xref: /openbmc/linux/drivers/net/ethernet/sfc/falcon/efx.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "selftest.h"
26 
27 #include "workarounds.h"
28 
29 /**************************************************************************
30  *
31  * Type name strings
32  *
33  **************************************************************************
34  */
35 
36 /* Loopback mode names (see LOOPBACK_MODE()) */
37 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
38 const char *const ef4_loopback_mode_names[] = {
39 	[LOOPBACK_NONE]		= "NONE",
40 	[LOOPBACK_DATA]		= "DATAPATH",
41 	[LOOPBACK_GMAC]		= "GMAC",
42 	[LOOPBACK_XGMII]	= "XGMII",
43 	[LOOPBACK_XGXS]		= "XGXS",
44 	[LOOPBACK_XAUI]		= "XAUI",
45 	[LOOPBACK_GMII]		= "GMII",
46 	[LOOPBACK_SGMII]	= "SGMII",
47 	[LOOPBACK_XGBR]		= "XGBR",
48 	[LOOPBACK_XFI]		= "XFI",
49 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
50 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
51 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
52 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
53 	[LOOPBACK_GPHY]		= "GPHY",
54 	[LOOPBACK_PHYXS]	= "PHYXS",
55 	[LOOPBACK_PCS]		= "PCS",
56 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
57 	[LOOPBACK_XPORT]	= "XPORT",
58 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
59 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
60 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
61 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
62 	[LOOPBACK_GMII_WS]	= "GMII_WS",
63 	[LOOPBACK_XFI_WS]	= "XFI_WS",
64 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
65 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
66 };
67 
68 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
69 const char *const ef4_reset_type_names[] = {
70 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
71 	[RESET_TYPE_ALL]                = "ALL",
72 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
73 	[RESET_TYPE_WORLD]              = "WORLD",
74 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
75 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
76 	[RESET_TYPE_DISABLE]            = "DISABLE",
77 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
78 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
79 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
80 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
81 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
82 };
83 
84 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
85  * queued onto this work queue. This is not a per-nic work queue, because
86  * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
87  */
88 static struct workqueue_struct *reset_workqueue;
89 
90 /* How often and how many times to poll for a reset while waiting for a
91  * BIST that another function started to complete.
92  */
93 #define BIST_WAIT_DELAY_MS	100
94 #define BIST_WAIT_DELAY_COUNT	100
95 
96 /**************************************************************************
97  *
98  * Configurable values
99  *
100  *************************************************************************/
101 
102 /*
103  * Use separate channels for TX and RX events
104  *
105  * Set this to 1 to use separate channels for TX and RX. It allows us
106  * to control interrupt affinity separately for TX and RX.
107  *
108  * This is only used in MSI-X interrupt mode
109  */
110 bool ef4_separate_tx_channels;
111 module_param(ef4_separate_tx_channels, bool, 0444);
112 MODULE_PARM_DESC(ef4_separate_tx_channels,
113 		 "Use separate channels for TX and RX");
114 
115 /* This is the time (in jiffies) between invocations of the hardware
116  * monitor.
117  * On Falcon-based NICs, this will:
118  * - Check the on-board hardware monitor;
119  * - Poll the link state and reconfigure the hardware as necessary.
120  * On Siena-based NICs for power systems with EEH support, this will give EEH a
121  * chance to start.
122  */
123 static unsigned int ef4_monitor_interval = 1 * HZ;
124 
125 /* Initial interrupt moderation settings.  They can be modified after
126  * module load with ethtool.
127  *
128  * The default for RX should strike a balance between increasing the
129  * round-trip latency and reducing overhead.
130  */
131 static unsigned int rx_irq_mod_usec = 60;
132 
133 /* Initial interrupt moderation settings.  They can be modified after
134  * module load with ethtool.
135  *
136  * This default is chosen to ensure that a 10G link does not go idle
137  * while a TX queue is stopped after it has become full.  A queue is
138  * restarted when it drops below half full.  The time this takes (assuming
139  * worst case 3 descriptors per packet and 1024 descriptors) is
140  *   512 / 3 * 1.2 = 205 usec.
141  */
142 static unsigned int tx_irq_mod_usec = 150;
143 
144 /* This is the first interrupt mode to try out of:
145  * 0 => MSI-X
146  * 1 => MSI
147  * 2 => legacy
148  */
149 static unsigned int interrupt_mode;
150 
151 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
152  * i.e. the number of CPUs among which we may distribute simultaneous
153  * interrupt handling.
154  *
155  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156  * The default (0) means to assign an interrupt to each core.
157  */
158 static unsigned int rss_cpus;
159 module_param(rss_cpus, uint, 0444);
160 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
161 
162 static bool phy_flash_cfg;
163 module_param(phy_flash_cfg, bool, 0644);
164 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
165 
166 static unsigned irq_adapt_low_thresh = 8000;
167 module_param(irq_adapt_low_thresh, uint, 0644);
168 MODULE_PARM_DESC(irq_adapt_low_thresh,
169 		 "Threshold score for reducing IRQ moderation");
170 
171 static unsigned irq_adapt_high_thresh = 16000;
172 module_param(irq_adapt_high_thresh, uint, 0644);
173 MODULE_PARM_DESC(irq_adapt_high_thresh,
174 		 "Threshold score for increasing IRQ moderation");
175 
176 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
177 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
178 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
179 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
180 module_param(debug, uint, 0);
181 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
182 
183 /**************************************************************************
184  *
185  * Utility functions and prototypes
186  *
187  *************************************************************************/
188 
189 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
190 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
191 static void ef4_remove_channel(struct ef4_channel *channel);
192 static void ef4_remove_channels(struct ef4_nic *efx);
193 static const struct ef4_channel_type ef4_default_channel_type;
194 static void ef4_remove_port(struct ef4_nic *efx);
195 static void ef4_init_napi_channel(struct ef4_channel *channel);
196 static void ef4_fini_napi(struct ef4_nic *efx);
197 static void ef4_fini_napi_channel(struct ef4_channel *channel);
198 static void ef4_fini_struct(struct ef4_nic *efx);
199 static void ef4_start_all(struct ef4_nic *efx);
200 static void ef4_stop_all(struct ef4_nic *efx);
201 
202 #define EF4_ASSERT_RESET_SERIALISED(efx)		\
203 	do {						\
204 		if ((efx->state == STATE_READY) ||	\
205 		    (efx->state == STATE_RECOVERY) ||	\
206 		    (efx->state == STATE_DISABLED))	\
207 			ASSERT_RTNL();			\
208 	} while (0)
209 
210 static int ef4_check_disabled(struct ef4_nic *efx)
211 {
212 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
213 		netif_err(efx, drv, efx->net_dev,
214 			  "device is disabled due to earlier errors\n");
215 		return -EIO;
216 	}
217 	return 0;
218 }
219 
220 /**************************************************************************
221  *
222  * Event queue processing
223  *
224  *************************************************************************/
225 
226 /* Process channel's event queue
227  *
228  * This function is responsible for processing the event queue of a
229  * single channel.  The caller must guarantee that this function will
230  * never be concurrently called more than once on the same channel,
231  * though different channels may be being processed concurrently.
232  */
233 static int ef4_process_channel(struct ef4_channel *channel, int budget)
234 {
235 	struct ef4_tx_queue *tx_queue;
236 	int spent;
237 
238 	if (unlikely(!channel->enabled))
239 		return 0;
240 
241 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
242 		tx_queue->pkts_compl = 0;
243 		tx_queue->bytes_compl = 0;
244 	}
245 
246 	spent = ef4_nic_process_eventq(channel, budget);
247 	if (spent && ef4_channel_has_rx_queue(channel)) {
248 		struct ef4_rx_queue *rx_queue =
249 			ef4_channel_get_rx_queue(channel);
250 
251 		ef4_rx_flush_packet(channel);
252 		ef4_fast_push_rx_descriptors(rx_queue, true);
253 	}
254 
255 	/* Update BQL */
256 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
257 		if (tx_queue->bytes_compl) {
258 			netdev_tx_completed_queue(tx_queue->core_txq,
259 				tx_queue->pkts_compl, tx_queue->bytes_compl);
260 		}
261 	}
262 
263 	return spent;
264 }
265 
266 /* NAPI poll handler
267  *
268  * NAPI guarantees serialisation of polls of the same device, which
269  * provides the guarantee required by ef4_process_channel().
270  */
271 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
272 {
273 	int step = efx->irq_mod_step_us;
274 
275 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
276 		if (channel->irq_moderation_us > step) {
277 			channel->irq_moderation_us -= step;
278 			efx->type->push_irq_moderation(channel);
279 		}
280 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
281 		if (channel->irq_moderation_us <
282 		    efx->irq_rx_moderation_us) {
283 			channel->irq_moderation_us += step;
284 			efx->type->push_irq_moderation(channel);
285 		}
286 	}
287 
288 	channel->irq_count = 0;
289 	channel->irq_mod_score = 0;
290 }
291 
292 static int ef4_poll(struct napi_struct *napi, int budget)
293 {
294 	struct ef4_channel *channel =
295 		container_of(napi, struct ef4_channel, napi_str);
296 	struct ef4_nic *efx = channel->efx;
297 	int spent;
298 
299 	netif_vdbg(efx, intr, efx->net_dev,
300 		   "channel %d NAPI poll executing on CPU %d\n",
301 		   channel->channel, raw_smp_processor_id());
302 
303 	spent = ef4_process_channel(channel, budget);
304 
305 	if (spent < budget) {
306 		if (ef4_channel_has_rx_queue(channel) &&
307 		    efx->irq_rx_adaptive &&
308 		    unlikely(++channel->irq_count == 1000)) {
309 			ef4_update_irq_mod(efx, channel);
310 		}
311 
312 		ef4_filter_rfs_expire(channel);
313 
314 		/* There is no race here; although napi_disable() will
315 		 * only wait for napi_complete(), this isn't a problem
316 		 * since ef4_nic_eventq_read_ack() will have no effect if
317 		 * interrupts have already been disabled.
318 		 */
319 		napi_complete_done(napi, spent);
320 		ef4_nic_eventq_read_ack(channel);
321 	}
322 
323 	return spent;
324 }
325 
326 /* Create event queue
327  * Event queue memory allocations are done only once.  If the channel
328  * is reset, the memory buffer will be reused; this guards against
329  * errors during channel reset and also simplifies interrupt handling.
330  */
331 static int ef4_probe_eventq(struct ef4_channel *channel)
332 {
333 	struct ef4_nic *efx = channel->efx;
334 	unsigned long entries;
335 
336 	netif_dbg(efx, probe, efx->net_dev,
337 		  "chan %d create event queue\n", channel->channel);
338 
339 	/* Build an event queue with room for one event per tx and rx buffer,
340 	 * plus some extra for link state events and MCDI completions. */
341 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
342 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
343 	channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
344 
345 	return ef4_nic_probe_eventq(channel);
346 }
347 
348 /* Prepare channel's event queue */
349 static int ef4_init_eventq(struct ef4_channel *channel)
350 {
351 	struct ef4_nic *efx = channel->efx;
352 	int rc;
353 
354 	EF4_WARN_ON_PARANOID(channel->eventq_init);
355 
356 	netif_dbg(efx, drv, efx->net_dev,
357 		  "chan %d init event queue\n", channel->channel);
358 
359 	rc = ef4_nic_init_eventq(channel);
360 	if (rc == 0) {
361 		efx->type->push_irq_moderation(channel);
362 		channel->eventq_read_ptr = 0;
363 		channel->eventq_init = true;
364 	}
365 	return rc;
366 }
367 
368 /* Enable event queue processing and NAPI */
369 void ef4_start_eventq(struct ef4_channel *channel)
370 {
371 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
372 		  "chan %d start event queue\n", channel->channel);
373 
374 	/* Make sure the NAPI handler sees the enabled flag set */
375 	channel->enabled = true;
376 	smp_wmb();
377 
378 	napi_enable(&channel->napi_str);
379 	ef4_nic_eventq_read_ack(channel);
380 }
381 
382 /* Disable event queue processing and NAPI */
383 void ef4_stop_eventq(struct ef4_channel *channel)
384 {
385 	if (!channel->enabled)
386 		return;
387 
388 	napi_disable(&channel->napi_str);
389 	channel->enabled = false;
390 }
391 
392 static void ef4_fini_eventq(struct ef4_channel *channel)
393 {
394 	if (!channel->eventq_init)
395 		return;
396 
397 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
398 		  "chan %d fini event queue\n", channel->channel);
399 
400 	ef4_nic_fini_eventq(channel);
401 	channel->eventq_init = false;
402 }
403 
404 static void ef4_remove_eventq(struct ef4_channel *channel)
405 {
406 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
407 		  "chan %d remove event queue\n", channel->channel);
408 
409 	ef4_nic_remove_eventq(channel);
410 }
411 
412 /**************************************************************************
413  *
414  * Channel handling
415  *
416  *************************************************************************/
417 
418 /* Allocate and initialise a channel structure. */
419 static struct ef4_channel *
420 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
421 {
422 	struct ef4_channel *channel;
423 	struct ef4_rx_queue *rx_queue;
424 	struct ef4_tx_queue *tx_queue;
425 	int j;
426 
427 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
428 	if (!channel)
429 		return NULL;
430 
431 	channel->efx = efx;
432 	channel->channel = i;
433 	channel->type = &ef4_default_channel_type;
434 
435 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
436 		tx_queue = &channel->tx_queue[j];
437 		tx_queue->efx = efx;
438 		tx_queue->queue = i * EF4_TXQ_TYPES + j;
439 		tx_queue->channel = channel;
440 	}
441 
442 	rx_queue = &channel->rx_queue;
443 	rx_queue->efx = efx;
444 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
445 
446 	return channel;
447 }
448 
449 /* Allocate and initialise a channel structure, copying parameters
450  * (but not resources) from an old channel structure.
