1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/ethtool.h> 21 #include <linux/topology.h> 22 #include <linux/gfp.h> 23 #include <linux/aer.h> 24 #include <linux/interrupt.h> 25 #include "net_driver.h" 26 #include "efx.h" 27 #include "nic.h" 28 #include "selftest.h" 29 30 #include "workarounds.h" 31 32 /************************************************************************** 33 * 34 * Type name strings 35 * 36 ************************************************************************** 37 */ 38 39 /* Loopback mode names (see LOOPBACK_MODE()) */ 40 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX; 41 const char *const ef4_loopback_mode_names[] = { 42 [LOOPBACK_NONE] = "NONE", 43 [LOOPBACK_DATA] = "DATAPATH", 44 [LOOPBACK_GMAC] = "GMAC", 45 [LOOPBACK_XGMII] = "XGMII", 46 [LOOPBACK_XGXS] = "XGXS", 47 [LOOPBACK_XAUI] = "XAUI", 48 [LOOPBACK_GMII] = "GMII", 49 [LOOPBACK_SGMII] = "SGMII", 50 [LOOPBACK_XGBR] = "XGBR", 51 [LOOPBACK_XFI] = "XFI", 52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 53 [LOOPBACK_GMII_FAR] = "GMII_FAR", 54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 55 [LOOPBACK_XFI_FAR] = "XFI_FAR", 56 [LOOPBACK_GPHY] = "GPHY", 57 [LOOPBACK_PHYXS] = "PHYXS", 58 [LOOPBACK_PCS] = "PCS", 59 [LOOPBACK_PMAPMD] = "PMA/PMD", 60 [LOOPBACK_XPORT] = "XPORT", 61 [LOOPBACK_XGMII_WS] = "XGMII_WS", 62 [LOOPBACK_XAUI_WS] = "XAUI_WS", 63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 65 [LOOPBACK_GMII_WS] = "GMII_WS", 66 [LOOPBACK_XFI_WS] = "XFI_WS", 67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 69 }; 70 71 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX; 72 const char *const ef4_reset_type_names[] = { 73 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 74 [RESET_TYPE_ALL] = "ALL", 75 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 76 [RESET_TYPE_WORLD] = "WORLD", 77 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 78 [RESET_TYPE_DATAPATH] = "DATAPATH", 79 [RESET_TYPE_DISABLE] = "DISABLE", 80 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 81 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 82 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 83 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 84 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 85 }; 86 87 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 88 * queued onto this work queue. This is not a per-nic work queue, because 89 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised. 90 */ 91 static struct workqueue_struct *reset_workqueue; 92 93 /* How often and how many times to poll for a reset while waiting for a 94 * BIST that another function started to complete. 95 */ 96 #define BIST_WAIT_DELAY_MS 100 97 #define BIST_WAIT_DELAY_COUNT 100 98 99 /************************************************************************** 100 * 101 * Configurable values 102 * 103 *************************************************************************/ 104 105 /* 106 * Use separate channels for TX and RX events 107 * 108 * Set this to 1 to use separate channels for TX and RX. It allows us 109 * to control interrupt affinity separately for TX and RX. 110 * 111 * This is only used in MSI-X interrupt mode 112 */ 113 bool ef4_separate_tx_channels; 114 module_param(ef4_separate_tx_channels, bool, 0444); 115 MODULE_PARM_DESC(ef4_separate_tx_channels, 116 "Use separate channels for TX and RX"); 117 118 /* This is the weight assigned to each of the (per-channel) virtual 119 * NAPI devices. 120 */ 121 static int napi_weight = 64; 122 123 /* This is the time (in jiffies) between invocations of the hardware 124 * monitor. 125 * On Falcon-based NICs, this will: 126 * - Check the on-board hardware monitor; 127 * - Poll the link state and reconfigure the hardware as necessary. 128 * On Siena-based NICs for power systems with EEH support, this will give EEH a 129 * chance to start. 130 */ 131 static unsigned int ef4_monitor_interval = 1 * HZ; 132 133 /* Initial interrupt moderation settings. They can be modified after 134 * module load with ethtool. 135 * 136 * The default for RX should strike a balance between increasing the 137 * round-trip latency and reducing overhead. 138 */ 139 static unsigned int rx_irq_mod_usec = 60; 140 141 /* Initial interrupt moderation settings. They can be modified after 142 * module load with ethtool. 143 * 144 * This default is chosen to ensure that a 10G link does not go idle 145 * while a TX queue is stopped after it has become full. A queue is 146 * restarted when it drops below half full. The time this takes (assuming 147 * worst case 3 descriptors per packet and 1024 descriptors) is 148 * 512 / 3 * 1.2 = 205 usec. 149 */ 150 static unsigned int tx_irq_mod_usec = 150; 151 152 /* This is the first interrupt mode to try out of: 153 * 0 => MSI-X 154 * 1 => MSI 155 * 2 => legacy 156 */ 157 static unsigned int interrupt_mode; 158 159 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 160 * i.e. the number of CPUs among which we may distribute simultaneous 161 * interrupt handling. 162 * 163 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 164 * The default (0) means to assign an interrupt to each core. 165 */ 166 static unsigned int rss_cpus; 167 module_param(rss_cpus, uint, 0444); 168 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 169 170 static bool phy_flash_cfg; 171 module_param(phy_flash_cfg, bool, 0644); 172 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 173 174 static unsigned irq_adapt_low_thresh = 8000; 175 module_param(irq_adapt_low_thresh, uint, 0644); 176 MODULE_PARM_DESC(irq_adapt_low_thresh, 177 "Threshold score for reducing IRQ moderation"); 178 179 static unsigned irq_adapt_high_thresh = 16000; 180 module_param(irq_adapt_high_thresh, uint, 0644); 181 MODULE_PARM_DESC(irq_adapt_high_thresh, 182 "Threshold score for increasing IRQ moderation"); 183 184 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 185 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 186 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 187 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 188 module_param(debug, uint, 0); 189 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 190 191 /************************************************************************** 192 * 193 * Utility functions and prototypes 194 * 195 *************************************************************************/ 196 197 static int ef4_soft_enable_interrupts(struct ef4_nic *efx); 198 static void ef4_soft_disable_interrupts(struct ef4_nic *efx); 199 static void ef4_remove_channel(struct ef4_channel *channel); 200 static void ef4_remove_channels(struct ef4_nic *efx); 201 static const struct ef4_channel_type ef4_default_channel_type; 202 static void ef4_remove_port(struct ef4_nic *efx); 203 static void ef4_init_napi_channel(struct ef4_channel *channel); 204 static void ef4_fini_napi(struct ef4_nic *efx); 205 static void ef4_fini_napi_channel(struct ef4_channel *channel); 206 static void ef4_fini_struct(struct ef4_nic *efx); 207 static void ef4_start_all(struct ef4_nic *efx); 208 static void ef4_stop_all(struct ef4_nic *efx); 209 210 #define EF4_ASSERT_RESET_SERIALISED(efx) \ 211 do { \ 212 if ((efx->state == STATE_READY) || \ 213 (efx->state == STATE_RECOVERY) || \ 214 (efx->state == STATE_DISABLED)) \ 215 ASSERT_RTNL(); \ 216 } while (0) 217 218 static int ef4_check_disabled(struct ef4_nic *efx) 219 { 220 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 221 netif_err(efx, drv, efx->net_dev, 222 "device is disabled due to earlier errors\n"); 223 return -EIO; 224 } 225 return 0; 226 } 227 228 /************************************************************************** 229 * 230 * Event queue processing 231 * 232 *************************************************************************/ 233 234 /* Process channel's event queue 235 * 236 * This function is responsible for processing the event queue of a 237 * single channel. The caller must guarantee that this function will 238 * never be concurrently called more than once on the same channel, 239 * though different channels may be being processed concurrently. 240 */ 241 static int ef4_process_channel(struct ef4_channel *channel, int budget) 242 { 243 struct ef4_tx_queue *tx_queue; 244 int spent; 245 246 if (unlikely(!channel->enabled)) 247 return 0; 248 249 ef4_for_each_channel_tx_queue(tx_queue, channel) { 250 tx_queue->pkts_compl = 0; 251 tx_queue->bytes_compl = 0; 252 } 253 254 spent = ef4_nic_process_eventq(channel, budget); 255 if (spent && ef4_channel_has_rx_queue(channel)) { 256 struct ef4_rx_queue *rx_queue = 257 ef4_channel_get_rx_queue(channel); 258 259 ef4_rx_flush_packet(channel); 260 ef4_fast_push_rx_descriptors(rx_queue, true); 261 } 262 263 /* Update BQL */ 264 ef4_for_each_channel_tx_queue(tx_queue, channel) { 265 if (tx_queue->bytes_compl) { 266 netdev_tx_completed_queue(tx_queue->core_txq, 267 tx_queue->pkts_compl, tx_queue->bytes_compl); 268 } 269 } 270 271 return spent; 272 } 273 274 /* NAPI poll handler 275 * 276 * NAPI guarantees serialisation of polls of the same device, which 277 * provides the guarantee required by ef4_process_channel(). 278 */ 279 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel) 280 { 281 int step = efx->irq_mod_step_us; 282 283 if (channel->irq_mod_score < irq_adapt_low_thresh) { 284 if (channel->irq_moderation_us > step) { 285 channel->irq_moderation_us -= step; 286 efx->type->push_irq_moderation(channel); 287 } 288 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 289 if (channel->irq_moderation_us < 290 efx->irq_rx_moderation_us) { 291 channel->irq_moderation_us += step; 292 efx->type->push_irq_moderation(channel); 293 } 294 } 295 296 channel->irq_count = 0; 297 channel->irq_mod_score = 0; 298 } 299 300 static int ef4_poll(struct napi_struct *napi, int budget) 301 { 302 struct ef4_channel *channel = 303 container_of(napi, struct ef4_channel, napi_str); 304 struct ef4_nic *efx = channel->efx; 305 int spent; 306 307 netif_vdbg(efx, intr, efx->net_dev, 308 "channel %d NAPI poll executing on CPU %d\n", 309 channel->channel, raw_smp_processor_id()); 310 311 spent = ef4_process_channel(channel, budget); 312 313 if (spent < budget) { 314 if (ef4_channel_has_rx_queue(channel) && 315 efx->irq_rx_adaptive && 316 unlikely(++channel->irq_count == 1000)) { 317 ef4_update_irq_mod(efx, channel); 318 } 319 320 ef4_filter_rfs_expire(channel); 321 322 /* There is no race here; although napi_disable() will 323 * only wait for napi_complete(), this isn't a problem 324 * since ef4_nic_eventq_read_ack() will have no effect if 325 * interrupts have already been disabled. 326 */ 327 napi_complete_done(napi, spent); 328 ef4_nic_eventq_read_ack(channel); 329 } 330 331 return spent; 332 } 333 334 /* Create event queue 335 * Event queue memory allocations are done only once. If the channel 336 * is reset, the memory buffer will be reused; this guards against 337 * errors during channel reset and also simplifies interrupt handling. 