPPROTO_TCP:
2004 			spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
2005 				      EF4_FARCH_FILTER_TCP_WILD);
2006 			break;
2007 		case IPPROTO_UDP:
2008 			spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2009 				      EF4_FARCH_FILTER_UDP_WILD);
2010 			break;
2011 		default:
2012 			return -EPROTONOSUPPORT;
2013 		}
2014 
2015 		/* Filter is constructed in terms of source and destination,
2016 		 * with the odd wrinkle that the ports are swapped in a UDP
2017 		 * wildcard filter.  We need to convert from local and remote
2018 		 * (= zero for wildcard) addresses.
2019 		 */
2020 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2021 		rport = is_full ? gen_spec->rem_port : 0;
2022 		host1 = rhost;
2023 		host2 = gen_spec->loc_host[0];
2024 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2025 			port1 = gen_spec->loc_port;
2026 			port2 = rport;
2027 		} else {
2028 			port1 = rport;
2029 			port2 = gen_spec->loc_port;
2030 		}
2031 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2032 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2033 		spec->data[2] = ntohl(host2);
2034 
2035 		break;
2036 	}
2037 
2038 	case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2039 		is_full = true;
2040 		/* fall through */
2041 	case EF4_FILTER_MATCH_LOC_MAC:
2042 		spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2043 			      EF4_FARCH_FILTER_MAC_WILD);
2044 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2045 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2046 				 gen_spec->loc_mac[3] << 16 |
2047 				 gen_spec->loc_mac[4] << 8 |
2048 				 gen_spec->loc_mac[5]);
2049 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2050 				 gen_spec->loc_mac[1]);
2051 		break;
2052 
2053 	case EF4_FILTER_MATCH_LOC_MAC_IG:
2054 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2055 			      EF4_FARCH_FILTER_MC_DEF :
2056 			      EF4_FARCH_FILTER_UC_DEF);
2057 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2058 		break;
2059 
2060 	default:
2061 		return -EPROTONOSUPPORT;
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 static void
2068 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2069 			     const struct ef4_farch_filter_spec *spec)
2070 {
2071 	bool is_full = false;
2072 
2073 	/* *gen_spec should be completely initialised, to be consistent
2074 	 * with ef4_filter_init_{rx,tx}() and in case we want to copy
2075 	 * it back to userland.
2076 	 */
2077 	memset(gen_spec, 0, sizeof(*gen_spec));
2078 
2079 	gen_spec->priority = spec->priority;
2080 	gen_spec->flags = spec->flags;
2081 	gen_spec->dmaq_id = spec->dmaq_id;
2082 
2083 	switch (spec->type) {
2084 	case EF4_FARCH_FILTER_TCP_FULL:
2085 	case EF4_FARCH_FILTER_UDP_FULL:
2086 		is_full = true;
2087 		/* fall through */
2088 	case EF4_FARCH_FILTER_TCP_WILD:
2089 	case EF4_FARCH_FILTER_UDP_WILD: {
2090 		__be32 host1, host2;
2091 		__be16 port1, port2;
2092 
2093 		gen_spec->match_flags =
2094 			EF4_FILTER_MATCH_ETHER_TYPE |
2095 			EF4_FILTER_MATCH_IP_PROTO |
2096 			EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2097 		if (is_full)
2098 			gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2099 						  EF4_FILTER_MATCH_REM_PORT);
2100 		gen_spec->ether_type = htons(ETH_P_IP);
2101 		gen_spec->ip_proto =
2102 			(spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2103 			 spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2104 			IPPROTO_TCP : IPPROTO_UDP;
2105 
2106 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2107 		port1 = htons(spec->data[0]);
2108 		host2 = htonl(spec->data[2]);
2109 		port2 = htons(spec->data[1] >> 16);
2110 		if (spec->flags & EF4_FILTER_FLAG_TX) {
2111 			gen_spec->loc_host[0] = host1;
2112 			gen_spec->rem_host[0] = host2;
2113 		} else {
2114 			gen_spec->loc_host[0] = host2;
2115 			gen_spec->rem_host[0] = host1;
2116 		}
2117 		if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2118 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2119 			gen_spec->loc_port = port1;
2120 			gen_spec->rem_port = port2;
2121 		} else {
2122 			gen_spec->loc_port = port2;
2123 			gen_spec->rem_port = port1;
2124 		}
2125 
2126 		break;
2127 	}
2128 
2129 	case EF4_FARCH_FILTER_MAC_FULL:
2130 		is_full = true;
2131 		/* fall through */
2132 	case EF4_FARCH_FILTER_MAC_WILD:
2133 		gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2134 		if (is_full)
2135 			gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2136 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2137 		gen_spec->loc_mac[1] = spec->data[2];
2138 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2139 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2140 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2141 		gen_spec->loc_mac[5] = spec->data[1];
2142 		gen_spec->outer_vid = htons(spec->data[0]);
2143 		break;
2144 
2145 	case EF4_FARCH_FILTER_UC_DEF:
2146 	case EF4_FARCH_FILTER_MC_DEF:
2147 		gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2148 		gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2149 		break;
2150 
2151 	default:
2152 		WARN_ON(1);
2153 		break;
2154 	}
2155 }
2156 
2157 static void
2158 ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2159 			      struct ef4_farch_filter_spec *spec)
2160 {
2161 	/* If there's only one channel then disable RSS for non VF
2162 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2163 	 */
2164 	spec->priority = EF4_FILTER_PRI_AUTO;
2165 	spec->flags = (EF4_FILTER_FLAG_RX |
2166 		       (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2167 		       (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2168 	spec->dmaq_id = 0;
2169 }
2170 
2171 /* Build a filter entry and return its n-tuple key. */
2172 static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2173 				  struct ef4_farch_filter_spec *spec)
2174 {
2175 	u32 data3;
2176 
2177 	switch (ef4_farch_filter_spec_table_id(spec)) {
2178 	case EF4_FARCH_FILTER_TABLE_RX_IP: {
2179 		bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2180 			       spec->type == EF4_FARCH_FILTER_UDP_WILD);
2181 		EF4_POPULATE_OWORD_7(
2182 			*filter,
2183 			FRF_BZ_RSS_EN,
2184 			!!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2185 			FRF_BZ_SCATTER_EN,
2186 			!!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2187 			FRF_BZ_TCP_UDP, is_udp,
2188 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2189 			EF4_DWORD_2, spec->data[2],
2190 			EF4_DWORD_1, spec->data[1],
2191 			EF4_DWORD_0, spec->data[0]);
2192 		data3 = is_udp;
2193 		break;
2194 	}
2195 
2196 	case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2197 		bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2198 		EF4_POPULATE_OWORD_7(
2199 			*filter,
2200 			FRF_CZ_RMFT_RSS_EN,
2201 			!!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2202 			FRF_CZ_RMFT_SCATTER_EN,
2203 			!!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2204 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2205 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2206 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2207 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2208 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2209 		data3 = is_wild;
2210 		break;
2211 	}
2212 
2213 	case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2214 		bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2215 		EF4_POPULATE_OWORD_5(*filter,
2216 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2217 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2218 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2219 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2220 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2221 		data3 = is_wild | spec->dmaq_id << 1;
2222 		break;
2223 	}
2224 
2225 	default:
2226 		BUG();
2227 	}
2228 
2229 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2230 }
2231 
2232 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2233 				   const struct ef4_farch_filter_spec *right)
2234 {
2235 	if (left->type != right->type ||
2236 	    memcmp(left->data, right->data, sizeof(left->data)))
2237 		return false;
2238 
2239 	if (left->flags & EF4_FILTER_FLAG_TX &&
2240 	    left->dmaq_id != right->dmaq_id)
2241 		return false;
2242 
2243 	return true;
2244 }
2245 
2246 /*
2247  * Construct/deconstruct external filter IDs.  At least the RX filter
2248  * IDs must be ordered by matching priority, for RX NFC semantics.
2249  *
2250  * Deconstruction needs to be robust against invalid IDs so that
2251  * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2252  * accept user-provided IDs.