451  */
452 static struct ef4_channel *
453 ef4_copy_channel(const struct ef4_channel *old_channel)
454 {
455 	struct ef4_channel *channel;
456 	struct ef4_rx_queue *rx_queue;
457 	struct ef4_tx_queue *tx_queue;
458 	int j;
459 
460 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
461 	if (!channel)
462 		return NULL;
463 
464 	*channel = *old_channel;
465 
466 	channel->napi_dev = NULL;
467 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
468 	channel->napi_str.napi_id = 0;
469 	channel->napi_str.state = 0;
470 	memset(&channel->eventq, 0, sizeof(channel->eventq));
471 
472 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
473 		tx_queue = &channel->tx_queue[j];
474 		if (tx_queue->channel)
475 			tx_queue->channel = channel;
476 		tx_queue->buffer = NULL;
477 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
478 	}
479 
480 	rx_queue = &channel->rx_queue;
481 	rx_queue->buffer = NULL;
482 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
483 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
484 
485 	return channel;
486 }
487 
488 static int ef4_probe_channel(struct ef4_channel *channel)
489 {
490 	struct ef4_tx_queue *tx_queue;
491 	struct ef4_rx_queue *rx_queue;
492 	int rc;
493 
494 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
495 		  "creating channel %d\n", channel->channel);
496 
497 	rc = channel->type->pre_probe(channel);
498 	if (rc)
499 		goto fail;
500 
501 	rc = ef4_probe_eventq(channel);
502 	if (rc)
503 		goto fail;
504 
505 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
506 		rc = ef4_probe_tx_queue(tx_queue);
507 		if (rc)
508 			goto fail;
509 	}
510 
511 	ef4_for_each_channel_rx_queue(rx_queue, channel) {
512 		rc = ef4_probe_rx_queue(rx_queue);
513 		if (rc)
514 			goto fail;
515 	}
516 
517 	return 0;
518 
519 fail:
520 	ef4_remove_channel(channel);
521 	return rc;
522 }
523 
524 static void
525 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
526 {
527 	struct ef4_nic *efx = channel->efx;
528 	const char *type;
529 	int number;
530 
531 	number = channel->channel;
532 	if (efx->tx_channel_offset == 0) {
533 		type = "";
534 	} else if (channel->channel < efx->tx_channel_offset) {
535 		type = "-rx";
536 	} else {
537 		type = "-tx";
538 		number -= efx->tx_channel_offset;
539 	}
540 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
541 }
542 
543 static void ef4_set_channel_names(struct ef4_nic *efx)
544 {
545 	struct ef4_channel *channel;
546 
547 	ef4_for_each_channel(channel, efx)
548 		channel->type->get_name(channel,
549 					efx->msi_context[channel->channel].name,
550 					sizeof(efx->msi_context[0].name));
551 }
552 
553 static int ef4_probe_channels(struct ef4_nic *efx)
554 {
555 	struct ef4_channel *channel;
556 	int rc;
557 
558 	/* Restart special buffer allocation */
559 	efx->next_buffer_table = 0;
560 
561 	/* Probe channels in reverse, so that any 'extra' channels
562 	 * use the start of the buffer table. This allows the traffic
563 	 * channels to be resized without moving them or wasting the
564 	 * entries before them.
565 	 */
566 	ef4_for_each_channel_rev(channel, efx) {
567 		rc = ef4_probe_channel(channel);
568 		if (rc) {
569 			netif_err(efx, probe, efx->net_dev,
570 				  "failed to create channel %d\n",
571 				  channel->channel);
572 			goto fail;
573 		}
574 	}
575 	ef4_set_channel_names(efx);
576 
577 	return 0;
578 
579 fail:
580 	ef4_remove_channels(efx);
581 	return rc;
582 }
583 
584 /* Channels are shutdown and reinitialised whilst the NIC is running
585  * to propagate configuration changes (mtu, checksum offload), or
586  * to clear hardware error conditions
587  */
588 static void ef4_start_datapath(struct ef4_nic *efx)
589 {
590 	netdev_features_t old_features = efx->net_dev->features;
591 	bool old_rx_scatter = efx->rx_scatter;
592 	struct ef4_tx_queue *tx_queue;
593 	struct ef4_rx_queue *rx_queue;
594 	struct ef4_channel *channel;
595 	size_t rx_buf_len;
596 
597 	/* Calculate the rx buffer allocation parameters required to
598 	 * support the current MTU, including padding for header
599 	 * alignment and overruns.
600 	 */
601 	efx->rx_dma_len = (efx->rx_prefix_size +
602 			   EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
603 			   efx->type->rx_buffer_padding);
604 	rx_buf_len = (sizeof(struct ef4_rx_page_state) +
605 		      efx->rx_ip_align + efx->rx_dma_len);
606 	if (rx_buf_len <= PAGE_SIZE) {
607 		efx->rx_scatter = efx->type->always_rx_scatter;
608 		efx->rx_buffer_order = 0;
609 	} else if (efx->type->can_rx_scatter) {
610 		BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
611 		BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
612 			     2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
613 				       EF4_RX_BUF_ALIGNMENT) >
614 			     PAGE_SIZE);
615 		efx->rx_scatter = true;
616 		efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
617 		efx->rx_buffer_order = 0;
618 	} else {
619 		efx->rx_scatter = false;
620 		efx->rx_buffer_order = get_order(rx_buf_len);
621 	}
622 
623 	ef4_rx_config_page_split(efx);
624 	if (efx->rx_buffer_order)
625 		netif_dbg(efx, drv, efx->net_dev,
626 			  "RX buf len=%u; page order=%u batch=%u\n",
627 			  efx->rx_dma_len, efx->rx_buffer_order,
628 			  efx->rx_pages_per_batch);
629 	else
630 		netif_dbg(efx, drv, efx->net_dev,
631 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
632 			  efx->rx_dma_len, efx->rx_page_buf_step,
633 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
634 
635 	/* Restore previously fixed features in hw_features and remove
636 	 * features which are fixed now
637 	 */
638 	efx->net_dev->hw_features |= efx->net_dev->features;
639 	efx->net_dev->hw_features &= ~efx->fixed_features;
640 	efx->net_dev->features |= efx->fixed_features;
641 	if (efx->net_dev->features != old_features)
642 		netdev_features_change(efx->net_dev);
643 
644 	/* RX filters may also have scatter-enabled flags */
645 	if (efx->rx_scatter != old_rx_scatter)
646 		efx->type->filter_update_rx_scatter(efx);
647 
648 	/* We must keep at least one descriptor in a TX ring empty.
649 	 * We could avoid this when the queue size does not exactly
650 	 * match the hardware ring size, but it's not that important.
651 	 * Therefore we stop the queue when one more skb might fill
652 	 * the ring completely.  We wake it when half way back to
653 	 * empty.
654 	 */
655 	efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
656 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
657 
658 	/* Initialise the channels */
659 	ef4_for_each_channel(channel, efx) {
660 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
661 			ef4_init_tx_queue(tx_queue);
662 			atomic_inc(&efx->active_queues);
663 		}
664 
665 		ef4_for_each_channel_rx_queue(rx_queue, channel) {
666 			ef4_init_rx_queue(rx_queue);
667 			atomic_inc(&efx->active_queues);
668 			ef4_stop_eventq(channel);
669 			ef4_fast_push_rx_descriptors(rx_queue, false);
670 			ef4_start_eventq(channel);
671 		}
672 
673 		WARN_ON(channel->rx_pkt_n_frags);
674 	}
675 
676 	if (netif_device_present(efx->net_dev))
677 		netif_tx_wake_all_queues(efx->net_dev);
678 }
679 
680 static void ef4_stop_datapath(struct ef4_nic *efx)
681 {
682 	struct ef4_channel *channel;
683 	struct ef4_tx_queue *tx_queue;
684 	struct ef4_rx_queue *rx_queue;
685 	int rc;
686 
687 	EF4_ASSERT_RESET_SERIALISED(efx);
688 	BUG_ON(efx->port_enabled);
689 
690 	/* Stop RX refill */
691 	ef4_for_each_channel(channel, efx) {
692 		ef4_for_each_channel_rx_queue(rx_queue, channel)
693 			rx_queue->refill_enabled = false;
694 	}
695 
696 	ef4_for_each_channel(channel, efx) {
697 		/* RX packet processing is pipelined, so wait for the
698 		 * NAPI handler to complete.  At least event queue 0
699 		 * might be kept active by non-data events, so don't
700 		 * use napi_synchronize() but actually disable NAPI
701 		 * temporarily.
702 		 */
703 		if (ef4_channel_has_rx_queue(channel)) {
704 			ef4_stop_eventq(channel);
705 			ef4_start_eventq(channel);
706 		}
707 	}
708 
709 	rc = efx->type->fini_dmaq(efx);
710 	if (rc && EF4_WORKAROUND_7803(efx)) {
711 		/* Schedule a reset to recover from the flush failure. The
712 		 * descriptor caches reference memory we're about to free,
713 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
714 		 * the MACs because of the pending reset.
715 		 */
716 		netif_err(efx, drv, efx->net_dev,
717 			  "Resetting to recover from flush failure\n");
718 		ef4_schedule_reset(efx, RESET_TYPE_ALL);
719 	} else if (rc) {
720 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
721 	} else {
722 		netif_dbg(efx, drv, efx->net_dev,
723 			  "successfully flushed all queues\n");
724 	}
725 
726 	ef4_for_each_channel(channel, efx) {
727 		ef4_for_each_channel_rx_queue(rx_queue, channel)
728 			ef4_fini_rx_queue(rx_queue);
729 		ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
730 			ef4_fini_tx_queue(tx_queue);
731 	}
732 }
733 
734 static void ef4_remove_channel(struct ef4_channel *channel)
735 {
736 	struct ef4_tx_queue *tx_queue;
737 	struct ef4_rx_queue *rx_queue;
738 
739 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
740 		  "destroy chan %d\n", channel->channel);
741 
742 	ef4_for_each_channel_rx_queue(rx_queue, channel)
743 		ef4_remove_rx_queue(rx_queue);
744 	ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
745 		ef4_remove_tx_queue(tx_queue);
746 	ef4_remove_eventq(channel);
747 	channel->type->post_remove(channel);
748 }
749 
750 static void ef4_remove_channels(struct ef4_nic *efx)
751 {
752 	struct ef4_channel *channel;
753 
754 	ef4_for_each_channel(channel, efx)
755 		ef4_remove_channel(channel);
756 }
757 
758 int
759 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
760 {
761 	struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
762 	u32 old_rxq_entries, old_txq_entries;
763 	unsigned i, next_buffer_table = 0;
764 	int rc, rc2;
765 
766 	rc = ef4_check_disabled(efx);
767 	if (rc)
768 		return rc;
769 
770 	/* Not all channels should be reallocated. We must avoid
771 	 * reallocating their buffer table entries.