338 */ 339 static int ef4_probe_eventq(struct ef4_channel *channel) 340 { 341 struct ef4_nic *efx = channel->efx; 342 unsigned long entries; 343 344 netif_dbg(efx, probe, efx->net_dev, 345 "chan %d create event queue\n", channel->channel); 346 347 /* Build an event queue with room for one event per tx and rx buffer, 348 * plus some extra for link state events and MCDI completions. */ 349 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 350 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE); 351 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1; 352 353 return ef4_nic_probe_eventq(channel); 354 } 355 356 /* Prepare channel's event queue */ 357 static int ef4_init_eventq(struct ef4_channel *channel) 358 { 359 struct ef4_nic *efx = channel->efx; 360 int rc; 361 362 EF4_WARN_ON_PARANOID(channel->eventq_init); 363 364 netif_dbg(efx, drv, efx->net_dev, 365 "chan %d init event queue\n", channel->channel); 366 367 rc = ef4_nic_init_eventq(channel); 368 if (rc == 0) { 369 efx->type->push_irq_moderation(channel); 370 channel->eventq_read_ptr = 0; 371 channel->eventq_init = true; 372 } 373 return rc; 374 } 375 376 /* Enable event queue processing and NAPI */ 377 void ef4_start_eventq(struct ef4_channel *channel) 378 { 379 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 380 "chan %d start event queue\n", channel->channel); 381 382 /* Make sure the NAPI handler sees the enabled flag set */ 383 channel->enabled = true; 384 smp_wmb(); 385 386 napi_enable(&channel->napi_str); 387 ef4_nic_eventq_read_ack(channel); 388 } 389 390 /* Disable event queue processing and NAPI */ 391 void ef4_stop_eventq(struct ef4_channel *channel) 392 { 393 if (!channel->enabled) 394 return; 395 396 napi_disable(&channel->napi_str); 397 channel->enabled = false; 398 } 399 400 static void ef4_fini_eventq(struct ef4_channel *channel) 401 { 402 if (!channel->eventq_init) 403 return; 404 405 netif_dbg(channel->efx, drv, channel->efx->net_dev, 406 "chan %d fini event queue\n", channel->channel); 407 408 ef4_nic_fini_eventq(channel); 409 channel->eventq_init = false; 410 } 411 412 static void ef4_remove_eventq(struct ef4_channel *channel) 413 { 414 netif_dbg(channel->efx, drv, channel->efx->net_dev, 415 "chan %d remove event queue\n", channel->channel); 416 417 ef4_nic_remove_eventq(channel); 418 } 419 420 /************************************************************************** 421 * 422 * Channel handling 423 * 424 *************************************************************************/ 425 426 /* Allocate and initialise a channel structure. */ 427 static struct ef4_channel * 428 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel) 429 { 430 struct ef4_channel *channel; 431 struct ef4_rx_queue *rx_queue; 432 struct ef4_tx_queue *tx_queue; 433 int j; 434 435 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 436 if (!channel) 437 return NULL; 438 439 channel->efx = efx; 440 channel->channel = i; 441 channel->type = &ef4_default_channel_type; 442 443 for (j = 0; j < EF4_TXQ_TYPES; j++) { 444 tx_queue = &channel->tx_queue[j]; 445 tx_queue->efx = efx; 446 tx_queue->queue = i * EF4_TXQ_TYPES + j; 447 tx_queue->channel = channel; 448 } 449 450 rx_queue = &channel->rx_queue; 451 rx_queue->efx = efx; 452 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); 453 454 return channel; 455 } 456 457 /* Allocate and initialise a channel structure, copying parameters 458 * (but not resources) from an old channel structure. 459 */ 460 static struct ef4_channel * 461 ef4_copy_channel(const struct ef4_channel *old_channel) 462 { 463 struct ef4_channel *channel; 464 struct ef4_rx_queue *rx_queue; 465 struct ef4_tx_queue *tx_queue; 466 int j; 467 468 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 469 if (!channel) 470 return NULL; 471 472 *channel = *old_channel; 473 474 channel->napi_dev = NULL; 475 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 476 channel->napi_str.napi_id = 0; 477 channel->napi_str.state = 0; 478 memset(&channel->eventq, 0, sizeof(channel->eventq)); 479 480 for (j = 0; j < EF4_TXQ_TYPES; j++) { 481 tx_queue = &channel->tx_queue[j]; 482 if (tx_queue->channel) 483 tx_queue->channel = channel; 484 tx_queue->buffer = NULL; 485 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 486 } 487 488 rx_queue = &channel->rx_queue; 489 rx_queue->buffer = NULL; 490 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 491 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); 492 493 return channel; 494 } 495 496 static int ef4_probe_channel(struct ef4_channel *channel) 497 { 498 struct ef4_tx_queue *tx_queue; 499 struct ef4_rx_queue *rx_queue; 500 int rc; 501 502 netif_dbg(channel->efx, probe, channel->efx->net_dev, 503 "creating channel %d\n", channel->channel); 504 505 rc = channel->type->pre_probe(channel); 506 if (rc) 507 goto fail; 508 509 rc = ef4_probe_eventq(channel); 510 if (rc) 511 goto fail; 512 513 ef4_for_each_channel_tx_queue(tx_queue, channel) { 514 rc = ef4_probe_tx_queue(tx_queue); 515 if (rc) 516 goto fail; 517 } 518 519 ef4_for_each_channel_rx_queue(rx_queue, channel) { 520 rc = ef4_probe_rx_queue(rx_queue); 521 if (rc) 522 goto fail; 523 } 524 525 return 0; 526 527 fail: 528 ef4_remove_channel(channel); 529 return rc; 530 } 531 532 static void 533 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len) 534 { 535 struct ef4_nic *efx = channel->efx; 536 const char *type; 537 int number; 538 539 number = channel->channel; 540 if (efx->tx_channel_offset == 0) { 541 type = ""; 542 } else if (channel->channel < efx->tx_channel_offset) { 543 type = "-rx"; 544 } else { 545 type = "-tx"; 546 number -= efx->tx_channel_offset; 547 } 548 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 549 } 550 551 static void ef4_set_channel_names(struct ef4_nic *efx) 552 { 553 struct ef4_channel *channel; 554 555 ef4_for_each_channel(channel, efx) 556 channel->type->get_name(channel, 557 efx->msi_context[channel->channel].name, 558 sizeof(efx->msi_context[0].name)); 559 } 560 561 static int ef4_probe_channels(struct ef4_nic *efx) 562 { 563 struct ef4_channel *channel; 564 int rc; 565 566 /* Restart special buffer allocation */ 567 efx->next_buffer_table = 0; 568 569 /* Probe channels in reverse, so that any 'extra' channels 570 * use the start of the buffer table. This allows the traffic 571 * channels to be resized without moving them or wasting the 572 * entries before them. 573 */ 574 ef4_for_each_channel_rev(channel, efx) { 575 rc = ef4_probe_channel(channel); 576 if (rc) { 577 netif_err(efx, probe, efx->net_dev, 578 "failed to create channel %d\n", 579 channel->channel); 580 goto fail; 581 } 582 } 583 ef4_set_channel_names(efx); 584 585 return 0; 586 587 fail: 588 ef4_remove_channels(efx); 589 return rc; 590 } 591 592 /* Channels are shutdown and reinitialised whilst the NIC is running 593 * to propagate configuration changes (mtu, checksum offload), or 594 * to clear hardware error conditions 595 */ 596 static void ef4_start_datapath(struct ef4_nic *efx) 597 { 598 netdev_features_t old_features = efx->net_dev->features; 599 bool old_rx_scatter = efx->rx_scatter; 600 struct ef4_tx_queue *tx_queue; 601 struct ef4_rx_queue *rx_queue; 602 struct ef4_channel *channel; 603 size_t rx_buf_len; 604 605 /* Calculate the rx buffer allocation parameters required to 606 * support the current MTU, including padding for header 607 * alignment and overruns. 608 */ 609 efx->rx_dma_len = (efx->rx_prefix_size + 610 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) + 611 efx->type->rx_buffer_padding); 612 rx_buf_len = (sizeof(struct ef4_rx_page_state) + 613 efx->rx_ip_align + efx->rx_dma_len); 614 if (rx_buf_len <= PAGE_SIZE) { 615 efx->rx_scatter = efx->type->always_rx_scatter; 616 efx->rx_buffer_order = 0; 617 } else if (efx->type->can_rx_scatter) { 618 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 619 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) + 620 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE, 621 EF4_RX_BUF_ALIGNMENT) > 622 PAGE_SIZE); 623 efx->rx_scatter = true; 624 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE; 625 efx->rx_buffer_order = 0; 626 } else { 627 efx->rx_scatter = false; 628 efx->rx_buffer_order = get_order(rx_buf_len); 629 } 630 631 ef4_rx_config_page_split(efx); 632 if (efx->rx_buffer_order) 633 netif_dbg(efx, drv, efx->net_dev, 634 "RX buf len=%u; page order=%u batch=%u\n", 635 efx->rx_dma_len, efx->rx_buffer_order, 636 efx->rx_pages_per_batch); 637 else 638 netif_dbg(efx, drv, efx->net_dev, 639 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 640 efx->rx_dma_len, efx->rx_page_buf_step, 641 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 642 643 /* Restore previously fixed features in hw_features and remove 644 * features which are fixed now 645 */ 646 efx->net_dev->hw_features |= efx->net_dev->features; 647 efx->net_dev->hw_features &= ~efx->fixed_features; 648 efx->net_dev->features |= efx->fixed_features; 649 if (efx->net_dev->features != old_features) 650 netdev_features_change(efx->net_dev); 651 652 /* RX filters may also have scatter-enabled flags */ 653 if (efx->rx_scatter != old_rx_scatter) 654 efx->type->filter_update_rx_scatter(efx); 655 656 /* We must keep at least one descriptor in a TX ring empty. 657 * We could avoid this when the queue size does not exactly 658 * match the hardware ring size, but it's not that important. 659 * Therefore we stop the queue when one more skb might fill 660 * the ring completely. We wake it when half way back to 661 * empty. 662 */ 663 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx); 664 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 665 666 /* Initialise the channels */ 667 ef4_for_each_channel(channel, efx) { 668 ef4_for_each_channel_tx_queue(tx_queue, channel) { 669 ef4_init_tx_queue(tx_queue); 670 atomic_inc(&efx->active_queues); 671 } 672 673 ef4_for_each_channel_rx_queue(rx_queue, channel) { 674 ef4_init_rx_queue(rx_queue); 675 atomic_inc(&efx->active_queues); 676 ef4_stop_eventq(channel); 677 ef4_fast_push_rx_descriptors(rx_queue, false); 678 ef4_start_eventq(channel); 679 } 680 681 WARN_ON(channel->rx_pkt_n_frags); 682 } 683 684 if (netif_device_present(efx->net_dev)) 685 netif_tx_wake_all_queues(efx->net_dev); 686 } 687 688 static void ef4_stop_datapath(struct ef4_nic *efx) 689 { 690 struct ef4_channel *channel; 691 struct ef4_tx_queue *tx_queue; 692 struct ef4_rx_queue *rx_queue; 693 int rc; 694 695 EF4_ASSERT_RESET_SERIALISED(efx); 696 BUG_ON(efx->port_enabled); 697 698 /* Stop RX refill */ 699 ef4_for_each_channel(channel, efx) { 700 ef4_for_each_channel_rx_queue(rx_queue, channel) 701 rx_queue->refill_enabled = false; 702 } 703 704 ef4_for_each_channel(channel, efx) { 705 /* RX packet processing is pipelined, so wait for the 706 * NAPI handler to complete. At least event queue 0 707 * might be kept active by non-data events, so don't 708 * use napi_synchronize() but actually disable NAPI 709 * temporarily. 710 */ 711 if (ef4_channel_has_rx_queue(channel)) { 712 ef4_stop_eventq(channel); 713 ef4_start_eventq(channel); 714 } 715 } 716 717 rc = efx->type->fini_dmaq(efx); 718 if (rc && EF4_WORKAROUND_7803(efx)) { 719 /* Schedule a reset to recover from the flush failure. The 720 * descriptor caches reference memory we're about to free, 721 * but falcon_reconfigure_mac_wrapper() won't reconnect 722 * the MACs because of the pending reset. 723 */ 724 netif_err(efx, drv, efx->net_dev, 725 "Resetting to recover from flush failure\n"); 726 ef4_schedule_reset(efx, RESET_TYPE_ALL); 727 } else if (rc) { 728 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 729 } else { 730 netif_dbg(efx, drv, efx->net_dev, 731 "successfully flushed all queues\n"); 732 } 733 734 ef4_for_each_channel(channel, efx) { 735 ef4_for_each_channel_rx_queue(rx_queue, channel) 736 ef4_fini_rx_queue(rx_queue); 737 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 738 ef4_fini_tx_queue(tx_queue); 739 } 740 } 741 742 static void ef4_remove_channel(struct ef4_channel *channel) 743 { 744 struct ef4_tx_queue *tx_queue; 745 struct ef4_rx_queue *rx_queue; 746 747 netif_dbg(channel->efx, drv, channel->efx->net_dev, 748 "destroy chan %d\n", channel->channel); 749 750 ef4_for_each_channel_rx_queue(rx_queue, channel) 751 ef4_remove_rx_queue(rx_queue); 752 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 753 ef4_remove_tx_queue(tx_queue); 754 ef4_remove_eventq(channel); 755 channel->type->post_remove(channel); 756 } 757 758 static void ef4_remove_channels(struct ef4_nic *efx) 759 { 760 struct ef4_channel *channel; 761 762 ef4_for_each_channel(channel, efx) 763 ef4_remove_channel(channel); 764 } 765 766 int 767 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries) 768 { 769 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel; 770 u32 old_rxq_entries, old_txq_entries; 771 unsigned i, next_buffer_table = 0; 772 int rc, rc2; 773 774 rc = ef4_check_disabled(efx); 775 if (rc) 776 return rc; 777 778 /* Not all channels should be reallocated. We must avoid 779 * reallocating their buffer table entries. 