1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/aer.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include "efx.h" 24 #include "nic.h" 25 #include "selftest.h" 26 27 #include "workarounds.h" 28 29 /************************************************************************** 30 * 31 * Type name strings 32 * 33 ************************************************************************** 34 */ 35 36 /* Loopback mode names (see LOOPBACK_MODE()) */ 37 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX; 38 const char *const ef4_loopback_mode_names[] = { 39 [LOOPBACK_NONE] = "NONE", 40 [LOOPBACK_DATA] = "DATAPATH", 41 [LOOPBACK_GMAC] = "GMAC", 42 [LOOPBACK_XGMII] = "XGMII", 43 [LOOPBACK_XGXS] = "XGXS", 44 [LOOPBACK_XAUI] = "XAUI", 45 [LOOPBACK_GMII] = "GMII", 46 [LOOPBACK_SGMII] = "SGMII", 47 [LOOPBACK_XGBR] = "XGBR", 48 [LOOPBACK_XFI] = "XFI", 49 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 50 [LOOPBACK_GMII_FAR] = "GMII_FAR", 51 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 52 [LOOPBACK_XFI_FAR] = "XFI_FAR", 53 [LOOPBACK_GPHY] = "GPHY", 54 [LOOPBACK_PHYXS] = "PHYXS", 55 [LOOPBACK_PCS] = "PCS", 56 [LOOPBACK_PMAPMD] = "PMA/PMD", 57 [LOOPBACK_XPORT] = "XPORT", 58 [LOOPBACK_XGMII_WS] = "XGMII_WS", 59 [LOOPBACK_XAUI_WS] = "XAUI_WS", 60 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 61 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 62 [LOOPBACK_GMII_WS] = "GMII_WS", 63 [LOOPBACK_XFI_WS] = "XFI_WS", 64 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 65 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 66 }; 67 68 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX; 69 const char *const ef4_reset_type_names[] = { 70 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 71 [RESET_TYPE_ALL] = "ALL", 72 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 73 [RESET_TYPE_WORLD] = "WORLD", 74 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 75 [RESET_TYPE_DATAPATH] = "DATAPATH", 76 [RESET_TYPE_DISABLE] = "DISABLE", 77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 78 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 80 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 81 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 82 }; 83 84 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 85 * queued onto this work queue. This is not a per-nic work queue, because 86 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised. 87 */ 88 static struct workqueue_struct *reset_workqueue; 89 90 /* How often and how many times to poll for a reset while waiting for a 91 * BIST that another function started to complete. 92 */ 93 #define BIST_WAIT_DELAY_MS 100 94 #define BIST_WAIT_DELAY_COUNT 100 95 96 /************************************************************************** 97 * 98 * Configurable values 99 * 100 *************************************************************************/ 101 102 /* 103 * Use separate channels for TX and RX events 104 * 105 * Set this to 1 to use separate channels for TX and RX. It allows us 106 * to control interrupt affinity separately for TX and RX. 107 * 108 * This is only used in MSI-X interrupt mode 109 */ 110 bool ef4_separate_tx_channels; 111 module_param(ef4_separate_tx_channels, bool, 0444); 112 MODULE_PARM_DESC(ef4_separate_tx_channels, 113 "Use separate channels for TX and RX"); 114 115 /* This is the weight assigned to each of the (per-channel) virtual 116 * NAPI devices. 117 */ 118 static int napi_weight = 64; 119 120 /* This is the time (in jiffies) between invocations of the hardware 121 * monitor. 122 * On Falcon-based NICs, this will: 123 * - Check the on-board hardware monitor; 124 * - Poll the link state and reconfigure the hardware as necessary. 125 * On Siena-based NICs for power systems with EEH support, this will give EEH a 126 * chance to start. 127 */ 128 static unsigned int ef4_monitor_interval = 1 * HZ; 129 130 /* Initial interrupt moderation settings. They can be modified after 131 * module load with ethtool. 132 * 133 * The default for RX should strike a balance between increasing the 134 * round-trip latency and reducing overhead. 135 */ 136 static unsigned int rx_irq_mod_usec = 60; 137 138 /* Initial interrupt moderation settings. They can be modified after 139 * module load with ethtool. 140 * 141 * This default is chosen to ensure that a 10G link does not go idle 142 * while a TX queue is stopped after it has become full. A queue is 143 * restarted when it drops below half full. The time this takes (assuming 144 * worst case 3 descriptors per packet and 1024 descriptors) is 145 * 512 / 3 * 1.2 = 205 usec. 146 */ 147 static unsigned int tx_irq_mod_usec = 150; 148 149 /* This is the first interrupt mode to try out of: 150 * 0 => MSI-X 151 * 1 => MSI 152 * 2 => legacy 153 */ 154 static unsigned int interrupt_mode; 155 156 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 157 * i.e. the number of CPUs among which we may distribute simultaneous 158 * interrupt handling. 159 * 160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 161 * The default (0) means to assign an interrupt to each core. 162 */ 163 static unsigned int rss_cpus; 164 module_param(rss_cpus, uint, 0444); 165 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 166 167 static bool phy_flash_cfg; 168 module_param(phy_flash_cfg, bool, 0644); 169 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 170 171 static unsigned irq_adapt_low_thresh = 8000; 172 module_param(irq_adapt_low_thresh, uint, 0644); 173 MODULE_PARM_DESC(irq_adapt_low_thresh, 174 "Threshold score for reducing IRQ moderation"); 175 176 static unsigned irq_adapt_high_thresh = 16000; 177 module_param(irq_adapt_high_thresh, uint, 0644); 178 MODULE_PARM_DESC(irq_adapt_high_thresh, 179 "Threshold score for increasing IRQ moderation"); 180 181 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 182 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 183 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 184 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 185 module_param(debug, uint, 0); 186 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 187 188 /************************************************************************** 189 * 190 * Utility functions and prototypes 191 * 192 *************************************************************************/ 193 194 static