xref: /openbmc/linux/drivers/net/ethernet/sfc/falcon/efx.c (revision ddc141e5)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 
30 #include "workarounds.h"
31 
32 /**************************************************************************
33  *
34  * Type name strings
35  *
36  **************************************************************************
37  */
38 
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
41 const char *const ef4_loopback_mode_names[] = {
42 	[LOOPBACK_NONE]		= "NONE",
43 	[LOOPBACK_DATA]		= "DATAPATH",
44 	[LOOPBACK_GMAC]		= "GMAC",
45 	[LOOPBACK_XGMII]	= "XGMII",
46 	[LOOPBACK_XGXS]		= "XGXS",
47 	[LOOPBACK_XAUI]		= "XAUI",
48 	[LOOPBACK_GMII]		= "GMII",
49 	[LOOPBACK_SGMII]	= "SGMII",
50 	[LOOPBACK_XGBR]		= "XGBR",
51 	[LOOPBACK_XFI]		= "XFI",
52 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
53 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
54 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
55 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 	[LOOPBACK_GPHY]		= "GPHY",
57 	[LOOPBACK_PHYXS]	= "PHYXS",
58 	[LOOPBACK_PCS]		= "PCS",
59 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
60 	[LOOPBACK_XPORT]	= "XPORT",
61 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
63 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
64 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 	[LOOPBACK_GMII_WS]	= "GMII_WS",
66 	[LOOPBACK_XFI_WS]	= "XFI_WS",
67 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
69 };
70 
71 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
72 const char *const ef4_reset_type_names[] = {
73 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
74 	[RESET_TYPE_ALL]                = "ALL",
75 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
76 	[RESET_TYPE_WORLD]              = "WORLD",
77 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
78 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
79 	[RESET_TYPE_DISABLE]            = "DISABLE",
80 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
81 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
82 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
85 };
86 
87 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
88  * queued onto this work queue. This is not a per-nic work queue, because
89  * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
90  */
91 static struct workqueue_struct *reset_workqueue;
92 
93 /* How often and how many times to poll for a reset while waiting for a
94  * BIST that another function started to complete.
95  */
96 #define BIST_WAIT_DELAY_MS	100
97 #define BIST_WAIT_DELAY_COUNT	100
98 
99 /**************************************************************************
100  *
101  * Configurable values
102  *
103  *************************************************************************/
104 
105 /*
106  * Use separate channels for TX and RX events
107  *
108  * Set this to 1 to use separate channels for TX and RX. It allows us
109  * to control interrupt affinity separately for TX and RX.
110  *
111  * This is only used in MSI-X interrupt mode
112  */
113 bool ef4_separate_tx_channels;
114 module_param(ef4_separate_tx_channels, bool, 0444);
115 MODULE_PARM_DESC(ef4_separate_tx_channels,
116 		 "Use separate channels for TX and RX");
117 
118 /* This is the weight assigned to each of the (per-channel) virtual
119  * NAPI devices.
120  */
121 static int napi_weight = 64;
122 
123 /* This is the time (in jiffies) between invocations of the hardware
124  * monitor.
125  * On Falcon-based NICs, this will:
126  * - Check the on-board hardware monitor;
127  * - Poll the link state and reconfigure the hardware as necessary.
128  * On Siena-based NICs for power systems with EEH support, this will give EEH a
129  * chance to start.
130  */
131 static unsigned int ef4_monitor_interval = 1 * HZ;
132 
133 /* Initial interrupt moderation settings.  They can be modified after
134  * module load with ethtool.
135  *
136  * The default for RX should strike a balance between increasing the
137  * round-trip latency and reducing overhead.
138  */
139 static unsigned int rx_irq_mod_usec = 60;
140 
141 /* Initial interrupt moderation settings.  They can be modified after
142  * module load with ethtool.
143  *
144  * This default is chosen to ensure that a 10G link does not go idle
145  * while a TX queue is stopped after it has become full.  A queue is
146  * restarted when it drops below half full.  The time this takes (assuming
147  * worst case 3 descriptors per packet and 1024 descriptors) is
148  *   512 / 3 * 1.2 = 205 usec.
149  */
150 static unsigned int tx_irq_mod_usec = 150;
151 
152 /* This is the first interrupt mode to try out of:
153  * 0 => MSI-X
154  * 1 => MSI
155  * 2 => legacy
156  */
157 static unsigned int interrupt_mode;
158 
159 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
160  * i.e. the number of CPUs among which we may distribute simultaneous
161  * interrupt handling.
162  *
163  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
164  * The default (0) means to assign an interrupt to each core.
165  */
166 static unsigned int rss_cpus;
167 module_param(rss_cpus, uint, 0444);
168 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
169 
170 static bool phy_flash_cfg;
171 module_param(phy_flash_cfg, bool, 0644);
172 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
173 
174 static unsigned irq_adapt_low_thresh = 8000;
175 module_param(irq_adapt_low_thresh, uint, 0644);
176 MODULE_PARM_DESC(irq_adapt_low_thresh,
177 		 "Threshold score for reducing IRQ moderation");
178 
179 static unsigned irq_adapt_high_thresh = 16000;
180 module_param(irq_adapt_high_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_high_thresh,
182 		 "Threshold score for increasing IRQ moderation");
183 
184 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
185 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
186 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
187 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
188 module_param(debug, uint, 0);
189 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
190 
191 /**************************************************************************
192  *
193  * Utility functions and prototypes
194  *
195  *************************************************************************/
196 
197 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
198 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
199 static void ef4_remove_channel(struct ef4_channel *channel);
200 static void ef4_remove_channels(struct ef4_nic *efx);
201 static const struct ef4_channel_type ef4_default_channel_type;
202 static void ef4_remove_port(struct ef4_nic *efx);
203 static void ef4_init_napi_channel(struct ef4_channel *channel);
204 static void ef4_fini_napi(struct ef4_nic *efx);
205 static void ef4_fini_napi_channel(struct ef4_channel *channel);
206 static void ef4_fini_struct(struct ef4_nic *efx);
207 static void ef4_start_all(struct ef4_nic *efx);
208 static void ef4_stop_all(struct ef4_nic *efx);
209 
210 #define EF4_ASSERT_RESET_SERIALISED(efx)		\
211 	do {						\
212 		if ((efx->state == STATE_READY) ||	\
213 		    (efx->state == STATE_RECOVERY) ||	\
214 		    (efx->state == STATE_DISABLED))	\
215 			ASSERT_RTNL();			\
216 	} while (0)
217 
218 static int ef4_check_disabled(struct ef4_nic *efx)
219 {
220 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
221 		netif_err(efx, drv, efx->net_dev,
222 			  "device is disabled due to earlier errors\n");
223 		return -EIO;
224 	}
225 	return 0;
226 }
227 
228 /**************************************************************************
229  *
230  * Event queue processing
231  *
232  *************************************************************************/
233 
234 /* Process channel's event queue
235  *
236  * This function is responsible for processing the event queue of a
237  * single channel.  The caller must guarantee that this function will
238  * never be concurrently called more than once on the same channel,
239  * though different channels may be being processed concurrently.
240  */
241 static int ef4_process_channel(struct ef4_channel *channel, int budget)
242 {
243 	struct ef4_tx_queue *tx_queue;
244 	int spent;
245 
246 	if (unlikely(!channel->enabled))
247 		return 0;
248 
249 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
250 		tx_queue->pkts_compl = 0;
251 		tx_queue->bytes_compl = 0;
252 	}
253 
254 	spent = ef4_nic_process_eventq(channel, budget);
255 	if (spent && ef4_channel_has_rx_queue(channel)) {
256 		struct ef4_rx_queue *rx_queue =
257 			ef4_channel_get_rx_queue(channel);
258 
259 		ef4_rx_flush_packet(channel);
260 		ef4_fast_push_rx_descriptors(rx_queue, true);
261 	}
262 
263 	/* Update BQL */
264 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
265 		if (tx_queue->bytes_compl) {
266 			netdev_tx_completed_queue(tx_queue->core_txq,
267 				tx_queue->pkts_compl, tx_queue->bytes_compl);
268 		}
269 	}
270 
271 	return spent;
272 }
273 
274 /* NAPI poll handler
275  *
276  * NAPI guarantees serialisation of polls of the same device, which
277  * provides the guarantee required by ef4_process_channel().
278  */
279 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
280 {
281 	int step = efx->irq_mod_step_us;
282 
283 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
284 		if (channel->irq_moderation_us > step) {
285 			channel->irq_moderation_us -= step;
286 			efx->type->push_irq_moderation(channel);
287 		}
288 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
289 		if (channel->irq_moderation_us <
290 		    efx->irq_rx_moderation_us) {
291 			channel->irq_moderation_us += step;
292 			efx->type->push_irq_moderation(channel);
293 		}
294 	}
295 
296 	channel->irq_count = 0;
297 	channel->irq_mod_score = 0;
298 }
299 
300 static int ef4_poll(struct napi_struct *napi, int budget)
301 {
302 	struct ef4_channel *channel =
303 		container_of(napi, struct ef4_channel, napi_str);
304 	struct ef4_nic *efx = channel->efx;
305 	int spent;
306 
307 	netif_vdbg(efx, intr, efx->net_dev,
308 		   "channel %d NAPI poll executing on CPU %d\n",
309 		   channel->channel, raw_smp_processor_id());
310 
311 	spent = ef4_process_channel(channel, budget);
312 
313 	if (spent < budget) {
314 		if (ef4_channel_has_rx_queue(channel) &&
315 		    efx->irq_rx_adaptive &&
316 		    unlikely(++channel->irq_count == 1000)) {
317 			ef4_update_irq_mod(efx, channel);
318 		}
319 
320 		ef4_filter_rfs_expire(channel);
321 
322 		/* There is no race here; although napi_disable() will
323 		 * only wait for napi_complete(), this isn't a problem
324 		 * since ef4_nic_eventq_read_ack() will have no effect if
325 		 * interrupts have already been disabled.
326 		 */
327 		napi_complete_done(napi, spent);
328 		ef4_nic_eventq_read_ack(channel);
329 	}
330 
331 	return spent;
332 }
333 
334 /* Create event queue
335  * Event queue memory allocations are done only once.  If the channel
336  * is reset, the memory buffer will be reused; this guards against
337  * errors during channel reset and also simplifies interrupt handling.
338  */
339 static int ef4_probe_eventq(struct ef4_channel *channel)
340 {
341 	struct ef4_nic *efx = channel->efx;
342 	unsigned long entries;
343 
344 	netif_dbg(efx, probe, efx->net_dev,
345 		  "chan %d create event queue\n", channel->channel);
346 
347 	/* Build an event queue with room for one event per tx and rx buffer,
348 	 * plus some extra for link state events and MCDI completions. */
349 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
350 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
351 	channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
352 
353 	return ef4_nic_probe_eventq(channel);
354 }
355 
356 /* Prepare channel's event queue */
357 static int ef4_init_eventq(struct ef4_channel *channel)
358 {
359 	struct ef4_nic *efx = channel->efx;
360 	int rc;
361 
362 	EF4_WARN_ON_PARANOID(channel->eventq_init);
363 
364 	netif_dbg(efx, drv, efx->net_dev,
365 		  "chan %d init event queue\n", channel->channel);
366 
367 	rc = ef4_nic_init_eventq(channel);
368 	if (rc == 0) {
369 		efx->type->push_irq_moderation(channel);
370 		channel->eventq_read_ptr = 0;
371 		channel->eventq_init = true;
372 	}
373 	return rc;
374 }
375 
376 /* Enable event queue processing and NAPI */
377 void ef4_start_eventq(struct ef4_channel *channel)
378 {
379 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
380 		  "chan %d start event queue\n", channel->channel);
381 
382 	/* Make sure the NAPI handler sees the enabled flag set */
383 	channel->enabled = true;
384 	smp_wmb();
385 
386 	napi_enable(&channel->napi_str);
387 	ef4_nic_eventq_read_ack(channel);
388 }
389 
390 /* Disable event queue processing and NAPI */
391 void ef4_stop_eventq(struct ef4_channel *channel)
392 {
393 	if (!channel->enabled)
394 		return;
395 
396 	napi_disable(&channel->napi_str);
397 	channel->enabled = false;
398 }
399 
400 static void ef4_fini_eventq(struct ef4_channel *channel)
401 {
402 	if (!channel->eventq_init)
403 		return;
404 
405 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 		  "chan %d fini event queue\n", channel->channel);
407 
408 	ef4_nic_fini_eventq(channel);
409 	channel->eventq_init = false;
410 }
411 
412 static void ef4_remove_eventq(struct ef4_channel *channel)
413 {
414 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
415 		  "chan %d remove event queue\n", channel->channel);
416 
417 	ef4_nic_remove_eventq(channel);
418 }
419 
420 /**************************************************************************
421  *
422  * Channel handling
423  *
424  *************************************************************************/
425 
426 /* Allocate and initialise a channel structure. */
427 static struct ef4_channel *
428 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
429 {
430 	struct ef4_channel *channel;
431 	struct ef4_rx_queue *rx_queue;
432 	struct ef4_tx_queue *tx_queue;
433 	int j;
434 
435 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
436 	if (!channel)
437 		return NULL;
438 
439 	channel->efx = efx;
440 	channel->channel = i;
441 	channel->type = &ef4_default_channel_type;
442 
443 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
444 		tx_queue = &channel->tx_queue[j];
445 		tx_queue->efx = efx;
446 		tx_queue->queue = i * EF4_TXQ_TYPES + j;
447 		tx_queue->channel = channel;
448 	}
449 
450 	rx_queue = &channel->rx_queue;
451 	rx_queue->efx = efx;
452 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
453 
454 	return channel;
455 }
456 
457 /* Allocate and initialise a channel structure, copying parameters
458  * (but not resources) from an old channel structure.