780 */ 781 ef4_for_each_channel(channel, efx) { 782 struct ef4_rx_queue *rx_queue; 783 struct ef4_tx_queue *tx_queue; 784 785 if (channel->type->copy) 786 continue; 787 next_buffer_table = max(next_buffer_table, 788 channel->eventq.index + 789 channel->eventq.entries); 790 ef4_for_each_channel_rx_queue(rx_queue, channel) 791 next_buffer_table = max(next_buffer_table, 792 rx_queue->rxd.index + 793 rx_queue->rxd.entries); 794 ef4_for_each_channel_tx_queue(tx_queue, channel) 795 next_buffer_table = max(next_buffer_table, 796 tx_queue->txd.index + 797 tx_queue->txd.entries); 798 } 799 800 ef4_device_detach_sync(efx); 801 ef4_stop_all(efx); 802 ef4_soft_disable_interrupts(efx); 803 804 /* Clone channels (where possible) */ 805 memset(other_channel, 0, sizeof(other_channel)); 806 for (i = 0; i < efx->n_channels; i++) { 807 channel = efx->channel[i]; 808 if (channel->type->copy) 809 channel = channel->type->copy(channel); 810 if (!channel) { 811 rc = -ENOMEM; 812 goto out; 813 } 814 other_channel[i] = channel; 815 } 816 817 /* Swap entry counts and channel pointers */ 818 old_rxq_entries = efx->rxq_entries; 819 old_txq_entries = efx->txq_entries; 820 efx->rxq_entries = rxq_entries; 821 efx->txq_entries = txq_entries; 822 for (i = 0; i < efx->n_channels; i++) { 823 channel = efx->channel[i]; 824 efx->channel[i] = other_channel[i]; 825 other_channel[i] = channel; 826 } 827 828 /* Restart buffer table allocation */ 829 efx->next_buffer_table = next_buffer_table; 830 831 for (i = 0; i < efx->n_channels; i++) { 832 channel = efx->channel[i]; 833 if (!channel->type->copy) 834 continue; 835 rc = ef4_probe_channel(channel); 836 if (rc) 837 goto rollback; 838 ef4_init_napi_channel(efx->channel[i]); 839 } 840 841 out: 842 /* Destroy unused channel structures */ 843 for (i = 0; i < efx->n_channels; i++) { 844 channel = other_channel[i]; 845 if (channel && channel->type->copy) { 846 ef4_fini_napi_channel(channel); 847 ef4_remove_channel(channel); 848 kfree(channel); 849 } 850 } 851 852 rc2 = ef4_soft_enable_interrupts(efx); 853 if (rc2) { 854 rc = rc ? rc : rc2; 855 netif_err(efx, drv, efx->net_dev, 856 "unable to restart interrupts on channel reallocation\n"); 857 ef4_schedule_reset(efx, RESET_TYPE_DISABLE); 858 } else { 859 ef4_start_all(efx); 860 netif_device_attach(efx->net_dev); 861 } 862 return rc; 863 864 rollback: 865 /* Swap back */ 866 efx->rxq_entries = old_rxq_entries; 867 efx->txq_entries = old_txq_entries; 868 for (i = 0; i < efx->n_channels; i++) { 869 channel = efx->channel[i]; 870 efx->channel[i] = other_channel[i]; 871 other_channel[i] = channel; 872 } 873 goto out; 874 } 875 876 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue) 877 { 878 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 879 } 880 881 static const struct ef4_channel_type ef4_default_channel_type = { 882 .pre_probe = ef4_channel_dummy_op_int, 883 .post_remove = ef4_channel_dummy_op_void, 884 .get_name = ef4_get_channel_name, 885 .copy = ef4_copy_channel, 886 .keep_eventq = false, 887 }; 888 889 int ef4_channel_dummy_op_int(struct ef4_channel *channel) 890 { 891 return 0; 892 } 893 894 void ef4_channel_dummy_op_void(struct ef4_channel *channel) 895 { 896 } 897 898 /************************************************************************** 899 * 900 * Port handling 901 * 902 **************************************************************************/ 903 904 /* This ensures that the kernel is kept informed (via 905 * netif_carrier_on/off) of the link status, and also maintains the 906 * link status's stop on the port's TX queue. 907 */ 908 void ef4_link_status_changed(struct ef4_nic *efx) 909 { 910 struct ef4_link_state *link_state = &efx->link_state; 911 912 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 913 * that no events are triggered between unregister_netdev() and the 914 * driver unloading. A more general condition is that NETDEV_CHANGE 915 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 916 if (!netif_running(efx->net_dev)) 917 return; 918 919 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 920 efx->n_link_state_changes++; 921 922 if (link_state->up) 923 netif_carrier_on(efx->net_dev); 924 else 925 netif_carrier_off(efx->net_dev); 926 } 927 928 /* Status message for kernel log */ 929 if (link_state->up) 930 netif_info(efx, link, efx->net_dev, 931 "link up at %uMbps %s-duplex (MTU %d)\n", 932 link_state->speed, link_state->fd ? "full" : "half", 933 efx->net_dev->mtu); 934 else 935 netif_info(efx, link, efx->net_dev, "link down\n"); 936 } 937 938 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising) 939 { 940 efx->link_advertising = advertising; 941 if (advertising) { 942 if (advertising & ADVERTISED_Pause) 943 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX); 944 else 945 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX); 946 if (advertising & ADVERTISED_Asym_Pause) 947 efx->wanted_fc ^= EF4_FC_TX; 948 } 949 } 950 951 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc) 952 { 953 efx->wanted_fc = wanted_fc; 954 if (efx->link_advertising) { 955 if (wanted_fc & EF4_FC_RX) 956 efx->link_advertising |= (ADVERTISED_Pause | 957 ADVERTISED_Asym_Pause); 958 else 959 efx->link_advertising &= ~(ADVERTISED_Pause | 960 ADVERTISED_Asym_Pause); 961 if (wanted_fc & EF4_FC_TX) 962 efx->link_advertising ^= ADVERTISED_Asym_Pause; 963 } 964 } 965 966 static void ef4_fini_port(struct ef4_nic *efx); 967 968 /* We assume that efx->type->reconfigure_mac will always try to sync RX 969 * filters and therefore needs to read-lock the filter table against freeing 970 */ 971 void ef4_mac_reconfigure(struct ef4_nic *efx) 972 { 973 down_read(&efx->filter_sem); 974 efx->type->reconfigure_mac(efx); 975 up_read(&efx->filter_sem); 976 } 977 978 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 979 * the MAC appropriately. All other PHY configuration changes are pushed 980 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC 981 * through ef4_monitor(). 982 * 983 * Callers must hold the mac_lock 984 */ 985 int __ef4_reconfigure_port(struct ef4_nic *efx) 986 { 987 enum ef4_phy_mode phy_mode; 988 int rc; 989 990 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 991 992 /* Disable PHY transmit in mac level loopbacks */ 993 phy_mode = efx->phy_mode; 994 if (LOOPBACK_INTERNAL(efx)) 995 efx->phy_mode |= PHY_MODE_TX_DISABLED; 996 else 997 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 998 999 rc = efx->type->reconfigure_port(efx); 1000 1001 if (rc) 1002 efx->phy_mode = phy_mode; 1003 1004 return rc; 1005 } 1006 1007 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1008 * disabled. */ 1009 int ef4_reconfigure_port(struct ef4_nic *efx) 1010 { 1011 int rc; 1012 1013 EF4_ASSERT_RESET_SERIALISED(efx); 1014 1015 mutex_lock(&efx->mac_lock); 1016 rc = __ef4_reconfigure_port(efx); 1017 mutex_unlock(&efx->mac_lock); 1018 1019 return rc; 1020 } 1021 1022 /* Asynchronous work item for changing MAC promiscuity and multicast 1023 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1024 * MAC directly. */ 1025 static void ef4_mac_work(struct work_struct *data) 1026 { 1027 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work); 1028 1029 mutex_lock(&efx->mac_lock); 1030 if (efx->port_enabled) 1031 ef4_mac_reconfigure(efx); 1032 mutex_unlock(&efx->mac_lock); 1033 } 1034 1035 static int ef4_probe_port(struct ef4_nic *efx) 1036 { 1037 int rc; 1038 1039 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1040 1041 if (phy_flash_cfg) 1042 efx->phy_mode = PHY_MODE_SPECIAL; 1043 1044 /* Connect up MAC/PHY operations table */ 1045 rc = efx->type->probe_port(efx); 1046 if (rc) 1047 return rc; 1048 1049 /* Initialise MAC address to permanent address */ 1050 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1051 1052 return 0; 1053 } 1054 1055 static int ef4_init_port(struct ef4_nic *efx) 1056 { 1057 int rc; 1058 1059 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1060 1061 mutex_lock(&efx->mac_lock); 1062 1063 rc = efx->phy_op->init(efx); 1064 if (rc) 1065 goto fail1; 1066 1067 efx->port_initialized = true; 1068 1069 /* Reconfigure the MAC before creating dma queues (required for 1070 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1071 ef4_mac_reconfigure(efx); 1072 1073 /* Ensure the PHY advertises the correct flow control settings */ 1074 rc = efx->phy_op->reconfigure(efx); 1075 if (rc && rc != -EPERM) 1076 goto fail2; 1077 1078 mutex_unlock(&efx->mac_lock); 1079 return 0; 1080 1081 fail2: 1082 efx->phy_op->fini(efx); 1083 fail1: 1084 mutex_unlock(&efx->mac_lock); 1085 return rc; 1086 } 1087 1088 static void ef4_start_port(struct ef4_nic *efx) 1089 { 1090 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1091 BUG_ON(efx->port_enabled); 1092 1093 mutex_lock(&efx->mac_lock); 1094 efx->port_enabled = true; 1095 1096 /* Ensure MAC ingress/egress is enabled */ 1097 ef4_mac_reconfigure(efx); 1098 1099 mutex_unlock(&efx->mac_lock); 1100 } 1101 1102 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1103 * and the async self-test, wait for them to finish and prevent them 1104 * being scheduled again. This doesn't cover online resets, which 1105 * should only be cancelled when removing the device. 1106 */ 1107 static void ef4_stop_port(struct ef4_nic *efx) 1108 { 1109 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1110 1111 EF4_ASSERT_RESET_SERIALISED(efx); 1112 1113 mutex_lock(&efx->mac_lock); 1114 efx->port_enabled = false; 1115 mutex_unlock(&efx->mac_lock); 1116 1117 /* Serialise against ef4_set_multicast_list() */ 1118 netif_addr_lock_bh(efx->net_dev); 1119 netif_addr_unlock_bh(efx->net_dev); 1120 1121 cancel_delayed_work_sync(&efx->monitor_work); 1122 ef4_selftest_async_cancel(efx); 1123 cancel_work_sync(&efx->mac_work); 1124 } 1125 1126 static void ef4_fini_port(struct ef4_nic *efx) 1127 { 1128 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1129 1130 if (!efx->port_initialized) 1131 return; 1132 1133 efx->phy_op->fini(efx); 1134 efx->port_initialized = false; 1135 1136 efx->link_state.up = false; 1137 ef4_link_status_changed(efx); 1138 } 1139 1140 static void ef4_remove_port(struct ef4_nic *efx) 1141 { 1142 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1143 1144 efx->type->remove_port(efx); 1145 } 1146 1147 /************************************************************************** 1148 * 1149 * NIC handling 1150 * 1151 **************************************************************************/ 1152 1153 static LIST_HEAD(ef4_primary_list); 1154 static LIST_HEAD(ef4_unassociated_list); 1155 1156 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right) 1157 { 1158 return left->type == right->type && 1159 left->vpd_sn && right->vpd_sn && 1160 !strcmp(left->vpd_sn, right->vpd_sn); 1161 } 1162 1163 static void ef4_associate(struct ef4_nic *efx) 1164 { 1165 struct ef4_nic *other, *next; 1166 1167 if (efx->primary == efx) { 1168 /* Adding primary function; look for secondaries */ 1169 1170 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1171 list_add_tail(&efx->node, &ef4_primary_list); 1172 1173 list_for_each_entry_safe(other, next, &ef4_unassociated_list, 1174 node) { 1175 if (ef4_same_controller(efx, other)) { 1176 list_del(&other->node); 1177 netif_dbg(other, probe, other->net_dev, 1178 "moving to secondary list of %s %s\n", 1179 pci_name(efx->pci_dev), 1180 efx->net_dev->name); 1181 list_add_tail(&other->node, 1182 &efx->secondary_list); 1183 other->primary = efx; 1184 } 1185 } 1186 } else { 1187 /* Adding secondary function; look for primary */ 1188 1189 list_for_each_entry(other, &ef4_primary_list, node) { 1190 if (ef4_same_controller(efx, other)) { 1191 netif_dbg(efx, probe, efx->net_dev, 1192 "adding to secondary list of %s %s\n", 1193 pci_name(other->pci_dev), 1194 other->net_dev->name); 1195 list_add_tail(&efx->node, 1196 &other->secondary_list); 1197 efx->primary = other; 1198 return; 1199 } 1200 } 1201 1202 netif_dbg(efx, probe, efx->net_dev, 1203 "adding to unassociated list\n"); 1204 list_add_tail(&efx->node, &ef4_unassociated_list); 1205 } 1206 } 1207 1208 static void ef4_dissociate(struct ef4_nic *efx) 1209 { 1210 struct ef4_nic *other, *next; 1211 1212 list_del(&efx->node); 1213 efx->primary = NULL; 1214 1215 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1216 list_del(&other->node); 1217 netif_dbg(other, probe, other->net_dev, 1218 "moving to unassociated list\n"); 1219 list_add_tail(&other->node, &ef4_unassociated_list); 1220 other->primary = NULL; 1221 } 1222 } 1223 1224 /* This configures the PCI device to enable I/O and DMA. */ 1225 static int ef4_init_io(struct ef4_nic *efx) 1226 { 1227 struct pci_dev *pci_dev = efx->pci_dev; 1228 dma_addr_t dma_mask = efx->type->max_dma_mask; 1229 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1230 int rc, bar; 1231 1232 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1233 1234 bar = efx->type->mem_bar; 1235 1236 rc = pci_enable_device(pci_dev); 1237 if (rc) { 1238 netif_err(efx, probe, efx->net_dev, 1239 "failed to enable PCI device\n"); 1240 goto fail1; 1241 } 1242 1243 pci_set_master(pci_dev); 1244 1245 /* Set the PCI DMA mask. Try all possibilities from our 1246 * genuine mask down to 32 bits, because some architectures 1247 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit 1248 * masks event though they reject 46 bit masks. 