int ef4_soft_enable_interrupts(struct ef4_nic *efx); 195 static void ef4_soft_disable_interrupts(struct ef4_nic *efx); 196 static void ef4_remove_channel(struct ef4_channel *channel); 197 static void ef4_remove_channels(struct ef4_nic *efx); 198 static const struct ef4_channel_type ef4_default_channel_type; 199 static void ef4_remove_port(struct ef4_nic *efx); 200 static void ef4_init_napi_channel(struct ef4_channel *channel); 201 static void ef4_fini_napi(struct ef4_nic *efx); 202 static void ef4_fini_napi_channel(struct ef4_channel *channel); 203 static void ef4_fini_struct(struct ef4_nic *efx); 204 static void ef4_start_all(struct ef4_nic *efx); 205 static void ef4_stop_all(struct ef4_nic *efx); 206 207 #define EF4_ASSERT_RESET_SERIALISED(efx) \ 208 do { \ 209 if ((efx->state == STATE_READY) || \ 210 (efx->state == STATE_RECOVERY) || \ 211 (efx->state == STATE_DISABLED)) \ 212 ASSERT_RTNL(); \ 213 } while (0) 214 215 static int ef4_check_disabled(struct ef4_nic *efx) 216 { 217 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 218 netif_err(efx, drv, efx->net_dev, 219 "device is disabled due to earlier errors\n"); 220 return -EIO; 221 } 222 return 0; 223 } 224 225 /************************************************************************** 226 * 227 * Event queue processing 228 * 229 *************************************************************************/ 230 231 /* Process channel's event queue 232 * 233 * This function is responsible for processing the event queue of a 234 * single channel. The caller must guarantee that this function will 235 * never be concurrently called more than once on the same channel, 236 * though different channels may be being processed concurrently. 237 */ 238 static int ef4_process_channel(struct ef4_channel *channel, int budget) 239 { 240 struct ef4_tx_queue *tx_queue; 241 int spent; 242 243 if (unlikely(!channel->enabled)) 244 return 0; 245 246 ef4_for_each_channel_tx_queue(tx_queue, channel) { 247 tx_queue->pkts_compl = 0; 248 tx_queue->bytes_compl = 0; 249 } 250 251 spent = ef4_nic_process_eventq(channel, budget); 252 if (spent && ef4_channel_has_rx_queue(channel)) { 253 struct ef4_rx_queue *rx_queue = 254 ef4_channel_get_rx_queue(channel); 255 256 ef4_rx_flush_packet(channel); 257 ef4_fast_push_rx_descriptors(rx_queue, true); 258 } 259 260 /* Update BQL */ 261 ef4_for_each_channel_tx_queue(tx_queue, channel) { 262 if (tx_queue->bytes_compl) { 263 netdev_tx_completed_queue(tx_queue->core_txq, 264 tx_queue->pkts_compl, tx_queue->bytes_compl); 265 } 266 } 267 268 return spent; 269 } 270 271 /* NAPI poll handler 272 * 273 * NAPI guarantees serialisation of polls of the same device, which 274 * provides the guarantee required by ef4_process_channel(). 275 */ 276 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel) 277 { 278 int step = efx->irq_mod_step_us; 279 280 if (channel->irq_mod_score < irq_adapt_low_thresh) { 281 if (channel->irq_moderation_us > step) { 282 channel->irq_moderation_us -= step; 283 efx->type->push_irq_moderation(channel); 284 } 285 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 286 if (channel->irq_moderation_us < 287 efx->irq_rx_moderation_us) { 288 channel->irq_moderation_us += step; 289 efx->type->push_irq_moderation(channel); 290 } 291 } 292 293 channel->irq_count = 0; 294 channel->irq_mod_score = 0; 295 } 296 297 static int ef4_poll(struct napi_struct *napi, int budget) 298 { 299 struct ef4_channel *channel = 300 container_of(napi, struct ef4_channel, napi_str); 301 struct ef4_nic *efx = channel->efx; 302 int spent; 303 304 netif_vdbg(efx, intr, efx->net_dev, 305 "channel %d NAPI poll executing on CPU %d\n", 306 channel->channel, raw_smp_processor_id()); 307 308 spent = ef4_process_channel(channel, budget); 309 310 if (spent < budget) { 311 if (ef4_channel_has_rx_queue(channel) && 312 efx->irq_rx_adaptive && 313 unlikely(++channel->irq_count == 1000)) { 314 ef4_update_irq_mod(efx, channel); 315 } 316 317 ef4_filter_rfs_expire(channel); 318 319 /* There is no race here; although napi_disable() will 320 * only wait for napi_complete(), this isn't a problem 321 * since ef4_nic_eventq_read_ack() will have no effect if 322 * interrupts have already been disabled. 323 */ 324 napi_complete_done(napi, spent); 325 ef4_nic_eventq_read_ack(channel); 326 } 327 328 return spent; 329 } 330 331 /* Create event queue 332 * Event queue memory allocations are done only once. If the channel 333 * is reset, the memory buffer will be reused; this guards against 334 * errors during channel reset and also simplifies interrupt handling. 335 */ 336 static int ef4_probe_eventq(struct ef4_channel *channel) 337 { 338 struct ef4_nic *efx = channel->efx; 339 unsigned long entries; 340 341 netif_dbg(efx, probe, efx->net_dev, 342 "chan %d create event queue\n", channel->channel); 343 344 /* Build an event queue with room for one event per tx and rx buffer, 345 * plus some extra for link state events and MCDI completions. */ 346 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 347 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE); 348 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1; 349 350 return ef4_nic_probe_eventq(channel); 351 } 352 353 /* Prepare channel's event queue */ 354 static int ef4_init_eventq(struct ef4_channel *channel) 355 { 356 struct ef4_nic *efx = channel->efx; 357 int rc; 358 359 EF4_WARN_ON_PARANOID(channel->eventq_init); 360 361 netif_dbg(efx, drv, efx->net_dev, 362 "chan %d init event queue\n", channel->channel); 363 364 rc = ef4_nic_init_eventq(channel); 365 if (rc == 0) { 366 efx->type->push_irq_moderation(channel); 367 channel->eventq_read_ptr = 0; 368 channel->eventq_init = true; 369 } 370 return rc; 371 } 372 373 /* Enable event queue processing and NAPI */ 374 void ef4_start_eventq(struct ef4_channel *channel) 375 { 376 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 377 "chan %d start event queue\n", channel->channel); 378 379 /* Make sure the NAPI handler sees the enabled flag set */ 380 channel->enabled = true; 381 smp_wmb(); 382 383 napi_enable(&channel->napi_str); 384 ef4_nic_eventq_read_ack(channel); 385 } 386 387 /* Disable event queue processing and NAPI */ 388 void ef4_stop_eventq(struct ef4_channel *channel) 389 { 390 if (!channel->enabled) 391 return; 392 393 napi_disable(&channel->napi_str); 394 channel->enabled = false; 