2253  */
2254 
2255 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT	5
2256 
2257 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2258 	[EF4_FARCH_FILTER_TCP_FULL]	= 0,
2259 	[EF4_FARCH_FILTER_UDP_FULL]	= 0,
2260 	[EF4_FARCH_FILTER_TCP_WILD]	= 1,
2261 	[EF4_FARCH_FILTER_UDP_WILD]	= 1,
2262 	[EF4_FARCH_FILTER_MAC_FULL]	= 2,
2263 	[EF4_FARCH_FILTER_MAC_WILD]	= 3,
2264 	[EF4_FARCH_FILTER_UC_DEF]	= 4,
2265 	[EF4_FARCH_FILTER_MC_DEF]	= 4,
2266 };
2267 
2268 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2269 	EF4_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2270 	EF4_FARCH_FILTER_TABLE_RX_IP,
2271 	EF4_FARCH_FILTER_TABLE_RX_MAC,
2272 	EF4_FARCH_FILTER_TABLE_RX_MAC,
2273 	EF4_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2274 	EF4_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2275 	EF4_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2276 };
2277 
2278 #define EF4_FARCH_FILTER_INDEX_WIDTH 13
2279 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2280 
2281 static inline u32
2282 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2283 			 unsigned int index)
2284 {
2285 	unsigned int range;
2286 
2287 	range = ef4_farch_filter_type_match_pri[spec->type];
2288 	if (!(spec->flags & EF4_FILTER_FLAG_RX))
2289 		range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2290 
2291 	return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2292 }
2293 
2294 static inline enum ef4_farch_filter_table_id
2295 ef4_farch_filter_id_table_id(u32 id)
2296 {
2297 	unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2298 
2299 	if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2300 		return ef4_farch_filter_range_table[range];
2301 	else
2302 		return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2303 }
2304 
2305 static inline unsigned int ef4_farch_filter_id_index(u32 id)
2306 {
2307 	return id & EF4_FARCH_FILTER_INDEX_MASK;
2308 }
2309 
2310 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2311 {
2312 	struct ef4_farch_filter_state *state = efx->filter_state;
2313 	unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2314 	enum ef4_farch_filter_table_id table_id;
2315 
2316 	do {
2317 		table_id = ef4_farch_filter_range_table[range];
2318 		if (state->table[table_id].size != 0)
2319 			return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2320 				state->table[table_id].size;
2321 	} while (range--);
2322 
2323 	return 0;
2324 }
2325 
2326 s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2327 			    struct ef4_filter_spec *gen_spec,
2328 			    bool replace_equal)
2329 {
2330 	struct ef4_farch_filter_state *state = efx->filter_state;
2331 	struct ef4_farch_filter_table *table;
2332 	struct ef4_farch_filter_spec spec;
2333 	ef4_oword_t filter;
2334 	int rep_index, ins_index;
2335 	unsigned int depth = 0;
2336 	int rc;
2337 
2338 	rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2339 	if (rc)
2340 		return rc;
2341 
2342 	table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2343 	if (table->size == 0)
2344 		return -EINVAL;
2345 
2346 	netif_vdbg(efx, hw, efx->net_dev,
2347 		   "%s: type %d search_limit=%d", __func__, spec.type,
2348 		   table->search_limit[spec.type]);
2349 
2350 	if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2351 		/* One filter spec per type */
2352 		BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2353 		BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2354 			     EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2355 		rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2356 		ins_index = rep_index;
2357 
2358 		spin_lock_bh(&efx->filter_lock);
2359 	} else {
2360 		/* Search concurrently for
2361 		 * (1) a filter to be replaced (rep_index): any filter
2362 		 *     with the same match values, up to the current
2363 		 *     search depth for this type, and
2364 		 * (2) the insertion point (ins_index): (1) or any
2365 		 *     free slot before it or up to the maximum search
2366 		 *     depth for this priority
2367 		 * We fail if we cannot find (2).
2368 		 *
2369 		 * We can stop once either
2370 		 * (a) we find (1), in which case we have definitely
2371 		 *     found (2) as well; or
2372 		 * (b) we have searched exhaustively for (1), and have
2373 		 *     either found (2) or searched exhaustively for it
2374 		 */
2375 		u32 key = ef4_farch_filter_build(&filter, &spec);
2376 		unsigned int hash = ef4_farch_filter_hash(key);
2377 		unsigned int incr = ef4_farch_filter_increment(key);
2378 		unsigned int max_rep_depth = table->search_limit[spec.type];
2379 		unsigned int max_ins_depth =
2380 			spec.priority <= EF4_FILTER_PRI_HINT ?