1249 */ 1250 while (dma_mask > 0x7fffffffUL) { 1251 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1252 if (rc == 0) 1253 break; 1254 dma_mask >>= 1; 1255 } 1256 if (rc) { 1257 netif_err(efx, probe, efx->net_dev, 1258 "could not find a suitable DMA mask\n"); 1259 goto fail2; 1260 } 1261 netif_dbg(efx, probe, efx->net_dev, 1262 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1263 1264 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1265 rc = pci_request_region(pci_dev, bar, "sfc"); 1266 if (rc) { 1267 netif_err(efx, probe, efx->net_dev, 1268 "request for memory BAR failed\n"); 1269 rc = -EIO; 1270 goto fail3; 1271 } 1272 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1273 if (!efx->membase) { 1274 netif_err(efx, probe, efx->net_dev, 1275 "could not map memory BAR at %llx+%x\n", 1276 (unsigned long long)efx->membase_phys, mem_map_size); 1277 rc = -ENOMEM; 1278 goto fail4; 1279 } 1280 netif_dbg(efx, probe, efx->net_dev, 1281 "memory BAR at %llx+%x (virtual %p)\n", 1282 (unsigned long long)efx->membase_phys, mem_map_size, 1283 efx->membase); 1284 1285 return 0; 1286 1287 fail4: 1288 pci_release_region(efx->pci_dev, bar); 1289 fail3: 1290 efx->membase_phys = 0; 1291 fail2: 1292 pci_disable_device(efx->pci_dev); 1293 fail1: 1294 return rc; 1295 } 1296 1297 static void ef4_fini_io(struct ef4_nic *efx) 1298 { 1299 int bar; 1300 1301 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1302 1303 if (efx->membase) { 1304 iounmap(efx->membase); 1305 efx->membase = NULL; 1306 } 1307 1308 if (efx->membase_phys) { 1309 bar = efx->type->mem_bar; 1310 pci_release_region(efx->pci_dev, bar); 1311 efx->membase_phys = 0; 1312 } 1313 1314 /* Don't disable bus-mastering if VFs are assigned */ 1315 if (!pci_vfs_assigned(efx->pci_dev)) 1316 pci_disable_device(efx->pci_dev); 1317 } 1318 1319 void ef4_set_default_rx_indir_table(struct ef4_nic *efx) 1320 { 1321 size_t i; 1322 1323 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1324 efx->rx_indir_table[i] = 1325 ethtool_rxfh_indir_default(i, efx->rss_spread); 1326 } 1327 1328 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx) 1329 { 1330 cpumask_var_t thread_mask; 1331 unsigned int count; 1332 int cpu; 1333 1334 if (rss_cpus) { 1335 count = rss_cpus; 1336 } else { 1337 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1338 netif_warn(efx, probe, efx->net_dev, 1339 "RSS disabled due to allocation failure\n"); 1340 return 1; 1341 } 1342 1343 count = 0; 1344 for_each_online_cpu(cpu) { 1345 if (!cpumask_test_cpu(cpu, thread_mask)) { 1346 ++count; 1347 cpumask_or(thread_mask, thread_mask, 1348 topology_sibling_cpumask(cpu)); 1349 } 1350 } 1351 1352 free_cpumask_var(thread_mask); 1353 } 1354 1355 if (count > EF4_MAX_RX_QUEUES) { 1356 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, 1357 "Reducing number of rx queues from %u to %u.\n", 1358 count, EF4_MAX_RX_QUEUES); 1359 count = EF4_MAX_RX_QUEUES; 1360 } 1361 1362 return count; 1363 } 1364 1365 /* Probe the number and type of interrupts we are able to obtain, and 1366 * the resulting numbers of channels and RX queues. 1367 */ 1368 static int ef4_probe_interrupts(struct ef4_nic *efx) 1369 { 1370 unsigned int extra_channels = 0; 1371 unsigned int i, j; 1372 int rc; 1373 1374 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) 1375 if (efx->extra_channel_type[i]) 1376 ++extra_channels; 1377 1378 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) { 1379 struct msix_entry xentries[EF4_MAX_CHANNELS]; 1380 unsigned int n_channels; 1381 1382 n_channels = ef4_wanted_parallelism(efx); 1383 if (ef4_separate_tx_channels) 1384 n_channels *= 2; 1385 n_channels += extra_channels; 1386 n_channels = min(n_channels, efx->max_channels); 1387 1388 for (i = 0; i < n_channels; i++) 1389 xentries[i].entry = i; 1390 rc = pci_enable_msix_range(efx->pci_dev, 1391 xentries, 1, n_channels); 1392 if (rc < 0) { 1393 /* Fall back to single channel MSI */ 1394 efx->interrupt_mode = EF4_INT_MODE_MSI; 1395 netif_err(efx, drv, efx->net_dev, 1396 "could not enable MSI-X\n"); 1397 } else if (rc < n_channels) { 1398 netif_err(efx, drv, efx->net_dev, 1399 "WARNING: Insufficient MSI-X vectors" 1400 " available (%d < %u).\n", rc, n_channels); 1401 netif_err(efx, drv, efx->net_dev, 1402 "WARNING: Performance may be reduced.\n"); 1403 n_channels = rc; 1404 } 1405 1406 if (rc > 0) { 1407 efx->n_channels = n_channels; 1408 if (n_channels > extra_channels) 1409 n_channels -= extra_channels; 1410 if (ef4_separate_tx_channels) { 1411 efx->n_tx_channels = min(max(n_channels / 2, 1412 1U), 1413 efx->max_tx_channels); 1414 efx->n_rx_channels = max(n_channels - 1415 efx->n_tx_channels, 1416 1U); 1417 } else { 1418 efx->n_tx_channels = min(n_channels, 1419 efx->max_tx_channels); 1420 efx->n_rx_channels = n_channels; 1421 } 1422 for (i = 0; i < efx->n_channels; i++) 1423 ef4_get_channel(efx, i)->irq = 1424 xentries[i].vector; 1425 } 1426 } 1427 1428 /* Try single interrupt MSI */ 1429 if (efx->interrupt_mode == EF4_INT_MODE_MSI) { 1430 efx->n_channels = 1; 1431 efx->n_rx_channels = 1; 1432 efx->n_tx_channels = 1; 1433 rc = pci_enable_msi(efx->pci_dev); 1434 if (rc == 0) { 1435 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1436 } else { 1437 netif_err(efx, drv, efx->net_dev, 1438 "could not enable MSI\n"); 1439 efx->interrupt_mode = EF4_INT_MODE_LEGACY; 1440 } 1441 } 1442 1443 /* Assume legacy interrupts */ 1444 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) { 1445 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0); 1446 efx->n_rx_channels = 1; 1447 efx->n_tx_channels = 1; 1448 efx->legacy_irq = efx->pci_dev->irq; 1449 } 1450 1451 /* Assign extra channels if possible */ 1452 j = efx->n_channels; 1453 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) { 1454 if (!efx->extra_channel_type[i]) 1455 continue; 1456 if (efx->interrupt_mode != EF4_INT_MODE_MSIX || 1457 efx->n_channels <= extra_channels) { 1458 efx->extra_channel_type[i]->handle_no_channel(efx); 1459 } else { 1460 --j; 1461 ef4_get_channel(efx, j)->type = 1462 efx->extra_channel_type[i]; 1463 } 1464 } 1465 1466 efx->rss_spread = efx->n_rx_channels; 1467 1468 return 0; 1469 } 1470 1471 static int ef4_soft_enable_interrupts(struct ef4_nic *efx) 1472 { 1473 struct ef4_channel *channel, *end_channel; 1474 int rc; 1475 1476 BUG_ON(efx->state == STATE_DISABLED); 1477 1478 efx->irq_soft_enabled = true; 1479 smp_wmb(); 1480 1481 ef4_for_each_channel(channel, efx) { 1482 if (!channel->type->keep_eventq) { 1483 rc = ef4_init_eventq(channel); 1484 if (rc) 1485 goto fail; 1486 } 1487 ef4_start_eventq(channel); 1488 } 1489 1490 return 0; 1491 fail: 1492 end_channel = channel; 1493 ef4_for_each_channel(channel, efx) { 1494 if (channel == end_channel) 1495 break; 1496 ef4_stop_eventq(channel); 1497 if (!channel->type->keep_eventq) 1498 ef4_fini_eventq(channel); 1499 } 1500 1501 return rc; 1502 } 1503 1504 static void ef4_soft_disable_interrupts(struct ef4_nic *efx) 1505 { 1506 struct ef4_channel *channel; 1507 1508 if (efx->state == STATE_DISABLED) 1509 return; 1510 1511 efx->irq_soft_enabled = false; 1512 smp_wmb(); 1513 1514 if (efx->legacy_irq) 1515 synchronize_irq(efx->legacy_irq); 1516 1517 ef4_for_each_channel(channel, efx) { 1518 if (channel->irq) 1519 synchronize_irq(channel->irq); 1520 1521 ef4_stop_eventq(channel); 1522 if (!channel->type->keep_eventq) 1523 ef4_fini_eventq(channel); 1524 } 1525 } 1526 1527 static int ef4_enable_interrupts(struct ef4_nic *efx) 1528 { 1529 struct ef4_channel *channel, *end_channel; 1530 int rc; 1531 1532 BUG_ON(efx->state == STATE_DISABLED); 1533 1534 if (efx->eeh_disabled_legacy_irq) { 1535 enable_irq(efx->legacy_irq); 1536 efx->eeh_disabled_legacy_irq = false; 1537 } 1538 1539 efx->type->irq_enable_master(efx); 1540 1541 ef4_for_each_channel(channel, efx) { 1542 if (channel->type->keep_eventq) { 1543 rc = ef4_init_eventq(channel); 1544 if (rc) 1545 goto fail; 1546 } 1547 } 1548 1549 rc = ef4_soft_enable_interrupts(efx); 1550 if (rc) 1551 goto fail; 1552 1553 return 0; 1554 1555 fail: 1556 end_channel = channel; 1557 ef4_for_each_channel(channel, efx) { 1558 if (channel == end_channel) 1559 break; 1560 if (channel->type->keep_eventq) 1561 ef4_fini_eventq(channel); 1562 } 1563 1564 efx->type->irq_disable_non_ev(efx); 1565 1566 return rc; 1567 } 1568 1569 static void ef4_disable_interrupts(struct ef4_nic *efx) 1570 { 1571 struct ef4_channel *channel; 1572 1573 ef4_soft_disable_interrupts(efx); 1574 1575 ef4_for_each_channel(channel, efx) { 1576 if (channel->type->keep_eventq) 1577 ef4_fini_eventq(channel); 1578 } 1579 1580 efx->type->irq_disable_non_ev(efx); 1581 } 1582 1583 static void ef4_remove_interrupts(struct ef4_nic *efx) 1584 { 1585 struct ef4_channel *channel; 1586 1587 /* Remove MSI/MSI-X interrupts */ 1588 ef4_for_each_channel(channel, efx) 1589 channel->irq = 0; 1590 pci_disable_msi(efx->pci_dev); 1591 pci_disable_msix(efx->pci_dev); 1592 1593 /* Remove legacy interrupt */ 1594 efx->legacy_irq = 0; 1595 } 1596 1597 static void ef4_set_channels(struct ef4_nic *efx) 1598 { 1599 struct ef4_channel *channel; 1600 struct ef4_tx_queue *tx_queue; 1601 1602 efx->tx_channel_offset = 1603 ef4_separate_tx_channels ? 1604 efx->n_channels - efx->n_tx_channels : 0; 1605 1606 /* We need to mark which channels really have RX and TX 1607 * queues, and adjust the TX queue numbers if we have separate 1608 * RX-only and TX-only channels. 1609 */ 1610 ef4_for_each_channel(channel, efx) { 1611 if (channel->channel < efx->n_rx_channels) 1612 channel->rx_queue.core_index = channel->channel; 1613 else 1614 channel->rx_queue.core_index = -1; 1615 1616 ef4_for_each_channel_tx_queue(tx_queue, channel) 1617 tx_queue->queue -= (efx->tx_channel_offset * 1618 EF4_TXQ_TYPES); 1619 } 1620 } 1621 1622 static int ef4_probe_nic(struct ef4_nic *efx) 1623 { 1624 int rc; 1625 1626 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1627 1628 /* Carry out hardware-type specific initialisation */ 1629 rc = efx->type->probe(efx); 1630 if (rc) 1631 return rc; 1632 1633 do { 1634 if (!efx->max_channels || !efx->max_tx_channels) { 1635 netif_err(efx, drv, efx->net_dev, 1636 "Insufficient resources to allocate" 1637 " any channels\n"); 1638 rc = -ENOSPC; 1639 goto fail1; 1640 } 1641 1642 /* Determine the number of channels and queues by trying 1643 * to hook in MSI-X interrupts. 