395 } 396 397 static void ef4_fini_eventq(struct ef4_channel *channel) 398 { 399 if (!channel->eventq_init) 400 return; 401 402 netif_dbg(channel->efx, drv, channel->efx->net_dev, 403 "chan %d fini event queue\n", channel->channel); 404 405 ef4_nic_fini_eventq(channel); 406 channel->eventq_init = false; 407 } 408 409 static void ef4_remove_eventq(struct ef4_channel *channel) 410 { 411 netif_dbg(channel->efx, drv, channel->efx->net_dev, 412 "chan %d remove event queue\n", channel->channel); 413 414 ef4_nic_remove_eventq(channel); 415 } 416 417 /************************************************************************** 418 * 419 * Channel handling 420 * 421 *************************************************************************/ 422 423 /* Allocate and initialise a channel structure. */ 424 static struct ef4_channel * 425 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel) 426 { 427 struct ef4_channel *channel; 428 struct ef4_rx_queue *rx_queue; 429 struct ef4_tx_queue *tx_queue; 430 int j; 431 432 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 433 if (!channel) 434 return NULL; 435 436 channel->efx = efx; 437 channel->channel = i; 438 channel->type = &ef4_default_channel_type; 439 440 for (j = 0; j < EF4_TXQ_TYPES; j++) { 441 tx_queue = &channel->tx_queue[j]; 442 tx_queue->efx = efx; 443 tx_queue->queue = i * EF4_TXQ_TYPES + j; 444 tx_queue->channel = channel; 445 } 446 447 rx_queue = &channel->rx_queue; 448 rx_queue->efx = efx; 449 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); 450 451 return channel; 452 } 453 454 /* Allocate and initialise a channel structure, copying parameters 455 * (but not resources) from an old channel structure. 456 */ 457 static struct ef4_channel * 458 ef4_copy_channel(const struct ef4_channel *old_channel) 459 { 460 struct ef4_channel *channel; 461 struct ef4_rx_queue *rx_queue; 462 struct ef4_tx_queue *tx_queue; 463 int j; 464 465 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 466 if (!channel) 467 return NULL; 468 469 *channel = *old_channel; 470 471 channel->napi_dev = NULL; 472 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 473 channel->napi_str.napi_id = 0; 474 channel->napi_str.state = 0; 475 memset(&channel->eventq, 0, sizeof(channel->eventq)); 476 477 for (j = 0; j < EF4_TXQ_TYPES; j++) { 478 tx_queue = &channel->tx_queue[j]; 479 if (tx_queue->channel) 480 tx_queue->channel = channel; 481 tx_queue->buffer = NULL; 482 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 483 } 484 485 rx_queue = &channel->rx_queue; 486 rx_queue->buffer = NULL; 487 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 488 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); 489 490 return channel; 491 } 492 493 static int ef4_probe_channel(struct ef4_channel *channel) 494 { 495 struct ef4_tx_queue *tx_queue; 496 struct ef4_rx_queue *rx_queue; 497 int rc; 498 499 netif_dbg(channel->efx, probe, channel->efx->net_dev, 500 "creating channel %d\n", channel->channel); 501 502 rc = channel->type->pre_probe(channel); 503 if (rc) 504 goto fail; 505 506 rc = ef4_probe_eventq(channel); 507 if (rc) 508 goto fail; 509 510 ef4_for_each_channel_tx_queue(tx_queue, channel) { 511 rc = ef4_probe_tx_queue(tx_queue); 512 if (rc) 513 goto fail; 514 } 515 516 ef4_for_each_channel_rx_queue(rx_queue, channel) { 517 rc = ef4_probe_rx_queue(rx_queue); 518 if (rc) 519 goto fail; 520 } 521 522 return 0; 523 524 fail: 525 ef4_remove_channel(channel); 526 return rc; 527 } 528 529 static void 530 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len) 531 { 532 struct ef4_nic *efx = channel->efx; 533 const char *type; 534 int number; 535 536 number = channel->channel; 537 if (efx->tx_channel_offset == 0) { 538 type = ""; 539 } else if (channel->channel < efx->tx_channel_offset) { 540 type = "-rx"; 541 } else { 542 type = "-tx"; 543 number -= efx->tx_channel_offset; 544 } 545 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 546 } 547 548 static void ef4_set_channel_names(struct ef4_nic *efx) 549 { 550 struct ef4_channel *channel; 551 552 ef4_for_each_channel(channel, efx) 553 channel->type->get_name(channel, 554 efx->msi_context[channel->channel].name, 555 sizeof(efx->msi_context[0].name)); 556 } 557 558 static int ef4_probe_channels(struct ef4_nic *efx) 559 { 560 struct ef4_channel *channel; 561 int rc; 562 563 /* Restart special buffer allocation */ 564 efx->next_buffer_table = 0; 565 566 /* Probe channels in reverse, so that any 'extra' channels 567 * use the start of the buffer table. This allows the traffic 568 * channels to be resized without moving them or wasting the 569 * entries before them. 570 */ 571 ef4_for_each_channel_rev(channel, efx) { 572 rc = ef4_probe_channel(channel); 573 if (rc) { 574 netif_err(efx, probe, efx->net_dev, 575 "failed to create channel %d\n", 576 channel->channel); 577 goto fail; 578 } 579 } 580 ef4_set_channel_names(efx); 581 582 return 0; 583 584 fail: 585 ef4_remove_channels(efx); 586 return rc; 587 } 588 589 /* Channels are shutdown and reinitialised whilst the NIC is running 590 * to propagate configuration changes (mtu, checksum offload), or 591 * to clear hardware error conditions 592 */ 593 static void ef4_start_datapath(struct ef4_nic *efx) 594 { 595 netdev_features_t old_features = efx->net_dev->features; 596 bool old_rx_scatter = efx->rx_scatter; 597 struct ef4_tx_queue *tx_queue; 598 struct ef4_rx_queue *rx_queue; 599 struct ef4_channel *channel; 600 size_t rx_buf_len; 601 602 /* Calculate the rx buffer allocation parameters required to 603 * support the current MTU, including padding for header 604 * alignment and overruns. 