772 	 */
773 	ef4_for_each_channel(channel, efx) {
774 		struct ef4_rx_queue *rx_queue;
775 		struct ef4_tx_queue *tx_queue;
776 
777 		if (channel->type->copy)
778 			continue;
779 		next_buffer_table = max(next_buffer_table,
780 					channel->eventq.index +
781 					channel->eventq.entries);
782 		ef4_for_each_channel_rx_queue(rx_queue, channel)
783 			next_buffer_table = max(next_buffer_table,
784 						rx_queue->rxd.index +
785 						rx_queue->rxd.entries);
786 		ef4_for_each_channel_tx_queue(tx_queue, channel)
787 			next_buffer_table = max(next_buffer_table,
788 						tx_queue->txd.index +
789 						tx_queue->txd.entries);
790 	}
791 
792 	ef4_device_detach_sync(efx);
793 	ef4_stop_all(efx);
794 	ef4_soft_disable_interrupts(efx);
795 
796 	/* Clone channels (where possible) */
797 	memset(other_channel, 0, sizeof(other_channel));
798 	for (i = 0; i < efx->n_channels; i++) {
799 		channel = efx->channel[i];
800 		if (channel->type->copy)
801 			channel = channel->type->copy(channel);
802 		if (!channel) {
803 			rc = -ENOMEM;
804 			goto out;
805 		}
806 		other_channel[i] = channel;
807 	}
808 
809 	/* Swap entry counts and channel pointers */
810 	old_rxq_entries = efx->rxq_entries;
811 	old_txq_entries = efx->txq_entries;
812 	efx->rxq_entries = rxq_entries;
813 	efx->txq_entries = txq_entries;
814 	for (i = 0; i < efx->n_channels; i++) {
815 		swap(efx->channel[i], other_channel[i]);
816 	}
817 
818 	/* Restart buffer table allocation */
819 	efx->next_buffer_table = next_buffer_table;
820 
821 	for (i = 0; i < efx->n_channels; i++) {
822 		channel = efx->channel[i];
823 		if (!channel->type->copy)
824 			continue;
825 		rc = ef4_probe_channel(channel);
826 		if (rc)
827 			goto rollback;
828 		ef4_init_napi_channel(efx->channel[i]);
829 	}
830 
831 out:
832 	/* Destroy unused channel structures */
833 	for (i = 0; i < efx->n_channels; i++) {
834 		channel = other_channel[i];
835 		if (channel && channel->type->copy) {
836 			ef4_fini_napi_channel(channel);
837 			ef4_remove_channel(channel);
838 			kfree(channel);
839 		}
840 	}
841 
842 	rc2 = ef4_soft_enable_interrupts(efx);
843 	if (rc2) {
844 		rc = rc ? rc : rc2;
845 		netif_err(efx, drv, efx->net_dev,
846 			  "unable to restart interrupts on channel reallocation\n");
847 		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
848 	} else {
849 		ef4_start_all(efx);
850 		netif_device_attach(efx->net_dev);
851 	}
852 	return rc;
853 
854 rollback:
855 	/* Swap back */
856 	efx->rxq_entries = old_rxq_entries;
857 	efx->txq_entries = old_txq_entries;
858 	for (i = 0; i < efx->n_channels; i++) {
859 		swap(efx->channel[i], other_channel[i]);
860 	}
861 	goto out;
862 }
863 
864 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
865 {
866 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
867 }
868 
869 static const struct ef4_channel_type ef4_default_channel_type = {
870 	.pre_probe		= ef4_channel_dummy_op_int,
871 	.post_remove		= ef4_channel_dummy_op_void,
872 	.get_name		= ef4_get_channel_name,
873 	.copy			= ef4_copy_channel,
874 	.keep_eventq		= false,
875 };
876 
877 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
878 {
879 	return 0;
880 }
881 
882 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
883 {
884 }
885 
886 /**************************************************************************
887  *
888  * Port handling
889  *
890  **************************************************************************/
891 
892 /* This ensures that the kernel is kept informed (via
893  * netif_carrier_on/off) of the link status, and also maintains the
894  * link status's stop on the port's TX queue.
895  */
896 void ef4_link_status_changed(struct ef4_nic *efx)
897 {
898 	struct ef4_link_state *link_state = &efx->link_state;
899 
900 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
901 	 * that no events are triggered between unregister_netdev() and the
902 	 * driver unloading. A more general condition is that NETDEV_CHANGE
903 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
904 	if (!netif_running(efx->net_dev))
905 		return;
906 
907 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
908 		efx->n_link_state_changes++;
909 
910 		if (link_state->up)
911 			netif_carrier_on(efx->net_dev);
912 		else
913 			netif_carrier_off(efx->net_dev);
914 	}
915 
916 	/* Status message for kernel log */
917 	if (link_state->up)
918 		netif_info(efx, link, efx->net_dev,
919 			   "link up at %uMbps %s-duplex (MTU %d)\n",
920 			   link_state->speed, link_state->fd ? "full" : "half",
921 			   efx->net_dev->mtu);
922 	else
923 		netif_info(efx, link, efx->net_dev, "link down\n");
924 }
925 
926 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
927 {
928 	efx->link_advertising = advertising;
929 	if (advertising) {
930 		if (advertising & ADVERTISED_Pause)
931 			efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
932 		else
933 			efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
934 		if (advertising & ADVERTISED_Asym_Pause)
935 			efx->wanted_fc ^= EF4_FC_TX;
936 	}
937 }
938 
939 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
940 {
941 	efx->wanted_fc = wanted_fc;
942 	if (efx->link_advertising) {
943 		if (wanted_fc & EF4_FC_RX)
944 			efx->link_advertising |= (ADVERTISED_Pause |
945 						  ADVERTISED_Asym_Pause);
946 		else
947 			efx->link_advertising &= ~(ADVERTISED_Pause |
948 						   ADVERTISED_Asym_Pause);
949 		if (wanted_fc & EF4_FC_TX)
950 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
951 	}
952 }
953 
954 static void ef4_fini_port(struct ef4_nic *efx);
955 
956 /* We assume that efx->type->reconfigure_mac will always try to sync RX
957  * filters and therefore needs to read-lock the filter table against freeing
958  */
959 void ef4_mac_reconfigure(struct ef4_nic *efx)
960 {
961 	down_read(&efx->filter_sem);
962 	efx->type->reconfigure_mac(efx);
963 	up_read(&efx->filter_sem);
964 }
965 
966 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
967  * the MAC appropriately. All other PHY configuration changes are pushed
968  * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
969  * through ef4_monitor().
970  *
971  * Callers must hold the mac_lock
972  */
973 int __ef4_reconfigure_port(struct ef4_nic *efx)
974 {
975 	enum ef4_phy_mode phy_mode;
976 	int rc;
977 
978 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
979 
980 	/* Disable PHY transmit in mac level loopbacks */
981 	phy_mode = efx->phy_mode;
982 	if (LOOPBACK_INTERNAL(efx))
983 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
984 	else
985 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
986 
987 	rc = efx->type->reconfigure_port(efx);
988 
989 	if (rc)
990 		efx->phy_mode = phy_mode;
991 
992 	return rc;
993 }
994 
995 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
996  * disabled. */
997 int ef4_reconfigure_port(struct ef4_nic *efx)
998 {
999 	int rc;
1000 
1001 	EF4_ASSERT_RESET_SERIALISED(efx);
1002 
1003 	mutex_lock(&efx->mac_lock);
1004 	rc = __ef4_reconfigure_port(efx);
1005 	mutex_unlock(&efx->mac_lock);
1006 
1007 	return rc;
1008 }
1009 
1010 /* Asynchronous work item for changing MAC promiscuity and multicast
1011  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1012  * MAC directly. */
1013 static void ef4_mac_work(struct work_struct *data)
1014 {
1015 	struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1016 
1017 	mutex_lock(&efx->mac_lock);
1018 	if (efx->port_enabled)
1019 		ef4_mac_reconfigure(efx);
1020 	mutex_unlock(&efx->mac_lock);
1021 }
1022 
1023 static int ef4_probe_port(struct ef4_nic *efx)
1024 {
1025 	int rc;
1026 
1027 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1028 
1029 	if (phy_flash_cfg)
1030 		efx->phy_mode = PHY_MODE_SPECIAL;
1031 
1032 	/* Connect up MAC/PHY operations table */
1033 	rc = efx->type->probe_port(efx);
1034 	if (rc)
1035 		return rc;
1036 
1037 	/* Initialise MAC address to permanent address */
1038 	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
1039 
1040 	return 0;
1041 }
1042 
1043 static int ef4_init_port(struct ef4_nic *efx)
1044 {
1045 	int rc;
1046 
1047 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1048 
1049 	mutex_lock(&efx->mac_lock);
1050 
1051 	rc = efx->phy_op->init(efx);
1052 	if (rc)
1053 		goto fail1;
1054 
1055 	efx->port_initialized = true;
1056 
1057 	/* Reconfigure the MAC before creating dma queues (required for
1058 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1059 	ef4_mac_reconfigure(efx);
1060 
1061 	/* Ensure the PHY advertises the correct flow control settings */
1062 	rc = efx->phy_op->reconfigure(efx);
1063 	if (rc && rc != -EPERM)
1064 		goto fail2;
1065 
1066 	mutex_unlock(&efx->mac_lock);
1067 	return 0;
1068 
1069 fail2:
1070 	efx->phy_op->fini(efx);
1071 fail1:
1072 	mutex_unlock(&efx->mac_lock);
1073 	return rc;
1074 }
1075 
1076 static void ef4_start_port(struct ef4_nic *efx)
1077 {
1078 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1079 	BUG_ON(efx->port_enabled);
1080 
1081 	mutex_lock(&efx->mac_lock);
1082 	efx->port_enabled = true;
1083 
1084 	/* Ensure MAC ingress/egress is enabled */
1085 	ef4_mac_reconfigure(efx);
1086 
1087 	mutex_unlock(&efx->mac_lock);
1088 }
1089 
1090 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1091  * and the async self-test, wait for them to finish and prevent them
1092  * being scheduled again.  This doesn't cover online resets, which
1093  * should only be cancelled when removing the device.
1094  */
1095 static void ef4_stop_port(struct ef4_nic *efx)
1096 {
1097 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1098 
1099 	EF4_ASSERT_RESET_SERIALISED(efx);
1100 
1101 	mutex_lock(&efx->mac_lock);
1102 	efx->port_enabled = false;
1103 	mutex_unlock(&efx->mac_lock);
1104 
1105 	/* Serialise against ef4_set_multicast_list() */
1106 	netif_addr_lock_bh(efx->net_dev);
1107 	netif_addr_unlock_bh(efx->net_dev);
1108 
1109 	cancel_delayed_work_sync(&efx->monitor_work);
1110 	ef4_selftest_async_cancel(efx);
1111 	cancel_work_sync(&efx->mac_work);
1112 }
1113 
1114 static void ef4_fini_port(struct ef4_nic *efx)
1115 {
1116 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1117 
1118 	if (!efx->port_initialized)
1119 		return;
1120 
1121 	efx->phy_op->fini(efx);
1122 	efx->port_initialized = false;
1123 
1124 	efx->link_state.up = false;
1125 	ef4_link_status_changed(efx);
1126 }
1127 
1128 static void ef4_remove_port(struct ef4_nic *efx)
1129 {
1130 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1131 
1132 	efx->type->remove_port(efx);
1133 }
1134 
1135 /**************************************************************************
1136  *
1137  * NIC handling
1138  *
1139  **************************************************************************/
1140 
1141 static LIST_HEAD(ef4_primary_list);
1142 static LIST_HEAD(ef4_unassociated_list);
1143 
1144 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1145 {
1146 	return left->type == right->type &&
1147 		left->vpd_sn && right->vpd_sn &&
1148 		!strcmp(left->vpd_sn, right->vpd_sn);
1149 }
1150 
1151 static void ef4_associate(struct ef4_nic *efx)
1152 {
1153 	struct ef4_nic *other, *next;
1154 
1155 	if (efx->primary == efx) {
1156 		/* Adding primary function; look for secondaries */
1157 
1158 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1159 		list_add_tail(&efx->node, &ef4_primary_list);
1160 
1161 		list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1162 					 node) {
1163 			if (ef4_same_controller(efx, other)) {
1164 				list_del(&other->node);
1165 				netif_dbg(other, probe, other->net_dev,
1166 					  "moving to secondary list of %s %s\n",
1167 					  pci_name(efx->pci_dev),
1168 					  efx->net_dev->name);
1169 				list_add_tail(&other->node,
1170 					      &efx->secondary_list);
1171 				other->primary = efx;
1172 			}
1173 		}
1174 	} else {
1175 		/* Adding secondary function; look for primary */
1176 
1177 		list_for_each_entry(other, &ef4_primary_list, node) {
1178 			if (ef4_same_controller(efx, other)) {
1179 				netif_dbg(efx, probe, efx->net_dev,
1180 					  "adding to secondary list of %s %s\n",
1181 					  pci_name(other->pci_dev),
1182 					  other->net_dev->name);
1183 				list_add_tail(&efx->node,
1184 					      &other->secondary_list);
1185 				efx->primary = other;
1186 				return;
1187 			}
1188 		}
1189 
1190 		netif_dbg(efx, probe, efx->net_dev,
1191 			  "adding to unassociated list\n");
1192 		list_add_tail(&efx->node, &ef4_unassociated_list);
1193 	}
1194 }
1195 
1196 static void ef4_dissociate(struct ef4_nic *efx)
1197 {
1198 	struct ef4_nic *other, *next;
1199 
1200 	list_del(&efx->node);
1201 	efx->primary = NULL;
1202 
1203 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1204 		list_del(&other->node);
1205 		netif_dbg(other, probe, other->net_dev,
1206 			  "moving to unassociated list\n");
1207 		list_add_tail(&other->node, &ef4_unassociated_list);
1208 		other->primary = NULL;
1209 	}
1210 }
1211 
1212 /* This configures the PCI device to enable I/O and DMA. */
1213 static int ef4_init_io(struct ef4_nic *efx)
1214 {
1215 	struct pci_dev *pci_dev = efx->pci_dev;
1216 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1217 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1218 	int rc, bar;
1219 
1220 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1221 
1222 	bar = efx->type->mem_bar;
1223 
1224 	rc = pci_enable_device(pci_dev);
1225 	if (rc) {
1226 		netif_err(efx, probe, efx->net_dev,
1227 			  "failed to enable PCI device\n");
1228 		goto fail1;
1229 	}
1230 
1231 	pci_set_master(pci_dev);
1232 
1233 	/* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1234 	 * down to 32 bits, because some architectures will allow 40 bit
1235 	 * masks event though they reject 46 bit masks.