1644 */ 1645 rc = ef4_probe_interrupts(efx); 1646 if (rc) 1647 goto fail1; 1648 1649 ef4_set_channels(efx); 1650 1651 /* dimension_resources can fail with EAGAIN */ 1652 rc = efx->type->dimension_resources(efx); 1653 if (rc != 0 && rc != -EAGAIN) 1654 goto fail2; 1655 1656 if (rc == -EAGAIN) 1657 /* try again with new max_channels */ 1658 ef4_remove_interrupts(efx); 1659 1660 } while (rc == -EAGAIN); 1661 1662 if (efx->n_channels > 1) 1663 netdev_rss_key_fill(&efx->rx_hash_key, 1664 sizeof(efx->rx_hash_key)); 1665 ef4_set_default_rx_indir_table(efx); 1666 1667 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1668 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1669 1670 /* Initialise the interrupt moderation settings */ 1671 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 1672 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1673 true); 1674 1675 return 0; 1676 1677 fail2: 1678 ef4_remove_interrupts(efx); 1679 fail1: 1680 efx->type->remove(efx); 1681 return rc; 1682 } 1683 1684 static void ef4_remove_nic(struct ef4_nic *efx) 1685 { 1686 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1687 1688 ef4_remove_interrupts(efx); 1689 efx->type->remove(efx); 1690 } 1691 1692 static int ef4_probe_filters(struct ef4_nic *efx) 1693 { 1694 int rc; 1695 1696 spin_lock_init(&efx->filter_lock); 1697 init_rwsem(&efx->filter_sem); 1698 mutex_lock(&efx->mac_lock); 1699 down_write(&efx->filter_sem); 1700 rc = efx->type->filter_table_probe(efx); 1701 if (rc) 1702 goto out_unlock; 1703 1704 #ifdef CONFIG_RFS_ACCEL 1705 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1706 struct ef4_channel *channel; 1707 int i, success = 1; 1708 1709 ef4_for_each_channel(channel, efx) { 1710 channel->rps_flow_id = 1711 kcalloc(efx->type->max_rx_ip_filters, 1712 sizeof(*channel->rps_flow_id), 1713 GFP_KERNEL); 1714 if (!channel->rps_flow_id) 1715 success = 0; 1716 else 1717 for (i = 0; 1718 i < efx->type->max_rx_ip_filters; 1719 ++i) 1720 channel->rps_flow_id[i] = 1721 RPS_FLOW_ID_INVALID; 1722 } 1723 1724 if (!success) { 1725 ef4_for_each_channel(channel, efx) 1726 kfree(channel->rps_flow_id); 1727 efx->type->filter_table_remove(efx); 1728 rc = -ENOMEM; 1729 goto out_unlock; 1730 } 1731 1732 efx->rps_expire_index = efx->rps_expire_channel = 0; 1733 } 1734 #endif 1735 out_unlock: 1736 up_write(&efx->filter_sem); 1737 mutex_unlock(&efx->mac_lock); 1738 return rc; 1739 } 1740 1741 static void ef4_remove_filters(struct ef4_nic *efx) 1742 { 1743 #ifdef CONFIG_RFS_ACCEL 1744 struct ef4_channel *channel; 1745 1746 ef4_for_each_channel(channel, efx) 1747 kfree(channel->rps_flow_id); 1748 #endif 1749 down_write(&efx->filter_sem); 1750 efx->type->filter_table_remove(efx); 1751 up_write(&efx->filter_sem); 1752 } 1753 1754 static void ef4_restore_filters(struct ef4_nic *efx) 1755 { 1756 down_read(&efx->filter_sem); 1757 efx->type->filter_table_restore(efx); 1758 up_read(&efx->filter_sem); 1759 } 1760 1761 /************************************************************************** 1762 * 1763 * NIC startup/shutdown 1764 * 1765 *************************************************************************/ 1766 1767 static int ef4_probe_all(struct ef4_nic *efx) 1768 { 1769 int rc; 1770 1771 rc = ef4_probe_nic(efx); 1772 if (rc) { 1773 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1774 goto fail1; 1775 } 1776 1777 rc = ef4_probe_port(efx); 1778 if (rc) { 1779 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1780 goto fail2; 1781 } 1782 1783 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT); 1784 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) { 1785 rc = -EINVAL; 1786 goto fail3; 1787 } 1788 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE; 1789 1790 rc = ef4_probe_filters(efx); 1791 if (rc) { 1792 netif_err(efx, probe, efx->net_dev, 1793 "failed to create filter tables\n"); 1794 goto fail4; 1795 } 1796 1797 rc = ef4_probe_channels(efx); 1798 if (rc) 1799 goto fail5; 1800 1801 return 0; 1802 1803 fail5: 1804 ef4_remove_filters(efx); 1805 fail4: 1806 fail3: 1807 ef4_remove_port(efx); 1808 fail2: 1809 ef4_remove_nic(efx); 1810 fail1: 1811 return rc; 1812 } 1813 1814 /* If the interface is supposed to be running but is not, start 1815 * the hardware and software data path, regular activity for the port 1816 * (MAC statistics, link polling, etc.) and schedule the port to be 1817 * reconfigured. Interrupts must already be enabled. This function 1818 * is safe to call multiple times, so long as the NIC is not disabled. 1819 * Requires the RTNL lock. 1820 */ 1821 static void ef4_start_all(struct ef4_nic *efx) 1822 { 1823 EF4_ASSERT_RESET_SERIALISED(efx); 1824 BUG_ON(efx->state == STATE_DISABLED); 1825 1826 /* Check that it is appropriate to restart the interface. All 1827 * of these flags are safe to read under just the rtnl lock */ 1828 if (efx->port_enabled || !netif_running(efx->net_dev) || 1829 efx->reset_pending) 1830 return; 1831 1832 ef4_start_port(efx); 1833 ef4_start_datapath(efx); 1834 1835 /* Start the hardware monitor if there is one */ 1836 if (efx->type->monitor != NULL) 1837 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1838 ef4_monitor_interval); 1839 1840 efx->type->start_stats(efx); 1841 efx->type->pull_stats(efx); 1842 spin_lock_bh(&efx->stats_lock); 1843 efx->type->update_stats(efx, NULL, NULL); 1844 spin_unlock_bh(&efx->stats_lock); 1845 } 1846 1847 /* Quiesce the hardware and software data path, and regular activity 1848 * for the port without bringing the link down. Safe to call multiple 1849 * times with the NIC in almost any state, but interrupts should be 1850 * enabled. Requires the RTNL lock. 1851 */ 1852 static void ef4_stop_all(struct ef4_nic *efx) 1853 { 1854 EF4_ASSERT_RESET_SERIALISED(efx); 1855 1856 /* port_enabled can be read safely under the rtnl lock */ 1857 if (!efx->port_enabled) 1858 return; 1859 1860 /* update stats before we go down so we can accurately count 1861 * rx_nodesc_drops 1862 */ 1863 efx->type->pull_stats(efx); 1864 spin_lock_bh(&efx->stats_lock); 1865 efx->type->update_stats(efx, NULL, NULL); 1866 spin_unlock_bh(&efx->stats_lock); 1867 efx->type->stop_stats(efx); 1868 ef4_stop_port(efx); 1869 1870 /* Stop the kernel transmit interface. This is only valid if 1871 * the device is stopped or detached; otherwise the watchdog 1872 * may fire immediately. 1873 */ 1874 WARN_ON(netif_running(efx->net_dev) && 1875 netif_device_present(efx->net_dev)); 1876 netif_tx_disable(efx->net_dev); 1877 1878 ef4_stop_datapath(efx); 1879 } 1880 1881 static void ef4_remove_all(struct ef4_nic *efx) 1882 { 1883 ef4_remove_channels(efx); 1884 ef4_remove_filters(efx); 1885 ef4_remove_port(efx); 1886 ef4_remove_nic(efx); 1887 } 1888 1889 /************************************************************************** 1890 * 1891 * Interrupt moderation 1892 * 1893 **************************************************************************/ 1894 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs) 1895 { 1896 if (usecs == 0) 1897 return 0; 1898 if (usecs * 1000 < efx->timer_quantum_ns) 1899 return 1; /* never round down to 0 */ 1900 return usecs * 1000 / efx->timer_quantum_ns; 1901 } 1902 1903 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks) 1904 { 1905 /* We must round up when converting ticks to microseconds 1906 * because we round down when converting the other way. 1907 */ 1908 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 1909 } 1910 1911 /* Set interrupt moderation parameters */ 1912 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs, 1913 unsigned int rx_usecs, bool rx_adaptive, 1914 bool rx_may_override_tx) 1915 { 1916 struct ef4_channel *channel; 1917 unsigned int timer_max_us; 1918 1919 EF4_ASSERT_RESET_SERIALISED(efx); 1920 1921 timer_max_us = efx->timer_max_ns / 1000; 1922 1923 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 1924 return -EINVAL; 1925 1926 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 1927 !rx_may_override_tx) { 1928 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1929 "RX and TX IRQ moderation must be equal\n"); 1930 return -EINVAL; 1931 } 1932 1933 efx->irq_rx_adaptive = rx_adaptive; 1934 efx->irq_rx_moderation_us = rx_usecs; 1935 ef4_for_each_channel(channel, efx) { 1936 if (ef4_channel_has_rx_queue(channel)) 1937 channel->irq_moderation_us = rx_usecs; 1938 else if (ef4_channel_has_tx_queues(channel)) 1939 channel->irq_moderation_us = tx_usecs; 1940 } 1941 1942 return 0; 1943 } 1944 1945 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs, 1946 unsigned int *rx_usecs, bool *rx_adaptive) 1947 { 1948 *rx_adaptive = efx->irq_rx_adaptive; 1949 *rx_usecs = efx->irq_rx_moderation_us; 1950 1951 /* If channels are shared between RX and TX, so is IRQ 1952 * moderation. Otherwise, IRQ moderation is the same for all 1953 * TX channels and is not adaptive. 1954 */ 1955 if (efx->tx_channel_offset == 0) { 1956 *tx_usecs = *rx_usecs; 1957 } else { 1958 struct ef4_channel *tx_channel; 1959 1960 tx_channel = efx->channel[efx->tx_channel_offset]; 1961 *tx_usecs = tx_channel->irq_moderation_us; 1962 } 1963 } 1964 1965 /************************************************************************** 1966 * 1967 * Hardware monitor 1968 * 1969 **************************************************************************/ 1970 1971 /* Run periodically off the general workqueue */ 1972 static void ef4_monitor(struct work_struct *data) 1973 { 1974 struct ef4_nic *efx = container_of(data, struct ef4_nic, 1975 monitor_work.work); 1976 1977 netif_vdbg(efx, timer, efx->net_dev, 1978 "hardware monitor executing on CPU %d\n", 1979 raw_smp_processor_id()); 1980 BUG_ON(efx->type->monitor == NULL); 1981 1982 /* If the mac_lock is already held then it is likely a port 1983 * reconfiguration is already in place, which will likely do 1984 * most of the work of monitor() anyway. */ 1985 if (mutex_trylock(&efx->mac_lock)) { 1986 if (efx->port_enabled) 1987 efx->type->monitor(efx); 1988 mutex_unlock(&efx->mac_lock); 1989 } 1990 1991 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1992 ef4_monitor_interval); 1993 } 1994 1995 /************************************************************************** 1996 * 1997 * ioctls 1998 * 1999 *************************************************************************/ 2000 2001 /* Net device ioctl 2002 * Context: process, rtnl_lock() held. 2003 */ 2004 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 2005 { 2006 struct ef4_nic *efx = netdev_priv(net_dev); 2007 struct mii_ioctl_data *data = if_mii(ifr); 2008 2009 /* Convert phy_id from older PRTAD/DEVAD format */ 2010 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 2011 (data->phy_id & 0xfc00) == 0x0400) 2012 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 2013 2014 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2015 } 2016 2017 /************************************************************************** 2018 * 2019 * NAPI interface 2020 * 2021 **************************************************************************/ 2022 2023 static void ef4_init_napi_channel(struct ef4_channel *channel) 2024 { 2025 struct ef4_nic *efx = channel->efx; 2026 2027 channel->napi_dev = efx->net_dev; 2028 netif_napi_add(channel->napi_dev, &channel->napi_str, 2029 ef4_poll, napi_weight); 2030 } 2031 2032 static void ef4_init_napi(struct ef4_nic *efx) 2033 { 2034 struct ef4_channel *channel; 2035 2036 ef4_for_each_channel(channel, efx) 2037 ef4_init_napi_channel(channel); 2038 } 2039 2040 static void ef4_fini_napi_channel(struct ef4_channel *channel) 2041 { 2042 if (channel->napi_dev) 2043 netif_napi_del(&channel->napi_str); 2044 2045 channel->napi_dev = NULL; 2046 } 2047 2048 static void ef4_fini_napi(struct ef4_nic *efx) 2049 { 2050 struct ef4_channel *channel; 2051 2052 ef4_for_each_channel(channel, efx) 2053 ef4_fini_napi_channel(channel); 2054 } 2055 2056 /************************************************************************** 2057 * 2058 * Kernel netpoll interface 2059 * 2060 *************************************************************************/ 2061 2062 #ifdef CONFIG_NET_POLL_CONTROLLER 2063 2064 /* Although in the common case interrupts will be disabled, this is not 2065 * guaranteed. However, all our work happens inside the NAPI callback, 2066 * so no locking is required. 