459  */
460 static struct ef4_channel *
461 ef4_copy_channel(const struct ef4_channel *old_channel)
462 {
463 	struct ef4_channel *channel;
464 	struct ef4_rx_queue *rx_queue;
465 	struct ef4_tx_queue *tx_queue;
466 	int j;
467 
468 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
469 	if (!channel)
470 		return NULL;
471 
472 	*channel = *old_channel;
473 
474 	channel->napi_dev = NULL;
475 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
476 	channel->napi_str.napi_id = 0;
477 	channel->napi_str.state = 0;
478 	memset(&channel->eventq, 0, sizeof(channel->eventq));
479 
480 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
481 		tx_queue = &channel->tx_queue[j];
482 		if (tx_queue->channel)
483 			tx_queue->channel = channel;
484 		tx_queue->buffer = NULL;
485 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
486 	}
487 
488 	rx_queue = &channel->rx_queue;
489 	rx_queue->buffer = NULL;
490 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
491 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
492 
493 	return channel;
494 }
495 
496 static int ef4_probe_channel(struct ef4_channel *channel)
497 {
498 	struct ef4_tx_queue *tx_queue;
499 	struct ef4_rx_queue *rx_queue;
500 	int rc;
501 
502 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
503 		  "creating channel %d\n", channel->channel);
504 
505 	rc = channel->type->pre_probe(channel);
506 	if (rc)
507 		goto fail;
508 
509 	rc = ef4_probe_eventq(channel);
510 	if (rc)
511 		goto fail;
512 
513 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
514 		rc = ef4_probe_tx_queue(tx_queue);
515 		if (rc)
516 			goto fail;
517 	}
518 
519 	ef4_for_each_channel_rx_queue(rx_queue, channel) {
520 		rc = ef4_probe_rx_queue(rx_queue);
521 		if (rc)
522 			goto fail;
523 	}
524 
525 	return 0;
526 
527 fail:
528 	ef4_remove_channel(channel);
529 	return rc;
530 }
531 
532 static void
533 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
534 {
535 	struct ef4_nic *efx = channel->efx;
536 	const char *type;
537 	int number;
538 
539 	number = channel->channel;
540 	if (efx->tx_channel_offset == 0) {
541 		type = "";
542 	} else if (channel->channel < efx->tx_channel_offset) {
543 		type = "-rx";
544 	} else {
545 		type = "-tx";
546 		number -= efx->tx_channel_offset;
547 	}
548 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
549 }
550 
551 static void ef4_set_channel_names(struct ef4_nic *efx)
552 {
553 	struct ef4_channel *channel;
554 
555 	ef4_for_each_channel(channel, efx)
556 		channel->type->get_name(channel,
557 					efx->msi_context[channel->channel].name,
558 					sizeof(efx->msi_context[0].name));
559 }
560 
561 static int ef4_probe_channels(struct ef4_nic *efx)
562 {
563 	struct ef4_channel *channel;
564 	int rc;
565 
566 	/* Restart special buffer allocation */
567 	efx->next_buffer_table = 0;
568 
569 	/* Probe channels in reverse, so that any 'extra' channels
570 	 * use the start of the buffer table. This allows the traffic
571 	 * channels to be resized without moving them or wasting the
572 	 * entries before them.
573 	 */
574 	ef4_for_each_channel_rev(channel, efx) {
575 		rc = ef4_probe_channel(channel);
576 		if (rc) {
577 			netif_err(efx, probe, efx->net_dev,
578 				  "failed to create channel %d\n",
579 				  channel->channel);
580 			goto fail;
581 		}
582 	}
583 	ef4_set_channel_names(efx);
584 
585 	return 0;
586 
587 fail:
588 	ef4_remove_channels(efx);
589 	return rc;
590 }
591 
592 /* Channels are shutdown and reinitialised whilst the NIC is running
593  * to propagate configuration changes (mtu, checksum offload), or
594  * to clear hardware error conditions
595  */
596 static void ef4_start_datapath(struct ef4_nic *efx)
597 {
598 	netdev_features_t old_features = efx->net_dev->features;
599 	bool old_rx_scatter = efx->rx_scatter;
600 	struct ef4_tx_queue *tx_queue;
601 	struct ef4_rx_queue *rx_queue;
602 	struct ef4_channel *channel;
603 	size_t rx_buf_len;
604 
605 	/* Calculate the rx buffer allocation parameters required to
606 	 * support the current MTU, including padding for header
607 	 * alignment and overruns.
608 	 */
609 	efx->rx_dma_len = (efx->rx_prefix_size +
610 			   EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
611 			   efx->type->rx_buffer_padding);
612 	rx_buf_len = (sizeof(struct ef4_rx_page_state) +
613 		      efx->rx_ip_align + efx->rx_dma_len);
614 	if (rx_buf_len <= PAGE_SIZE) {
615 		efx->rx_scatter = efx->type->always_rx_scatter;
616 		efx->rx_buffer_order = 0;
617 	} else if (efx->type->can_rx_scatter) {
618 		BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
619 		BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
620 			     2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
621 				       EF4_RX_BUF_ALIGNMENT) >
622 			     PAGE_SIZE);
623 		efx->rx_scatter = true;
624 		efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
625 		efx->rx_buffer_order = 0;
626 	} else {
627 		efx->rx_scatter = false;
628 		efx->rx_buffer_order = get_order(rx_buf_len);
629 	}
630 
631 	ef4_rx_config_page_split(efx);
632 	if (efx->rx_buffer_order)
633 		netif_dbg(efx, drv, efx->net_dev,
634 			  "RX buf len=%u; page order=%u batch=%u\n",
635 			  efx->rx_dma_len, efx->rx_buffer_order,
636 			  efx->rx_pages_per_batch);
637 	else
638 		netif_dbg(efx, drv, efx->net_dev,
639 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
640 			  efx->rx_dma_len, efx->rx_page_buf_step,
641 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
642 
643 	/* Restore previously fixed features in hw_features and remove
644 	 * features which are fixed now
645 	 */
646 	efx->net_dev->hw_features |= efx->net_dev->features;
647 	efx->net_dev->hw_features &= ~efx->fixed_features;
648 	efx->net_dev->features |= efx->fixed_features;
649 	if (efx->net_dev->features != old_features)
650 		netdev_features_change(efx->net_dev);
651 
652 	/* RX filters may also have scatter-enabled flags */
653 	if (efx->rx_scatter != old_rx_scatter)
654 		efx->type->filter_update_rx_scatter(efx);
655 
656 	/* We must keep at least one descriptor in a TX ring empty.
657 	 * We could avoid this when the queue size does not exactly
658 	 * match the hardware ring size, but it's not that important.
659 	 * Therefore we stop the queue when one more skb might fill
660 	 * the ring completely.  We wake it when half way back to
661 	 * empty.
662 	 */
663 	efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
664 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
665 
666 	/* Initialise the channels */
667 	ef4_for_each_channel(channel, efx) {
668 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
669 			ef4_init_tx_queue(tx_queue);
670 			atomic_inc(&efx->active_queues);
671 		}
672 
673 		ef4_for_each_channel_rx_queue(rx_queue, channel) {
674 			ef4_init_rx_queue(rx_queue);
675 			atomic_inc(&efx->active_queues);
676 			ef4_stop_eventq(channel);
677 			ef4_fast_push_rx_descriptors(rx_queue, false);
678 			ef4_start_eventq(channel);
679 		}
680 
681 		WARN_ON(channel->rx_pkt_n_frags);
682 	}
683 
684 	if (netif_device_present(efx->net_dev))
685 		netif_tx_wake_all_queues(efx->net_dev);
686 }
687 
688 static void ef4_stop_datapath(struct ef4_nic *efx)
689 {
690 	struct ef4_channel *channel;
691 	struct ef4_tx_queue *tx_queue;
692 	struct ef4_rx_queue *rx_queue;
693 	int rc;
694 
695 	EF4_ASSERT_RESET_SERIALISED(efx);
696 	BUG_ON(efx->port_enabled);
697 
698 	/* Stop RX refill */
699 	ef4_for_each_channel(channel, efx) {
700 		ef4_for_each_channel_rx_queue(rx_queue, channel)
701 			rx_queue->refill_enabled = false;
702 	}
703 
704 	ef4_for_each_channel(channel, efx) {
705 		/* RX packet processing is pipelined, so wait for the
706 		 * NAPI handler to complete.  At least event queue 0
707 		 * might be kept active by non-data events, so don't
708 		 * use napi_synchronize() but actually disable NAPI
709 		 * temporarily.
710 		 */
711 		if (ef4_channel_has_rx_queue(channel)) {
712 			ef4_stop_eventq(channel);
713 			ef4_start_eventq(channel);
714 		}
715 	}
716 
717 	rc = efx->type->fini_dmaq(efx);
718 	if (rc && EF4_WORKAROUND_7803(efx)) {
719 		/* Schedule a reset to recover from the flush failure. The
720 		 * descriptor caches reference memory we're about to free,
721 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
722 		 * the MACs because of the pending reset.
723 		 */
724 		netif_err(efx, drv, efx->net_dev,
725 			  "Resetting to recover from flush failure\n");
726 		ef4_schedule_reset(efx, RESET_TYPE_ALL);
727 	} else if (rc) {
728 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
729 	} else {
730 		netif_dbg(efx, drv, efx->net_dev,
731 			  "successfully flushed all queues\n");
732 	}
733 
734 	ef4_for_each_channel(channel, efx) {
735 		ef4_for_each_channel_rx_queue(rx_queue, channel)
736 			ef4_fini_rx_queue(rx_queue);
737 		ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
738 			ef4_fini_tx_queue(tx_queue);
739 	}
740 }
741 
742 static void ef4_remove_channel(struct ef4_channel *channel)
743 {
744 	struct ef4_tx_queue *tx_queue;
745 	struct ef4_rx_queue *rx_queue;
746 
747 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
748 		  "destroy chan %d\n", channel->channel);
749 
750 	ef4_for_each_channel_rx_queue(rx_queue, channel)
751 		ef4_remove_rx_queue(rx_queue);
752 	ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
753 		ef4_remove_tx_queue(tx_queue);
754 	ef4_remove_eventq(channel);
755 	channel->type->post_remove(channel);
756 }
757 
758 static void ef4_remove_channels(struct ef4_nic *efx)
759 {
760 	struct ef4_channel *channel;
761 
762 	ef4_for_each_channel(channel, efx)
763 		ef4_remove_channel(channel);
764 }
765 
766 int
767 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
768 {
769 	struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
770 	u32 old_rxq_entries, old_txq_entries;
771 	unsigned i, next_buffer_table = 0;
772 	int rc, rc2;
773 
774 	rc = ef4_check_disabled(efx);
775 	if (rc)
776 		return rc;
777 
778 	/* Not all channels should be reallocated. We must avoid
779 	 * reallocating their buffer table entries.