605 */ 606 efx->rx_dma_len = (efx->rx_prefix_size + 607 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) + 608 efx->type->rx_buffer_padding); 609 rx_buf_len = (sizeof(struct ef4_rx_page_state) + 610 efx->rx_ip_align + efx->rx_dma_len); 611 if (rx_buf_len <= PAGE_SIZE) { 612 efx->rx_scatter = efx->type->always_rx_scatter; 613 efx->rx_buffer_order = 0; 614 } else if (efx->type->can_rx_scatter) { 615 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 616 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) + 617 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE, 618 EF4_RX_BUF_ALIGNMENT) > 619 PAGE_SIZE); 620 efx->rx_scatter = true; 621 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE; 622 efx->rx_buffer_order = 0; 623 } else { 624 efx->rx_scatter = false; 625 efx->rx_buffer_order = get_order(rx_buf_len); 626 } 627 628 ef4_rx_config_page_split(efx); 629 if (efx->rx_buffer_order) 630 netif_dbg(efx, drv, efx->net_dev, 631 "RX buf len=%u; page order=%u batch=%u\n", 632 efx->rx_dma_len, efx->rx_buffer_order, 633 efx->rx_pages_per_batch); 634 else 635 netif_dbg(efx, drv, efx->net_dev, 636 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 637 efx->rx_dma_len, efx->rx_page_buf_step, 638 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 639 640 /* Restore previously fixed features in hw_features and remove 641 * features which are fixed now 642 */ 643 efx->net_dev->hw_features |= efx->net_dev->features; 644 efx->net_dev->hw_features &= ~efx->fixed_features; 645 efx->net_dev->features |= efx->fixed_features; 646 if (efx->net_dev->features != old_features) 647 netdev_features_change(efx->net_dev); 648 649 /* RX filters may also have scatter-enabled flags */ 650 if (efx->rx_scatter != old_rx_scatter) 651 efx->type->filter_update_rx_scatter(efx); 652 653 /* We must keep at least one descriptor in a TX ring empty. 654 * We could avoid this when the queue size does not exactly 655 * match the hardware ring size, but it's not that important. 656 * Therefore we stop the queue when one more skb might fill 657 * the ring completely. We wake it when half way back to 658 * empty. 659 */ 660 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx); 661 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 662 663 /* Initialise the channels */ 664 ef4_for_each_channel(channel, efx) { 665 ef4_for_each_channel_tx_queue(tx_queue, channel) { 666 ef4_init_tx_queue(tx_queue); 667 atomic_inc(&efx->active_queues); 668 } 669 670 ef4_for_each_channel_rx_queue(rx_queue, channel) { 671 ef4_init_rx_queue(rx_queue); 672 atomic_inc(&efx->active_queues); 673 ef4_stop_eventq(channel); 674 ef4_fast_push_rx_descriptors(rx_queue, false); 675 ef4_start_eventq(channel); 676 } 677 678 WARN_ON(channel->rx_pkt_n_frags); 679 } 680 681 if (netif_device_present(efx->net_dev)) 682 netif_tx_wake_all_queues(efx->net_dev); 683 } 684 685 static void ef4_stop_datapath(struct ef4_nic *efx) 686 { 687 struct ef4_channel *channel; 688 struct ef4_tx_queue *tx_queue; 689 struct ef4_rx_queue *rx_queue; 690 int rc; 691 692 EF4_ASSERT_RESET_SERIALISED(efx); 693 BUG_ON(efx->port_enabled); 694 695 /* Stop RX refill */ 696 ef4_for_each_channel(channel, efx) { 697 ef4_for_each_channel_rx_queue(rx_queue, channel) 698 rx_queue->refill_enabled = false; 699 } 700 701 ef4_for_each_channel(channel, efx) { 702 /* RX packet processing is pipelined, so wait for the 703 * NAPI handler to complete. At least event queue 0 704 * might be kept active by non-data events, so don't 705 * use napi_synchronize() but actually disable NAPI 706 * temporarily. 707 */ 708 if (ef4_channel_has_rx_queue(channel)) { 709 ef4_stop_eventq(channel); 710 ef4_start_eventq(channel); 711 } 712 } 713 714 rc = efx->type->fini_dmaq(efx); 715 if (rc && EF4_WORKAROUND_7803(efx)) { 716 /* Schedule a reset to recover from the flush failure. The 717 * descriptor caches reference memory we're about to free, 718 * but falcon_reconfigure_mac_wrapper() won't reconnect 719 * the MACs because of the pending reset. 720 */ 721 netif_err(efx, drv, efx->net_dev, 722 "Resetting to recover from flush failure\n"); 723 ef4_schedule_reset(efx, RESET_TYPE_ALL); 724 } else if (rc) { 725 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 726 } else { 727 netif_dbg(efx, drv, efx->net_dev, 728 "successfully flushed all queues\n"); 729 } 730 731 ef4_for_each_channel(channel, efx) { 732 ef4_for_each_channel_rx_queue(rx_queue, channel) 733 ef4_fini_rx_queue(rx_queue); 734 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 735 ef4_fini_tx_queue(tx_queue); 736 } 737 } 738 739 static void ef4_remove_channel(struct ef4_channel *channel) 740 { 741 struct ef4_tx_queue *tx_queue; 742 struct ef4_rx_queue *rx_queue; 743 744 netif_dbg(channel->efx, drv, channel->efx->net_dev, 745 "destroy chan %d\n", channel->channel); 746 747 ef4_for_each_channel_rx_queue(rx_queue, channel) 748 ef4_remove_rx_queue(rx_queue); 749 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 750 ef4_remove_tx_queue(tx_queue); 751 ef4_remove_eventq(channel); 752 channel->type->post_remove(channel); 753 } 754 755 static void ef4_remove_channels(struct ef4_nic *efx) 756 { 757 struct ef4_channel *channel; 758 759 ef4_for_each_channel(channel, efx) 760 ef4_remove_channel(channel); 761 } 762 763 int 764 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries) 765 { 766 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel; 767 u32 old_rxq_entries, old_txq_entries; 768 unsigned i, next_buffer_table = 0; 769 int rc, rc2; 770 771 rc = ef4_check_disabled(efx); 772 if (rc) 773 return rc; 774 775 /* Not all channels should be reallocated. We must avoid 776 * reallocating their buffer table entries. 777 */ 778 ef4_for_each_channel(channel, efx) { 779 struct ef4_rx_queue *rx_queue; 780 struct ef4_tx_queue *tx_queue; 781 782 if (channel->type->copy) 783 continue; 784 next_buffer_table = max(next_buffer_table, 785 channel->eventq.index + 786 channel->eventq.entries); 787 ef4_for_each_channel_rx_queue(rx_queue, channel) 788 next_buffer_table = max(next_buffer_table, 789 rx_queue->rxd.index + 790 rx_queue->rxd.entries); 791 ef4_for_each_channel_tx_queue(tx_queue, channel) 792 next_buffer_table = max(next_buffer_table, 793 tx_queue->txd.index + 794 tx_queue->txd.entries); 795 } 796 797 ef4_device_detach_sync(efx); 798 ef4_stop_all(efx); 799 ef4_soft_disable_interrupts(efx); 800 801 /* Clone channels (where possible) */ 802 memset(other_channel, 0, sizeof(other_channel)); 803 for (i = 0; i < efx->n_channels; i++) { 804 channel = efx->channel[i]; 805 if (channel->type->copy) 806 channel = channel->type->copy(channel); 807 if (!channel) { 808 rc = -ENOMEM; 809 goto out; 810 } 811 other_channel[i] = channel; 812 } 813 814 /* Swap entry counts and channel pointers */ 815 old_rxq_entries = efx->rxq_entries; 816 old_txq_entries = efx->txq_entries; 817 efx->rxq_entries = rxq_entries; 818 efx->txq_entries = txq_entries; 819 for (i = 0; i < efx->n_channels; i++) { 820 channel = efx->channel[i]; 821 efx->channel[i] = other_channel[i]; 822 other_channel[i] = channel; 823 } 824 825 /* Restart buffer table