2067 */ 2068 static void ef4_netpoll(struct net_device *net_dev) 2069 { 2070 struct ef4_nic *efx = netdev_priv(net_dev); 2071 struct ef4_channel *channel; 2072 2073 ef4_for_each_channel(channel, efx) 2074 ef4_schedule_channel(channel); 2075 } 2076 2077 #endif 2078 2079 /************************************************************************** 2080 * 2081 * Kernel net device interface 2082 * 2083 *************************************************************************/ 2084 2085 /* Context: process, rtnl_lock() held. */ 2086 int ef4_net_open(struct net_device *net_dev) 2087 { 2088 struct ef4_nic *efx = netdev_priv(net_dev); 2089 int rc; 2090 2091 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2092 raw_smp_processor_id()); 2093 2094 rc = ef4_check_disabled(efx); 2095 if (rc) 2096 return rc; 2097 if (efx->phy_mode & PHY_MODE_SPECIAL) 2098 return -EBUSY; 2099 2100 /* Notify the kernel of the link state polled during driver load, 2101 * before the monitor starts running */ 2102 ef4_link_status_changed(efx); 2103 2104 ef4_start_all(efx); 2105 ef4_selftest_async_start(efx); 2106 return 0; 2107 } 2108 2109 /* Context: process, rtnl_lock() held. 2110 * Note that the kernel will ignore our return code; this method 2111 * should really be a void. 2112 */ 2113 int ef4_net_stop(struct net_device *net_dev) 2114 { 2115 struct ef4_nic *efx = netdev_priv(net_dev); 2116 2117 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2118 raw_smp_processor_id()); 2119 2120 /* Stop the device and flush all the channels */ 2121 ef4_stop_all(efx); 2122 2123 return 0; 2124 } 2125 2126 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2127 static void ef4_net_stats(struct net_device *net_dev, 2128 struct rtnl_link_stats64 *stats) 2129 { 2130 struct ef4_nic *efx = netdev_priv(net_dev); 2131 2132 spin_lock_bh(&efx->stats_lock); 2133 efx->type->update_stats(efx, NULL, stats); 2134 spin_unlock_bh(&efx->stats_lock); 2135 } 2136 2137 /* Context: netif_tx_lock held, BHs disabled. */ 2138 static void ef4_watchdog(struct net_device *net_dev) 2139 { 2140 struct ef4_nic *efx = netdev_priv(net_dev); 2141 2142 netif_err(efx, tx_err, efx->net_dev, 2143 "TX stuck with port_enabled=%d: resetting channels\n", 2144 efx->port_enabled); 2145 2146 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2147 } 2148 2149 2150 /* Context: process, rtnl_lock() held. */ 2151 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu) 2152 { 2153 struct ef4_nic *efx = netdev_priv(net_dev); 2154 int rc; 2155 2156 rc = ef4_check_disabled(efx); 2157 if (rc) 2158 return rc; 2159 2160 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2161 2162 ef4_device_detach_sync(efx); 2163 ef4_stop_all(efx); 2164 2165 mutex_lock(&efx->mac_lock); 2166 net_dev->mtu = new_mtu; 2167 ef4_mac_reconfigure(efx); 2168 mutex_unlock(&efx->mac_lock); 2169 2170 ef4_start_all(efx); 2171 netif_device_attach(efx->net_dev); 2172 return 0; 2173 } 2174 2175 static int ef4_set_mac_address(struct net_device *net_dev, void *data) 2176 { 2177 struct ef4_nic *efx = netdev_priv(net_dev); 2178 struct sockaddr *addr = data; 2179 u8 *new_addr = addr->sa_data; 2180 u8 old_addr[6]; 2181 int rc; 2182 2183 if (!is_valid_ether_addr(new_addr)) { 2184 netif_err(efx, drv, efx->net_dev, 2185 "invalid ethernet MAC address requested: %pM\n", 2186 new_addr); 2187 return -EADDRNOTAVAIL; 2188 } 2189 2190 /* save old address */ 2191 ether_addr_copy(old_addr, net_dev->dev_addr); 2192 ether_addr_copy(net_dev->dev_addr, new_addr); 2193 if (efx->type->set_mac_address) { 2194 rc = efx->type->set_mac_address(efx); 2195 if (rc) { 2196 ether_addr_copy(net_dev->dev_addr, old_addr); 2197 return rc; 2198 } 2199 } 2200 2201 /* Reconfigure the MAC */ 2202 mutex_lock(&efx->mac_lock); 2203 ef4_mac_reconfigure(efx); 2204 mutex_unlock(&efx->mac_lock); 2205 2206 return 0; 2207 } 2208 2209 /* Context: netif_addr_lock held, BHs disabled. */ 2210 static void ef4_set_rx_mode(struct net_device *net_dev) 2211 { 2212 struct ef4_nic *efx = netdev_priv(net_dev); 2213 2214 if (efx->port_enabled) 2215 queue_work(efx->workqueue, &efx->mac_work); 2216 /* Otherwise ef4_start_port() will do this */ 2217 } 2218 2219 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data) 2220 { 2221 struct ef4_nic *efx = netdev_priv(net_dev); 2222 int rc; 2223 2224 /* If disabling RX n-tuple filtering, clear existing filters */ 2225 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 2226 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL); 2227 if (rc) 2228 return rc; 2229 } 2230 2231 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */ 2232 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) { 2233 /* ef4_set_rx_mode() will schedule MAC work to update filters 2234 * when a new features are finally set in net_dev. 2235 */ 2236 ef4_set_rx_mode(net_dev); 2237 } 2238 2239 return 0; 2240 } 2241 2242 static const struct net_device_ops ef4_netdev_ops = { 2243 .ndo_open = ef4_net_open, 2244 .ndo_stop = ef4_net_stop, 2245 .ndo_get_stats64 = ef4_net_stats, 2246 .ndo_tx_timeout = ef4_watchdog, 2247 .ndo_start_xmit = ef4_hard_start_xmit, 2248 .ndo_validate_addr = eth_validate_addr, 2249 .ndo_do_ioctl = ef4_ioctl, 2250 .ndo_change_mtu = ef4_change_mtu, 2251 .ndo_set_mac_address = ef4_set_mac_address, 2252 .ndo_set_rx_mode = ef4_set_rx_mode, 2253 .ndo_set_features = ef4_set_features, 2254 #ifdef CONFIG_NET_POLL_CONTROLLER 2255 .ndo_poll_controller = ef4_netpoll, 2256 #endif 2257 .ndo_setup_tc = ef4_setup_tc, 2258 #ifdef CONFIG_RFS_ACCEL 2259 .ndo_rx_flow_steer = ef4_filter_rfs, 2260 #endif 2261 }; 2262 2263 static void ef4_update_name(struct ef4_nic *efx) 2264 { 2265 strcpy(efx->name, efx->net_dev->name); 2266 ef4_mtd_rename(efx); 2267 ef4_set_channel_names(efx); 2268 } 2269 2270 static int ef4_netdev_event(struct notifier_block *this, 2271 unsigned long event, void *ptr) 2272 { 2273 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2274 2275 if ((net_dev->netdev_ops == &ef4_netdev_ops) && 2276 event == NETDEV_CHANGENAME) 2277 ef4_update_name(netdev_priv(net_dev)); 2278 2279 return NOTIFY_DONE; 2280 } 2281 2282 static struct notifier_block ef4_netdev_notifier = { 2283 .notifier_call = ef4_netdev_event, 2284 }; 2285 2286 static ssize_t 2287 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2288 { 2289 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2290 return sprintf(buf, "%d\n", efx->phy_type); 2291 } 2292 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2293 2294 static int ef4_register_netdev(struct ef4_nic *efx) 2295 { 2296 struct net_device *net_dev = efx->net_dev; 2297 struct ef4_channel *channel; 2298 int rc; 2299 2300 net_dev->watchdog_timeo = 5 * HZ; 2301 net_dev->irq = efx->pci_dev->irq; 2302 net_dev->netdev_ops = &ef4_netdev_ops; 2303 net_dev->ethtool_ops = &ef4_ethtool_ops; 2304 net_dev->gso_max_segs = EF4_TSO_MAX_SEGS; 2305 net_dev->min_mtu = EF4_MIN_MTU; 2306 net_dev->max_mtu = EF4_MAX_MTU; 2307 2308 rtnl_lock(); 2309 2310 /* Enable resets to be scheduled and check whether any were 2311 * already requested. If so, the NIC is probably hosed so we 2312 * abort. 2313 */ 2314 efx->state = STATE_READY; 2315 smp_mb(); /* ensure we change state before checking reset_pending */ 2316 if (efx->reset_pending) { 2317 netif_err(efx, probe, efx->net_dev, 2318 "aborting probe due to scheduled reset\n"); 2319 rc = -EIO; 2320 goto fail_locked; 2321 } 2322 2323 rc = dev_alloc_name(net_dev, net_dev->name); 2324 if (rc < 0) 2325 goto fail_locked; 2326 ef4_update_name(efx); 2327 2328 /* Always start with carrier off; PHY events will detect the link */ 2329 netif_carrier_off(net_dev); 2330 2331 rc = register_netdevice(net_dev); 2332 if (rc) 2333 goto fail_locked; 2334 2335 ef4_for_each_channel(channel, efx) { 2336 struct ef4_tx_queue *tx_queue; 2337 ef4_for_each_channel_tx_queue(tx_queue, channel) 2338 ef4_init_tx_queue_core_txq(tx_queue); 2339 } 2340 2341 ef4_associate(efx); 2342 2343 rtnl_unlock(); 2344 2345 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2346 if (rc) { 2347 netif_err(efx, drv, efx->net_dev, 2348 "failed to init net dev attributes\n"); 2349 goto fail_registered; 2350 } 2351 return 0; 2352 2353 fail_registered: 2354 rtnl_lock(); 2355 ef4_dissociate(efx); 2356 unregister_netdevice(net_dev); 2357 fail_locked: 2358 efx->state = STATE_UNINIT; 2359 rtnl_unlock(); 2360 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2361 return rc; 2362 } 2363 2364 static void ef4_unregister_netdev(struct ef4_nic *efx) 2365 { 2366 if (!efx->net_dev) 2367 return; 2368 2369 BUG_ON(netdev_priv(efx->net_dev) != efx); 2370 2371 if (ef4_dev_registered(efx)) { 2372 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2373 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2374 unregister_netdev(efx->net_dev); 2375 } 2376 } 2377 2378 /************************************************************************** 2379 * 2380 * Device reset and suspend 2381 * 2382 **************************************************************************/ 2383 2384 /* Tears down the entire software state and most of the hardware state 2385 * before reset. */ 2386 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method) 2387 { 2388 EF4_ASSERT_RESET_SERIALISED(efx); 2389 2390 ef4_stop_all(efx); 2391 ef4_disable_interrupts(efx); 2392 2393 mutex_lock(&efx->mac_lock); 2394 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2395 method != RESET_TYPE_DATAPATH) 2396 efx->phy_op->fini(efx); 2397 efx->type->fini(efx); 2398 } 2399 2400 /* This function will always ensure that the locks acquired in 2401 * ef4_reset_down() are released. A failure return code indicates 2402 * that we were unable to reinitialise the hardware, and the 2403 * driver should be disabled. If ok is false, then the rx and tx 2404 * engines are not restarted, pending a RESET_DISABLE. */ 2405 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok) 2406 { 2407 int rc; 2408 2409 EF4_ASSERT_RESET_SERIALISED(efx); 2410 2411 /* Ensure that SRAM is initialised even if we're disabling the device */ 2412 rc = efx->type->init(efx); 2413 if (rc) { 2414 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2415 goto fail; 2416 } 2417 2418 if (!ok) 2419 goto fail; 2420 2421 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2422 method != RESET_TYPE_DATAPATH) { 2423 rc = efx->phy_op->init(efx); 2424 if (rc) 2425 goto fail; 2426 rc = efx->phy_op->reconfigure(efx); 2427 if (rc && rc != -EPERM) 2428 netif_err(efx, drv, efx->net_dev, 2429 "could not restore PHY settings\n"); 2430 } 2431 2432 rc = ef4_enable_interrupts(efx); 2433 if (rc) 2434 goto fail; 2435 2436 down_read(&efx->filter_sem); 2437 ef4_restore_filters(efx); 2438 up_read(&efx->filter_sem); 2439 2440 mutex_unlock(&efx->mac_lock); 2441 2442 ef4_start_all(efx); 2443 2444 return 0; 2445 2446 fail: 2447 efx->port_initialized = false; 2448 2449 mutex_unlock(&efx->mac_lock); 2450 2451 return rc; 2452 } 2453 2454 /* Reset the NIC using the specified method. Note that the reset may 2455 * fail, in which case the card will be left in an unusable state. 