2381 			EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2382 			EF4_FARCH_FILTER_CTL_SRCH_MAX;
2383 		unsigned int i = hash & (table->size - 1);
2384 
2385 		ins_index = -1;
2386 		depth = 1;
2387 
2388 		spin_lock_bh(&efx->filter_lock);
2389 
2390 		for (;;) {
2391 			if (!test_bit(i, table->used_bitmap)) {
2392 				if (ins_index < 0)
2393 					ins_index = i;
2394 			} else if (ef4_farch_filter_equal(&spec,
2395 							  &table->spec[i])) {
2396 				/* Case (a) */
2397 				if (ins_index < 0)
2398 					ins_index = i;
2399 				rep_index = i;
2400 				break;
2401 			}
2402 
2403 			if (depth >= max_rep_depth &&
2404 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2405 				/* Case (b) */
2406 				if (ins_index < 0) {
2407 					rc = -EBUSY;
2408 					goto out;
2409 				}
2410 				rep_index = -1;
2411 				break;
2412 			}
2413 
2414 			i = (i + incr) & (table->size - 1);
2415 			++depth;
2416 		}
2417 	}
2418 
2419 	/* If we found a filter to be replaced, check whether we
2420 	 * should do so
2421 	 */
2422 	if (rep_index >= 0) {
2423 		struct ef4_farch_filter_spec *saved_spec =
2424 			&table->spec[rep_index];
2425 
2426 		if (spec.priority == saved_spec->priority && !replace_equal) {
2427 			rc = -EEXIST;
2428 			goto out;
2429 		}
2430 		if (spec.priority < saved_spec->priority) {
2431 			rc = -EPERM;
2432 			goto out;
2433 		}
2434 		if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2435 		    saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2436 			spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2437 	}
2438 
2439 	/* Insert the filter */
2440 	if (ins_index != rep_index) {
2441 		__set_bit(ins_index, table->used_bitmap);
2442 		++table->used;
2443 	}
2444 	table->spec[ins_index] = spec;
2445 
2446 	if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2447 		ef4_farch_filter_push_rx_config(efx);
2448 	} else {
2449 		if (table->search_limit[spec.type] < depth) {
2450 			table->search_limit[spec.type] = depth;
2451 			if (spec.flags & EF4_FILTER_FLAG_TX)
2452 				ef4_farch_filter_push_tx_limits(efx);
2453 			else
2454 				ef4_farch_filter_push_rx_config(efx);
2455 		}
2456 
2457 		ef4_writeo(efx, &filter,
2458 			   table->offset + table->step * ins_index);
2459 
2460 		/* If we were able to replace a filter by inserting
2461 		 * at a lower depth, clear the replaced filter
2462 		 */
2463 		if (ins_index != rep_index && rep_index >= 0)
2464 			ef4_farch_filter_table_clear_entry(efx, table,
2465 							   rep_index);
2466 	}
2467 
2468 	netif_vdbg(efx, hw, efx->net_dev,
2469 		   "%s: filter type %d index %d rxq %u set",
2470 		   __func__, spec.type, ins_index, spec.dmaq_id);
2471 	rc = ef4_farch_filter_make_id(&spec, ins_index);
2472 
2473 out:
2474 	spin_unlock_bh(&efx->filter_lock);
2475 	return rc;
2476 }
2477 
2478 static void
2479 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2480 				   struct ef4_farch_filter_table *table,
2481 				   unsigned int filter_idx)
2482 {
2483 	static ef4_oword_t filter;
2484 
2485 	EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2486 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2487 
2488 	__clear_bit(filter_idx, table->used_bitmap);
2489 	--table->used;
2490 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2491 
2492 	ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2493 
2494 	/* If this filter required a greater search depth than
2495 	 * any other, the search limit for its type can now be
2496 	 * decreased.  However, it is hard to determine that
2497 	 * unless the table has become completely empty - in
2498 	 * which case, all its search limits can be set to 0.