allocation */ 826 efx->next_buffer_table = next_buffer_table; 827 828 for (i = 0; i < efx->n_channels; i++) { 829 channel = efx->channel[i]; 830 if (!channel->type->copy) 831 continue; 832 rc = ef4_probe_channel(channel); 833 if (rc) 834 goto rollback; 835 ef4_init_napi_channel(efx->channel[i]); 836 } 837 838 out: 839 /* Destroy unused channel structures */ 840 for (i = 0; i < efx->n_channels; i++) { 841 channel = other_channel[i]; 842 if (channel && channel->type->copy) { 843 ef4_fini_napi_channel(channel); 844 ef4_remove_channel(channel); 845 kfree(channel); 846 } 847 } 848 849 rc2 = ef4_soft_enable_interrupts(efx); 850 if (rc2) { 851 rc = rc ? rc : rc2; 852 netif_err(efx, drv, efx->net_dev, 853 "unable to restart interrupts on channel reallocation\n"); 854 ef4_schedule_reset(efx, RESET_TYPE_DISABLE); 855 } else { 856 ef4_start_all(efx); 857 netif_device_attach(efx->net_dev); 858 } 859 return rc; 860 861 rollback: 862 /* Swap back */ 863 efx->rxq_entries = old_rxq_entries; 864 efx->txq_entries = old_txq_entries; 865 for (i = 0; i < efx->n_channels; i++) { 866 channel = efx->channel[i]; 867 efx->channel[i] = other_channel[i]; 868 other_channel[i] = channel; 869 } 870 goto out; 871 } 872 873 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue) 874 { 875 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 876 } 877 878 static const struct ef4_channel_type ef4_default_channel_type = { 879 .pre_probe = ef4_channel_dummy_op_int, 880 .post_remove = ef4_channel_dummy_op_void, 881 .get_name = ef4_get_channel_name, 882 .copy = ef4_copy_channel, 883 .keep_eventq = false, 884 }; 885 886 int ef4_channel_dummy_op_int(struct ef4_channel *channel) 887 { 888 return 0; 889 } 890 891 void ef4_channel_dummy_op_void(struct ef4_channel *channel) 892 { 893 } 894 895 /************************************************************************** 896 * 897 * Port handling 898 * 899 **************************************************************************/ 900 901 /* This ensures that the kernel is kept informed (via 902 * netif_carrier_on/off) of the link status, and also maintains the 903 * link status's stop on the port's TX queue. 904 */ 905 void ef4_link_status_changed(struct ef4_nic *efx) 906 { 907 struct ef4_link_state *link_state = &efx->link_state; 908 909 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 910 * that no events are triggered between unregister_netdev() and the 911 * driver unloading. A more general condition is that NETDEV_CHANGE 912 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 913 if (!netif_running(efx->net_dev)) 914 return; 915 916 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 917 efx->n_link_state_changes++; 918 919 if (link_state->up) 920 netif_carrier_on(efx->net_dev); 921 else 922 netif_carrier_off(efx->net_dev); 923 } 924 925 /* Status message for kernel log */ 926 if (link_state->up) 927 netif_info(efx, link, efx->net_dev, 928 "link up at %uMbps %s-duplex (MTU %d)\n", 929 link_state->speed, link_state->fd ? "full" : "half", 930 efx->net_dev->mtu); 931 else 932 netif_info(efx, link, efx->net_dev, "link down\n"); 933 } 934 935 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising) 936 { 937 efx->link_advertising = advertising; 938 if (advertising) { 939 if (advertising & ADVERTISED_Pause) 940 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX); 941 else 942 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX); 943 if (advertising & ADVERTISED_Asym_Pause) 944 efx->wanted_fc ^= EF4_FC_TX; 945 } 946 } 947 948 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc) 949 { 950 efx->wanted_fc = wanted_fc; 951 if (efx->link_advertising) { 952 if (wanted_fc & EF4_FC_RX) 953 efx->link_advertising |= (ADVERTISED_Pause | 954 ADVERTISED_Asym_Pause); 955 else 956 efx->link_advertising &= ~(ADVERTISED_Pause | 957 ADVERTISED_Asym_Pause); 958 if (wanted_fc & EF4_FC_TX) 959 efx->link_advertising ^= ADVERTISED_Asym_Pause; 960 } 961 } 962 963 static void ef4_fini_port(struct ef4_nic *efx); 964 965 /* We assume that efx->type->reconfigure_mac will always try to sync RX 966 * filters and therefore needs to read-lock the filter table against freeing 967 */ 968 void ef4_mac_reconfigure(struct ef4_nic *efx) 969 { 970 down_read(&efx->filter_sem); 971 efx->type->reconfigure_mac(efx); 972 up_read(&efx->filter_sem); 973 } 974 975 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 976 * the MAC appropriately. All other PHY configuration changes are pushed 977 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC 978 * through ef4_monitor(). 979 * 980 * Callers must hold the mac_lock 981 */ 982 int __ef4_reconfigure_port(struct ef4_nic *efx) 983 { 984 enum ef4_phy_mode phy_mode; 985 int rc; 986 987 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 988 989 /* Disable PHY transmit in mac level loopbacks */ 990 phy_mode = efx->phy_mode; 991 if (LOOPBACK_INTERNAL(efx)) 992 efx->phy_mode |= PHY_MODE_TX_DISABLED; 993 else 994 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 995 996 rc = efx->type->reconfigure_port(efx); 997 998 if (rc) 999 efx->phy_mode = phy_mode; 1000 1001 return rc; 1002 } 1003 1004 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1005 * disabled. */ 1006 int ef4_reconfigure_port(struct ef4_nic *efx) 1007 { 1008 int rc; 1009 1010 EF4_ASSERT_RESET_SERIALISED(efx); 1011 1012 mutex_lock(&efx->mac_lock); 1013 rc = __ef4_reconfigure_port(efx); 1014 mutex_unlock(&efx->mac_lock); 1015 1016 return rc; 1017 } 1018 1019 /* Asynchronous work item for changing MAC promiscuity and multicast 1020 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1021 * MAC directly. */ 1022 static void ef4_mac_work(struct work_struct *data) 1023 { 1024 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work); 1025 1026 mutex_lock(&efx->mac_lock); 1027 if (efx->port_enabled) 1028 ef4_mac_reconfigure(efx); 1029 mutex_unlock(&efx->mac_lock); 1030 } 1031 1032 static int ef4_probe_port(struct ef4_nic *efx) 1033 { 1034 int rc; 1035 1036 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1037 1038 if (phy_flash_cfg) 1039 efx->phy_mode = PHY_MODE_SPECIAL; 1040 1041 /* Connect up MAC/PHY operations table */ 1042 rc = efx->type->probe_port(efx); 1043 if (rc) 1044 return rc; 1045 1046 /* Initialise MAC address to permanent address */ 1047 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1048 1049 return 0; 1050 } 