1236 	 */
1237 	while (dma_mask > 0x7fffffffUL) {
1238 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1239 		if (rc == 0)
1240 			break;
1241 		dma_mask >>= 1;
1242 	}
1243 	if (rc) {
1244 		netif_err(efx, probe, efx->net_dev,
1245 			  "could not find a suitable DMA mask\n");
1246 		goto fail2;
1247 	}
1248 	netif_dbg(efx, probe, efx->net_dev,
1249 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1250 
1251 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1252 	rc = pci_request_region(pci_dev, bar, "sfc");
1253 	if (rc) {
1254 		netif_err(efx, probe, efx->net_dev,
1255 			  "request for memory BAR failed\n");
1256 		rc = -EIO;
1257 		goto fail3;
1258 	}
1259 	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1260 	if (!efx->membase) {
1261 		netif_err(efx, probe, efx->net_dev,
1262 			  "could not map memory BAR at %llx+%x\n",
1263 			  (unsigned long long)efx->membase_phys, mem_map_size);
1264 		rc = -ENOMEM;
1265 		goto fail4;
1266 	}
1267 	netif_dbg(efx, probe, efx->net_dev,
1268 		  "memory BAR at %llx+%x (virtual %p)\n",
1269 		  (unsigned long long)efx->membase_phys, mem_map_size,
1270 		  efx->membase);
1271 
1272 	return 0;
1273 
1274  fail4:
1275 	pci_release_region(efx->pci_dev, bar);
1276  fail3:
1277 	efx->membase_phys = 0;
1278  fail2:
1279 	pci_disable_device(efx->pci_dev);
1280  fail1:
1281 	return rc;
1282 }
1283 
1284 static void ef4_fini_io(struct ef4_nic *efx)
1285 {
1286 	int bar;
1287 
1288 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1289 
1290 	if (efx->membase) {
1291 		iounmap(efx->membase);
1292 		efx->membase = NULL;
1293 	}
1294 
1295 	if (efx->membase_phys) {
1296 		bar = efx->type->mem_bar;
1297 		pci_release_region(efx->pci_dev, bar);
1298 		efx->membase_phys = 0;
1299 	}
1300 
1301 	/* Don't disable bus-mastering if VFs are assigned */
1302 	if (!pci_vfs_assigned(efx->pci_dev))
1303 		pci_disable_device(efx->pci_dev);
1304 }
1305 
1306 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1307 {
1308 	size_t i;
1309 
1310 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1311 		efx->rx_indir_table[i] =
1312 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1313 }
1314 
1315 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1316 {
1317 	cpumask_var_t thread_mask;
1318 	unsigned int count;
1319 	int cpu;
1320 
1321 	if (rss_cpus) {
1322 		count = rss_cpus;
1323 	} else {
1324 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1325 			netif_warn(efx, probe, efx->net_dev,
1326 				   "RSS disabled due to allocation failure\n");
1327 			return 1;
1328 		}
1329 
1330 		count = 0;
1331 		for_each_online_cpu(cpu) {
1332 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1333 				++count;
1334 				cpumask_or(thread_mask, thread_mask,
1335 					   topology_sibling_cpumask(cpu));
1336 			}
1337 		}
1338 
1339 		free_cpumask_var(thread_mask);
1340 	}
1341 
1342 	if (count > EF4_MAX_RX_QUEUES) {
1343 		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1344 			       "Reducing number of rx queues from %u to %u.\n",
1345 			       count, EF4_MAX_RX_QUEUES);
1346 		count = EF4_MAX_RX_QUEUES;
1347 	}
1348 
1349 	return count;
1350 }
1351 
1352 /* Probe the number and type of interrupts we are able to obtain, and
1353  * the resulting numbers of channels and RX queues.
1354  */
1355 static int ef4_probe_interrupts(struct ef4_nic *efx)
1356 {
1357 	unsigned int extra_channels = 0;
1358 	unsigned int i, j;
1359 	int rc;
1360 
1361 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1362 		if (efx->extra_channel_type[i])
1363 			++extra_channels;
1364 
1365 	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1366 		struct msix_entry xentries[EF4_MAX_CHANNELS];
1367 		unsigned int n_channels;
1368 
1369 		n_channels = ef4_wanted_parallelism(efx);
1370 		if (ef4_separate_tx_channels)
1371 			n_channels *= 2;
1372 		n_channels += extra_channels;
1373 		n_channels = min(n_channels, efx->max_channels);
1374 
1375 		for (i = 0; i < n_channels; i++)
1376 			xentries[i].entry = i;
1377 		rc = pci_enable_msix_range(efx->pci_dev,
1378 					   xentries, 1, n_channels);
1379 		if (rc < 0) {
1380 			/* Fall back to single channel MSI */
1381 			efx->interrupt_mode = EF4_INT_MODE_MSI;
1382 			netif_err(efx, drv, efx->net_dev,
1383 				  "could not enable MSI-X\n");
1384 		} else if (rc < n_channels) {
1385 			netif_err(efx, drv, efx->net_dev,
1386 				  "WARNING: Insufficient MSI-X vectors"
1387 				  " available (%d < %u).\n", rc, n_channels);
1388 			netif_err(efx, drv, efx->net_dev,
1389 				  "WARNING: Performance may be reduced.\n");
1390 			n_channels = rc;
1391 		}
1392 
1393 		if (rc > 0) {
1394 			efx->n_channels = n_channels;
1395 			if (n_channels > extra_channels)
1396 				n_channels -= extra_channels;
1397 			if (ef4_separate_tx_channels) {
1398 				efx->n_tx_channels = min(max(n_channels / 2,
1399 							     1U),
1400 							 efx->max_tx_channels);
1401 				efx->n_rx_channels = max(n_channels -
1402 							 efx->n_tx_channels,
1403 							 1U);
1404 			} else {
1405 				efx->n_tx_channels = min(n_channels,
1406 							 efx->max_tx_channels);
1407 				efx->n_rx_channels = n_channels;
1408 			}
1409 			for (i = 0; i < efx->n_channels; i++)
1410 				ef4_get_channel(efx, i)->irq =
1411 					xentries[i].vector;
1412 		}
1413 	}
1414 
1415 	/* Try single interrupt MSI */
1416 	if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1417 		efx->n_channels = 1;
1418 		efx->n_rx_channels = 1;
1419 		efx->n_tx_channels = 1;
1420 		rc = pci_enable_msi(efx->pci_dev);
1421 		if (rc == 0) {
1422 			ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1423 		} else {
1424 			netif_err(efx, drv, efx->net_dev,
1425 				  "could not enable MSI\n");
1426 			efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1427 		}
1428 	}
1429 
1430 	/* Assume legacy interrupts */
1431 	if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1432 		efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1433 		efx->n_rx_channels = 1;
1434 		efx->n_tx_channels = 1;
1435 		efx->legacy_irq = efx->pci_dev->irq;
1436 	}
1437 
1438 	/* Assign extra channels if possible */
1439 	j = efx->n_channels;
1440 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1441 		if (!efx->extra_channel_type[i])
1442 			continue;
1443 		if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1444 		    efx->n_channels <= extra_channels) {
1445 			efx->extra_channel_type[i]->handle_no_channel(efx);
1446 		} else {
1447 			--j;
1448 			ef4_get_channel(efx, j)->type =
1449 				efx->extra_channel_type[i];
1450 		}
1451 	}
1452 
1453 	efx->rss_spread = efx->n_rx_channels;
1454 
1455 	return 0;
1456 }
1457 
1458 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1459 {
1460 	struct ef4_channel *channel, *end_channel;
1461 	int rc;
1462 
1463 	BUG_ON(efx->state == STATE_DISABLED);
1464 
1465 	efx->irq_soft_enabled = true;
1466 	smp_wmb();
1467 
1468 	ef4_for_each_channel(channel, efx) {
1469 		if (!channel->type->keep_eventq) {
1470 			rc = ef4_init_eventq(channel);
1471 			if (rc)
1472 				goto fail;
1473 		}
1474 		ef4_start_eventq(channel);
1475 	}
1476 
1477 	return 0;
1478 fail:
1479 	end_channel = channel;
1480 	ef4_for_each_channel(channel, efx) {
1481 		if (channel == end_channel)
1482 			break;
1483 		ef4_stop_eventq(channel);
1484 		if (!channel->type->keep_eventq)
1485 			ef4_fini_eventq(channel);
1486 	}
1487 
1488 	return rc;
1489 }
1490 
1491 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1492 {
1493 	struct ef4_channel *channel;
1494 
1495 	if (efx->state == STATE_DISABLED)
1496 		return;
1497 
1498 	efx->irq_soft_enabled = false;
1499 	smp_wmb();
1500 
1501 	if (efx->legacy_irq)
1502 		synchronize_irq(efx->legacy_irq);
1503 
1504 	ef4_for_each_channel(channel, efx) {
1505 		if (channel->irq)
1506 			synchronize_irq(channel->irq);
1507 
1508 		ef4_stop_eventq(channel);
1509 		if (!channel->type->keep_eventq)
1510 			ef4_fini_eventq(channel);
1511 	}
1512 }
1513 
1514 static int ef4_enable_interrupts(struct ef4_nic *efx)
1515 {
1516 	struct ef4_channel *channel, *end_channel;
1517 	int rc;
1518 
1519 	BUG_ON(efx->state == STATE_DISABLED);
1520 
1521 	if (efx->eeh_disabled_legacy_irq) {
1522 		enable_irq(efx->legacy_irq);
1523 		efx->eeh_disabled_legacy_irq = false;
1524 	}
1525 
1526 	efx->type->irq_enable_master(efx);
1527 
1528 	ef4_for_each_channel(channel, efx) {
1529 		if (channel->type->keep_eventq) {
1530 			rc = ef4_init_eventq(channel);
1531 			if (rc)
1532 				goto fail;
1533 		}
1534 	}
1535 
1536 	rc = ef4_soft_enable_interrupts(efx);
1537 	if (rc)
1538 		goto fail;
1539 
1540 	return 0;
1541 
1542 fail:
1543 	end_channel = channel;
1544 	ef4_for_each_channel(channel, efx) {
1545 		if (channel == end_channel)
1546 			break;
1547 		if (channel->type->keep_eventq)
1548 			ef4_fini_eventq(channel);
1549 	}
1550 
1551 	efx->type->irq_disable_non_ev(efx);
1552 
1553 	return rc;
1554 }
1555 
1556 static void ef4_disable_interrupts(struct ef4_nic *efx)
1557 {
1558 	struct ef4_channel *channel;
1559 
1560 	ef4_soft_disable_interrupts(efx);
1561 
1562 	ef4_for_each_channel(channel, efx) {
1563 		if (channel->type->keep_eventq)
1564 			ef4_fini_eventq(channel);
1565 	}
1566 
1567 	efx->type->irq_disable_non_ev(efx);
1568 }
1569 
1570 static void ef4_remove_interrupts(struct ef4_nic *efx)
1571 {
1572 	struct ef4_channel *channel;
1573 
1574 	/* Remove MSI/MSI-X interrupts */
1575 	ef4_for_each_channel(channel, efx)
1576 		channel->irq = 0;
1577 	pci_disable_msi(efx->pci_dev);
1578 	pci_disable_msix(efx->pci_dev);
1579 
1580 	/* Remove legacy interrupt */
1581 	efx->legacy_irq = 0;
1582 }
1583 
1584 static void ef4_set_channels(struct ef4_nic *efx)
1585 {
1586 	struct ef4_channel *channel;
1587 	struct ef4_tx_queue *tx_queue;
1588 
1589 	efx->tx_channel_offset =
1590 		ef4_separate_tx_channels ?
1591 		efx->n_channels - efx->n_tx_channels : 0;
1592 
1593 	/* We need to mark which channels really have RX and TX
1594 	 * queues, and adjust the TX queue numbers if we have separate
1595 	 * RX-only and TX-only channels.
1596 	 */
1597 	ef4_for_each_channel(channel, efx) {
1598 		if (channel->channel < efx->n_rx_channels)
1599 			channel->rx_queue.core_index = channel->channel;
1600 		else
1601 			channel->rx_queue.core_index = -1;
1602 
1603 		ef4_for_each_channel_tx_queue(tx_queue, channel)
1604 			tx_queue->queue -= (efx->tx_channel_offset *
1605 					    EF4_TXQ_TYPES);
1606 	}
1607 }
1608 
1609 static int ef4_probe_nic(struct ef4_nic *efx)
1610 {
1611 	int rc;
1612 
1613 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1614 
1615 	/* Carry out hardware-type specific initialisation */
1616 	rc = efx->type->probe(efx);
1617 	if (rc)
1618 		return rc;
1619 
1620 	do {
1621 		if (!efx->max_channels || !efx->max_tx_channels) {
1622 			netif_err(efx, drv, efx->net_dev,
1623 				  "Insufficient resources to allocate"
1624 				  " any channels\n");
1625 			rc = -ENOSPC;
1626 			goto fail1;
1627 		}
1628 
1629 		/* Determine the number of channels and queues by trying
1630 		 * to hook in MSI-X interrupts.