780 	 */
781 	ef4_for_each_channel(channel, efx) {
782 		struct ef4_rx_queue *rx_queue;
783 		struct ef4_tx_queue *tx_queue;
784 
785 		if (channel->type->copy)
786 			continue;
787 		next_buffer_table = max(next_buffer_table,
788 					channel->eventq.index +
789 					channel->eventq.entries);
790 		ef4_for_each_channel_rx_queue(rx_queue, channel)
791 			next_buffer_table = max(next_buffer_table,
792 						rx_queue->rxd.index +
793 						rx_queue->rxd.entries);
794 		ef4_for_each_channel_tx_queue(tx_queue, channel)
795 			next_buffer_table = max(next_buffer_table,
796 						tx_queue->txd.index +
797 						tx_queue->txd.entries);
798 	}
799 
800 	ef4_device_detach_sync(efx);
801 	ef4_stop_all(efx);
802 	ef4_soft_disable_interrupts(efx);
803 
804 	/* Clone channels (where possible) */
805 	memset(other_channel, 0, sizeof(other_channel));
806 	for (i = 0; i < efx->n_channels; i++) {
807 		channel = efx->channel[i];
808 		if (channel->type->copy)
809 			channel = channel->type->copy(channel);
810 		if (!channel) {
811 			rc = -ENOMEM;
812 			goto out;
813 		}
814 		other_channel[i] = channel;
815 	}
816 
817 	/* Swap entry counts and channel pointers */
818 	old_rxq_entries = efx->rxq_entries;
819 	old_txq_entries = efx->txq_entries;
820 	efx->rxq_entries = rxq_entries;
821 	efx->txq_entries = txq_entries;
822 	for (i = 0; i < efx->n_channels; i++) {
823 		channel = efx->channel[i];
824 		efx->channel[i] = other_channel[i];
825 		other_channel[i] = channel;
826 	}
827 
828 	/* Restart buffer table allocation */
829 	efx->next_buffer_table = next_buffer_table;
830 
831 	for (i = 0; i < efx->n_channels; i++) {
832 		channel = efx->channel[i];
833 		if (!channel->type->copy)
834 			continue;
835 		rc = ef4_probe_channel(channel);
836 		if (rc)
837 			goto rollback;
838 		ef4_init_napi_channel(efx->channel[i]);
839 	}
840 
841 out:
842 	/* Destroy unused channel structures */
843 	for (i = 0; i < efx->n_channels; i++) {
844 		channel = other_channel[i];
845 		if (channel && channel->type->copy) {
846 			ef4_fini_napi_channel(channel);
847 			ef4_remove_channel(channel);
848 			kfree(channel);
849 		}
850 	}
851 
852 	rc2 = ef4_soft_enable_interrupts(efx);
853 	if (rc2) {
854 		rc = rc ? rc : rc2;
855 		netif_err(efx, drv, efx->net_dev,
856 			  "unable to restart interrupts on channel reallocation\n");
857 		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
858 	} else {
859 		ef4_start_all(efx);
860 		netif_device_attach(efx->net_dev);
861 	}
862 	return rc;
863 
864 rollback:
865 	/* Swap back */
866 	efx->rxq_entries = old_rxq_entries;
867 	efx->txq_entries = old_txq_entries;
868 	for (i = 0; i < efx->n_channels; i++) {
869 		channel = efx->channel[i];
870 		efx->channel[i] = other_channel[i];
871 		other_channel[i] = channel;
872 	}
873 	goto out;
874 }
875 
876 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
877 {
878 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
879 }
880 
881 static const struct ef4_channel_type ef4_default_channel_type = {
882 	.pre_probe		= ef4_channel_dummy_op_int,
883 	.post_remove		= ef4_channel_dummy_op_void,
884 	.get_name		= ef4_get_channel_name,
885 	.copy			= ef4_copy_channel,
886 	.keep_eventq		= false,
887 };
888 
889 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
890 {
891 	return 0;
892 }
893 
894 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
895 {
896 }
897 
898 /**************************************************************************
899  *
900  * Port handling
901  *
902  **************************************************************************/
903 
904 /* This ensures that the kernel is kept informed (via
905  * netif_carrier_on/off) of the link status, and also maintains the
906  * link status's stop on the port's TX queue.
907  */
908 void ef4_link_status_changed(struct ef4_nic *efx)
909 {
910 	struct ef4_link_state *link_state = &efx->link_state;
911 
912 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
913 	 * that no events are triggered between unregister_netdev() and the
914 	 * driver unloading. A more general condition is that NETDEV_CHANGE
915 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
916 	if (!netif_running(efx->net_dev))
917 		return;
918 
919 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
920 		efx->n_link_state_changes++;
921 
922 		if (link_state->up)
923 			netif_carrier_on(efx->net_dev);
924 		else
925 			netif_carrier_off(efx->net_dev);
926 	}
927 
928 	/* Status message for kernel log */
929 	if (link_state->up)
930 		netif_info(efx, link, efx->net_dev,
931 			   "link up at %uMbps %s-duplex (MTU %d)\n",
932 			   link_state->speed, link_state->fd ? "full" : "half",
933 			   efx->net_dev->mtu);
934 	else
935 		netif_info(efx, link, efx->net_dev, "link down\n");
936 }
937 
938 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
939 {
940 	efx->link_advertising = advertising;
941 	if (advertising) {
942 		if (advertising & ADVERTISED_Pause)
943 			efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
944 		else
945 			efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
946 		if (advertising & ADVERTISED_Asym_Pause)
947 			efx->wanted_fc ^= EF4_FC_TX;
948 	}
949 }
950 
951 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
952 {
953 	efx->wanted_fc = wanted_fc;
954 	if (efx->link_advertising) {
955 		if (wanted_fc & EF4_FC_RX)
956 			efx->link_advertising |= (ADVERTISED_Pause |
957 						  ADVERTISED_Asym_Pause);
958 		else
959 			efx->link_advertising &= ~(ADVERTISED_Pause |
960 						   ADVERTISED_Asym_Pause);
961 		if (wanted_fc & EF4_FC_TX)
962 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
963 	}
964 }
965 
966 static void ef4_fini_port(struct ef4_nic *efx);
967 
968 /* We assume that efx->type->reconfigure_mac will always try to sync RX
969  * filters and therefore needs to read-lock the filter table against freeing
970  */
971 void ef4_mac_reconfigure(struct ef4_nic *efx)
972 {
973 	down_read(&efx->filter_sem);
974 	efx->type->reconfigure_mac(efx);
975 	up_read(&efx->filter_sem);
976 }
977 
978 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
979  * the MAC appropriately. All other PHY configuration changes are pushed
980  * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
981  * through ef4_monitor().
982  *
983  * Callers must hold the mac_lock
984  */
985 int __ef4_reconfigure_port(struct ef4_nic *efx)
986 {
987 	enum ef4_phy_mode phy_mode;
988 	int rc;
989 
990 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
991 
992 	/* Disable PHY transmit in mac level loopbacks */
993 	phy_mode = efx->phy_mode;
994 	if (LOOPBACK_INTERNAL(efx))
995 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
996 	else
997 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
998 
999 	rc = efx->type->reconfigure_port(efx);
1000 
1001 	if (rc)
1002 		efx->phy_mode = phy_mode;
1003 
1004 	return rc;
1005 }
1006 
1007 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1008  * disabled. */
1009 int ef4_reconfigure_port(struct ef4_nic *efx)
1010 {
1011 	int rc;
1012 
1013 	EF4_ASSERT_RESET_SERIALISED(efx);
1014 
1015 	mutex_lock(&efx->mac_lock);
1016 	rc = __ef4_reconfigure_port(efx);
1017 	mutex_unlock(&efx->mac_lock);
1018 
1019 	return rc;
1020 }
1021 
1022 /* Asynchronous work item for changing MAC promiscuity and multicast
1023  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1024  * MAC directly. */
1025 static void ef4_mac_work(struct work_struct *data)
1026 {
1027 	struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1028 
1029 	mutex_lock(&efx->mac_lock);
1030 	if (efx->port_enabled)
1031 		ef4_mac_reconfigure(efx);
1032 	mutex_unlock(&efx->mac_lock);
1033 }
1034 
1035 static int ef4_probe_port(struct ef4_nic *efx)
1036 {
1037 	int rc;
1038 
1039 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1040 
1041 	if (phy_flash_cfg)
1042 		efx->phy_mode = PHY_MODE_SPECIAL;
1043 
1044 	/* Connect up MAC/PHY operations table */
1045 	rc = efx->type->probe_port(efx);
1046 	if (rc)
1047 		return rc;
1048 
1049 	/* Initialise MAC address to permanent address */
1050 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1051 
1052 	return 0;
1053 }
1054 
1055 static int ef4_init_port(struct ef4_nic *efx)
1056 {
1057 	int rc;
1058 
1059 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1060 
1061 	mutex_lock(&efx->mac_lock);
1062 
1063 	rc = efx->phy_op->init(efx);
1064 	if (rc)
1065 		goto fail1;
1066 
1067 	efx->port_initialized = true;
1068 
1069 	/* Reconfigure the MAC before creating dma queues (required for
1070 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1071 	ef4_mac_reconfigure(efx);
1072 
1073 	/* Ensure the PHY advertises the correct flow control settings */
1074 	rc = efx->phy_op->reconfigure(efx);
1075 	if (rc && rc != -EPERM)
1076 		goto fail2;
1077 
1078 	mutex_unlock(&efx->mac_lock);
1079 	return 0;
1080 
1081 fail2:
1082 	efx->phy_op->fini(efx);
1083 fail1:
1084 	mutex_unlock(&efx->mac_lock);
1085 	return rc;
1086 }
1087 
1088 static void ef4_start_port(struct ef4_nic *efx)
1089 {
1090 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1091 	BUG_ON(efx->port_enabled);
1092 
1093 	mutex_lock(&efx->mac_lock);
1094 	efx->port_enabled = true;
1095 
1096 	/* Ensure MAC ingress/egress is enabled */
1097 	ef4_mac_reconfigure(efx);
1098 
1099 	mutex_unlock(&efx->mac_lock);
1100 }
1101 
1102 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1103  * and the async self-test, wait for them to finish and prevent them
1104  * being scheduled again.  This doesn't cover online resets, which
1105  * should only be cancelled when removing the device.
1106  */
1107 static void ef4_stop_port(struct ef4_nic *efx)
1108 {
1109 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1110 
1111 	EF4_ASSERT_RESET_SERIALISED(efx);
1112 
1113 	mutex_lock(&efx->mac_lock);
1114 	efx->port_enabled = false;
1115 	mutex_unlock(&efx->mac_lock);
1116 
1117 	/* Serialise against ef4_set_multicast_list() */
1118 	netif_addr_lock_bh(efx->net_dev);
1119 	netif_addr_unlock_bh(efx->net_dev);
1120 
1121 	cancel_delayed_work_sync(&efx->monitor_work);
1122 	ef4_selftest_async_cancel(efx);
1123 	cancel_work_sync(&efx->mac_work);
1124 }
1125 
1126 static void ef4_fini_port(struct ef4_nic *efx)
1127 {
1128 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1129 
1130 	if (!efx->port_initialized)
1131 		return;
1132 
1133 	efx->phy_op->fini(efx);
1134 	efx->port_initialized = false;
1135 
1136 	efx->link_state.up = false;
1137 	ef4_link_status_changed(efx);
1138 }
1139 
1140 static void ef4_remove_port(struct ef4_nic *efx)
1141 {
1142 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1143 
1144 	efx->type->remove_port(efx);
1145 }
1146 
1147 /**************************************************************************
1148  *
1149  * NIC handling
1150  *
1151  **************************************************************************/
1152 
1153 static LIST_HEAD(ef4_primary_list);
1154 static LIST_HEAD(ef4_unassociated_list);
1155 
1156 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1157 {
1158 	return left->type == right->type &&
1159 		left->vpd_sn && right->vpd_sn &&
1160 		!strcmp(left->vpd_sn, right->vpd_sn);
1161 }
1162 
1163 static void ef4_associate(struct ef4_nic *efx)
1164 {
1165 	struct ef4_nic *other, *next;
1166 
1167 	if (efx->primary == efx) {
1168 		/* Adding primary function; look for secondaries */
1169 
1170 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1171 		list_add_tail(&efx->node, &ef4_primary_list);
1172 
1173 		list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1174 					 node) {
1175 			if (ef4_same_controller(efx, other)) {
1176 				list_del(&other->node);
1177 				netif_dbg(other, probe, other->net_dev,
1178 					  "moving to secondary list of %s %s\n",
1179 					  pci_name(efx->pci_dev),
1180 					  efx->net_dev->name);
1181 				list_add_tail(&other->node,
1182 					      &efx->secondary_list);
1183 				other->primary = efx;
1184 			}
1185 		}
1186 	} else {
1187 		/* Adding secondary function; look for primary */
1188 
1189 		list_for_each_entry(other, &ef4_primary_list, node) {
1190 			if (ef4_same_controller(efx, other)) {
1191 				netif_dbg(efx, probe, efx->net_dev,
1192 					  "adding to secondary list of %s %s\n",
1193 					  pci_name(other->pci_dev),
1194 					  other->net_dev->name);
1195 				list_add_tail(&efx->node,
1196 					      &other->secondary_list);
1197 				efx->primary = other;
1198 				return;
1199 			}
1200 		}
1201 
1202 		netif_dbg(efx, probe, efx->net_dev,
1203 			  "adding to unassociated list\n");
1204 		list_add_tail(&efx->node, &ef4_unassociated_list);
1205 	}
1206 }
1207 
1208 static void ef4_dissociate(struct ef4_nic *efx)
1209 {
1210 	struct ef4_nic *other, *next;
1211 
1212 	list_del(&efx->node);
1213 	efx->primary = NULL;
1214 
1215 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1216 		list_del(&other->node);
1217 		netif_dbg(other, probe, other->net_dev,
1218 			  "moving to unassociated list\n");
1219 		list_add_tail(&other->node, &ef4_unassociated_list);
1220 		other->primary = NULL;
1221 	}
1222 }
1223 
1224 /* This configures the PCI device to enable I/O and DMA. */
1225 static int ef4_init_io(struct ef4_nic *efx)
1226 {
1227 	struct pci_dev *pci_dev = efx->pci_dev;
1228 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1229 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1230 	int rc, bar;
1231 
1232 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1233 
1234 	bar = efx->type->mem_bar;
1235 
1236 	rc = pci_enable_device(pci_dev);
1237 	if (rc) {
1238 		netif_err(efx, probe, efx->net_dev,
1239 			  "failed to enable PCI device\n");
1240 		goto fail1;
1241 	}
1242 
1243 	pci_set_master(pci_dev);
1244 
1245 	/* Set the PCI DMA mask.  Try all possibilities from our
1246 	 * genuine mask down to 32 bits, because some architectures
1247 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1248 	 * masks event though they reject 46 bit masks.