1051 1052 static int ef4_init_port(struct ef4_nic *efx) 1053 { 1054 int rc; 1055 1056 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1057 1058 mutex_lock(&efx->mac_lock); 1059 1060 rc = efx->phy_op->init(efx); 1061 if (rc) 1062 goto fail1; 1063 1064 efx->port_initialized = true; 1065 1066 /* Reconfigure the MAC before creating dma queues (required for 1067 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1068 ef4_mac_reconfigure(efx); 1069 1070 /* Ensure the PHY advertises the correct flow control settings */ 1071 rc = efx->phy_op->reconfigure(efx); 1072 if (rc && rc != -EPERM) 1073 goto fail2; 1074 1075 mutex_unlock(&efx->mac_lock); 1076 return 0; 1077 1078 fail2: 1079 efx->phy_op->fini(efx); 1080 fail1: 1081 mutex_unlock(&efx->mac_lock); 1082 return rc; 1083 } 1084 1085 static void ef4_start_port(struct ef4_nic *efx) 1086 { 1087 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1088 BUG_ON(efx->port_enabled); 1089 1090 mutex_lock(&efx->mac_lock); 1091 efx->port_enabled = true; 1092 1093 /* Ensure MAC ingress/egress is enabled */ 1094 ef4_mac_reconfigure(efx); 1095 1096 mutex_unlock(&efx->mac_lock); 1097 } 1098 1099 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1100 * and the async self-test, wait for them to finish and prevent them 1101 * being scheduled again. This doesn't cover online resets, which 1102 * should only be cancelled when removing the device. 1103 */ 1104 static void ef4_stop_port(struct ef4_nic *efx) 1105 { 1106 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1107 1108 EF4_ASSERT_RESET_SERIALISED(efx); 1109 1110 mutex_lock(&efx->mac_lock); 1111 efx->port_enabled = false; 1112 mutex_unlock(&efx->mac_lock); 1113 1114 /* Serialise against ef4_set_multicast_list() */ 1115 netif_addr_lock_bh(efx->net_dev); 1116 netif_addr_unlock_bh(efx->net_dev); 1117 1118 cancel_delayed_work_sync(&efx->monitor_work); 1119 ef4_selftest_async_cancel(efx); 1120 cancel_work_sync(&efx->mac_work); 1121 } 1122 1123 static void ef4_fini_port(struct ef4_nic *efx) 1124 { 1125 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1126 1127 if (!efx->port_initialized) 1128 return; 1129 1130 efx->phy_op->fini(efx); 1131 efx->port_initialized = false; 1132 1133 efx->link_state.up = false; 1134 ef4_link_status_changed(efx); 1135 } 1136 1137 static void ef4_remove_port(struct ef4_nic *efx) 1138 { 1139 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1140 1141 efx->type->remove_port(efx); 1142 } 1143 1144 /************************************************************************** 1145 * 1146 * NIC handling 1147 * 1148 **************************************************************************/ 1149 1150 static LIST_HEAD(ef4_primary_list); 1151 static LIST_HEAD(ef4_unassociated_list); 1152 1153 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right) 1154 { 1155 return left->type == right->type && 1156 left->vpd_sn && right->vpd_sn && 1157 !strcmp(left->vpd_sn, right->vpd_sn); 1158 } 1159 1160 static void ef4_associate(struct ef4_nic *efx) 1161 { 1162 struct ef4_nic *other, *next; 1163 1164 if (efx->primary == efx) { 1165 /* Adding primary function; look for secondaries */ 1166 1167 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1168 list_add_tail(&efx->node, &ef4_primary_list); 1169 1170 list_for_each_entry_safe(other, next, &ef4_unassociated_list, 1171 node) { 1172 if (ef4_same_controller(efx, other)) { 1173 list_del(&other->node); 1174 netif_dbg(other, probe, other->net_dev, 1175 "moving to secondary list of %s %s\n", 1176 pci_name(efx->pci_dev), 1177 efx->net_dev->name); 1178 list_add_tail(&other->node, 1179 &efx->secondary_list); 1180 other->primary = efx; 1181 } 1182 } 1183 } else { 1184 /* Adding secondary function; look for primary */ 1185 1186 list_for_each_entry(other, &ef4_primary_list, node) { 1187 if (ef4_same_controller(efx, other)) { 1188 netif_dbg(efx, probe, efx->net_dev, 1189 "adding to secondary list of %s %s\n", 1190 pci_name(other->pci_dev), 1191 other->net_dev->name); 1192 list_add_tail(&efx->node, 1193 &other->secondary_list); 1194 efx->primary = other; 1195 return; 1196 } 1197 } 1198 1199 netif_dbg(efx, probe, efx->net_dev, 1200 "adding to unassociated list\n"); 1201 list_add_tail(&efx->node, &ef4_unassociated_list); 1202 } 1203 } 1204 1205 static void ef4_dissociate(struct ef4_nic *efx) 1206 { 1207 struct ef4_nic *other, *next; 1208 1209 list_del(&efx->node); 1210 efx->primary = NULL; 1211 1212 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1213 list_del(&other->node); 1214 netif_dbg(other, probe, other->net_dev, 1215 "moving to unassociated list\n"); 1216 list_add_tail(&other->node, &ef4_unassociated_list); 1217 other->primary = NULL; 1218 } 1219 } 1220 1221 /* This configures the PCI device to enable I/O and DMA. */ 1222 static int ef4_init_io(struct ef4_nic *efx) 1223 { 1224 struct pci_dev *pci_dev = efx->pci_dev; 1225 dma_addr_t dma_mask = efx->type->max_dma_mask; 1226 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1227 int rc, bar; 1228 1229 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1230 1231 bar = efx->type->mem_bar; 1232 1233 rc = pci_enable_device(pci_dev); 1234 if (rc) { 1235 netif_err(efx, probe, efx->net_dev, 1236 "failed to enable PCI device\n"); 1237 goto fail1; 1238 } 1239 1240 pci_set_master(pci_dev); 1241 1242 /* Set the PCI DMA mask. Try all possibilities from our genuine mask 1243 * down to 32 bits, because some architectures will allow 40 bit 1244 * masks event though they reject 46 bit masks. 