2456 * 2457 * Caller must hold the rtnl_lock. 2458 */ 2459 int ef4_reset(struct ef4_nic *efx, enum reset_type method) 2460 { 2461 int rc, rc2; 2462 bool disabled; 2463 2464 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2465 RESET_TYPE(method)); 2466 2467 ef4_device_detach_sync(efx); 2468 ef4_reset_down(efx, method); 2469 2470 rc = efx->type->reset(efx, method); 2471 if (rc) { 2472 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2473 goto out; 2474 } 2475 2476 /* Clear flags for the scopes we covered. We assume the NIC and 2477 * driver are now quiescent so that there is no race here. 2478 */ 2479 if (method < RESET_TYPE_MAX_METHOD) 2480 efx->reset_pending &= -(1 << (method + 1)); 2481 else /* it doesn't fit into the well-ordered scope hierarchy */ 2482 __clear_bit(method, &efx->reset_pending); 2483 2484 /* Reinitialise bus-mastering, which may have been turned off before 2485 * the reset was scheduled. This is still appropriate, even in the 2486 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2487 * can respond to requests. */ 2488 pci_set_master(efx->pci_dev); 2489 2490 out: 2491 /* Leave device stopped if necessary */ 2492 disabled = rc || 2493 method == RESET_TYPE_DISABLE || 2494 method == RESET_TYPE_RECOVER_OR_DISABLE; 2495 rc2 = ef4_reset_up(efx, method, !disabled); 2496 if (rc2) { 2497 disabled = true; 2498 if (!rc) 2499 rc = rc2; 2500 } 2501 2502 if (disabled) { 2503 dev_close(efx->net_dev); 2504 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2505 efx->state = STATE_DISABLED; 2506 } else { 2507 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2508 netif_device_attach(efx->net_dev); 2509 } 2510 return rc; 2511 } 2512 2513 /* Try recovery mechanisms. 2514 * For now only EEH is supported. 2515 * Returns 0 if the recovery mechanisms are unsuccessful. 2516 * Returns a non-zero value otherwise. 2517 */ 2518 int ef4_try_recovery(struct ef4_nic *efx) 2519 { 2520 #ifdef CONFIG_EEH 2521 /* A PCI error can occur and not be seen by EEH because nothing 2522 * happens on the PCI bus. In this case the driver may fail and 2523 * schedule a 'recover or reset', leading to this recovery handler. 2524 * Manually call the eeh failure check function. 2525 */ 2526 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 2527 if (eeh_dev_check_failure(eehdev)) { 2528 /* The EEH mechanisms will handle the error and reset the 2529 * device if necessary. 2530 */ 2531 return 1; 2532 } 2533 #endif 2534 return 0; 2535 } 2536 2537 /* The worker thread exists so that code that cannot sleep can 2538 * schedule a reset for later. 2539 */ 2540 static void ef4_reset_work(struct work_struct *data) 2541 { 2542 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work); 2543 unsigned long pending; 2544 enum reset_type method; 2545 2546 pending = READ_ONCE(efx->reset_pending); 2547 method = fls(pending) - 1; 2548 2549 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2550 method == RESET_TYPE_RECOVER_OR_ALL) && 2551 ef4_try_recovery(efx)) 2552 return; 2553 2554 if (!pending) 2555 return; 2556 2557 rtnl_lock(); 2558 2559 /* We checked the state in ef4_schedule_reset() but it may 2560 * have changed by now. Now that we have the RTNL lock, 2561 * it cannot change again. 2562 */ 2563 if (efx->state == STATE_READY) 2564 (void)ef4_reset(efx, method); 2565 2566 rtnl_unlock(); 2567 } 2568 2569 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type) 2570 { 2571 enum reset_type method; 2572 2573 if (efx->state == STATE_RECOVERY) { 2574 netif_dbg(efx, drv, efx->net_dev, 2575 "recovering: skip scheduling %s reset\n", 2576 RESET_TYPE(type)); 2577 return; 2578 } 2579 2580 switch (type) { 2581 case RESET_TYPE_INVISIBLE: 2582 case RESET_TYPE_ALL: 2583 case RESET_TYPE_RECOVER_OR_ALL: 2584 case RESET_TYPE_WORLD: 2585 case RESET_TYPE_DISABLE: 2586 case RESET_TYPE_RECOVER_OR_DISABLE: 2587 case RESET_TYPE_DATAPATH: 2588 method = type; 2589 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2590 RESET_TYPE(method)); 2591 break; 2592 default: 2593 method = efx->type->map_reset_reason(type); 2594 netif_dbg(efx, drv, efx->net_dev, 2595 "scheduling %s reset for %s\n", 2596 RESET_TYPE(method), RESET_TYPE(type)); 2597 break; 2598 } 2599 2600 set_bit(method, &efx->reset_pending); 2601 smp_mb(); /* ensure we change reset_pending before checking state */ 2602 2603 /* If we're not READY then just leave the flags set as the cue 2604 * to abort probing or reschedule the reset later. 2605 */ 2606 if (READ_ONCE(efx->state) != STATE_READY) 2607 return; 2608 2609 queue_work(reset_workqueue, &efx->reset_work); 2610 } 2611 2612 /************************************************************************** 2613 * 2614 * List of NICs we support 2615 * 2616 **************************************************************************/ 2617 2618 /* PCI device ID table */ 2619 static const struct pci_device_id ef4_pci_table[] = { 2620 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2621 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2622 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2623 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2624 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2625 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2626 {0} /* end of list */ 2627 }; 2628 2629 /************************************************************************** 2630 * 2631 * Dummy PHY/MAC operations 2632 * 2633 * Can be used for some unimplemented operations 2634 * Needed so all function pointers are valid and do not have to be tested 2635 * before use 2636 * 2637 **************************************************************************/ 2638 int ef4_port_dummy_op_int(struct ef4_nic *efx) 2639 { 2640 return 0; 2641 } 2642 void ef4_port_dummy_op_void(struct ef4_nic *efx) {} 2643 2644 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx) 2645 { 2646 return false; 2647 } 2648 2649 static const struct ef4_phy_operations ef4_dummy_phy_operations = { 2650 .init = ef4_port_dummy_op_int, 2651 .reconfigure = ef4_port_dummy_op_int, 2652 .poll = ef4_port_dummy_op_poll, 2653 .fini = ef4_port_dummy_op_void, 2654 }; 2655 2656 /************************************************************************** 2657 * 2658 * Data housekeeping 2659 * 2660 **************************************************************************/ 2661 2662 /* This zeroes out and then fills in the invariants in a struct 2663 * ef4_nic (including all sub-structures). 2664 */ 2665 static int ef4_init_struct(struct ef4_nic *efx, 2666 struct pci_dev *pci_dev, struct net_device *net_dev) 2667 { 2668 int i; 2669 2670 /* Initialise common structures */ 2671 INIT_LIST_HEAD(&efx->node); 2672 INIT_LIST_HEAD(&efx->secondary_list); 2673 spin_lock_init(&efx->biu_lock); 2674 #ifdef CONFIG_SFC_FALCON_MTD 2675 INIT_LIST_HEAD(&efx->mtd_list); 2676 #endif 2677 INIT_WORK(&efx->reset_work, ef4_reset_work); 2678 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor); 2679 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work); 2680 efx->pci_dev = pci_dev; 2681 efx->msg_enable = debug; 2682 efx->state = STATE_UNINIT; 2683 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2684 2685 efx->net_dev = net_dev; 2686 efx->rx_prefix_size = efx->type->rx_prefix_size; 2687 efx->rx_ip_align = 2688 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2689 efx->rx_packet_hash_offset = 2690 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2691 efx->rx_packet_ts_offset = 2692 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2693 spin_lock_init(&efx->stats_lock); 2694 mutex_init(&efx->mac_lock); 2695 efx->phy_op = &ef4_dummy_phy_operations; 2696 efx->mdio.dev = net_dev; 2697 INIT_WORK(&efx->mac_work, ef4_mac_work); 2698 init_waitqueue_head(&efx->flush_wq); 2699 2700 for (i = 0; i < EF4_MAX_CHANNELS; i++) { 2701 efx->channel[i] = ef4_alloc_channel(efx, i, NULL); 2702 if (!efx->channel[i]) 2703 goto fail; 2704 efx->msi_context[i].efx = efx; 2705 efx->msi_context[i].index = i; 2706 } 2707 2708 /* Higher numbered interrupt modes are less capable! */ 2709 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2710 interrupt_mode); 2711 2712 /* Would be good to use the net_dev name, but we're too early */ 2713 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2714 pci_name(pci_dev)); 2715 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2716 if (!efx->workqueue) 2717 goto fail; 2718 2719 return 0; 2720 2721 fail: 2722 ef4_fini_struct(efx); 2723 return -ENOMEM; 2724 } 2725 2726 static void ef4_fini_struct(struct ef4_nic *efx) 2727 { 2728 int i; 2729 2730 for (i = 0; i < EF4_MAX_CHANNELS; i++) 2731 kfree(efx->channel[i]); 2732 2733 kfree(efx->vpd_sn); 2734 2735 if (efx->workqueue) { 2736 destroy_workqueue(efx->workqueue); 2737 efx->workqueue = NULL; 2738 } 2739 } 2740 2741 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats) 2742 { 2743 u64 n_rx_nodesc_trunc = 0; 2744 struct ef4_channel *channel; 2745 2746 ef4_for_each_channel(channel, efx) 2747 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 2748 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 2749 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 2750 } 2751 2752 /************************************************************************** 2753 * 2754 * PCI interface 2755 * 2756 **************************************************************************/ 2757 2758 /* Main body of final NIC shutdown code 2759 * This is called only at module unload (or hotplug removal). 2760 */ 2761 static void ef4_pci_remove_main(struct ef4_nic *efx) 2762 { 2763 /* Flush reset_work. It can no longer be scheduled since we 2764 * are not READY. 2765 */ 2766 BUG_ON(efx->state == STATE_READY); 2767 cancel_work_sync(&efx->reset_work); 2768 2769 ef4_disable_interrupts(efx); 2770 ef4_nic_fini_interrupt(efx); 2771 ef4_fini_port(efx); 2772 efx->type->fini(efx); 2773 ef4_fini_napi(efx); 2774 ef4_remove_all(efx); 2775 } 2776 2777 /* Final NIC shutdown 2778 * This is called only at module unload (or hotplug removal). A PF can call 2779 * this on its VFs to ensure they are unbound first. 2780 */ 2781 static void ef4_pci_remove(struct pci_dev *pci_dev) 2782 { 2783 struct ef4_nic *efx; 2784 2785 efx = pci_get_drvdata(pci_dev); 2786 if (!efx) 2787 return; 2788 2789 /* Mark the NIC as fini, then stop the interface */ 2790 rtnl_lock(); 2791 ef4_dissociate(efx); 2792 dev_close(efx->net_dev); 2793 ef4_disable_interrupts(efx); 2794 efx->state = STATE_UNINIT; 2795 rtnl_unlock(); 2796 2797 ef4_unregister_netdev(efx); 2798 2799 ef4_mtd_remove(efx); 2800 2801 ef4_pci_remove_main(efx); 2802 2803 ef4_fini_io(efx); 2804 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2805 2806 ef4_fini_struct(efx); 2807 free_netdev(efx->net_dev); 2808 2809 pci_disable_pcie_error_reporting(pci_dev); 2810 }; 2811 2812 /* NIC VPD information 2813 * Called during probe to display the part number of the 2814 * installed NIC. VPD is potentially very large but this should 2815 * always appear within the first 512 bytes. 2816 */ 2817 #define SFC_VPD_LEN 512 2818 static void ef4_probe_vpd_strings(struct ef4_nic *efx) 2819 { 2820 struct pci_dev *dev = efx->pci_dev; 2821 char vpd_data[SFC_VPD_LEN]; 2822 ssize_t vpd_size; 2823 int ro_start, ro_size, i, j; 2824 2825 /* Get the vpd data from the device */ 2826 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 2827 if (vpd_size <= 0) { 2828 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 2829 return; 2830 } 2831 2832 /* Get the Read only section */ 2833 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 2834 if (ro_start < 0) { 2835 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 2836 return; 2837 } 2838 2839 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 2840 j = ro_size; 2841 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2842 if (i + j > vpd_size) 2843 j = vpd_size - i; 2844 2845 /* Get the Part number */ 2846 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 2847 if (i < 0) { 2848 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 2849 return; 2850 } 2851 2852 j = pci_vpd_info_field_size(&vpd_data[i]); 2853 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2854 if (i + j > vpd_size) { 2855 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 2856 return; 2857 } 2858 2859 netif_info(efx, drv, efx->net_dev, 2860 "Part Number : %.