1249 	 */
1250 	while (dma_mask > 0x7fffffffUL) {
1251 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1252 		if (rc == 0)
1253 			break;
1254 		dma_mask >>= 1;
1255 	}
1256 	if (rc) {
1257 		netif_err(efx, probe, efx->net_dev,
1258 			  "could not find a suitable DMA mask\n");
1259 		goto fail2;
1260 	}
1261 	netif_dbg(efx, probe, efx->net_dev,
1262 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1263 
1264 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1265 	rc = pci_request_region(pci_dev, bar, "sfc");
1266 	if (rc) {
1267 		netif_err(efx, probe, efx->net_dev,
1268 			  "request for memory BAR failed\n");
1269 		rc = -EIO;
1270 		goto fail3;
1271 	}
1272 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1273 	if (!efx->membase) {
1274 		netif_err(efx, probe, efx->net_dev,
1275 			  "could not map memory BAR at %llx+%x\n",
1276 			  (unsigned long long)efx->membase_phys, mem_map_size);
1277 		rc = -ENOMEM;
1278 		goto fail4;
1279 	}
1280 	netif_dbg(efx, probe, efx->net_dev,
1281 		  "memory BAR at %llx+%x (virtual %p)\n",
1282 		  (unsigned long long)efx->membase_phys, mem_map_size,
1283 		  efx->membase);
1284 
1285 	return 0;
1286 
1287  fail4:
1288 	pci_release_region(efx->pci_dev, bar);
1289  fail3:
1290 	efx->membase_phys = 0;
1291  fail2:
1292 	pci_disable_device(efx->pci_dev);
1293  fail1:
1294 	return rc;
1295 }
1296 
1297 static void ef4_fini_io(struct ef4_nic *efx)
1298 {
1299 	int bar;
1300 
1301 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1302 
1303 	if (efx->membase) {
1304 		iounmap(efx->membase);
1305 		efx->membase = NULL;
1306 	}
1307 
1308 	if (efx->membase_phys) {
1309 		bar = efx->type->mem_bar;
1310 		pci_release_region(efx->pci_dev, bar);
1311 		efx->membase_phys = 0;
1312 	}
1313 
1314 	/* Don't disable bus-mastering if VFs are assigned */
1315 	if (!pci_vfs_assigned(efx->pci_dev))
1316 		pci_disable_device(efx->pci_dev);
1317 }
1318 
1319 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1320 {
1321 	size_t i;
1322 
1323 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1324 		efx->rx_indir_table[i] =
1325 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1326 }
1327 
1328 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1329 {
1330 	cpumask_var_t thread_mask;
1331 	unsigned int count;
1332 	int cpu;
1333 
1334 	if (rss_cpus) {
1335 		count = rss_cpus;
1336 	} else {
1337 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1338 			netif_warn(efx, probe, efx->net_dev,
1339 				   "RSS disabled due to allocation failure\n");
1340 			return 1;
1341 		}
1342 
1343 		count = 0;
1344 		for_each_online_cpu(cpu) {
1345 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1346 				++count;
1347 				cpumask_or(thread_mask, thread_mask,
1348 					   topology_sibling_cpumask(cpu));
1349 			}
1350 		}
1351 
1352 		free_cpumask_var(thread_mask);
1353 	}
1354 
1355 	if (count > EF4_MAX_RX_QUEUES) {
1356 		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1357 			       "Reducing number of rx queues from %u to %u.\n",
1358 			       count, EF4_MAX_RX_QUEUES);
1359 		count = EF4_MAX_RX_QUEUES;
1360 	}
1361 
1362 	return count;
1363 }
1364 
1365 /* Probe the number and type of interrupts we are able to obtain, and
1366  * the resulting numbers of channels and RX queues.
1367  */
1368 static int ef4_probe_interrupts(struct ef4_nic *efx)
1369 {
1370 	unsigned int extra_channels = 0;
1371 	unsigned int i, j;
1372 	int rc;
1373 
1374 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1375 		if (efx->extra_channel_type[i])
1376 			++extra_channels;
1377 
1378 	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1379 		struct msix_entry xentries[EF4_MAX_CHANNELS];
1380 		unsigned int n_channels;
1381 
1382 		n_channels = ef4_wanted_parallelism(efx);
1383 		if (ef4_separate_tx_channels)
1384 			n_channels *= 2;
1385 		n_channels += extra_channels;
1386 		n_channels = min(n_channels, efx->max_channels);
1387 
1388 		for (i = 0; i < n_channels; i++)
1389 			xentries[i].entry = i;
1390 		rc = pci_enable_msix_range(efx->pci_dev,
1391 					   xentries, 1, n_channels);
1392 		if (rc < 0) {
1393 			/* Fall back to single channel MSI */
1394 			efx->interrupt_mode = EF4_INT_MODE_MSI;
1395 			netif_err(efx, drv, efx->net_dev,
1396 				  "could not enable MSI-X\n");
1397 		} else if (rc < n_channels) {
1398 			netif_err(efx, drv, efx->net_dev,
1399 				  "WARNING: Insufficient MSI-X vectors"
1400 				  " available (%d < %u).\n", rc, n_channels);
1401 			netif_err(efx, drv, efx->net_dev,
1402 				  "WARNING: Performance may be reduced.\n");
1403 			n_channels = rc;
1404 		}
1405 
1406 		if (rc > 0) {
1407 			efx->n_channels = n_channels;
1408 			if (n_channels > extra_channels)
1409 				n_channels -= extra_channels;
1410 			if (ef4_separate_tx_channels) {
1411 				efx->n_tx_channels = min(max(n_channels / 2,
1412 							     1U),
1413 							 efx->max_tx_channels);
1414 				efx->n_rx_channels = max(n_channels -
1415 							 efx->n_tx_channels,
1416 							 1U);
1417 			} else {
1418 				efx->n_tx_channels = min(n_channels,
1419 							 efx->max_tx_channels);
1420 				efx->n_rx_channels = n_channels;
1421 			}
1422 			for (i = 0; i < efx->n_channels; i++)
1423 				ef4_get_channel(efx, i)->irq =
1424 					xentries[i].vector;
1425 		}
1426 	}
1427 
1428 	/* Try single interrupt MSI */
1429 	if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1430 		efx->n_channels = 1;
1431 		efx->n_rx_channels = 1;
1432 		efx->n_tx_channels = 1;
1433 		rc = pci_enable_msi(efx->pci_dev);
1434 		if (rc == 0) {
1435 			ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1436 		} else {
1437 			netif_err(efx, drv, efx->net_dev,
1438 				  "could not enable MSI\n");
1439 			efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1440 		}
1441 	}
1442 
1443 	/* Assume legacy interrupts */
1444 	if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1445 		efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1446 		efx->n_rx_channels = 1;
1447 		efx->n_tx_channels = 1;
1448 		efx->legacy_irq = efx->pci_dev->irq;
1449 	}
1450 
1451 	/* Assign extra channels if possible */
1452 	j = efx->n_channels;
1453 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1454 		if (!efx->extra_channel_type[i])
1455 			continue;
1456 		if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1457 		    efx->n_channels <= extra_channels) {
1458 			efx->extra_channel_type[i]->handle_no_channel(efx);
1459 		} else {
1460 			--j;
1461 			ef4_get_channel(efx, j)->type =
1462 				efx->extra_channel_type[i];
1463 		}
1464 	}
1465 
1466 	efx->rss_spread = efx->n_rx_channels;
1467 
1468 	return 0;
1469 }
1470 
1471 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1472 {
1473 	struct ef4_channel *channel, *end_channel;
1474 	int rc;
1475 
1476 	BUG_ON(efx->state == STATE_DISABLED);
1477 
1478 	efx->irq_soft_enabled = true;
1479 	smp_wmb();
1480 
1481 	ef4_for_each_channel(channel, efx) {
1482 		if (!channel->type->keep_eventq) {
1483 			rc = ef4_init_eventq(channel);
1484 			if (rc)
1485 				goto fail;
1486 		}
1487 		ef4_start_eventq(channel);
1488 	}
1489 
1490 	return 0;
1491 fail:
1492 	end_channel = channel;
1493 	ef4_for_each_channel(channel, efx) {
1494 		if (channel == end_channel)
1495 			break;
1496 		ef4_stop_eventq(channel);
1497 		if (!channel->type->keep_eventq)
1498 			ef4_fini_eventq(channel);
1499 	}
1500 
1501 	return rc;
1502 }
1503 
1504 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1505 {
1506 	struct ef4_channel *channel;
1507 
1508 	if (efx->state == STATE_DISABLED)
1509 		return;
1510 
1511 	efx->irq_soft_enabled = false;
1512 	smp_wmb();
1513 
1514 	if (efx->legacy_irq)
1515 		synchronize_irq(efx->legacy_irq);
1516 
1517 	ef4_for_each_channel(channel, efx) {
1518 		if (channel->irq)
1519 			synchronize_irq(channel->irq);
1520 
1521 		ef4_stop_eventq(channel);
1522 		if (!channel->type->keep_eventq)
1523 			ef4_fini_eventq(channel);
1524 	}
1525 }
1526 
1527 static int ef4_enable_interrupts(struct ef4_nic *efx)
1528 {
1529 	struct ef4_channel *channel, *end_channel;
1530 	int rc;
1531 
1532 	BUG_ON(efx->state == STATE_DISABLED);
1533 
1534 	if (efx->eeh_disabled_legacy_irq) {
1535 		enable_irq(efx->legacy_irq);
1536 		efx->eeh_disabled_legacy_irq = false;
1537 	}
1538 
1539 	efx->type->irq_enable_master(efx);
1540 
1541 	ef4_for_each_channel(channel, efx) {
1542 		if (channel->type->keep_eventq) {
1543 			rc = ef4_init_eventq(channel);
1544 			if (rc)
1545 				goto fail;
1546 		}
1547 	}
1548 
1549 	rc = ef4_soft_enable_interrupts(efx);
1550 	if (rc)
1551 		goto fail;
1552 
1553 	return 0;
1554 
1555 fail:
1556 	end_channel = channel;
1557 	ef4_for_each_channel(channel, efx) {
1558 		if (channel == end_channel)
1559 			break;
1560 		if (channel->type->keep_eventq)
1561 			ef4_fini_eventq(channel);
1562 	}
1563 
1564 	efx->type->irq_disable_non_ev(efx);
1565 
1566 	return rc;
1567 }
1568 
1569 static void ef4_disable_interrupts(struct ef4_nic *efx)
1570 {
1571 	struct ef4_channel *channel;
1572 
1573 	ef4_soft_disable_interrupts(efx);
1574 
1575 	ef4_for_each_channel(channel, efx) {
1576 		if (channel->type->keep_eventq)
1577 			ef4_fini_eventq(channel);
1578 	}
1579 
1580 	efx->type->irq_disable_non_ev(efx);
1581 }
1582 
1583 static void ef4_remove_interrupts(struct ef4_nic *efx)
1584 {
1585 	struct ef4_channel *channel;
1586 
1587 	/* Remove MSI/MSI-X interrupts */
1588 	ef4_for_each_channel(channel, efx)
1589 		channel->irq = 0;
1590 	pci_disable_msi(efx->pci_dev);
1591 	pci_disable_msix(efx->pci_dev);
1592 
1593 	/* Remove legacy interrupt */
1594 	efx->legacy_irq = 0;
1595 }
1596 
1597 static void ef4_set_channels(struct ef4_nic *efx)
1598 {
1599 	struct ef4_channel *channel;
1600 	struct ef4_tx_queue *tx_queue;
1601 
1602 	efx->tx_channel_offset =
1603 		ef4_separate_tx_channels ?
1604 		efx->n_channels - efx->n_tx_channels : 0;
1605 
1606 	/* We need to mark which channels really have RX and TX
1607 	 * queues, and adjust the TX queue numbers if we have separate
1608 	 * RX-only and TX-only channels.
1609 	 */
1610 	ef4_for_each_channel(channel, efx) {
1611 		if (channel->channel < efx->n_rx_channels)
1612 			channel->rx_queue.core_index = channel->channel;
1613 		else
1614 			channel->rx_queue.core_index = -1;
1615 
1616 		ef4_for_each_channel_tx_queue(tx_queue, channel)
1617 			tx_queue->queue -= (efx->tx_channel_offset *
1618 					    EF4_TXQ_TYPES);
1619 	}
1620 }
1621 
1622 static int ef4_probe_nic(struct ef4_nic *efx)
1623 {
1624 	int rc;
1625 
1626 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1627 
1628 	/* Carry out hardware-type specific initialisation */
1629 	rc = efx->type->probe(efx);
1630 	if (rc)
1631 		return rc;
1632 
1633 	do {
1634 		if (!efx->max_channels || !efx->max_tx_channels) {
1635 			netif_err(efx, drv, efx->net_dev,
1636 				  "Insufficient resources to allocate"
1637 				  " any channels\n");
1638 			rc = -ENOSPC;
1639 			goto fail1;
1640 		}
1641 
1642 		/* Determine the number of channels and queues by trying
1643 		 * to hook in MSI-X interrupts.