1631 		 */
1632 		rc = ef4_probe_interrupts(efx);
1633 		if (rc)
1634 			goto fail1;
1635 
1636 		ef4_set_channels(efx);
1637 
1638 		/* dimension_resources can fail with EAGAIN */
1639 		rc = efx->type->dimension_resources(efx);
1640 		if (rc != 0 && rc != -EAGAIN)
1641 			goto fail2;
1642 
1643 		if (rc == -EAGAIN)
1644 			/* try again with new max_channels */
1645 			ef4_remove_interrupts(efx);
1646 
1647 	} while (rc == -EAGAIN);
1648 
1649 	if (efx->n_channels > 1)
1650 		netdev_rss_key_fill(&efx->rx_hash_key,
1651 				    sizeof(efx->rx_hash_key));
1652 	ef4_set_default_rx_indir_table(efx);
1653 
1654 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1655 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1656 
1657 	/* Initialise the interrupt moderation settings */
1658 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1659 	ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1660 				true);
1661 
1662 	return 0;
1663 
1664 fail2:
1665 	ef4_remove_interrupts(efx);
1666 fail1:
1667 	efx->type->remove(efx);
1668 	return rc;
1669 }
1670 
1671 static void ef4_remove_nic(struct ef4_nic *efx)
1672 {
1673 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1674 
1675 	ef4_remove_interrupts(efx);
1676 	efx->type->remove(efx);
1677 }
1678 
1679 static int ef4_probe_filters(struct ef4_nic *efx)
1680 {
1681 	int rc;
1682 
1683 	spin_lock_init(&efx->filter_lock);
1684 	init_rwsem(&efx->filter_sem);
1685 	mutex_lock(&efx->mac_lock);
1686 	down_write(&efx->filter_sem);
1687 	rc = efx->type->filter_table_probe(efx);
1688 	if (rc)
1689 		goto out_unlock;
1690 
1691 #ifdef CONFIG_RFS_ACCEL
1692 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1693 		struct ef4_channel *channel;
1694 		int i, success = 1;
1695 
1696 		ef4_for_each_channel(channel, efx) {
1697 			channel->rps_flow_id =
1698 				kcalloc(efx->type->max_rx_ip_filters,
1699 					sizeof(*channel->rps_flow_id),
1700 					GFP_KERNEL);
1701 			if (!channel->rps_flow_id)
1702 				success = 0;
1703 			else
1704 				for (i = 0;
1705 				     i < efx->type->max_rx_ip_filters;
1706 				     ++i)
1707 					channel->rps_flow_id[i] =
1708 						RPS_FLOW_ID_INVALID;
1709 		}
1710 
1711 		if (!success) {
1712 			ef4_for_each_channel(channel, efx)
1713 				kfree(channel->rps_flow_id);
1714 			efx->type->filter_table_remove(efx);
1715 			rc = -ENOMEM;
1716 			goto out_unlock;
1717 		}
1718 
1719 		efx->rps_expire_index = efx->rps_expire_channel = 0;
1720 	}
1721 #endif
1722 out_unlock:
1723 	up_write(&efx->filter_sem);
1724 	mutex_unlock(&efx->mac_lock);
1725 	return rc;
1726 }
1727 
1728 static void ef4_remove_filters(struct ef4_nic *efx)
1729 {
1730 #ifdef CONFIG_RFS_ACCEL
1731 	struct ef4_channel *channel;
1732 
1733 	ef4_for_each_channel(channel, efx)
1734 		kfree(channel->rps_flow_id);
1735 #endif
1736 	down_write(&efx->filter_sem);
1737 	efx->type->filter_table_remove(efx);
1738 	up_write(&efx->filter_sem);
1739 }
1740 
1741 static void ef4_restore_filters(struct ef4_nic *efx)
1742 {
1743 	down_read(&efx->filter_sem);
1744 	efx->type->filter_table_restore(efx);
1745 	up_read(&efx->filter_sem);
1746 }
1747 
1748 /**************************************************************************
1749  *
1750  * NIC startup/shutdown
1751  *
1752  *************************************************************************/
1753 
1754 static int ef4_probe_all(struct ef4_nic *efx)
1755 {
1756 	int rc;
1757 
1758 	rc = ef4_probe_nic(efx);
1759 	if (rc) {
1760 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1761 		goto fail1;
1762 	}
1763 
1764 	rc = ef4_probe_port(efx);
1765 	if (rc) {
1766 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1767 		goto fail2;
1768 	}
1769 
1770 	BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1771 	if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1772 		rc = -EINVAL;
1773 		goto fail3;
1774 	}
1775 	efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1776 
1777 	rc = ef4_probe_filters(efx);
1778 	if (rc) {
1779 		netif_err(efx, probe, efx->net_dev,
1780 			  "failed to create filter tables\n");
1781 		goto fail4;
1782 	}
1783 
1784 	rc = ef4_probe_channels(efx);
1785 	if (rc)
1786 		goto fail5;
1787 
1788 	return 0;
1789 
1790  fail5:
1791 	ef4_remove_filters(efx);
1792  fail4:
1793  fail3:
1794 	ef4_remove_port(efx);
1795  fail2:
1796 	ef4_remove_nic(efx);
1797  fail1:
1798 	return rc;
1799 }
1800 
1801 /* If the interface is supposed to be running but is not, start
1802  * the hardware and software data path, regular activity for the port
1803  * (MAC statistics, link polling, etc.) and schedule the port to be
1804  * reconfigured.  Interrupts must already be enabled.  This function
1805  * is safe to call multiple times, so long as the NIC is not disabled.
1806  * Requires the RTNL lock.
1807  */
1808 static void ef4_start_all(struct ef4_nic *efx)
1809 {
1810 	EF4_ASSERT_RESET_SERIALISED(efx);
1811 	BUG_ON(efx->state == STATE_DISABLED);
1812 
1813 	/* Check that it is appropriate to restart the interface. All
1814 	 * of these flags are safe to read under just the rtnl lock */
1815 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1816 	    efx->reset_pending)
1817 		return;
1818 
1819 	ef4_start_port(efx);
1820 	ef4_start_datapath(efx);
1821 
1822 	/* Start the hardware monitor if there is one */
1823 	if (efx->type->monitor != NULL)
1824 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1825 				   ef4_monitor_interval);
1826 
1827 	efx->type->start_stats(efx);
1828 	efx->type->pull_stats(efx);
1829 	spin_lock_bh(&efx->stats_lock);
1830 	efx->type->update_stats(efx, NULL, NULL);
1831 	spin_unlock_bh(&efx->stats_lock);
1832 }
1833 
1834 /* Quiesce the hardware and software data path, and regular activity
1835  * for the port without bringing the link down.  Safe to call multiple
1836  * times with the NIC in almost any state, but interrupts should be
1837  * enabled.  Requires the RTNL lock.
1838  */
1839 static void ef4_stop_all(struct ef4_nic *efx)
1840 {
1841 	EF4_ASSERT_RESET_SERIALISED(efx);
1842 
1843 	/* port_enabled can be read safely under the rtnl lock */
1844 	if (!efx->port_enabled)
1845 		return;
1846 
1847 	/* update stats before we go down so we can accurately count
1848 	 * rx_nodesc_drops
1849 	 */
1850 	efx->type->pull_stats(efx);
1851 	spin_lock_bh(&efx->stats_lock);
1852 	efx->type->update_stats(efx, NULL, NULL);
1853 	spin_unlock_bh(&efx->stats_lock);
1854 	efx->type->stop_stats(efx);
1855 	ef4_stop_port(efx);
1856 
1857 	/* Stop the kernel transmit interface.  This is only valid if
1858 	 * the device is stopped or detached; otherwise the watchdog
1859 	 * may fire immediately.
1860 	 */
1861 	WARN_ON(netif_running(efx->net_dev) &&
1862 		netif_device_present(efx->net_dev));
1863 	netif_tx_disable(efx->net_dev);
1864 
1865 	ef4_stop_datapath(efx);
1866 }
1867 
1868 static void ef4_remove_all(struct ef4_nic *efx)
1869 {
1870 	ef4_remove_channels(efx);
1871 	ef4_remove_filters(efx);
1872 	ef4_remove_port(efx);
1873 	ef4_remove_nic(efx);
1874 }
1875 
1876 /**************************************************************************
1877  *
1878  * Interrupt moderation
1879  *
1880  **************************************************************************/
1881 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1882 {
1883 	if (usecs == 0)
1884 		return 0;
1885 	if (usecs * 1000 < efx->timer_quantum_ns)
1886 		return 1; /* never round down to 0 */
1887 	return usecs * 1000 / efx->timer_quantum_ns;
1888 }
1889 
1890 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1891 {
1892 	/* We must round up when converting ticks to microseconds
1893 	 * because we round down when converting the other way.
1894 	 */
1895 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1896 }
1897 
1898 /* Set interrupt moderation parameters */
1899 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1900 			    unsigned int rx_usecs, bool rx_adaptive,
1901 			    bool rx_may_override_tx)
1902 {
1903 	struct ef4_channel *channel;
1904 	unsigned int timer_max_us;
1905 
1906 	EF4_ASSERT_RESET_SERIALISED(efx);
1907 
1908 	timer_max_us = efx->timer_max_ns / 1000;
1909 
1910 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1911 		return -EINVAL;
1912 
1913 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1914 	    !rx_may_override_tx) {
1915 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1916 			  "RX and TX IRQ moderation must be equal\n");
1917 		return -EINVAL;
1918 	}
1919 
1920 	efx->irq_rx_adaptive = rx_adaptive;
1921 	efx->irq_rx_moderation_us = rx_usecs;
1922 	ef4_for_each_channel(channel, efx) {
1923 		if (ef4_channel_has_rx_queue(channel))
1924 			channel->irq_moderation_us = rx_usecs;
1925 		else if (ef4_channel_has_tx_queues(channel))
1926 			channel->irq_moderation_us = tx_usecs;
1927 	}
1928 
1929 	return 0;
1930 }
1931 
1932 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1933 			    unsigned int *rx_usecs, bool *rx_adaptive)
1934 {
1935 	*rx_adaptive = efx->irq_rx_adaptive;
1936 	*rx_usecs = efx->irq_rx_moderation_us;
1937 
1938 	/* If channels are shared between RX and TX, so is IRQ
1939 	 * moderation.  Otherwise, IRQ moderation is the same for all
1940 	 * TX channels and is not adaptive.
1941 	 */
1942 	if (efx->tx_channel_offset == 0) {
1943 		*tx_usecs = *rx_usecs;
1944 	} else {
1945 		struct ef4_channel *tx_channel;
1946 
1947 		tx_channel = efx->channel[efx->tx_channel_offset];
1948 		*tx_usecs = tx_channel->irq_moderation_us;
1949 	}
1950 }
1951 
1952 /**************************************************************************
1953  *
1954  * Hardware monitor
1955  *
1956  **************************************************************************/
1957 
1958 /* Run periodically off the general workqueue */
1959 static void ef4_monitor(struct work_struct *data)
1960 {
1961 	struct ef4_nic *efx = container_of(data, struct ef4_nic,
1962 					   monitor_work.work);
1963 
1964 	netif_vdbg(efx, timer, efx->net_dev,
1965 		   "hardware monitor executing on CPU %d\n",
1966 		   raw_smp_processor_id());
1967 	BUG_ON(efx->type->monitor == NULL);
1968 
1969 	/* If the mac_lock is already held then it is likely a port
1970 	 * reconfiguration is already in place, which will likely do
1971 	 * most of the work of monitor() anyway. */
1972 	if (mutex_trylock(&efx->mac_lock)) {
1973 		if (efx->port_enabled)
1974 			efx->type->monitor(efx);
1975 		mutex_unlock(&efx->mac_lock);
1976 	}
1977 
1978 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1979 			   ef4_monitor_interval);
1980 }
1981 
1982 /**************************************************************************
1983  *
1984  * ioctls
1985  *
1986  *************************************************************************/
1987 
1988 /* Net device ioctl
1989  * Context: process, rtnl_lock() held.