*s\n", j, &vpd_data[i]); 2861 2862 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2863 j = ro_size; 2864 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 2865 if (i < 0) { 2866 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 2867 return; 2868 } 2869 2870 j = pci_vpd_info_field_size(&vpd_data[i]); 2871 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2872 if (i + j > vpd_size) { 2873 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 2874 return; 2875 } 2876 2877 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 2878 if (!efx->vpd_sn) 2879 return; 2880 2881 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 2882 } 2883 2884 2885 /* Main body of NIC initialisation 2886 * This is called at module load (or hotplug insertion, theoretically). 2887 */ 2888 static int ef4_pci_probe_main(struct ef4_nic *efx) 2889 { 2890 int rc; 2891 2892 /* Do start-of-day initialisation */ 2893 rc = ef4_probe_all(efx); 2894 if (rc) 2895 goto fail1; 2896 2897 ef4_init_napi(efx); 2898 2899 rc = efx->type->init(efx); 2900 if (rc) { 2901 netif_err(efx, probe, efx->net_dev, 2902 "failed to initialise NIC\n"); 2903 goto fail3; 2904 } 2905 2906 rc = ef4_init_port(efx); 2907 if (rc) { 2908 netif_err(efx, probe, efx->net_dev, 2909 "failed to initialise port\n"); 2910 goto fail4; 2911 } 2912 2913 rc = ef4_nic_init_interrupt(efx); 2914 if (rc) 2915 goto fail5; 2916 rc = ef4_enable_interrupts(efx); 2917 if (rc) 2918 goto fail6; 2919 2920 return 0; 2921 2922 fail6: 2923 ef4_nic_fini_interrupt(efx); 2924 fail5: 2925 ef4_fini_port(efx); 2926 fail4: 2927 efx->type->fini(efx); 2928 fail3: 2929 ef4_fini_napi(efx); 2930 ef4_remove_all(efx); 2931 fail1: 2932 return rc; 2933 } 2934 2935 /* NIC initialisation 2936 * 2937 * This is called at module load (or hotplug insertion, 2938 * theoretically). It sets up PCI mappings, resets the NIC, 2939 * sets up and registers the network devices with the kernel and hooks 2940 * the interrupt service routine. It does not prepare the device for 2941 * transmission; this is left to the first time one of the network 2942 * interfaces is brought up (i.e. ef4_net_open). 2943 */ 2944 static int ef4_pci_probe(struct pci_dev *pci_dev, 2945 const struct pci_device_id *entry) 2946 { 2947 struct net_device *net_dev; 2948 struct ef4_nic *efx; 2949 int rc; 2950 2951 /* Allocate and initialise a struct net_device and struct ef4_nic */ 2952 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES, 2953 EF4_MAX_RX_QUEUES); 2954 if (!net_dev) 2955 return -ENOMEM; 2956 efx = netdev_priv(net_dev); 2957 efx->type = (const struct ef4_nic_type *) entry->driver_data; 2958 efx->fixed_features |= NETIF_F_HIGHDMA; 2959 2960 pci_set_drvdata(pci_dev, efx); 2961 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2962 rc = ef4_init_struct(efx, pci_dev, net_dev); 2963 if (rc) 2964 goto fail1; 2965 2966 netif_info(efx, probe, efx->net_dev, 2967 "Solarflare NIC detected\n"); 2968 2969 ef4_probe_vpd_strings(efx); 2970 2971 /* Set up basic I/O (BAR mappings etc) */ 2972 rc = ef4_init_io(efx); 2973 if (rc) 2974 goto fail2; 2975 2976 rc = ef4_pci_probe_main(efx); 2977 if (rc) 2978 goto fail3; 2979 2980 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 2981 NETIF_F_RXCSUM); 2982 /* Mask for features that also apply to VLAN devices */ 2983 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 2984 NETIF_F_HIGHDMA | NETIF_F_RXCSUM); 2985 2986 net_dev->hw_features = net_dev->features & ~efx->fixed_features; 2987 2988 /* Disable VLAN filtering by default. It may be enforced if 2989 * the feature is fixed (i.e. VLAN filters are required to 2990 * receive VLAN tagged packets due to vPort restrictions). 2991 */ 2992 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 2993 net_dev->features |= efx->fixed_features; 2994 2995 rc = ef4_register_netdev(efx); 2996 if (rc) 2997 goto fail4; 2998 2999 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 3000 3001 /* Try to create MTDs, but allow this to fail */ 3002 rtnl_lock(); 3003 rc = ef4_mtd_probe(efx); 3004 rtnl_unlock(); 3005 if (rc && rc != -EPERM) 3006 netif_warn(efx, probe, efx->net_dev, 3007 "failed to create MTDs (%d)\n", rc); 3008 3009 rc = pci_enable_pcie_error_reporting(pci_dev); 3010 if (rc && rc != -EINVAL) 3011 netif_notice(efx, probe, efx->net_dev, 3012 "PCIE error reporting unavailable (%d).\n", 3013 rc); 3014 3015 return 0; 3016 3017 fail4: 3018 ef4_pci_remove_main(efx); 3019 fail3: 3020 ef4_fini_io(efx); 3021 fail2: 3022 ef4_fini_struct(efx); 3023 fail1: 3024 WARN_ON(rc > 0); 3025 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 3026 free_netdev(net_dev); 3027 return rc; 3028 } 3029 3030 static int ef4_pm_freeze(struct device *dev) 3031 { 3032 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3033 3034 rtnl_lock(); 3035 3036 if (efx->state != STATE_DISABLED) { 3037 efx->state = STATE_UNINIT; 3038 3039 ef4_device_detach_sync(efx); 3040 3041 ef4_stop_all(efx); 3042 ef4_disable_interrupts(efx); 3043 } 3044 3045 rtnl_unlock(); 3046 3047 return 0; 3048 } 3049 3050 static int ef4_pm_thaw(struct device *dev) 3051 { 3052 int rc; 3053 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3054 3055 rtnl_lock(); 3056 3057 if (efx->state != STATE_DISABLED) { 3058 rc = ef4_enable_interrupts(efx); 3059 if (rc) 3060 goto fail; 3061 3062 mutex_lock(&efx->mac_lock); 3063 efx->phy_op->reconfigure(efx); 3064 mutex_unlock(&efx->mac_lock); 3065 3066 ef4_start_all(efx); 3067 3068 netif_device_attach(efx->net_dev); 3069 3070 efx->state = STATE_READY; 3071 3072 efx->type->resume_wol(efx); 3073 } 3074 3075 rtnl_unlock(); 3076 3077 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */ 3078 queue_work(reset_workqueue, &efx->reset_work); 3079 3080 return 0; 3081 3082 fail: 3083 rtnl_unlock(); 3084 3085 return rc; 3086 } 3087 3088 static int ef4_pm_poweroff(struct device *dev) 3089 { 3090 struct pci_dev *pci_dev = to_pci_dev(dev); 3091 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3092 3093 efx->type->fini(efx); 3094 3095 efx->reset_pending = 0; 3096 3097 pci_save_state(pci_dev); 3098 return pci_set_power_state(pci_dev, PCI_D3hot); 3099 } 3100 3101 /* Used for both resume and restore */ 3102 static int ef4_pm_resume(struct device *dev) 3103 { 3104 struct pci_dev *pci_dev = to_pci_dev(dev); 3105 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3106 int rc; 3107 3108 rc = pci_set_power_state(pci_dev, PCI_D0); 3109 if (rc) 3110 return rc; 3111 pci_restore_state(pci_dev); 3112 rc = pci_enable_device(pci_dev); 3113 if (rc) 3114 return rc; 3115 pci_set_master(efx->pci_dev); 3116 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3117 if (rc) 3118 return rc; 3119 rc = efx->type->init(efx); 3120 if (rc) 3121 return rc; 3122 rc = ef4_pm_thaw(dev); 3123 return rc; 3124 } 3125 3126 static int ef4_pm_suspend(struct device *dev) 3127 { 3128 int rc; 3129 3130 ef4_pm_freeze(dev); 3131 rc = ef4_pm_poweroff(dev); 3132 if (rc) 3133 ef4_pm_resume(dev); 3134 return rc; 3135 } 3136 3137 static const struct dev_pm_ops ef4_pm_ops = { 3138 .suspend = ef4_pm_suspend, 3139 .resume = ef4_pm_resume, 3140 .freeze = ef4_pm_freeze, 3141 .thaw = ef4_pm_thaw, 3142 .poweroff = ef4_pm_poweroff, 3143 .restore = ef4_pm_resume, 3144 }; 3145 3146 /* A PCI error affecting this device was detected. 3147 * At this point MMIO and DMA may be disabled. 3148 * Stop the software path and request a slot reset. 3149 */ 3150 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev, 3151 enum pci_channel_state state) 3152 { 3153 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3154 struct ef4_nic *efx = pci_get_drvdata(pdev); 3155 3156 if (state == pci_channel_io_perm_failure) 3157 return PCI_ERS_RESULT_DISCONNECT; 3158 3159 rtnl_lock(); 3160 3161 if (efx->state != STATE_DISABLED) { 3162 efx->state = STATE_RECOVERY; 3163 efx->reset_pending = 0; 3164 3165 ef4_device_detach_sync(efx); 3166 3167 ef4_stop_all(efx); 3168 ef4_disable_interrupts(efx); 3169 3170 status = PCI_ERS_RESULT_NEED_RESET; 3171 } else { 3172 /* If the interface is disabled we don't want to do anything 3173 * with it. 3174 */ 3175 status = PCI_ERS_RESULT_RECOVERED; 3176 } 3177 3178 rtnl_unlock(); 3179 3180 pci_disable_device(pdev); 3181 3182 return status; 3183 } 3184 3185 /* Fake a successful reset, which will be performed later in ef4_io_resume. */ 3186 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev) 3187 { 3188 struct ef4_nic *efx = pci_get_drvdata(pdev); 3189 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3190 int rc; 3191 3192 if (pci_enable_device(pdev)) { 3193 netif_err(efx, hw, efx->net_dev, 3194 "Cannot re-enable PCI device after reset.\n"); 3195 status = PCI_ERS_RESULT_DISCONNECT; 3196 } 3197 3198 rc = pci_cleanup_aer_uncorrect_error_status(pdev); 3199 if (rc) { 3200 netif_err(efx, hw, efx->net_dev, 3201 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); 3202 /* Non-fatal error. Continue. */ 3203 } 3204 3205 return status; 3206 } 3207 3208 /* Perform the actual reset and resume I/O operations. */ 3209 static void ef4_io_resume(struct pci_dev *pdev) 3210 { 3211 struct ef4_nic *efx = pci_get_drvdata(pdev); 3212 int rc; 3213 3214 rtnl_lock(); 3215 3216 if (efx->state == STATE_DISABLED) 3217 goto out; 3218 3219 rc = ef4_reset(efx, RESET_TYPE_ALL); 3220 if (rc) { 3221 netif_err(efx, hw, efx->net_dev, 3222 "ef4_reset failed after PCI error (%d)\n", rc); 3223 } else { 3224 efx->state = STATE_READY; 3225 netif_dbg(efx, hw, efx->net_dev, 3226 "Done resetting and resuming IO after PCI error.\n"); 3227 } 3228 3229 out: 3230 rtnl_unlock(); 3231 } 3232 3233 /* For simplicity and reliability, we always require a slot reset and try to 3234 * reset the hardware when a pci error affecting the device is detected. 3235 * We leave both the link_reset and mmio_enabled callback unimplemented: 3236 * with our request for slot reset the mmio_enabled callback will never be 3237 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3238 */ 3239 static const struct pci_error_handlers ef4_err_handlers = { 3240 .error_detected = ef4_io_error_detected, 3241 .slot_reset = ef4_io_slot_reset, 3242 .resume = ef4_io_resume, 3243 }; 3244 3245 static struct pci_driver ef4_pci_driver = { 3246 .name = KBUILD_MODNAME, 3247 .id_table = ef4_pci_table, 3248 .probe = ef4_pci_probe, 3249 .remove = ef4_pci_remove, 3250 .driver.pm = &ef4_pm_ops, 3251 .err_handler = &ef4_err_handlers, 3252 }; 3253 3254 /************************************************************************** 3255 * 3256 * Kernel module interface 3257 * 3258 *************************************************************************/ 3259 3260 module_param(interrupt_mode, uint, 0444); 3261 MODULE_PARM_DESC(interrupt_mode, 3262 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3263 3264 static int __init ef4_init_module(void) 3265 { 3266 int rc; 3267 3268 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n"); 3269 3270 rc = register_netdevice_notifier(&ef4_netdev_notifier); 3271 if (rc) 3272 goto err_notifier; 3273 3274 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3275 if (!reset_workqueue) { 3276 rc = -ENOMEM; 3277 goto err_reset; 3278 } 3279 3280 rc = pci_register_driver(&ef4_pci_driver); 3281 if (rc < 0) 3282 goto err_pci; 3283 3284 return 0; 3285 3286 err_pci: 3287 destroy_workqueue(reset_workqueue); 3288 err_reset: 3289 unregister_netdevice_notifier(&ef4_netdev_notifier); 3290 err_notifier: 3291 return rc; 3292 } 3293 3294 static void __exit ef4_exit_module(void) 3295 { 3296 printk(KERN_INFO "Solarflare Falcon driver unloading\n"); 3297 3298 pci_unregister_driver(&ef4_pci_driver); 3299 destroy_workqueue(reset_workqueue); 3300 unregister_netdevice_notifier(&ef4_netdev_notifier); 3301 3302 } 3303 3304 module_init(ef4_init_module); 3305 module_exit(ef4_exit_module); 3306 3307 MODULE_AUTHOR("Solarflare Communications and " 3308 "Michael Brown <mbrown@fensystems.co.uk>"); 3309 MODULE_DESCRIPTION("Solarflare Falcon network driver"); 3310 MODULE_LICENSE("GPL"); 3311 MODULE_DEVICE_TABLE(pci, ef4_pci_table); 3312 MODULE_VERSION(EF4_DRIVER_VERSION); 3313