1644 		 */
1645 		rc = ef4_probe_interrupts(efx);
1646 		if (rc)
1647 			goto fail1;
1648 
1649 		ef4_set_channels(efx);
1650 
1651 		/* dimension_resources can fail with EAGAIN */
1652 		rc = efx->type->dimension_resources(efx);
1653 		if (rc != 0 && rc != -EAGAIN)
1654 			goto fail2;
1655 
1656 		if (rc == -EAGAIN)
1657 			/* try again with new max_channels */
1658 			ef4_remove_interrupts(efx);
1659 
1660 	} while (rc == -EAGAIN);
1661 
1662 	if (efx->n_channels > 1)
1663 		netdev_rss_key_fill(&efx->rx_hash_key,
1664 				    sizeof(efx->rx_hash_key));
1665 	ef4_set_default_rx_indir_table(efx);
1666 
1667 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1668 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1669 
1670 	/* Initialise the interrupt moderation settings */
1671 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1672 	ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1673 				true);
1674 
1675 	return 0;
1676 
1677 fail2:
1678 	ef4_remove_interrupts(efx);
1679 fail1:
1680 	efx->type->remove(efx);
1681 	return rc;
1682 }
1683 
1684 static void ef4_remove_nic(struct ef4_nic *efx)
1685 {
1686 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1687 
1688 	ef4_remove_interrupts(efx);
1689 	efx->type->remove(efx);
1690 }
1691 
1692 static int ef4_probe_filters(struct ef4_nic *efx)
1693 {
1694 	int rc;
1695 
1696 	spin_lock_init(&efx->filter_lock);
1697 	init_rwsem(&efx->filter_sem);
1698 	mutex_lock(&efx->mac_lock);
1699 	down_write(&efx->filter_sem);
1700 	rc = efx->type->filter_table_probe(efx);
1701 	if (rc)
1702 		goto out_unlock;
1703 
1704 #ifdef CONFIG_RFS_ACCEL
1705 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1706 		struct ef4_channel *channel;
1707 		int i, success = 1;
1708 
1709 		ef4_for_each_channel(channel, efx) {
1710 			channel->rps_flow_id =
1711 				kcalloc(efx->type->max_rx_ip_filters,
1712 					sizeof(*channel->rps_flow_id),
1713 					GFP_KERNEL);
1714 			if (!channel->rps_flow_id)
1715 				success = 0;
1716 			else
1717 				for (i = 0;
1718 				     i < efx->type->max_rx_ip_filters;
1719 				     ++i)
1720 					channel->rps_flow_id[i] =
1721 						RPS_FLOW_ID_INVALID;
1722 		}
1723 
1724 		if (!success) {
1725 			ef4_for_each_channel(channel, efx)
1726 				kfree(channel->rps_flow_id);
1727 			efx->type->filter_table_remove(efx);
1728 			rc = -ENOMEM;
1729 			goto out_unlock;
1730 		}
1731 
1732 		efx->rps_expire_index = efx->rps_expire_channel = 0;
1733 	}
1734 #endif
1735 out_unlock:
1736 	up_write(&efx->filter_sem);
1737 	mutex_unlock(&efx->mac_lock);
1738 	return rc;
1739 }
1740 
1741 static void ef4_remove_filters(struct ef4_nic *efx)
1742 {
1743 #ifdef CONFIG_RFS_ACCEL
1744 	struct ef4_channel *channel;
1745 
1746 	ef4_for_each_channel(channel, efx)
1747 		kfree(channel->rps_flow_id);
1748 #endif
1749 	down_write(&efx->filter_sem);
1750 	efx->type->filter_table_remove(efx);
1751 	up_write(&efx->filter_sem);
1752 }
1753 
1754 static void ef4_restore_filters(struct ef4_nic *efx)
1755 {
1756 	down_read(&efx->filter_sem);
1757 	efx->type->filter_table_restore(efx);
1758 	up_read(&efx->filter_sem);
1759 }
1760 
1761 /**************************************************************************
1762  *
1763  * NIC startup/shutdown
1764  *
1765  *************************************************************************/
1766 
1767 static int ef4_probe_all(struct ef4_nic *efx)
1768 {
1769 	int rc;
1770 
1771 	rc = ef4_probe_nic(efx);
1772 	if (rc) {
1773 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1774 		goto fail1;
1775 	}
1776 
1777 	rc = ef4_probe_port(efx);
1778 	if (rc) {
1779 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1780 		goto fail2;
1781 	}
1782 
1783 	BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1784 	if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1785 		rc = -EINVAL;
1786 		goto fail3;
1787 	}
1788 	efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1789 
1790 	rc = ef4_probe_filters(efx);
1791 	if (rc) {
1792 		netif_err(efx, probe, efx->net_dev,
1793 			  "failed to create filter tables\n");
1794 		goto fail4;
1795 	}
1796 
1797 	rc = ef4_probe_channels(efx);
1798 	if (rc)
1799 		goto fail5;
1800 
1801 	return 0;
1802 
1803  fail5:
1804 	ef4_remove_filters(efx);
1805  fail4:
1806  fail3:
1807 	ef4_remove_port(efx);
1808  fail2:
1809 	ef4_remove_nic(efx);
1810  fail1:
1811 	return rc;
1812 }
1813 
1814 /* If the interface is supposed to be running but is not, start
1815  * the hardware and software data path, regular activity for the port
1816  * (MAC statistics, link polling, etc.) and schedule the port to be
1817  * reconfigured.  Interrupts must already be enabled.  This function
1818  * is safe to call multiple times, so long as the NIC is not disabled.
1819  * Requires the RTNL lock.
1820  */
1821 static void ef4_start_all(struct ef4_nic *efx)
1822 {
1823 	EF4_ASSERT_RESET_SERIALISED(efx);
1824 	BUG_ON(efx->state == STATE_DISABLED);
1825 
1826 	/* Check that it is appropriate to restart the interface. All
1827 	 * of these flags are safe to read under just the rtnl lock */
1828 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1829 	    efx->reset_pending)
1830 		return;
1831 
1832 	ef4_start_port(efx);
1833 	ef4_start_datapath(efx);
1834 
1835 	/* Start the hardware monitor if there is one */
1836 	if (efx->type->monitor != NULL)
1837 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1838 				   ef4_monitor_interval);
1839 
1840 	efx->type->start_stats(efx);
1841 	efx->type->pull_stats(efx);
1842 	spin_lock_bh(&efx->stats_lock);
1843 	efx->type->update_stats(efx, NULL, NULL);
1844 	spin_unlock_bh(&efx->stats_lock);
1845 }
1846 
1847 /* Quiesce the hardware and software data path, and regular activity
1848  * for the port without bringing the link down.  Safe to call multiple
1849  * times with the NIC in almost any state, but interrupts should be
1850  * enabled.  Requires the RTNL lock.
1851  */
1852 static void ef4_stop_all(struct ef4_nic *efx)
1853 {
1854 	EF4_ASSERT_RESET_SERIALISED(efx);
1855 
1856 	/* port_enabled can be read safely under the rtnl lock */
1857 	if (!efx->port_enabled)
1858 		return;
1859 
1860 	/* update stats before we go down so we can accurately count
1861 	 * rx_nodesc_drops
1862 	 */
1863 	efx->type->pull_stats(efx);
1864 	spin_lock_bh(&efx->stats_lock);
1865 	efx->type->update_stats(efx, NULL, NULL);
1866 	spin_unlock_bh(&efx->stats_lock);
1867 	efx->type->stop_stats(efx);
1868 	ef4_stop_port(efx);
1869 
1870 	/* Stop the kernel transmit interface.  This is only valid if
1871 	 * the device is stopped or detached; otherwise the watchdog
1872 	 * may fire immediately.
1873 	 */
1874 	WARN_ON(netif_running(efx->net_dev) &&
1875 		netif_device_present(efx->net_dev));
1876 	netif_tx_disable(efx->net_dev);
1877 
1878 	ef4_stop_datapath(efx);
1879 }
1880 
1881 static void ef4_remove_all(struct ef4_nic *efx)
1882 {
1883 	ef4_remove_channels(efx);
1884 	ef4_remove_filters(efx);
1885 	ef4_remove_port(efx);
1886 	ef4_remove_nic(efx);
1887 }
1888 
1889 /**************************************************************************
1890  *
1891  * Interrupt moderation
1892  *
1893  **************************************************************************/
1894 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1895 {
1896 	if (usecs == 0)
1897 		return 0;
1898 	if (usecs * 1000 < efx->timer_quantum_ns)
1899 		return 1; /* never round down to 0 */
1900 	return usecs * 1000 / efx->timer_quantum_ns;
1901 }
1902 
1903 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1904 {
1905 	/* We must round up when converting ticks to microseconds
1906 	 * because we round down when converting the other way.
1907 	 */
1908 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1909 }
1910 
1911 /* Set interrupt moderation parameters */
1912 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1913 			    unsigned int rx_usecs, bool rx_adaptive,
1914 			    bool rx_may_override_tx)
1915 {
1916 	struct ef4_channel *channel;
1917 	unsigned int timer_max_us;
1918 
1919 	EF4_ASSERT_RESET_SERIALISED(efx);
1920 
1921 	timer_max_us = efx->timer_max_ns / 1000;
1922 
1923 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1924 		return -EINVAL;
1925 
1926 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1927 	    !rx_may_override_tx) {
1928 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1929 			  "RX and TX IRQ moderation must be equal\n");
1930 		return -EINVAL;
1931 	}
1932 
1933 	efx->irq_rx_adaptive = rx_adaptive;
1934 	efx->irq_rx_moderation_us = rx_usecs;
1935 	ef4_for_each_channel(channel, efx) {
1936 		if (ef4_channel_has_rx_queue(channel))
1937 			channel->irq_moderation_us = rx_usecs;
1938 		else if (ef4_channel_has_tx_queues(channel))
1939 			channel->irq_moderation_us = tx_usecs;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1946 			    unsigned int *rx_usecs, bool *rx_adaptive)
1947 {
1948 	*rx_adaptive = efx->irq_rx_adaptive;
1949 	*rx_usecs = efx->irq_rx_moderation_us;
1950 
1951 	/* If channels are shared between RX and TX, so is IRQ
1952 	 * moderation.  Otherwise, IRQ moderation is the same for all
1953 	 * TX channels and is not adaptive.
1954 	 */
1955 	if (efx->tx_channel_offset == 0) {
1956 		*tx_usecs = *rx_usecs;
1957 	} else {
1958 		struct ef4_channel *tx_channel;
1959 
1960 		tx_channel = efx->channel[efx->tx_channel_offset];
1961 		*tx_usecs = tx_channel->irq_moderation_us;
1962 	}
1963 }
1964 
1965 /**************************************************************************
1966  *
1967  * Hardware monitor
1968  *
1969  **************************************************************************/
1970 
1971 /* Run periodically off the general workqueue */
1972 static void ef4_monitor(struct work_struct *data)
1973 {
1974 	struct ef4_nic *efx = container_of(data, struct ef4_nic,
1975 					   monitor_work.work);
1976 
1977 	netif_vdbg(efx, timer, efx->net_dev,
1978 		   "hardware monitor executing on CPU %d\n",
1979 		   raw_smp_processor_id());
1980 	BUG_ON(efx->type->monitor == NULL);
1981 
1982 	/* If the mac_lock is already held then it is likely a port
1983 	 * reconfiguration is already in place, which will likely do
1984 	 * most of the work of monitor() anyway. */
1985 	if (mutex_trylock(&efx->mac_lock)) {
1986 		if (efx->port_enabled)
1987 			efx->type->monitor(efx);
1988 		mutex_unlock(&efx->mac_lock);
1989 	}
1990 
1991 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1992 			   ef4_monitor_interval);
1993 }
1994 
1995 /**************************************************************************
1996  *
1997  * ioctls
1998  *
1999  *************************************************************************/
2000 
2001 /* Net device ioctl
2002  * Context: process, rtnl_lock() held.
2003  */
2004 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2005 {
2006 	struct ef4_nic *efx = netdev_priv(net_dev);
2007 	struct mii_ioctl_data *data = if_mii(ifr);
2008 
2009 	/* Convert phy_id from older PRTAD/DEVAD format */
2010 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2011 	    (data->phy_id & 0xfc00) == 0x0400)
2012 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2013 
2014 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2015 }
2016 
2017 /**************************************************************************
2018  *
2019  * NAPI interface
2020  *
2021  **************************************************************************/
2022 
2023 static void ef4_init_napi_channel(struct ef4_channel *channel)
2024 {
2025 	struct ef4_nic *efx = channel->efx;
2026 
2027 	channel->napi_dev = efx->net_dev;
2028 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2029 		       ef4_poll, napi_weight);
2030 }
2031 
2032 static void ef4_init_napi(struct ef4_nic *efx)
2033 {
2034 	struct ef4_channel *channel;
2035 
2036 	ef4_for_each_channel(channel, efx)
2037 		ef4_init_napi_channel(channel);
2038 }
2039 
2040 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2041 {
2042 	if (channel->napi_dev)
2043 		netif_napi_del(&channel->napi_str);
2044 
2045 	channel->napi_dev = NULL;
2046 }
2047 
2048 static void ef4_fini_napi(struct ef4_nic *efx)
2049 {
2050 	struct ef4_channel *channel;
2051 
2052 	ef4_for_each_channel(channel, efx)
2053 		ef4_fini_napi_channel(channel);
2054 }
2055 
2056 /**************************************************************************
2057  *
2058  * Kernel netpoll interface
2059  *
2060  *************************************************************************/
2061 
2062 #ifdef CONFIG_NET_POLL_CONTROLLER
2063 
2064 /* Although in the common case interrupts will be disabled, this is not
2065  * guaranteed. However, all our work happens inside the NAPI callback,
2066  * so no locking is required.