2499 	 */
2500 	if (unlikely(table->used == 0)) {
2501 		memset(table->search_limit, 0, sizeof(table->search_limit));
2502 		if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2503 			ef4_farch_filter_push_tx_limits(efx);
2504 		else
2505 			ef4_farch_filter_push_rx_config(efx);
2506 	}
2507 }
2508 
2509 static int ef4_farch_filter_remove(struct ef4_nic *efx,
2510 				   struct ef4_farch_filter_table *table,
2511 				   unsigned int filter_idx,
2512 				   enum ef4_filter_priority priority)
2513 {
2514 	struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2515 
2516 	if (!test_bit(filter_idx, table->used_bitmap) ||
2517 	    spec->priority != priority)
2518 		return -ENOENT;
2519 
2520 	if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2521 		ef4_farch_filter_init_rx_auto(efx, spec);
2522 		ef4_farch_filter_push_rx_config(efx);
2523 	} else {
2524 		ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2531 				 enum ef4_filter_priority priority,
2532 				 u32 filter_id)
2533 {
2534 	struct ef4_farch_filter_state *state = efx->filter_state;
2535 	enum ef4_farch_filter_table_id table_id;
2536 	struct ef4_farch_filter_table *table;
2537 	unsigned int filter_idx;
2538 	struct ef4_farch_filter_spec *spec;
2539 	int rc;
2540 
2541 	table_id = ef4_farch_filter_id_table_id(filter_id);
2542 	if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2543 		return -ENOENT;
2544 	table = &state->table[table_id];
2545 
2546 	filter_idx = ef4_farch_filter_id_index(filter_id);
2547 	if (filter_idx >= table->size)
2548 		return -ENOENT;
2549 	spec = &table->spec[filter_idx];
2550 
2551 	spin_lock_bh(&efx->filter_lock);
2552 	rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2553 	spin_unlock_bh(&efx->filter_lock);
2554 
2555 	return rc;
2556 }
2557 
2558 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2559 			      enum ef4_filter_priority priority,
2560 			      u32 filter_id, struct ef4_filter_spec *spec_buf)
2561 {
2562 	struct ef4_farch_filter_state *state = efx->filter_state;
2563 	enum ef4_farch_filter_table_id table_id;
2564 	struct ef4_farch_filter_table *table;
2565 	struct ef4_farch_filter_spec *spec;
2566 	unsigned int filter_idx;
2567 	int rc;
2568 
2569 	table_id = ef4_farch_filter_id_table_id(filter_id);
2570 	if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2571 		return -ENOENT;
2572 	table = &state->table[table_id];
2573 
2574 	filter_idx = ef4_farch_filter_id_index(filter_id);
2575 	if (filter_idx >= table->size)
2576 		return -ENOENT;
2577 	spec = &table->spec[filter_idx];
2578 
2579 	spin_lock_bh(&efx->filter_lock);
2580 
2581 	if (test_bit(filter_idx, table->used_bitmap) &&
2582 	    spec->priority == priority) {
2583 		ef4_farch_filter_to_gen_spec(spec_buf, spec);
2584 		rc = 0;
2585 	} else {
2586 		rc = -ENOENT;
2587 	}
2588 
2589 	spin_unlock_bh(&efx->filter_lock);
2590 
2591 	return rc;
2592 }
2593 
2594 static void
2595 ef4_farch_filter_table_clear(struct ef4_nic *efx,
2596 			     enum ef4_farch_filter_table_id table_id,
2597 			     enum ef4_filter_priority priority)
2598 {
2599 	struct ef4_farch_filter_state *state = efx->filter_state;
2600 	struct ef4_farch_filter_table *table = &state->table[table_id];
2601 	unsigned int filter_idx;
2602 
2603 	spin_lock_bh(&efx->filter_lock);
2604 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2605 		if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2606 			ef4_farch_filter_remove(efx, table,
2607 						filter_idx, priority);
2608 	}
2609 	spin_unlock_bh(&efx->filter_lock);
2610 }
2611 
2612 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2613 			       enum ef4_filter_priority priority)
2614 {
2615 	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2616 				     priority);
2617 	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2618 				     priority);
2619 	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2620 				     priority);
2621 	return 0;
2622 }
2623 
2624 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2625 				   enum ef4_filter_priority priority)
2626 {
2627 	struct ef4_farch_filter_state *state = efx->filter_state;
2628 	enum ef4_farch_filter_table_id table_id;