1990  */
1991 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1992 {
1993 	struct ef4_nic *efx = netdev_priv(net_dev);
1994 	struct mii_ioctl_data *data = if_mii(ifr);
1995 
1996 	/* Convert phy_id from older PRTAD/DEVAD format */
1997 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1998 	    (data->phy_id & 0xfc00) == 0x0400)
1999 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2000 
2001 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2002 }
2003 
2004 /**************************************************************************
2005  *
2006  * NAPI interface
2007  *
2008  **************************************************************************/
2009 
2010 static void ef4_init_napi_channel(struct ef4_channel *channel)
2011 {
2012 	struct ef4_nic *efx = channel->efx;
2013 
2014 	channel->napi_dev = efx->net_dev;
2015 	netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll);
2016 }
2017 
2018 static void ef4_init_napi(struct ef4_nic *efx)
2019 {
2020 	struct ef4_channel *channel;
2021 
2022 	ef4_for_each_channel(channel, efx)
2023 		ef4_init_napi_channel(channel);
2024 }
2025 
2026 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2027 {
2028 	if (channel->napi_dev)
2029 		netif_napi_del(&channel->napi_str);
2030 
2031 	channel->napi_dev = NULL;
2032 }
2033 
2034 static void ef4_fini_napi(struct ef4_nic *efx)
2035 {
2036 	struct ef4_channel *channel;
2037 
2038 	ef4_for_each_channel(channel, efx)
2039 		ef4_fini_napi_channel(channel);
2040 }
2041 
2042 /**************************************************************************
2043  *
2044  * Kernel net device interface
2045  *
2046  *************************************************************************/
2047 
2048 /* Context: process, rtnl_lock() held. */
2049 int ef4_net_open(struct net_device *net_dev)
2050 {
2051 	struct ef4_nic *efx = netdev_priv(net_dev);
2052 	int rc;
2053 
2054 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2055 		  raw_smp_processor_id());
2056 
2057 	rc = ef4_check_disabled(efx);
2058 	if (rc)
2059 		return rc;
2060 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2061 		return -EBUSY;
2062 
2063 	/* Notify the kernel of the link state polled during driver load,
2064 	 * before the monitor starts running */
2065 	ef4_link_status_changed(efx);
2066 
2067 	ef4_start_all(efx);
2068 	ef4_selftest_async_start(efx);
2069 	return 0;
2070 }
2071 
2072 /* Context: process, rtnl_lock() held.
2073  * Note that the kernel will ignore our return code; this method
2074  * should really be a void.
2075  */
2076 int ef4_net_stop(struct net_device *net_dev)
2077 {
2078 	struct ef4_nic *efx = netdev_priv(net_dev);
2079 
2080 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2081 		  raw_smp_processor_id());
2082 
2083 	/* Stop the device and flush all the channels */
2084 	ef4_stop_all(efx);
2085 
2086 	return 0;
2087 }
2088 
2089 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2090 static void ef4_net_stats(struct net_device *net_dev,
2091 			  struct rtnl_link_stats64 *stats)
2092 {
2093 	struct ef4_nic *efx = netdev_priv(net_dev);
2094 
2095 	spin_lock_bh(&efx->stats_lock);
2096 	efx->type->update_stats(efx, NULL, stats);
2097 	spin_unlock_bh(&efx->stats_lock);
2098 }
2099 
2100 /* Context: netif_tx_lock held, BHs disabled. */
2101 static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2102 {
2103 	struct ef4_nic *efx = netdev_priv(net_dev);
2104 
2105 	netif_err(efx, tx_err, efx->net_dev,
2106 		  "TX stuck with port_enabled=%d: resetting channels\n",
2107 		  efx->port_enabled);
2108 
2109 	ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2110 }
2111 
2112 
2113 /* Context: process, rtnl_lock() held. */
2114 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2115 {
2116 	struct ef4_nic *efx = netdev_priv(net_dev);
2117 	int rc;
2118 
2119 	rc = ef4_check_disabled(efx);
2120 	if (rc)
2121 		return rc;
2122 
2123 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2124 
2125 	ef4_device_detach_sync(efx);
2126 	ef4_stop_all(efx);
2127 
2128 	mutex_lock(&efx->mac_lock);
2129 	net_dev->mtu = new_mtu;
2130 	ef4_mac_reconfigure(efx);
2131 	mutex_unlock(&efx->mac_lock);
2132 
2133 	ef4_start_all(efx);
2134 	netif_device_attach(efx->net_dev);
2135 	return 0;
2136 }
2137 
2138 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2139 {
2140 	struct ef4_nic *efx = netdev_priv(net_dev);
2141 	struct sockaddr *addr = data;
2142 	u8 *new_addr = addr->sa_data;
2143 	u8 old_addr[6];
2144 	int rc;
2145 
2146 	if (!is_valid_ether_addr(new_addr)) {
2147 		netif_err(efx, drv, efx->net_dev,
2148 			  "invalid ethernet MAC address requested: %pM\n",
2149 			  new_addr);
2150 		return -EADDRNOTAVAIL;
2151 	}
2152 
2153 	/* save old address */
2154 	ether_addr_copy(old_addr, net_dev->dev_addr);
2155 	eth_hw_addr_set(net_dev, new_addr);
2156 	if (efx->type->set_mac_address) {
2157 		rc = efx->type->set_mac_address(efx);
2158 		if (rc) {
2159 			eth_hw_addr_set(net_dev, old_addr);
2160 			return rc;
2161 		}
2162 	}
2163 
2164 	/* Reconfigure the MAC */
2165 	mutex_lock(&efx->mac_lock);
2166 	ef4_mac_reconfigure(efx);
2167 	mutex_unlock(&efx->mac_lock);
2168 
2169 	return 0;
2170 }
2171 
2172 /* Context: netif_addr_lock held, BHs disabled. */
2173 static void ef4_set_rx_mode(struct net_device *net_dev)
2174 {
2175 	struct ef4_nic *efx = netdev_priv(net_dev);
2176 
2177 	if (efx->port_enabled)
2178 		queue_work(efx->workqueue, &efx->mac_work);
2179 	/* Otherwise ef4_start_port() will do this */
2180 }
2181 
2182 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2183 {
2184 	struct ef4_nic *efx = netdev_priv(net_dev);
2185 	int rc;
2186 
2187 	/* If disabling RX n-tuple filtering, clear existing filters */
2188 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2189 		rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2190 		if (rc)
2191 			return rc;
2192 	}
2193 
2194 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2195 	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2196 		/* ef4_set_rx_mode() will schedule MAC work to update filters
2197 		 * when a new features are finally set in net_dev.
2198 		 */
2199 		ef4_set_rx_mode(net_dev);
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static const struct net_device_ops ef4_netdev_ops = {
2206 	.ndo_open		= ef4_net_open,
2207 	.ndo_stop		= ef4_net_stop,
2208 	.ndo_get_stats64	= ef4_net_stats,
2209 	.ndo_tx_timeout		= ef4_watchdog,
2210 	.ndo_start_xmit		= ef4_hard_start_xmit,
2211 	.ndo_validate_addr	= eth_validate_addr,
2212 	.ndo_eth_ioctl		= ef4_ioctl,
2213 	.ndo_change_mtu		= ef4_change_mtu,
2214 	.ndo_set_mac_address	= ef4_set_mac_address,
2215 	.ndo_set_rx_mode	= ef4_set_rx_mode,
2216 	.ndo_set_features	= ef4_set_features,
2217 	.ndo_setup_tc		= ef4_setup_tc,
2218 #ifdef CONFIG_RFS_ACCEL
2219 	.ndo_rx_flow_steer	= ef4_filter_rfs,
2220 #endif
2221 };
2222 
2223 static void ef4_update_name(struct ef4_nic *efx)
2224 {
2225 	strcpy(efx->name, efx->net_dev->name);
2226 	ef4_mtd_rename(efx);
2227 	ef4_set_channel_names(efx);
2228 }
2229 
2230 static int ef4_netdev_event(struct notifier_block *this,
2231 			    unsigned long event, void *ptr)
2232 {
2233 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2234 
2235 	if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2236 	    event == NETDEV_CHANGENAME)
2237 		ef4_update_name(netdev_priv(net_dev));
2238 
2239 	return NOTIFY_DONE;
2240 }
2241 
2242 static struct notifier_block ef4_netdev_notifier = {
2243 	.notifier_call = ef4_netdev_event,
2244 };
2245 
2246 static ssize_t
2247 phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2248 {
2249 	struct ef4_nic *efx = dev_get_drvdata(dev);
2250 	return sprintf(buf, "%d\n", efx->phy_type);
2251 }
2252 static DEVICE_ATTR_RO(phy_type);
2253 
2254 static int ef4_register_netdev(struct ef4_nic *efx)
2255 {
2256 	struct net_device *net_dev = efx->net_dev;
2257 	struct ef4_channel *channel;
2258 	int rc;
2259 
2260 	net_dev->watchdog_timeo = 5 * HZ;
2261 	net_dev->irq = efx->pci_dev->irq;
2262 	net_dev->netdev_ops = &ef4_netdev_ops;
2263 	net_dev->ethtool_ops = &ef4_ethtool_ops;
2264 	netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS);
2265 	net_dev->min_mtu = EF4_MIN_MTU;
2266 	net_dev->max_mtu = EF4_MAX_MTU;
2267 
2268 	rtnl_lock();
2269 
2270 	/* Enable resets to be scheduled and check whether any were
2271 	 * already requested.  If so, the NIC is probably hosed so we
2272 	 * abort.
2273 	 */
2274 	efx->state = STATE_READY;
2275 	smp_mb(); /* ensure we change state before checking reset_pending */
2276 	if (efx->reset_pending) {
2277 		netif_err(efx, probe, efx->net_dev,
2278 			  "aborting probe due to scheduled reset\n");
2279 		rc = -EIO;
2280 		goto fail_locked;
2281 	}
2282 
2283 	rc = dev_alloc_name(net_dev, net_dev->name);
2284 	if (rc < 0)
2285 		goto fail_locked;
2286 	ef4_update_name(efx);
2287 
2288 	/* Always start with carrier off; PHY events will detect the link */
2289 	netif_carrier_off(net_dev);
2290 
2291 	rc = register_netdevice(net_dev);
2292 	if (rc)
2293 		goto fail_locked;
2294 
2295 	ef4_for_each_channel(channel, efx) {
2296 		struct ef4_tx_queue *tx_queue;
2297 		ef4_for_each_channel_tx_queue(tx_queue, channel)
2298 			ef4_init_tx_queue_core_txq(tx_queue);
2299 	}
2300 
2301 	ef4_associate(efx);
2302 
2303 	rtnl_unlock();
2304 
2305 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2306 	if (rc) {
2307 		netif_err(efx, drv, efx->net_dev,
2308 			  "failed to init net dev attributes\n");
2309 		goto fail_registered;
2310 	}
2311 	return 0;
2312 
2313 fail_registered:
2314 	rtnl_lock();
2315 	ef4_dissociate(efx);
2316 	unregister_netdevice(net_dev);
2317 fail_locked:
2318 	efx->state = STATE_UNINIT;
2319 	rtnl_unlock();
2320 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2321 	return rc;
2322 }
2323 
2324 static void ef4_unregister_netdev(struct ef4_nic *efx)
2325 {
2326 	if (!efx->net_dev)
2327 		return;
2328 
2329 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2330 
2331 	if (ef4_dev_registered(efx)) {
2332 		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2333 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2334 		unregister_netdev(efx->net_dev);
2335 	}
2336 }
2337 
2338 /**************************************************************************
2339  *
2340  * Device reset and suspend
2341  *
2342  **************************************************************************/
2343 
2344 /* Tears down the entire software state and most of the hardware state
2345  * before reset.  */
2346 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2347 {
2348 	EF4_ASSERT_RESET_SERIALISED(efx);
2349 
2350 	ef4_stop_all(efx);
2351 	ef4_disable_interrupts(efx);
2352 
2353 	mutex_lock(&efx->mac_lock);
2354 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2355 	    method != RESET_TYPE_DATAPATH)
2356 		efx->phy_op->fini(efx);
2357 	efx->type->fini(efx);
2358 }
2359 
2360 /* This function will always ensure that the locks acquired in
2361  * ef4_reset_down() are released. A failure return code indicates
2362  * that we were unable to reinitialise the hardware, and the
2363  * driver should be disabled. If ok is false, then the rx and tx
2364  * engines are not restarted, pending a RESET_DISABLE. */
2365 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2366 {
2367 	int rc;
2368 
2369 	EF4_ASSERT_RESET_SERIALISED(efx);
2370 
2371 	/* Ensure that SRAM is initialised even if we're disabling the device */
2372 	rc = efx->type->init(efx);
2373 	if (rc) {
2374 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2375 		goto fail;
2376 	}
2377 
2378 	if (!ok)
2379 		goto fail;
2380 
2381 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2382 	    method != RESET_TYPE_DATAPATH) {
2383 		rc = efx->phy_op->init(efx);
2384 		if (rc)
2385 			goto fail;
2386 		rc = efx->phy_op->reconfigure(efx);
2387 		if (rc && rc != -EPERM)
2388 			netif_err(efx, drv, efx->net_dev,
2389 				  "could not restore PHY settings\n");
2390 	}
2391 
2392 	rc = ef4_enable_interrupts(efx);
2393 	if (rc)
2394 		goto fail;
2395 
2396 	down_read(&efx->filter_sem);
2397 	ef4_restore_filters(efx);
2398 	up_read(&efx->filter_sem);
2399 
2400 	mutex_unlock(&efx->mac_lock);
2401 
2402 	ef4_start_all(efx);
2403 
2404 	return 0;
2405 
2406 fail:
2407 	efx->port_initialized = false;
2408 
2409 	mutex_unlock(&efx->mac_lock);
2410 
2411 	return rc;
2412 }
2413 
2414 /* Reset the NIC using the specified method.  Note that the reset may
2415  * fail, in which case the card will be left in an unusable state.