2067  */
2068 static void ef4_netpoll(struct net_device *net_dev)
2069 {
2070 	struct ef4_nic *efx = netdev_priv(net_dev);
2071 	struct ef4_channel *channel;
2072 
2073 	ef4_for_each_channel(channel, efx)
2074 		ef4_schedule_channel(channel);
2075 }
2076 
2077 #endif
2078 
2079 /**************************************************************************
2080  *
2081  * Kernel net device interface
2082  *
2083  *************************************************************************/
2084 
2085 /* Context: process, rtnl_lock() held. */
2086 int ef4_net_open(struct net_device *net_dev)
2087 {
2088 	struct ef4_nic *efx = netdev_priv(net_dev);
2089 	int rc;
2090 
2091 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2092 		  raw_smp_processor_id());
2093 
2094 	rc = ef4_check_disabled(efx);
2095 	if (rc)
2096 		return rc;
2097 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2098 		return -EBUSY;
2099 
2100 	/* Notify the kernel of the link state polled during driver load,
2101 	 * before the monitor starts running */
2102 	ef4_link_status_changed(efx);
2103 
2104 	ef4_start_all(efx);
2105 	ef4_selftest_async_start(efx);
2106 	return 0;
2107 }
2108 
2109 /* Context: process, rtnl_lock() held.
2110  * Note that the kernel will ignore our return code; this method
2111  * should really be a void.
2112  */
2113 int ef4_net_stop(struct net_device *net_dev)
2114 {
2115 	struct ef4_nic *efx = netdev_priv(net_dev);
2116 
2117 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2118 		  raw_smp_processor_id());
2119 
2120 	/* Stop the device and flush all the channels */
2121 	ef4_stop_all(efx);
2122 
2123 	return 0;
2124 }
2125 
2126 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2127 static void ef4_net_stats(struct net_device *net_dev,
2128 			  struct rtnl_link_stats64 *stats)
2129 {
2130 	struct ef4_nic *efx = netdev_priv(net_dev);
2131 
2132 	spin_lock_bh(&efx->stats_lock);
2133 	efx->type->update_stats(efx, NULL, stats);
2134 	spin_unlock_bh(&efx->stats_lock);
2135 }
2136 
2137 /* Context: netif_tx_lock held, BHs disabled. */
2138 static void ef4_watchdog(struct net_device *net_dev)
2139 {
2140 	struct ef4_nic *efx = netdev_priv(net_dev);
2141 
2142 	netif_err(efx, tx_err, efx->net_dev,
2143 		  "TX stuck with port_enabled=%d: resetting channels\n",
2144 		  efx->port_enabled);
2145 
2146 	ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2147 }
2148 
2149 
2150 /* Context: process, rtnl_lock() held. */
2151 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2152 {
2153 	struct ef4_nic *efx = netdev_priv(net_dev);
2154 	int rc;
2155 
2156 	rc = ef4_check_disabled(efx);
2157 	if (rc)
2158 		return rc;
2159 
2160 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2161 
2162 	ef4_device_detach_sync(efx);
2163 	ef4_stop_all(efx);
2164 
2165 	mutex_lock(&efx->mac_lock);
2166 	net_dev->mtu = new_mtu;
2167 	ef4_mac_reconfigure(efx);
2168 	mutex_unlock(&efx->mac_lock);
2169 
2170 	ef4_start_all(efx);
2171 	netif_device_attach(efx->net_dev);
2172 	return 0;
2173 }
2174 
2175 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2176 {
2177 	struct ef4_nic *efx = netdev_priv(net_dev);
2178 	struct sockaddr *addr = data;
2179 	u8 *new_addr = addr->sa_data;
2180 	u8 old_addr[6];
2181 	int rc;
2182 
2183 	if (!is_valid_ether_addr(new_addr)) {
2184 		netif_err(efx, drv, efx->net_dev,
2185 			  "invalid ethernet MAC address requested: %pM\n",
2186 			  new_addr);
2187 		return -EADDRNOTAVAIL;
2188 	}
2189 
2190 	/* save old address */
2191 	ether_addr_copy(old_addr, net_dev->dev_addr);
2192 	ether_addr_copy(net_dev->dev_addr, new_addr);
2193 	if (efx->type->set_mac_address) {
2194 		rc = efx->type->set_mac_address(efx);
2195 		if (rc) {
2196 			ether_addr_copy(net_dev->dev_addr, old_addr);
2197 			return rc;
2198 		}
2199 	}
2200 
2201 	/* Reconfigure the MAC */
2202 	mutex_lock(&efx->mac_lock);
2203 	ef4_mac_reconfigure(efx);
2204 	mutex_unlock(&efx->mac_lock);
2205 
2206 	return 0;
2207 }
2208 
2209 /* Context: netif_addr_lock held, BHs disabled. */
2210 static void ef4_set_rx_mode(struct net_device *net_dev)
2211 {
2212 	struct ef4_nic *efx = netdev_priv(net_dev);
2213 
2214 	if (efx->port_enabled)
2215 		queue_work(efx->workqueue, &efx->mac_work);
2216 	/* Otherwise ef4_start_port() will do this */
2217 }
2218 
2219 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2220 {
2221 	struct ef4_nic *efx = netdev_priv(net_dev);
2222 	int rc;
2223 
2224 	/* If disabling RX n-tuple filtering, clear existing filters */
2225 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2226 		rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2227 		if (rc)
2228 			return rc;
2229 	}
2230 
2231 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2232 	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2233 		/* ef4_set_rx_mode() will schedule MAC work to update filters
2234 		 * when a new features are finally set in net_dev.
2235 		 */
2236 		ef4_set_rx_mode(net_dev);
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 static const struct net_device_ops ef4_netdev_ops = {
2243 	.ndo_open		= ef4_net_open,
2244 	.ndo_stop		= ef4_net_stop,
2245 	.ndo_get_stats64	= ef4_net_stats,
2246 	.ndo_tx_timeout		= ef4_watchdog,
2247 	.ndo_start_xmit		= ef4_hard_start_xmit,
2248 	.ndo_validate_addr	= eth_validate_addr,
2249 	.ndo_do_ioctl		= ef4_ioctl,
2250 	.ndo_change_mtu		= ef4_change_mtu,
2251 	.ndo_set_mac_address	= ef4_set_mac_address,
2252 	.ndo_set_rx_mode	= ef4_set_rx_mode,
2253 	.ndo_set_features	= ef4_set_features,
2254 #ifdef CONFIG_NET_POLL_CONTROLLER
2255 	.ndo_poll_controller = ef4_netpoll,
2256 #endif
2257 	.ndo_setup_tc		= ef4_setup_tc,
2258 #ifdef CONFIG_RFS_ACCEL
2259 	.ndo_rx_flow_steer	= ef4_filter_rfs,
2260 #endif
2261 };
2262 
2263 static void ef4_update_name(struct ef4_nic *efx)
2264 {
2265 	strcpy(efx->name, efx->net_dev->name);
2266 	ef4_mtd_rename(efx);
2267 	ef4_set_channel_names(efx);
2268 }
2269 
2270 static int ef4_netdev_event(struct notifier_block *this,
2271 			    unsigned long event, void *ptr)
2272 {
2273 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2274 
2275 	if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2276 	    event == NETDEV_CHANGENAME)
2277 		ef4_update_name(netdev_priv(net_dev));
2278 
2279 	return NOTIFY_DONE;
2280 }
2281 
2282 static struct notifier_block ef4_netdev_notifier = {
2283 	.notifier_call = ef4_netdev_event,
2284 };
2285 
2286 static ssize_t
2287 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2288 {
2289 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2290 	return sprintf(buf, "%d\n", efx->phy_type);
2291 }
2292 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2293 
2294 static int ef4_register_netdev(struct ef4_nic *efx)
2295 {
2296 	struct net_device *net_dev = efx->net_dev;
2297 	struct ef4_channel *channel;
2298 	int rc;
2299 
2300 	net_dev->watchdog_timeo = 5 * HZ;
2301 	net_dev->irq = efx->pci_dev->irq;
2302 	net_dev->netdev_ops = &ef4_netdev_ops;
2303 	net_dev->ethtool_ops = &ef4_ethtool_ops;
2304 	net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2305 	net_dev->min_mtu = EF4_MIN_MTU;
2306 	net_dev->max_mtu = EF4_MAX_MTU;
2307 
2308 	rtnl_lock();
2309 
2310 	/* Enable resets to be scheduled and check whether any were
2311 	 * already requested.  If so, the NIC is probably hosed so we
2312 	 * abort.
2313 	 */
2314 	efx->state = STATE_READY;
2315 	smp_mb(); /* ensure we change state before checking reset_pending */
2316 	if (efx->reset_pending) {
2317 		netif_err(efx, probe, efx->net_dev,
2318 			  "aborting probe due to scheduled reset\n");
2319 		rc = -EIO;
2320 		goto fail_locked;
2321 	}
2322 
2323 	rc = dev_alloc_name(net_dev, net_dev->name);
2324 	if (rc < 0)
2325 		goto fail_locked;
2326 	ef4_update_name(efx);
2327 
2328 	/* Always start with carrier off; PHY events will detect the link */
2329 	netif_carrier_off(net_dev);
2330 
2331 	rc = register_netdevice(net_dev);
2332 	if (rc)
2333 		goto fail_locked;
2334 
2335 	ef4_for_each_channel(channel, efx) {
2336 		struct ef4_tx_queue *tx_queue;
2337 		ef4_for_each_channel_tx_queue(tx_queue, channel)
2338 			ef4_init_tx_queue_core_txq(tx_queue);
2339 	}
2340 
2341 	ef4_associate(efx);
2342 
2343 	rtnl_unlock();
2344 
2345 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2346 	if (rc) {
2347 		netif_err(efx, drv, efx->net_dev,
2348 			  "failed to init net dev attributes\n");
2349 		goto fail_registered;
2350 	}
2351 	return 0;
2352 
2353 fail_registered:
2354 	rtnl_lock();
2355 	ef4_dissociate(efx);
2356 	unregister_netdevice(net_dev);
2357 fail_locked:
2358 	efx->state = STATE_UNINIT;
2359 	rtnl_unlock();
2360 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2361 	return rc;
2362 }
2363 
2364 static void ef4_unregister_netdev(struct ef4_nic *efx)
2365 {
2366 	if (!efx->net_dev)
2367 		return;
2368 
2369 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2370 
2371 	if (ef4_dev_registered(efx)) {
2372 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2373 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2374 		unregister_netdev(efx->net_dev);
2375 	}
2376 }
2377 
2378 /**************************************************************************
2379  *
2380  * Device reset and suspend
2381  *
2382  **************************************************************************/
2383 
2384 /* Tears down the entire software state and most of the hardware state
2385  * before reset.  */
2386 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2387 {
2388 	EF4_ASSERT_RESET_SERIALISED(efx);
2389 
2390 	ef4_stop_all(efx);
2391 	ef4_disable_interrupts(efx);
2392 
2393 	mutex_lock(&efx->mac_lock);
2394 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2395 	    method != RESET_TYPE_DATAPATH)
2396 		efx->phy_op->fini(efx);
2397 	efx->type->fini(efx);
2398 }
2399 
2400 /* This function will always ensure that the locks acquired in
2401  * ef4_reset_down() are released. A failure return code indicates
2402  * that we were unable to reinitialise the hardware, and the
2403  * driver should be disabled. If ok is false, then the rx and tx
2404  * engines are not restarted, pending a RESET_DISABLE. */
2405 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2406 {
2407 	int rc;
2408 
2409 	EF4_ASSERT_RESET_SERIALISED(efx);
2410 
2411 	/* Ensure that SRAM is initialised even if we're disabling the device */
2412 	rc = efx->type->init(efx);
2413 	if (rc) {
2414 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2415 		goto fail;
2416 	}
2417 
2418 	if (!ok)
2419 		goto fail;
2420 
2421 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2422 	    method != RESET_TYPE_DATAPATH) {
2423 		rc = efx->phy_op->init(efx);
2424 		if (rc)
2425 			goto fail;
2426 		rc = efx->phy_op->reconfigure(efx);
2427 		if (rc && rc != -EPERM)
2428 			netif_err(efx, drv, efx->net_dev,
2429 				  "could not restore PHY settings\n");
2430 	}
2431 
2432 	rc = ef4_enable_interrupts(efx);
2433 	if (rc)
2434 		goto fail;
2435 
2436 	down_read(&efx->filter_sem);
2437 	ef4_restore_filters(efx);
2438 	up_read(&efx->filter_sem);
2439 
2440 	mutex_unlock(&efx->mac_lock);
2441 
2442 	ef4_start_all(efx);
2443 
2444 	return 0;
2445 
2446 fail:
2447 	efx->port_initialized = false;
2448 
2449 	mutex_unlock(&efx->mac_lock);
2450 
2451 	return rc;
2452 }
2453 
2454 /* Reset the NIC using the specified method.  Note that the reset may
2455  * fail, in which case the card will be left in an unusable state.
2456  *
2457  * Caller must hold the rtnl_lock.