2629 	struct ef4_farch_filter_table *table;
2630 	unsigned int filter_idx;
2631 	u32 count = 0;
2632 
2633 	spin_lock_bh(&efx->filter_lock);
2634 
2635 	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2636 	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2637 	     table_id++) {
2638 		table = &state->table[table_id];
2639 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2640 			if (test_bit(filter_idx, table->used_bitmap) &&
2641 			    table->spec[filter_idx].priority == priority)
2642 				++count;
2643 		}
2644 	}
2645 
2646 	spin_unlock_bh(&efx->filter_lock);
2647 
2648 	return count;
2649 }
2650 
2651 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2652 				enum ef4_filter_priority priority,
2653 				u32 *buf, u32 size)
2654 {
2655 	struct ef4_farch_filter_state *state = efx->filter_state;
2656 	enum ef4_farch_filter_table_id table_id;
2657 	struct ef4_farch_filter_table *table;
2658 	unsigned int filter_idx;
2659 	s32 count = 0;
2660 
2661 	spin_lock_bh(&efx->filter_lock);
2662 
2663 	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2664 	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2665 	     table_id++) {
2666 		table = &state->table[table_id];
2667 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2668 			if (test_bit(filter_idx, table->used_bitmap) &&
2669 			    table->spec[filter_idx].priority == priority) {
2670 				if (count == size) {
2671 					count = -EMSGSIZE;
2672 					goto out;
2673 				}
2674 				buf[count++] = ef4_farch_filter_make_id(
2675 					&table->spec[filter_idx], filter_idx);
2676 			}
2677 		}
2678 	}
2679 out:
2680 	spin_unlock_bh(&efx->filter_lock);
2681 
2682 	return count;
2683 }
2684 
2685 /* Restore filter stater after reset */
2686 void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2687 {
2688 	struct ef4_farch_filter_state *state = efx->filter_state;
2689 	enum ef4_farch_filter_table_id table_id;
2690 	struct ef4_farch_filter_table *table;
2691 	ef4_oword_t filter;
2692 	unsigned int filter_idx;
2693 
2694 	spin_lock_bh(&efx->filter_lock);
2695 
2696 	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2697 		table = &state->table[table_id];
2698 
2699 		/* Check whether this is a regular register table */
2700 		if (table->step == 0)
2701 			continue;
2702 
2703 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2704 			if (!test_bit(filter_idx, table->used_bitmap))
2705 				continue;
2706 			ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2707 			ef4_writeo(efx, &filter,
2708 				   table->offset + table->step * filter_idx);
2709 		}
2710 	}
2711 
2712 	ef4_farch_filter_push_rx_config(efx);
2713 	ef4_farch_filter_push_tx_limits(efx);
2714 
2715 	spin_unlock_bh(&efx->filter_lock);
2716 }
2717 
2718 void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2719 {
2720 	struct ef4_farch_filter_state *state = efx->filter_state;
2721 	enum ef4_farch_filter_table_id table_id;
2722 
2723 	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2724 		kfree(state->table[table_id].used_bitmap);
2725 		vfree(state->table[table_id].spec);
2726 	}
2727 	kfree(state);
2728 }
2729 
2730 int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2731 {
2732 	struct ef4_farch_filter_state *state;
2733 	struct ef4_farch_filter_table *table;
2734 	unsigned table_id;
2735 
2736 	state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2737 	if (!state)
2738 		return -ENOMEM;
2739 	efx->filter_state = state;
2740 
2741 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2742 		table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2743 		table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2744 		table->offset = FR_BZ_RX_FILTER_TBL0;
2745 		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2746 		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2747 	}
2748 
2749 	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2750 		table = &state->table[table_id];
2751 		if (table->size == 0)
2752 			continue;
2753 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2754 					     sizeof(unsigned long),
2755 					     GFP_KERNEL);
2756 		if (!table->used_bitmap)
2757 			goto fail;
2758 		table->spec = vzalloc(table->size * sizeof(*table->spec));