2416  *
2417  * Caller must hold the rtnl_lock.
2418  */
2419 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2420 {
2421 	int rc, rc2;
2422 	bool disabled;
2423 
2424 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2425 		   RESET_TYPE(method));
2426 
2427 	ef4_device_detach_sync(efx);
2428 	ef4_reset_down(efx, method);
2429 
2430 	rc = efx->type->reset(efx, method);
2431 	if (rc) {
2432 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2433 		goto out;
2434 	}
2435 
2436 	/* Clear flags for the scopes we covered.  We assume the NIC and
2437 	 * driver are now quiescent so that there is no race here.
2438 	 */
2439 	if (method < RESET_TYPE_MAX_METHOD)
2440 		efx->reset_pending &= -(1 << (method + 1));
2441 	else /* it doesn't fit into the well-ordered scope hierarchy */
2442 		__clear_bit(method, &efx->reset_pending);
2443 
2444 	/* Reinitialise bus-mastering, which may have been turned off before
2445 	 * the reset was scheduled. This is still appropriate, even in the
2446 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2447 	 * can respond to requests. */
2448 	pci_set_master(efx->pci_dev);
2449 
2450 out:
2451 	/* Leave device stopped if necessary */
2452 	disabled = rc ||
2453 		method == RESET_TYPE_DISABLE ||
2454 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2455 	rc2 = ef4_reset_up(efx, method, !disabled);
2456 	if (rc2) {
2457 		disabled = true;
2458 		if (!rc)
2459 			rc = rc2;
2460 	}
2461 
2462 	if (disabled) {
2463 		dev_close(efx->net_dev);
2464 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2465 		efx->state = STATE_DISABLED;
2466 	} else {
2467 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2468 		netif_device_attach(efx->net_dev);
2469 	}
2470 	return rc;
2471 }
2472 
2473 /* Try recovery mechanisms.
2474  * For now only EEH is supported.
2475  * Returns 0 if the recovery mechanisms are unsuccessful.
2476  * Returns a non-zero value otherwise.
2477  */
2478 int ef4_try_recovery(struct ef4_nic *efx)
2479 {
2480 #ifdef CONFIG_EEH
2481 	/* A PCI error can occur and not be seen by EEH because nothing
2482 	 * happens on the PCI bus. In this case the driver may fail and
2483 	 * schedule a 'recover or reset', leading to this recovery handler.
2484 	 * Manually call the eeh failure check function.
2485 	 */
2486 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2487 	if (eeh_dev_check_failure(eehdev)) {
2488 		/* The EEH mechanisms will handle the error and reset the
2489 		 * device if necessary.
2490 		 */
2491 		return 1;
2492 	}
2493 #endif
2494 	return 0;
2495 }
2496 
2497 /* The worker thread exists so that code that cannot sleep can
2498  * schedule a reset for later.
2499  */
2500 static void ef4_reset_work(struct work_struct *data)
2501 {
2502 	struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2503 	unsigned long pending;
2504 	enum reset_type method;
2505 
2506 	pending = READ_ONCE(efx->reset_pending);
2507 	method = fls(pending) - 1;
2508 
2509 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2510 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2511 	    ef4_try_recovery(efx))
2512 		return;
2513 
2514 	if (!pending)
2515 		return;
2516 
2517 	rtnl_lock();
2518 
2519 	/* We checked the state in ef4_schedule_reset() but it may
2520 	 * have changed by now.  Now that we have the RTNL lock,
2521 	 * it cannot change again.
2522 	 */
2523 	if (efx->state == STATE_READY)
2524 		(void)ef4_reset(efx, method);
2525 
2526 	rtnl_unlock();
2527 }
2528 
2529 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2530 {
2531 	enum reset_type method;
2532 
2533 	if (efx->state == STATE_RECOVERY) {
2534 		netif_dbg(efx, drv, efx->net_dev,
2535 			  "recovering: skip scheduling %s reset\n",
2536 			  RESET_TYPE(type));
2537 		return;
2538 	}
2539 
2540 	switch (type) {
2541 	case RESET_TYPE_INVISIBLE:
2542 	case RESET_TYPE_ALL:
2543 	case RESET_TYPE_RECOVER_OR_ALL:
2544 	case RESET_TYPE_WORLD:
2545 	case RESET_TYPE_DISABLE:
2546 	case RESET_TYPE_RECOVER_OR_DISABLE:
2547 	case RESET_TYPE_DATAPATH:
2548 		method = type;
2549 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2550 			  RESET_TYPE(method));
2551 		break;
2552 	default:
2553 		method = efx->type->map_reset_reason(type);
2554 		netif_dbg(efx, drv, efx->net_dev,
2555 			  "scheduling %s reset for %s\n",
2556 			  RESET_TYPE(method), RESET_TYPE(type));
2557 		break;
2558 	}
2559 
2560 	set_bit(method, &efx->reset_pending);
2561 	smp_mb(); /* ensure we change reset_pending before checking state */
2562 
2563 	/* If we're not READY then just leave the flags set as the cue
2564 	 * to abort probing or reschedule the reset later.
2565 	 */
2566 	if (READ_ONCE(efx->state) != STATE_READY)
2567 		return;
2568 
2569 	queue_work(reset_workqueue, &efx->reset_work);
2570 }
2571 
2572 /**************************************************************************
2573  *
2574  * List of NICs we support
2575  *
2576  **************************************************************************/
2577 
2578 /* PCI device ID table */
2579 static const struct pci_device_id ef4_pci_table[] = {
2580 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2581 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2582 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2583 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2584 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2585 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2586 	{0}			/* end of list */
2587 };
2588 
2589 /**************************************************************************
2590  *
2591  * Dummy PHY/MAC operations
2592  *
2593  * Can be used for some unimplemented operations
2594  * Needed so all function pointers are valid and do not have to be tested
2595  * before use
2596  *
2597  **************************************************************************/
2598 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2599 {
2600 	return 0;
2601 }
2602 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2603 
2604 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2605 {
2606 	return false;
2607 }
2608 
2609 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2610 	.init		 = ef4_port_dummy_op_int,
2611 	.reconfigure	 = ef4_port_dummy_op_int,
2612 	.poll		 = ef4_port_dummy_op_poll,
2613 	.fini		 = ef4_port_dummy_op_void,
2614 };
2615 
2616 /**************************************************************************
2617  *
2618  * Data housekeeping
2619  *
2620  **************************************************************************/
2621 
2622 /* This zeroes out and then fills in the invariants in a struct
2623  * ef4_nic (including all sub-structures).
2624  */
2625 static int ef4_init_struct(struct ef4_nic *efx,
2626 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2627 {
2628 	int i;
2629 
2630 	/* Initialise common structures */
2631 	INIT_LIST_HEAD(&efx->node);
2632 	INIT_LIST_HEAD(&efx->secondary_list);
2633 	spin_lock_init(&efx->biu_lock);
2634 #ifdef CONFIG_SFC_FALCON_MTD
2635 	INIT_LIST_HEAD(&efx->mtd_list);
2636 #endif
2637 	INIT_WORK(&efx->reset_work, ef4_reset_work);
2638 	INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2639 	INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2640 	efx->pci_dev = pci_dev;
2641 	efx->msg_enable = debug;
2642 	efx->state = STATE_UNINIT;
2643 	strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2644 
2645 	efx->net_dev = net_dev;
2646 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2647 	efx->rx_ip_align =
2648 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2649 	efx->rx_packet_hash_offset =
2650 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2651 	efx->rx_packet_ts_offset =
2652 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2653 	spin_lock_init(&efx->stats_lock);
2654 	mutex_init(&efx->mac_lock);
2655 	efx->phy_op = &ef4_dummy_phy_operations;
2656 	efx->mdio.dev = net_dev;
2657 	INIT_WORK(&efx->mac_work, ef4_mac_work);
2658 	init_waitqueue_head(&efx->flush_wq);
2659 
2660 	for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2661 		efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2662 		if (!efx->channel[i])
2663 			goto fail;
2664 		efx->msi_context[i].efx = efx;
2665 		efx->msi_context[i].index = i;
2666 	}
2667 
2668 	/* Higher numbered interrupt modes are less capable! */
2669 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2670 				  interrupt_mode);
2671 
2672 	/* Would be good to use the net_dev name, but we're too early */
2673 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2674 		 pci_name(pci_dev));
2675 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2676 	if (!efx->workqueue)
2677 		goto fail;
2678 
2679 	return 0;
2680 
2681 fail:
2682 	ef4_fini_struct(efx);
2683 	return -ENOMEM;
2684 }
2685 
2686 static void ef4_fini_struct(struct ef4_nic *efx)
2687 {
2688 	int i;
2689 
2690 	for (i = 0; i < EF4_MAX_CHANNELS; i++)
2691 		kfree(efx->channel[i]);
2692 
2693 	kfree(efx->vpd_sn);
2694 
2695 	if (efx->workqueue) {
2696 		destroy_workqueue(efx->workqueue);
2697 		efx->workqueue = NULL;
2698 	}
2699 }
2700 
2701 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2702 {
2703 	u64 n_rx_nodesc_trunc = 0;
2704 	struct ef4_channel *channel;
2705 
2706 	ef4_for_each_channel(channel, efx)
2707 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2708 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2709 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2710 }
2711 
2712 /**************************************************************************
2713  *
2714  * PCI interface
2715  *
2716  **************************************************************************/
2717 
2718 /* Main body of final NIC shutdown code
2719  * This is called only at module unload (or hotplug removal).
2720  */
2721 static void ef4_pci_remove_main(struct ef4_nic *efx)
2722 {
2723 	/* Flush reset_work. It can no longer be scheduled since we
2724 	 * are not READY.
2725 	 */
2726 	BUG_ON(efx->state == STATE_READY);
2727 	cancel_work_sync(&efx->reset_work);
2728 
2729 	ef4_disable_interrupts(efx);
2730 	ef4_nic_fini_interrupt(efx);
2731 	ef4_fini_port(efx);
2732 	efx->type->fini(efx);
2733 	ef4_fini_napi(efx);
2734 	ef4_remove_all(efx);
2735 }
2736 
2737 /* Final NIC shutdown
2738  * This is called only at module unload (or hotplug removal).  A PF can call
2739  * this on its VFs to ensure they are unbound first.
2740  */
2741 static void ef4_pci_remove(struct pci_dev *pci_dev)
2742 {
2743 	struct ef4_nic *efx;
2744 
2745 	efx = pci_get_drvdata(pci_dev);
2746 	if (!efx)
2747 		return;
2748 
2749 	/* Mark the NIC as fini, then stop the interface */
2750 	rtnl_lock();
2751 	ef4_dissociate(efx);
2752 	dev_close(efx->net_dev);
2753 	ef4_disable_interrupts(efx);
2754 	efx->state = STATE_UNINIT;
2755 	rtnl_unlock();
2756 
2757 	ef4_unregister_netdev(efx);
2758 
2759 	ef4_mtd_remove(efx);
2760 
2761 	ef4_pci_remove_main(efx);
2762 
2763 	ef4_fini_io(efx);
2764 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2765 
2766 	ef4_fini_struct(efx);
2767 	free_netdev(efx->net_dev);
2768 
2769 	pci_disable_pcie_error_reporting(pci_dev);
2770 };
2771 
2772 /* NIC VPD information
2773  * Called during probe to display the part number of the installed NIC.
2774  */
2775 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2776 {
2777 	struct pci_dev *dev = efx->pci_dev;
2778 	unsigned int vpd_size, kw_len;
2779 	u8 *vpd_data;
2780 	int start;
2781 
2782 	vpd_data = pci_vpd_alloc(dev, &vpd_size);
2783 	if (IS_ERR(vpd_data)) {
2784 		pci_warn(dev, "Unable to read VPD\n");
2785 		return;
2786 	}
2787 
2788 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2789 					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2790 	if (start < 0)
2791 		pci_warn(dev, "Part number not found or incomplete\n");
2792 	else
2793 		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2794 
2795 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2796 					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2797 	if (start < 0)
2798 		pci_warn(dev, "Serial number not found or incomplete\n");
2799 	else
2800 		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2801 
2802 	kfree(vpd_data);
2803 }
2804 
2805 
2806 /* Main body of NIC initialisation
2807  * This is called at module load (or hotplug insertion, theoretically).