2458  */
2459 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2460 {
2461 	int rc, rc2;
2462 	bool disabled;
2463 
2464 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2465 		   RESET_TYPE(method));
2466 
2467 	ef4_device_detach_sync(efx);
2468 	ef4_reset_down(efx, method);
2469 
2470 	rc = efx->type->reset(efx, method);
2471 	if (rc) {
2472 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2473 		goto out;
2474 	}
2475 
2476 	/* Clear flags for the scopes we covered.  We assume the NIC and
2477 	 * driver are now quiescent so that there is no race here.
2478 	 */
2479 	if (method < RESET_TYPE_MAX_METHOD)
2480 		efx->reset_pending &= -(1 << (method + 1));
2481 	else /* it doesn't fit into the well-ordered scope hierarchy */
2482 		__clear_bit(method, &efx->reset_pending);
2483 
2484 	/* Reinitialise bus-mastering, which may have been turned off before
2485 	 * the reset was scheduled. This is still appropriate, even in the
2486 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2487 	 * can respond to requests. */
2488 	pci_set_master(efx->pci_dev);
2489 
2490 out:
2491 	/* Leave device stopped if necessary */
2492 	disabled = rc ||
2493 		method == RESET_TYPE_DISABLE ||
2494 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2495 	rc2 = ef4_reset_up(efx, method, !disabled);
2496 	if (rc2) {
2497 		disabled = true;
2498 		if (!rc)
2499 			rc = rc2;
2500 	}
2501 
2502 	if (disabled) {
2503 		dev_close(efx->net_dev);
2504 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2505 		efx->state = STATE_DISABLED;
2506 	} else {
2507 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2508 		netif_device_attach(efx->net_dev);
2509 	}
2510 	return rc;
2511 }
2512 
2513 /* Try recovery mechanisms.
2514  * For now only EEH is supported.
2515  * Returns 0 if the recovery mechanisms are unsuccessful.
2516  * Returns a non-zero value otherwise.
2517  */
2518 int ef4_try_recovery(struct ef4_nic *efx)
2519 {
2520 #ifdef CONFIG_EEH
2521 	/* A PCI error can occur and not be seen by EEH because nothing
2522 	 * happens on the PCI bus. In this case the driver may fail and
2523 	 * schedule a 'recover or reset', leading to this recovery handler.
2524 	 * Manually call the eeh failure check function.
2525 	 */
2526 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2527 	if (eeh_dev_check_failure(eehdev)) {
2528 		/* The EEH mechanisms will handle the error and reset the
2529 		 * device if necessary.
2530 		 */
2531 		return 1;
2532 	}
2533 #endif
2534 	return 0;
2535 }
2536 
2537 /* The worker thread exists so that code that cannot sleep can
2538  * schedule a reset for later.
2539  */
2540 static void ef4_reset_work(struct work_struct *data)
2541 {
2542 	struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2543 	unsigned long pending;
2544 	enum reset_type method;
2545 
2546 	pending = READ_ONCE(efx->reset_pending);
2547 	method = fls(pending) - 1;
2548 
2549 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2550 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2551 	    ef4_try_recovery(efx))
2552 		return;
2553 
2554 	if (!pending)
2555 		return;
2556 
2557 	rtnl_lock();
2558 
2559 	/* We checked the state in ef4_schedule_reset() but it may
2560 	 * have changed by now.  Now that we have the RTNL lock,
2561 	 * it cannot change again.
2562 	 */
2563 	if (efx->state == STATE_READY)
2564 		(void)ef4_reset(efx, method);
2565 
2566 	rtnl_unlock();
2567 }
2568 
2569 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2570 {
2571 	enum reset_type method;
2572 
2573 	if (efx->state == STATE_RECOVERY) {
2574 		netif_dbg(efx, drv, efx->net_dev,
2575 			  "recovering: skip scheduling %s reset\n",
2576 			  RESET_TYPE(type));
2577 		return;
2578 	}
2579 
2580 	switch (type) {
2581 	case RESET_TYPE_INVISIBLE:
2582 	case RESET_TYPE_ALL:
2583 	case RESET_TYPE_RECOVER_OR_ALL:
2584 	case RESET_TYPE_WORLD:
2585 	case RESET_TYPE_DISABLE:
2586 	case RESET_TYPE_RECOVER_OR_DISABLE:
2587 	case RESET_TYPE_DATAPATH:
2588 		method = type;
2589 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2590 			  RESET_TYPE(method));
2591 		break;
2592 	default:
2593 		method = efx->type->map_reset_reason(type);
2594 		netif_dbg(efx, drv, efx->net_dev,
2595 			  "scheduling %s reset for %s\n",
2596 			  RESET_TYPE(method), RESET_TYPE(type));
2597 		break;
2598 	}
2599 
2600 	set_bit(method, &efx->reset_pending);
2601 	smp_mb(); /* ensure we change reset_pending before checking state */
2602 
2603 	/* If we're not READY then just leave the flags set as the cue
2604 	 * to abort probing or reschedule the reset later.
2605 	 */
2606 	if (READ_ONCE(efx->state) != STATE_READY)
2607 		return;
2608 
2609 	queue_work(reset_workqueue, &efx->reset_work);
2610 }
2611 
2612 /**************************************************************************
2613  *
2614  * List of NICs we support
2615  *
2616  **************************************************************************/
2617 
2618 /* PCI device ID table */
2619 static const struct pci_device_id ef4_pci_table[] = {
2620 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2621 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2622 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2623 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2624 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2625 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2626 	{0}			/* end of list */
2627 };
2628 
2629 /**************************************************************************
2630  *
2631  * Dummy PHY/MAC operations
2632  *
2633  * Can be used for some unimplemented operations
2634  * Needed so all function pointers are valid and do not have to be tested
2635  * before use
2636  *
2637  **************************************************************************/
2638 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2639 {
2640 	return 0;
2641 }
2642 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2643 
2644 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2645 {
2646 	return false;
2647 }
2648 
2649 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2650 	.init		 = ef4_port_dummy_op_int,
2651 	.reconfigure	 = ef4_port_dummy_op_int,
2652 	.poll		 = ef4_port_dummy_op_poll,
2653 	.fini		 = ef4_port_dummy_op_void,
2654 };
2655 
2656 /**************************************************************************
2657  *
2658  * Data housekeeping
2659  *
2660  **************************************************************************/
2661 
2662 /* This zeroes out and then fills in the invariants in a struct
2663  * ef4_nic (including all sub-structures).
2664  */
2665 static int ef4_init_struct(struct ef4_nic *efx,
2666 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2667 {
2668 	int i;
2669 
2670 	/* Initialise common structures */
2671 	INIT_LIST_HEAD(&efx->node);
2672 	INIT_LIST_HEAD(&efx->secondary_list);
2673 	spin_lock_init(&efx->biu_lock);
2674 #ifdef CONFIG_SFC_FALCON_MTD
2675 	INIT_LIST_HEAD(&efx->mtd_list);
2676 #endif
2677 	INIT_WORK(&efx->reset_work, ef4_reset_work);
2678 	INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2679 	INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2680 	efx->pci_dev = pci_dev;
2681 	efx->msg_enable = debug;
2682 	efx->state = STATE_UNINIT;
2683 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2684 
2685 	efx->net_dev = net_dev;
2686 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2687 	efx->rx_ip_align =
2688 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2689 	efx->rx_packet_hash_offset =
2690 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2691 	efx->rx_packet_ts_offset =
2692 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2693 	spin_lock_init(&efx->stats_lock);
2694 	mutex_init(&efx->mac_lock);
2695 	efx->phy_op = &ef4_dummy_phy_operations;
2696 	efx->mdio.dev = net_dev;
2697 	INIT_WORK(&efx->mac_work, ef4_mac_work);
2698 	init_waitqueue_head(&efx->flush_wq);
2699 
2700 	for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2701 		efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2702 		if (!efx->channel[i])
2703 			goto fail;
2704 		efx->msi_context[i].efx = efx;
2705 		efx->msi_context[i].index = i;
2706 	}
2707 
2708 	/* Higher numbered interrupt modes are less capable! */
2709 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2710 				  interrupt_mode);
2711 
2712 	/* Would be good to use the net_dev name, but we're too early */
2713 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2714 		 pci_name(pci_dev));
2715 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2716 	if (!efx->workqueue)
2717 		goto fail;
2718 
2719 	return 0;
2720 
2721 fail:
2722 	ef4_fini_struct(efx);
2723 	return -ENOMEM;
2724 }
2725 
2726 static void ef4_fini_struct(struct ef4_nic *efx)
2727 {
2728 	int i;
2729 
2730 	for (i = 0; i < EF4_MAX_CHANNELS; i++)
2731 		kfree(efx->channel[i]);
2732 
2733 	kfree(efx->vpd_sn);
2734 
2735 	if (efx->workqueue) {
2736 		destroy_workqueue(efx->workqueue);
2737 		efx->workqueue = NULL;
2738 	}
2739 }
2740 
2741 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2742 {
2743 	u64 n_rx_nodesc_trunc = 0;
2744 	struct ef4_channel *channel;
2745 
2746 	ef4_for_each_channel(channel, efx)
2747 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2748 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2749 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2750 }
2751 
2752 /**************************************************************************
2753  *
2754  * PCI interface
2755  *
2756  **************************************************************************/
2757 
2758 /* Main body of final NIC shutdown code
2759  * This is called only at module unload (or hotplug removal).
2760  */
2761 static void ef4_pci_remove_main(struct ef4_nic *efx)
2762 {
2763 	/* Flush reset_work. It can no longer be scheduled since we
2764 	 * are not READY.
2765 	 */
2766 	BUG_ON(efx->state == STATE_READY);
2767 	cancel_work_sync(&efx->reset_work);
2768 
2769 	ef4_disable_interrupts(efx);
2770 	ef4_nic_fini_interrupt(efx);
2771 	ef4_fini_port(efx);
2772 	efx->type->fini(efx);
2773 	ef4_fini_napi(efx);
2774 	ef4_remove_all(efx);
2775 }
2776 
2777 /* Final NIC shutdown
2778  * This is called only at module unload (or hotplug removal).  A PF can call
2779  * this on its VFs to ensure they are unbound first.
2780  */
2781 static void ef4_pci_remove(struct pci_dev *pci_dev)
2782 {
2783 	struct ef4_nic *efx;
2784 
2785 	efx = pci_get_drvdata(pci_dev);
2786 	if (!efx)
2787 		return;
2788 
2789 	/* Mark the NIC as fini, then stop the interface */
2790 	rtnl_lock();
2791 	ef4_dissociate(efx);
2792 	dev_close(efx->net_dev);
2793 	ef4_disable_interrupts(efx);
2794 	efx->state = STATE_UNINIT;
2795 	rtnl_unlock();
2796 
2797 	ef4_unregister_netdev(efx);
2798 
2799 	ef4_mtd_remove(efx);
2800 
2801 	ef4_pci_remove_main(efx);
2802 
2803 	ef4_fini_io(efx);
2804 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2805 
2806 	ef4_fini_struct(efx);
2807 	free_netdev(efx->net_dev);
2808 
2809 	pci_disable_pcie_error_reporting(pci_dev);
2810 };
2811 
2812 /* NIC VPD information
2813  * Called during probe to display the part number of the
2814  * installed NIC.  VPD is potentially very large but this should
2815  * always appear within the first 512 bytes.
2816  */
2817 #define SFC_VPD_LEN 512
2818 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2819 {
2820 	struct pci_dev *dev = efx->pci_dev;
2821 	char vpd_data[SFC_VPD_LEN];
2822 	ssize_t vpd_size;
2823 	int ro_start, ro_size, i, j;
2824 
2825 	/* Get the vpd data from the device */
2826 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2827 	if (vpd_size <= 0) {
2828 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2829 		return;
2830 	}
2831 
2832 	/* Get the Read only section */
2833 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2834 	if (ro_start < 0) {
2835 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2836 		return;
2837 	}
2838 
2839 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2840 	j = ro_size;
2841 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2842 	if (i + j > vpd_size)
2843 		j = vpd_size - i;
2844 
2845 	/* Get the Part number */
2846 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2847 	if (i < 0) {
2848 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2849 		return;
2850 	}
2851 
2852 	j = pci_vpd_info_field_size(&vpd_data[i]);
2853 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2854 	if (i + j > vpd_size) {
2855 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2856 		return;
2857 	}
2858 
2859 	netif_info(efx, drv, efx->net_dev,
2860 		   "Part Number : %.*s\n", j, &vpd_data[i]);
2861 
2862 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2863 	j = ro_size;
2864 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2865 	if (i < 0) {
2866 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2867 		return;
2868 	}
2869 
2870 	j = pci_vpd_info_field_size(&vpd_data[i]);
2871 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2872 	if (i + j > vpd_size) {
2873 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2874 		return;
2875 	}
2876 
2877 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2878 	if (!efx->vpd_sn)
2879 		return;
2880 
2881 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2882 }
2883 
2884 
2885 /* Main body of NIC initialisation
2886  * This is called at module load (or hotplug insertion, theoretically).