2759 		if (!table->spec)
2760 			goto fail;
2761 	}
2762 
2763 	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2764 	if (table->size) {
2765 		/* RX default filters must always exist */
2766 		struct ef4_farch_filter_spec *spec;
2767 		unsigned i;
2768 
2769 		for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2770 			spec = &table->spec[i];
2771 			spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2772 			ef4_farch_filter_init_rx_auto(efx, spec);
2773 			__set_bit(i, table->used_bitmap);
2774 		}
2775 	}
2776 
2777 	ef4_farch_filter_push_rx_config(efx);
2778 
2779 	return 0;
2780 
2781 fail:
2782 	ef4_farch_filter_table_remove(efx);
2783 	return -ENOMEM;
2784 }
2785 
2786 /* Update scatter enable flags for filters pointing to our own RX queues */
2787 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2788 {
2789 	struct ef4_farch_filter_state *state = efx->filter_state;
2790 	enum ef4_farch_filter_table_id table_id;
2791 	struct ef4_farch_filter_table *table;
2792 	ef4_oword_t filter;
2793 	unsigned int filter_idx;
2794 
2795 	spin_lock_bh(&efx->filter_lock);
2796 
2797 	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2798 	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2799 	     table_id++) {
2800 		table = &state->table[table_id];
2801 
2802 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2803 			if (!test_bit(filter_idx, table->used_bitmap) ||
2804 			    table->spec[filter_idx].dmaq_id >=
2805 			    efx->n_rx_channels)
2806 				continue;
2807 
2808 			if (efx->rx_scatter)
2809 				table->spec[filter_idx].flags |=
2810 					EF4_FILTER_FLAG_RX_SCATTER;
2811 			else
2812 				table->spec[filter_idx].flags &=
2813 					~EF4_FILTER_FLAG_RX_SCATTER;
2814 
2815 			if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2816 				/* Pushed by ef4_farch_filter_push_rx_config() */
2817 				continue;
2818 
2819 			ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2820 			ef4_writeo(efx, &filter,
2821 				   table->offset + table->step * filter_idx);
2822 		}
2823 	}
2824 
2825 	ef4_farch_filter_push_rx_config(efx);
2826 
2827 	spin_unlock_bh(&efx->filter_lock);
2828 }
2829 
2830 #ifdef CONFIG_RFS_ACCEL
2831 
2832 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2833 				struct ef4_filter_spec *gen_spec)
2834 {
2835 	return ef4_farch_filter_insert(efx, gen_spec, true);
2836 }
2837 
2838 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2839 				     unsigned int index)
2840 {
2841 	struct ef4_farch_filter_state *state = efx->filter_state;
2842 	struct ef4_farch_filter_table *table =
2843 		&state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2844 
2845 	if (test_bit(index, table->used_bitmap) &&
2846 	    table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2847 	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2848 				flow_id, index)) {
2849 		ef4_farch_filter_table_clear_entry(efx, table, index);
2850 		return true;
2851 	}
2852 
2853 	return false;
2854 }
2855 
2856 #endif /* CONFIG_RFS_ACCEL */
2857 
2858 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2859 {
2860 	struct net_device *net_dev = efx->net_dev;
2861 	struct netdev_hw_addr *ha;
2862 	union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2863 	u32 crc;
2864 	int bit;
2865 
2866 	if (!ef4_dev_registered(efx))
2867 		return;
2868 
2869 	netif_addr_lock_bh(net_dev);
2870 
2871 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2872 
2873 	/* Build multicast hash table */
2874 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2875 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2876 	} else {
2877 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2878 		netdev_for_each_mc_addr(ha, net_dev) {
2879 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2880 			bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2881 			__set_bit_le(bit, mc_hash);
2882 		}
2883 
2884 		/* Broadcast packets go through the multicast hash filter.
2885 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2886 		 * so we always add bit 0xff to the mask.
2887 		 */
2888 		__set_bit_le(0xff, mc_hash);
2889 	}
2890 
2891 	netif_addr_unlock_bh(net_dev);
2892 }
2893