2808  */
2809 static int ef4_pci_probe_main(struct ef4_nic *efx)
2810 {
2811 	int rc;
2812 
2813 	/* Do start-of-day initialisation */
2814 	rc = ef4_probe_all(efx);
2815 	if (rc)
2816 		goto fail1;
2817 
2818 	ef4_init_napi(efx);
2819 
2820 	rc = efx->type->init(efx);
2821 	if (rc) {
2822 		netif_err(efx, probe, efx->net_dev,
2823 			  "failed to initialise NIC\n");
2824 		goto fail3;
2825 	}
2826 
2827 	rc = ef4_init_port(efx);
2828 	if (rc) {
2829 		netif_err(efx, probe, efx->net_dev,
2830 			  "failed to initialise port\n");
2831 		goto fail4;
2832 	}
2833 
2834 	rc = ef4_nic_init_interrupt(efx);
2835 	if (rc)
2836 		goto fail5;
2837 	rc = ef4_enable_interrupts(efx);
2838 	if (rc)
2839 		goto fail6;
2840 
2841 	return 0;
2842 
2843  fail6:
2844 	ef4_nic_fini_interrupt(efx);
2845  fail5:
2846 	ef4_fini_port(efx);
2847  fail4:
2848 	efx->type->fini(efx);
2849  fail3:
2850 	ef4_fini_napi(efx);
2851 	ef4_remove_all(efx);
2852  fail1:
2853 	return rc;
2854 }
2855 
2856 /* NIC initialisation
2857  *
2858  * This is called at module load (or hotplug insertion,
2859  * theoretically).  It sets up PCI mappings, resets the NIC,
2860  * sets up and registers the network devices with the kernel and hooks
2861  * the interrupt service routine.  It does not prepare the device for
2862  * transmission; this is left to the first time one of the network
2863  * interfaces is brought up (i.e. ef4_net_open).
2864  */
2865 static int ef4_pci_probe(struct pci_dev *pci_dev,
2866 			 const struct pci_device_id *entry)
2867 {
2868 	struct net_device *net_dev;
2869 	struct ef4_nic *efx;
2870 	int rc;
2871 
2872 	/* Allocate and initialise a struct net_device and struct ef4_nic */
2873 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2874 				     EF4_MAX_RX_QUEUES);
2875 	if (!net_dev)
2876 		return -ENOMEM;
2877 	efx = netdev_priv(net_dev);
2878 	efx->type = (const struct ef4_nic_type *) entry->driver_data;
2879 	efx->fixed_features |= NETIF_F_HIGHDMA;
2880 
2881 	pci_set_drvdata(pci_dev, efx);
2882 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2883 	rc = ef4_init_struct(efx, pci_dev, net_dev);
2884 	if (rc)
2885 		goto fail1;
2886 
2887 	netif_info(efx, probe, efx->net_dev,
2888 		   "Solarflare NIC detected\n");
2889 
2890 	ef4_probe_vpd_strings(efx);
2891 
2892 	/* Set up basic I/O (BAR mappings etc) */
2893 	rc = ef4_init_io(efx);
2894 	if (rc)
2895 		goto fail2;
2896 
2897 	rc = ef4_pci_probe_main(efx);
2898 	if (rc)
2899 		goto fail3;
2900 
2901 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2902 			      NETIF_F_RXCSUM);
2903 	/* Mask for features that also apply to VLAN devices */
2904 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2905 				   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2906 
2907 	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2908 
2909 	/* Disable VLAN filtering by default.  It may be enforced if
2910 	 * the feature is fixed (i.e. VLAN filters are required to
2911 	 * receive VLAN tagged packets due to vPort restrictions).
2912 	 */
2913 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2914 	net_dev->features |= efx->fixed_features;
2915 
2916 	rc = ef4_register_netdev(efx);
2917 	if (rc)
2918 		goto fail4;
2919 
2920 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2921 
2922 	/* Try to create MTDs, but allow this to fail */
2923 	rtnl_lock();
2924 	rc = ef4_mtd_probe(efx);
2925 	rtnl_unlock();
2926 	if (rc && rc != -EPERM)
2927 		netif_warn(efx, probe, efx->net_dev,
2928 			   "failed to create MTDs (%d)\n", rc);
2929 
2930 	rc = pci_enable_pcie_error_reporting(pci_dev);
2931 	if (rc && rc != -EINVAL)
2932 		netif_notice(efx, probe, efx->net_dev,
2933 			     "PCIE error reporting unavailable (%d).\n",
2934 			     rc);
2935 
2936 	return 0;
2937 
2938  fail4:
2939 	ef4_pci_remove_main(efx);
2940  fail3:
2941 	ef4_fini_io(efx);
2942  fail2:
2943 	ef4_fini_struct(efx);
2944  fail1:
2945 	WARN_ON(rc > 0);
2946 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2947 	free_netdev(net_dev);
2948 	return rc;
2949 }
2950 
2951 static int ef4_pm_freeze(struct device *dev)
2952 {
2953 	struct ef4_nic *efx = dev_get_drvdata(dev);
2954 
2955 	rtnl_lock();
2956 
2957 	if (efx->state != STATE_DISABLED) {
2958 		efx->state = STATE_UNINIT;
2959 
2960 		ef4_device_detach_sync(efx);
2961 
2962 		ef4_stop_all(efx);
2963 		ef4_disable_interrupts(efx);
2964 	}
2965 
2966 	rtnl_unlock();
2967 
2968 	return 0;
2969 }
2970 
2971 static int ef4_pm_thaw(struct device *dev)
2972 {
2973 	int rc;
2974 	struct ef4_nic *efx = dev_get_drvdata(dev);
2975 
2976 	rtnl_lock();
2977 
2978 	if (efx->state != STATE_DISABLED) {
2979 		rc = ef4_enable_interrupts(efx);
2980 		if (rc)
2981 			goto fail;
2982 
2983 		mutex_lock(&efx->mac_lock);
2984 		efx->phy_op->reconfigure(efx);
2985 		mutex_unlock(&efx->mac_lock);
2986 
2987 		ef4_start_all(efx);
2988 
2989 		netif_device_attach(efx->net_dev);
2990 
2991 		efx->state = STATE_READY;
2992 
2993 		efx->type->resume_wol(efx);
2994 	}
2995 
2996 	rtnl_unlock();
2997 
2998 	/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
2999 	queue_work(reset_workqueue, &efx->reset_work);
3000 
3001 	return 0;
3002 
3003 fail:
3004 	rtnl_unlock();
3005 
3006 	return rc;
3007 }
3008 
3009 static int ef4_pm_poweroff(struct device *dev)
3010 {
3011 	struct pci_dev *pci_dev = to_pci_dev(dev);
3012 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3013 
3014 	efx->type->fini(efx);
3015 
3016 	efx->reset_pending = 0;
3017 
3018 	pci_save_state(pci_dev);
3019 	return pci_set_power_state(pci_dev, PCI_D3hot);
3020 }
3021 
3022 /* Used for both resume and restore */
3023 static int ef4_pm_resume(struct device *dev)
3024 {
3025 	struct pci_dev *pci_dev = to_pci_dev(dev);
3026 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3027 	int rc;
3028 
3029 	rc = pci_set_power_state(pci_dev, PCI_D0);
3030 	if (rc)
3031 		return rc;
3032 	pci_restore_state(pci_dev);
3033 	rc = pci_enable_device(pci_dev);
3034 	if (rc)
3035 		return rc;
3036 	pci_set_master(efx->pci_dev);
3037 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3038 	if (rc)
3039 		return rc;
3040 	rc = efx->type->init(efx);
3041 	if (rc)
3042 		return rc;
3043 	rc = ef4_pm_thaw(dev);
3044 	return rc;
3045 }
3046 
3047 static int ef4_pm_suspend(struct device *dev)
3048 {
3049 	int rc;
3050 
3051 	ef4_pm_freeze(dev);
3052 	rc = ef4_pm_poweroff(dev);
3053 	if (rc)
3054 		ef4_pm_resume(dev);
3055 	return rc;
3056 }
3057 
3058 static const struct dev_pm_ops ef4_pm_ops = {
3059 	.suspend	= ef4_pm_suspend,
3060 	.resume		= ef4_pm_resume,
3061 	.freeze		= ef4_pm_freeze,
3062 	.thaw		= ef4_pm_thaw,
3063 	.poweroff	= ef4_pm_poweroff,
3064 	.restore	= ef4_pm_resume,
3065 };
3066 
3067 /* A PCI error affecting this device was detected.
3068  * At this point MMIO and DMA may be disabled.
3069  * Stop the software path and request a slot reset.
3070  */
3071 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3072 					      pci_channel_state_t state)
3073 {
3074 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3075 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3076 
3077 	if (state == pci_channel_io_perm_failure)
3078 		return PCI_ERS_RESULT_DISCONNECT;
3079 
3080 	rtnl_lock();
3081 
3082 	if (efx->state != STATE_DISABLED) {
3083 		efx->state = STATE_RECOVERY;
3084 		efx->reset_pending = 0;
3085 
3086 		ef4_device_detach_sync(efx);
3087 
3088 		ef4_stop_all(efx);
3089 		ef4_disable_interrupts(efx);
3090 
3091 		status = PCI_ERS_RESULT_NEED_RESET;
3092 	} else {
3093 		/* If the interface is disabled we don't want to do anything
3094 		 * with it.
3095 		 */
3096 		status = PCI_ERS_RESULT_RECOVERED;
3097 	}
3098 
3099 	rtnl_unlock();
3100 
3101 	pci_disable_device(pdev);
3102 
3103 	return status;
3104 }
3105 
3106 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3107 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3108 {
3109 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3110 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3111 
3112 	if (pci_enable_device(pdev)) {
3113 		netif_err(efx, hw, efx->net_dev,
3114 			  "Cannot re-enable PCI device after reset.\n");
3115 		status =  PCI_ERS_RESULT_DISCONNECT;
3116 	}
3117 
3118 	return status;
3119 }
3120 
3121 /* Perform the actual reset and resume I/O operations. */
3122 static void ef4_io_resume(struct pci_dev *pdev)
3123 {
3124 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3125 	int rc;
3126 
3127 	rtnl_lock();
3128 
3129 	if (efx->state == STATE_DISABLED)
3130 		goto out;
3131 
3132 	rc = ef4_reset(efx, RESET_TYPE_ALL);
3133 	if (rc) {
3134 		netif_err(efx, hw, efx->net_dev,
3135 			  "ef4_reset failed after PCI error (%d)\n", rc);
3136 	} else {
3137 		efx->state = STATE_READY;
3138 		netif_dbg(efx, hw, efx->net_dev,
3139 			  "Done resetting and resuming IO after PCI error.\n");
3140 	}
3141 
3142 out:
3143 	rtnl_unlock();
3144 }
3145 
3146 /* For simplicity and reliability, we always require a slot reset and try to
3147  * reset the hardware when a pci error affecting the device is detected.
3148  * We leave both the link_reset and mmio_enabled callback unimplemented:
3149  * with our request for slot reset the mmio_enabled callback will never be
3150  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3151  */
3152 static const struct pci_error_handlers ef4_err_handlers = {
3153 	.error_detected = ef4_io_error_detected,
3154 	.slot_reset	= ef4_io_slot_reset,
3155 	.resume		= ef4_io_resume,
3156 };
3157 
3158 static struct pci_driver ef4_pci_driver = {
3159 	.name		= KBUILD_MODNAME,
3160 	.id_table	= ef4_pci_table,
3161 	.probe		= ef4_pci_probe,
3162 	.remove		= ef4_pci_remove,
3163 	.driver.pm	= &ef4_pm_ops,
3164 	.err_handler	= &ef4_err_handlers,
3165 };
3166 
3167 /**************************************************************************
3168  *
3169  * Kernel module interface
3170  *
3171  *************************************************************************/
3172 
3173 module_param(interrupt_mode, uint, 0444);
3174 MODULE_PARM_DESC(interrupt_mode,
3175 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3176 
3177 static int __init ef4_init_module(void)
3178 {
3179 	int rc;
3180 
3181 	printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3182 
3183 	rc = register_netdevice_notifier(&ef4_netdev_notifier);
3184 	if (rc)
3185 		goto err_notifier;
3186 
3187 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3188 	if (!reset_workqueue) {
3189 		rc = -ENOMEM;
3190 		goto err_reset;
3191 	}
3192 
3193 	rc = pci_register_driver(&ef4_pci_driver);
3194 	if (rc < 0)
3195 		goto err_pci;
3196 
3197 	return 0;
3198 
3199  err_pci:
3200 	destroy_workqueue(reset_workqueue);
3201  err_reset:
3202 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3203  err_notifier:
3204 	return rc;
3205 }
3206 
3207 static void __exit ef4_exit_module(void)
3208 {
3209 	printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3210 
3211 	pci_unregister_driver(&ef4_pci_driver);
3212 	destroy_workqueue(reset_workqueue);
3213 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3214 
3215 }
3216 
3217 module_init(ef4_init_module);
3218 module_exit(ef4_exit_module);
3219 
3220 MODULE_AUTHOR("Solarflare Communications and "
3221 	      "Michael Brown <mbrown@fensystems.co.uk>");
3222 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3223 MODULE_LICENSE("GPL");
3224 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3225 MODULE_VERSION(EF4_DRIVER_VERSION);
3226