2887  */
2888 static int ef4_pci_probe_main(struct ef4_nic *efx)
2889 {
2890 	int rc;
2891 
2892 	/* Do start-of-day initialisation */
2893 	rc = ef4_probe_all(efx);
2894 	if (rc)
2895 		goto fail1;
2896 
2897 	ef4_init_napi(efx);
2898 
2899 	rc = efx->type->init(efx);
2900 	if (rc) {
2901 		netif_err(efx, probe, efx->net_dev,
2902 			  "failed to initialise NIC\n");
2903 		goto fail3;
2904 	}
2905 
2906 	rc = ef4_init_port(efx);
2907 	if (rc) {
2908 		netif_err(efx, probe, efx->net_dev,
2909 			  "failed to initialise port\n");
2910 		goto fail4;
2911 	}
2912 
2913 	rc = ef4_nic_init_interrupt(efx);
2914 	if (rc)
2915 		goto fail5;
2916 	rc = ef4_enable_interrupts(efx);
2917 	if (rc)
2918 		goto fail6;
2919 
2920 	return 0;
2921 
2922  fail6:
2923 	ef4_nic_fini_interrupt(efx);
2924  fail5:
2925 	ef4_fini_port(efx);
2926  fail4:
2927 	efx->type->fini(efx);
2928  fail3:
2929 	ef4_fini_napi(efx);
2930 	ef4_remove_all(efx);
2931  fail1:
2932 	return rc;
2933 }
2934 
2935 /* NIC initialisation
2936  *
2937  * This is called at module load (or hotplug insertion,
2938  * theoretically).  It sets up PCI mappings, resets the NIC,
2939  * sets up and registers the network devices with the kernel and hooks
2940  * the interrupt service routine.  It does not prepare the device for
2941  * transmission; this is left to the first time one of the network
2942  * interfaces is brought up (i.e. ef4_net_open).
2943  */
2944 static int ef4_pci_probe(struct pci_dev *pci_dev,
2945 			 const struct pci_device_id *entry)
2946 {
2947 	struct net_device *net_dev;
2948 	struct ef4_nic *efx;
2949 	int rc;
2950 
2951 	/* Allocate and initialise a struct net_device and struct ef4_nic */
2952 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2953 				     EF4_MAX_RX_QUEUES);
2954 	if (!net_dev)
2955 		return -ENOMEM;
2956 	efx = netdev_priv(net_dev);
2957 	efx->type = (const struct ef4_nic_type *) entry->driver_data;
2958 	efx->fixed_features |= NETIF_F_HIGHDMA;
2959 
2960 	pci_set_drvdata(pci_dev, efx);
2961 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2962 	rc = ef4_init_struct(efx, pci_dev, net_dev);
2963 	if (rc)
2964 		goto fail1;
2965 
2966 	netif_info(efx, probe, efx->net_dev,
2967 		   "Solarflare NIC detected\n");
2968 
2969 	ef4_probe_vpd_strings(efx);
2970 
2971 	/* Set up basic I/O (BAR mappings etc) */
2972 	rc = ef4_init_io(efx);
2973 	if (rc)
2974 		goto fail2;
2975 
2976 	rc = ef4_pci_probe_main(efx);
2977 	if (rc)
2978 		goto fail3;
2979 
2980 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2981 			      NETIF_F_RXCSUM);
2982 	/* Mask for features that also apply to VLAN devices */
2983 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2984 				   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2985 
2986 	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2987 
2988 	/* Disable VLAN filtering by default.  It may be enforced if
2989 	 * the feature is fixed (i.e. VLAN filters are required to
2990 	 * receive VLAN tagged packets due to vPort restrictions).
2991 	 */
2992 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2993 	net_dev->features |= efx->fixed_features;
2994 
2995 	rc = ef4_register_netdev(efx);
2996 	if (rc)
2997 		goto fail4;
2998 
2999 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3000 
3001 	/* Try to create MTDs, but allow this to fail */
3002 	rtnl_lock();
3003 	rc = ef4_mtd_probe(efx);
3004 	rtnl_unlock();
3005 	if (rc && rc != -EPERM)
3006 		netif_warn(efx, probe, efx->net_dev,
3007 			   "failed to create MTDs (%d)\n", rc);
3008 
3009 	rc = pci_enable_pcie_error_reporting(pci_dev);
3010 	if (rc && rc != -EINVAL)
3011 		netif_notice(efx, probe, efx->net_dev,
3012 			     "PCIE error reporting unavailable (%d).\n",
3013 			     rc);
3014 
3015 	return 0;
3016 
3017  fail4:
3018 	ef4_pci_remove_main(efx);
3019  fail3:
3020 	ef4_fini_io(efx);
3021  fail2:
3022 	ef4_fini_struct(efx);
3023  fail1:
3024 	WARN_ON(rc > 0);
3025 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3026 	free_netdev(net_dev);
3027 	return rc;
3028 }
3029 
3030 static int ef4_pm_freeze(struct device *dev)
3031 {
3032 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3033 
3034 	rtnl_lock();
3035 
3036 	if (efx->state != STATE_DISABLED) {
3037 		efx->state = STATE_UNINIT;
3038 
3039 		ef4_device_detach_sync(efx);
3040 
3041 		ef4_stop_all(efx);
3042 		ef4_disable_interrupts(efx);
3043 	}
3044 
3045 	rtnl_unlock();
3046 
3047 	return 0;
3048 }
3049 
3050 static int ef4_pm_thaw(struct device *dev)
3051 {
3052 	int rc;
3053 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3054 
3055 	rtnl_lock();
3056 
3057 	if (efx->state != STATE_DISABLED) {
3058 		rc = ef4_enable_interrupts(efx);
3059 		if (rc)
3060 			goto fail;
3061 
3062 		mutex_lock(&efx->mac_lock);
3063 		efx->phy_op->reconfigure(efx);
3064 		mutex_unlock(&efx->mac_lock);
3065 
3066 		ef4_start_all(efx);
3067 
3068 		netif_device_attach(efx->net_dev);
3069 
3070 		efx->state = STATE_READY;
3071 
3072 		efx->type->resume_wol(efx);
3073 	}
3074 
3075 	rtnl_unlock();
3076 
3077 	/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3078 	queue_work(reset_workqueue, &efx->reset_work);
3079 
3080 	return 0;
3081 
3082 fail:
3083 	rtnl_unlock();
3084 
3085 	return rc;
3086 }
3087 
3088 static int ef4_pm_poweroff(struct device *dev)
3089 {
3090 	struct pci_dev *pci_dev = to_pci_dev(dev);
3091 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3092 
3093 	efx->type->fini(efx);
3094 
3095 	efx->reset_pending = 0;
3096 
3097 	pci_save_state(pci_dev);
3098 	return pci_set_power_state(pci_dev, PCI_D3hot);
3099 }
3100 
3101 /* Used for both resume and restore */
3102 static int ef4_pm_resume(struct device *dev)
3103 {
3104 	struct pci_dev *pci_dev = to_pci_dev(dev);
3105 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3106 	int rc;
3107 
3108 	rc = pci_set_power_state(pci_dev, PCI_D0);
3109 	if (rc)
3110 		return rc;
3111 	pci_restore_state(pci_dev);
3112 	rc = pci_enable_device(pci_dev);
3113 	if (rc)
3114 		return rc;
3115 	pci_set_master(efx->pci_dev);
3116 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3117 	if (rc)
3118 		return rc;
3119 	rc = efx->type->init(efx);
3120 	if (rc)
3121 		return rc;
3122 	rc = ef4_pm_thaw(dev);
3123 	return rc;
3124 }
3125 
3126 static int ef4_pm_suspend(struct device *dev)
3127 {
3128 	int rc;
3129 
3130 	ef4_pm_freeze(dev);
3131 	rc = ef4_pm_poweroff(dev);
3132 	if (rc)
3133 		ef4_pm_resume(dev);
3134 	return rc;
3135 }
3136 
3137 static const struct dev_pm_ops ef4_pm_ops = {
3138 	.suspend	= ef4_pm_suspend,
3139 	.resume		= ef4_pm_resume,
3140 	.freeze		= ef4_pm_freeze,
3141 	.thaw		= ef4_pm_thaw,
3142 	.poweroff	= ef4_pm_poweroff,
3143 	.restore	= ef4_pm_resume,
3144 };
3145 
3146 /* A PCI error affecting this device was detected.
3147  * At this point MMIO and DMA may be disabled.
3148  * Stop the software path and request a slot reset.
3149  */
3150 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3151 					      enum pci_channel_state state)
3152 {
3153 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3154 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3155 
3156 	if (state == pci_channel_io_perm_failure)
3157 		return PCI_ERS_RESULT_DISCONNECT;
3158 
3159 	rtnl_lock();
3160 
3161 	if (efx->state != STATE_DISABLED) {
3162 		efx->state = STATE_RECOVERY;
3163 		efx->reset_pending = 0;
3164 
3165 		ef4_device_detach_sync(efx);
3166 
3167 		ef4_stop_all(efx);
3168 		ef4_disable_interrupts(efx);
3169 
3170 		status = PCI_ERS_RESULT_NEED_RESET;
3171 	} else {
3172 		/* If the interface is disabled we don't want to do anything
3173 		 * with it.
3174 		 */
3175 		status = PCI_ERS_RESULT_RECOVERED;
3176 	}
3177 
3178 	rtnl_unlock();
3179 
3180 	pci_disable_device(pdev);
3181 
3182 	return status;
3183 }
3184 
3185 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3186 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3187 {
3188 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3189 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3190 	int rc;
3191 
3192 	if (pci_enable_device(pdev)) {
3193 		netif_err(efx, hw, efx->net_dev,
3194 			  "Cannot re-enable PCI device after reset.\n");
3195 		status =  PCI_ERS_RESULT_DISCONNECT;
3196 	}
3197 
3198 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3199 	if (rc) {
3200 		netif_err(efx, hw, efx->net_dev,
3201 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3202 		/* Non-fatal error. Continue. */
3203 	}
3204 
3205 	return status;
3206 }
3207 
3208 /* Perform the actual reset and resume I/O operations. */
3209 static void ef4_io_resume(struct pci_dev *pdev)
3210 {
3211 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3212 	int rc;
3213 
3214 	rtnl_lock();
3215 
3216 	if (efx->state == STATE_DISABLED)
3217 		goto out;
3218 
3219 	rc = ef4_reset(efx, RESET_TYPE_ALL);
3220 	if (rc) {
3221 		netif_err(efx, hw, efx->net_dev,
3222 			  "ef4_reset failed after PCI error (%d)\n", rc);
3223 	} else {
3224 		efx->state = STATE_READY;
3225 		netif_dbg(efx, hw, efx->net_dev,
3226 			  "Done resetting and resuming IO after PCI error.\n");
3227 	}
3228 
3229 out:
3230 	rtnl_unlock();
3231 }
3232 
3233 /* For simplicity and reliability, we always require a slot reset and try to
3234  * reset the hardware when a pci error affecting the device is detected.
3235  * We leave both the link_reset and mmio_enabled callback unimplemented:
3236  * with our request for slot reset the mmio_enabled callback will never be
3237  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3238  */
3239 static const struct pci_error_handlers ef4_err_handlers = {
3240 	.error_detected = ef4_io_error_detected,
3241 	.slot_reset	= ef4_io_slot_reset,
3242 	.resume		= ef4_io_resume,
3243 };
3244 
3245 static struct pci_driver ef4_pci_driver = {
3246 	.name		= KBUILD_MODNAME,
3247 	.id_table	= ef4_pci_table,
3248 	.probe		= ef4_pci_probe,
3249 	.remove		= ef4_pci_remove,
3250 	.driver.pm	= &ef4_pm_ops,
3251 	.err_handler	= &ef4_err_handlers,
3252 };
3253 
3254 /**************************************************************************
3255  *
3256  * Kernel module interface
3257  *
3258  *************************************************************************/
3259 
3260 module_param(interrupt_mode, uint, 0444);
3261 MODULE_PARM_DESC(interrupt_mode,
3262 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3263 
3264 static int __init ef4_init_module(void)
3265 {
3266 	int rc;
3267 
3268 	printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3269 
3270 	rc = register_netdevice_notifier(&ef4_netdev_notifier);
3271 	if (rc)
3272 		goto err_notifier;
3273 
3274 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3275 	if (!reset_workqueue) {
3276 		rc = -ENOMEM;
3277 		goto err_reset;
3278 	}
3279 
3280 	rc = pci_register_driver(&ef4_pci_driver);
3281 	if (rc < 0)
3282 		goto err_pci;
3283 
3284 	return 0;
3285 
3286  err_pci:
3287 	destroy_workqueue(reset_workqueue);
3288  err_reset:
3289 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3290  err_notifier:
3291 	return rc;
3292 }
3293 
3294 static void __exit ef4_exit_module(void)
3295 {
3296 	printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3297 
3298 	pci_unregister_driver(&ef4_pci_driver);
3299 	destroy_workqueue(reset_workqueue);
3300 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3301 
3302 }
3303 
3304 module_init(ef4_init_module);
3305 module_exit(ef4_exit_module);
3306 
3307 MODULE_AUTHOR("Solarflare Communications and "
3308 	      "Michael Brown <mbrown@fensystems.co.uk>");
3309 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3310 MODULE_LICENSE("GPL");
3311 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3312 MODULE_VERSION(EF4_DRIVER_VERSION);
3313