1245 */ 1246 while (dma_mask > 0x7fffffffUL) { 1247 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1248 if (rc == 0) 1249 break; 1250 dma_mask >>= 1; 1251 } 1252 if (rc) { 1253 netif_err(efx, probe, efx->net_dev, 1254 "could not find a suitable DMA mask\n"); 1255 goto fail2; 1256 } 1257 netif_dbg(efx, probe, efx->net_dev, 1258 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1259 1260 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1261 rc = pci_request_region(pci_dev, bar, "sfc"); 1262 if (rc) { 1263 netif_err(efx, probe, efx->net_dev, 1264 "request for memory BAR failed\n"); 1265 rc = -EIO; 1266 goto fail3; 1267 } 1268 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1269 if (!efx->membase) { 1270 netif_err(efx, probe, efx->net_dev, 1271 "could not map memory BAR at %llx+%x\n", 1272 (unsigned long long)efx->membase_phys, mem_map_size); 1273 rc = -ENOMEM; 1274 goto fail4; 1275 } 1276 netif_dbg(efx, probe, efx->net_dev, 1277 "memory BAR at %llx+%x (virtual %p)\n", 1278 (unsigned long long)efx->membase_phys, mem_map_size, 1279 efx->membase); 1280 1281 return 0; 1282 1283 fail4: 1284 pci_release_region(efx->pci_dev, bar); 1285 fail3: 1286 efx->membase_phys = 0; 1287 fail2: 1288 pci_disable_device(efx->pci_dev); 1289 fail1: 1290 return rc; 1291 } 1292 1293 static void ef4_fini_io(struct ef4_nic *efx) 1294 { 1295 int bar; 1296 1297 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1298 1299 if (efx->membase) { 1300 iounmap(efx->membase); 1301 efx->membase = NULL; 1302 } 1303 1304 if (efx->membase_phys) { 1305 bar = efx->type->mem_bar; 1306 pci_release_region(efx->pci_dev, bar); 1307 efx->membase_phys = 0; 1308 } 1309 1310 /* Don't disable bus-mastering if VFs are assigned */ 1311 if (!pci_vfs_assigned(efx->pci_dev)) 1312 pci_disable_device(efx->pci_dev); 1313 } 1314 1315 void ef4_set_default_rx_indir_table(struct ef4_nic *efx) 1316 { 1317 size_t i; 1318 1319 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1320 efx->rx_indir_table[i] = 1321 ethtool_rxfh_indir_default(i, efx->rss_spread); 1322 } 1323 1324 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx) 1325 { 1326 cpumask_var_t thread_mask; 1327 unsigned int count; 1328 int cpu; 1329 1330 if (rss_cpus) { 1331 count = rss_cpus; 1332 } else { 1333 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1334 netif_warn(efx, probe, efx->net_dev, 1335 "RSS disabled due to allocation failure\n"); 1336 return 1; 1337 } 1338 1339 count = 0; 1340 for_each_online_cpu(cpu) { 1341 if (!cpumask_test_cpu(cpu, thread_mask)) { 1342 ++count; 1343 cpumask_or(thread_mask, thread_mask, 1344 topology_sibling_cpumask(cpu)); 1345 } 1346 } 1347 1348 free_cpumask_var(thread_mask); 1349 } 1350 1351 if (count > EF4_MAX_RX_QUEUES) { 1352 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, 1353 "Reducing number of rx queues from %u to %u.\n", 1354 count, EF4_MAX_RX_QUEUES); 1355 count = EF4_MAX_RX_QUEUES; 1356 } 1357 1358 return count; 1359 } 1360 1361 /* Probe the number and type of interrupts we are able to obtain, and 1362 * the resulting numbers of channels and RX queues. 1363 */ 1364 static int ef4_probe_interrupts(struct ef4_nic *efx) 1365 { 1366 unsigned int extra_channels = 0; 1367 unsigned int i, j; 1368 int rc; 1369 1370 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) 1371 if (efx->extra_channel_type[i]) 1372 ++extra_channels; 1373 1374 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) { 1375 struct msix_entry xentries[EF4_MAX_CHANNELS]; 1376 unsigned int n_channels; 1377 1378 n_channels = ef4_wanted_parallelism(efx); 1379 if (ef4_separate_tx_channels) 1380 n_channels *= 2; 1381 n_channels += extra_channels; 1382 n_channels = min(n_channels, efx->max_channels); 1383 1384 for (i = 0; i < n_channels; i++) 1385 xentries[i].entry = i; 1386 rc = pci_enable_msix_range(efx->pci_dev, 1387 xentries, 1, n_channels); 1388 if (rc < 0) { 1389 /* Fall back to single channel MSI */ 1390 efx->interrupt_mode = EF4_INT_MODE_MSI; 1391 netif_err(efx, drv, efx->net_dev, 1392 "could not enable MSI-X\n"); 1393 } else if (rc < n_channels) { 1394 netif_err(efx, drv, efx->net_dev, 1395 "WARNING: Insufficient MSI-X vectors" 1396 " available (%d < %u).\n", rc, n_channels); 1397 netif_err(efx, drv, efx->net_dev, 1398 "WARNING: Performance may be reduced.\n"); 1399 n_channels = rc; 1400 } 1401 1402 if (rc > 0) { 1403 efx->n_channels = n_channels; 1404 if (n_channels > extra_channels) 1405 n_channels -= extra_channels; 1406 if (ef4_separate_tx_channels) { 1407 efx->n_tx_channels = min(max(n_channels / 2, 1408 1U), 1409 efx->max_tx_channels); 1410 efx->n_rx_channels = max(n_channels - 1411 efx->n_tx_channels, 1412 1U); 1413 } else { 1414 efx->n_tx_channels = min(n_channels, 1415 efx->max_tx_channels); 1416 efx->n_rx_channels = n_channels; 1417 } 1418 for (i = 0; i < efx->n_channels; i++) 1419 ef4_get_channel(efx, i)->irq = 1420 xentries[i].vector; 1421 } 1422 } 1423 1424 /* Try single interrupt MSI */ 1425 if (efx->interrupt_mode == EF4_INT_MODE_MSI) { 1426 efx->n_channels = 1; 1427 efx->n_rx_channels = 1; 1428 efx->n_tx_channels = 1; 1429 rc = pci_enable_msi(efx->pci_dev); 1430 if (rc == 0) { 1431 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1432 } else { 1433 netif_err(efx, drv, efx->net_dev, 1434 "could not enable MSI\n"); 1435 efx->interrupt_mode = EF4_INT_MODE_LEGACY; 1436 } 1437 } 1438 1439 /* Assume legacy interrupts */ 1440 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) { 1441 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0); 1442 efx->n_rx_channels = 1; 1443 efx->n_tx_channels = 1; 1444 efx->legacy_irq = efx->pci_dev->irq; 1445 } 1446 1447 /* Assign extra channels if possible */ 1448 j = efx->n_channels; 1449 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) { 1450 if (!efx->extra_channel_type[i]) 1451 continue; 1452 if (efx->interrupt_mode != EF4_INT_MODE_MSIX || 1453 efx->n_channels <= extra_channels) { 1454 efx->extra_channel_type[i]->handle_no_channel(efx); 1455 } else { 1456 --j; 1457 ef4_get_channel(efx, j)->type = 1458 efx->extra_channel_type[i]; 1459 } 1460 } 1461 1462 efx->rss_spread = efx->n_rx_channels; 1463 1464 return 0; 1465 } 1466 1467 static int ef4_soft_enable_interrupts(struct ef4_nic *efx) 1468 { 1469 struct ef4_channel *channel, *end_channel; 1470 int rc; 1471 1472 BUG_ON(efx->state == STATE_DISABLED); 1473 1474 efx->irq_soft_enabled = true; 1475 smp_wmb(); 1476 1477 ef4_for_each_channel(channel, efx) { 1478 if (!channel->type->keep_eventq) { 1479 rc = ef4_init_eventq(channel); 1480 if (rc) 1481 goto fail; 1482 } 1483 ef4_start_eventq(channel); 1484 } 1485 1486 return 0; 1487 fail: 1488 end_channel = channel; 1489 ef4_for_each_channel(channel, efx) { 1490 if (channel == end_channel) 1491 break; 1492 ef4_stop_eventq(channel); 1493 if (!channel->type->keep_eventq) 1494 ef4_fini_eventq(channel); 1495 } 1496 1497 return rc; 1498 } 1499 1500 static void ef4_soft_disable_interrupts(struct ef4_nic *efx) 1501 { 1502 struct ef4_channel *channel; 1503 1504 if (efx->state == STATE_DISABLED) 1505 return; 1506 1507 efx->irq_soft_enabled = false; 1508 smp_wmb(); 1509 1510 if (efx->legacy_irq) 1511 synchronize_irq(efx->legacy_irq); 1512 1513 ef4_for_each_channel(channel, efx) { 1514 if (channel->irq) 1515 synchronize_irq(channel->irq); 1516 1517 ef4_stop_eventq(channel); 1518 if (!channel->type->keep_eventq) 1519 ef4_fini_eventq(channel); 1520 } 1521 } 1522 1523 static int ef4_enable_interrupts(struct ef4_nic *efx) 1524 { 1525 struct ef4_channel *channel, *end_channel; 1526 int rc; 1527 1528 BUG_ON(efx->state == STATE_DISABLED); 1529 1530 if (efx->eeh_disabled_legacy_irq) { 1531 enable_irq(efx->legacy_irq); 1532 efx->eeh_disabled_legacy_irq = false; 1533 } 1534 1535 efx->type->irq_enable_master(efx); 1536 1537 ef4_for_each_channel(channel, efx) { 1538 if (channel->type->keep_eventq) { 1539 rc = ef4_init_eventq(channel); 1540 if (rc) 1541 goto fail; 1542 } 1543 } 1544 1545 rc = ef4_soft_enable_interrupts(efx); 1546 if (rc) 1547 goto fail; 1548 1549 return 0; 1550 1551 fail: 1552 end_channel = channel; 1553 ef4_for_each_channel(channel, efx) { 1554 if (channel == end_channel) 1555 break; 1556 if (channel->type->keep_eventq) 1557 ef4_fini_eventq(channel); 1558 } 1559 1560 efx->type->irq_disable_non_ev(efx); 1561 1562 return rc; 1563 } 1564 1565 static void ef4_disable_interrupts(struct ef4_nic *efx) 1566 { 1567 struct ef4_channel *channel; 1568 1569 ef4_soft_disable_interrupts(efx); 1570 1571 ef4_for_each_channel(channel, efx) { 1572 if (channel->type->keep_eventq) 1573 ef4_fini_eventq(channel); 1574 } 1575 1576 efx->type->irq_disable_non_ev(efx); 1577 } 1578 1579 static void ef4_remove_interrupts(struct ef4_nic *efx) 1580 { 1581 struct ef4_channel *channel; 1582 1583 /* Remove MSI/MSI-X interrupts */ 1584 ef4_for_each_channel(channel, efx) 1585 channel->irq = 0; 1586 pci_disable_msi(efx->pci_dev); 1587 pci_disable_msix(efx->pci_dev); 1588 1589 /* Remove legacy interrupt */ 1590 efx->legacy_irq = 0; 1591 } 1592 1593 static void ef4_set_channels(struct ef4_nic *efx) 1594 { 1595 struct ef4_channel *channel; 1596 struct ef4_tx_queue *tx_queue; 1597 1598 efx->tx_channel_offset = 1599 ef4_separate_tx_channels ? 1600 efx->n_channels - efx->n_tx_channels : 0; 1601 1602 /* We need to mark which channels really have RX and TX 1603 * queues, and adjust the TX queue numbers if we have separate 1604 * RX-only and TX-only channels. 1605 */ 1606 ef4_for_each_channel(channel, efx) { 1607 if (channel->channel < efx->n_rx_channels) 1608 channel->rx_queue.core_index = channel->channel; 1609 else 1610 channel->rx_queue.core_index = -1; 1611 1612 ef4_for_each_channel_tx_queue(tx_queue, channel) 1613 tx_queue->queue -= (efx->tx_channel_offset * 1614 EF4_TXQ_TYPES); 1615 } 1616 } 1617 1618 static int ef4_probe_nic(struct ef4_nic *efx) 1619 { 1620 int rc; 1621 1622 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1623 1624 /* Carry out hardware-type specific initialisation */ 1625 rc = efx->type->probe(efx); 1626 if (rc) 1627 return rc; 1628 1629 do { 1630 if (!efx->max_channels || !efx->max_tx_channels) { 1631 netif_err(efx, drv, efx->net_dev, 1632 "Insufficient resources to allocate" 1633 " any channels\n"); 1634 rc = -ENOSPC; 1635 goto fail1; 1636 } 1637 1638 /* Determine the number of channels and queues by trying 1639 * to hook in MSI-X interrupts. 1640 */ 1641 rc = ef4_probe_interrupts(efx); 1642 if (rc) 1643 goto fail1; 1644 1645 ef4_set_channels(efx); 1646 1647 /* dimension_resources can fail with EAGAIN */ 1648 rc = efx->type->dimension_resources(efx); 1649 if (rc != 0 && rc != -EAGAIN) 1650 goto fail2; 1651 1652 if (rc == -EAGAIN) 1653 /* try again with new max_channels */ 1654 ef4_remove_interrupts(efx); 1655 1656 } while (rc == -EAGAIN); 1657 1658 if (efx->n_channels > 1) 1659 netdev_rss_key_fill(&efx->rx_hash_key, 1660 sizeof(efx->rx_hash_key)); 1661 ef4_set_default_rx_indir_table(efx); 1662 1663 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1664 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1665 1666 /* Initialise the interrupt moderation settings */ 1667 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 1668 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1669 true); 1670 1671 return 0; 1672 1673 fail2: 1674 ef4_remove_interrupts(efx); 1675 fail1: 1676 efx->type->remove(efx); 1677 return rc; 1678 } 1679 1680 static void ef4_remove_nic(struct ef4_nic *efx) 1681 { 1682 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1683 1684 ef4_remove_interrupts(efx); 1685 efx->type->remove(efx); 1686 } 1687 1688 static int ef4_probe_filters(struct ef4_nic *efx) 1689 { 1690 int rc; 1691 1692 spin_lock_init(&efx->filter_lock); 1693 init_rwsem(&efx->filter_sem); 1694 mutex_lock(&efx->mac_lock); 1695 down_write(&efx->filter_sem); 1696 rc = efx->type->filter_table_probe(efx); 1697 if (rc) 1698 goto out_unlock; 1699 1700 #ifdef CONFIG_RFS_ACCEL 1701 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1702 struct ef4_channel *channel; 1703 int i, success = 1; 1704 1705 ef4_for_each_channel(channel, efx) { 1706 channel->rps_flow_id = 1707 kcalloc(efx->type->max_rx_ip_filters, 1708 sizeof(*channel->rps_flow_id), 1709 GFP_KERNEL); 1710 if (!channel->rps_flow_id) 1711 success = 0; 1712 else 1713 for (i = 0; 1714 i < efx->type->max_rx_ip_filters; 1715 ++i) 1716 channel->rps_flow_id[i] = 1717 RPS_FLOW_ID_INVALID; 1718 } 1719 1720 if (!success) { 1721 ef4_for_each_channel(channel, efx) 1722 kfree(channel->rps_flow_id); 1723 efx->type->filter_table_remove(efx); 1724 rc = -ENOMEM; 1725 goto out_unlock; 1726 } 1727 1728 efx->rps_expire_index = efx->rps_expire_channel = 0; 1729 } 1730 #endif 1731 out_unlock: 1732 up_write(&efx->filter_sem); 1733 mutex_unlock(&efx->mac_lock); 1734 return rc; 1735 } 1736 1737 static void ef4_remove_filters(struct ef4_nic *efx) 1738 { 1739 #ifdef CONFIG_RFS_ACCEL 1740 struct ef4_channel *channel; 1741 1742 ef4_for_each_channel(channel, efx) 1743 kfree(channel->rps_flow_id); 1744 #endif 1745 down_write(&efx->filter_sem); 1746 efx->type->filter_table_remove(efx); 1747 up_write(&efx->filter_sem); 1748 } 1749 1750 static void ef4_restore_filters(struct ef4_nic *efx) 1751 { 1752 down_read(&efx->filter_sem); 1753 efx->type->filter_table_restore(efx); 1754 up_read(&efx->filter_sem); 1755 } 1756 1757 /************************************************************************** 1758 * 1759 * NIC startup/shutdown 1760 * 1761 *************************************************************************/ 1762 1763 static int ef4_probe_all(struct ef4_nic *efx) 1764 { 1765 int rc; 1766 1767 rc = ef4_probe_nic(efx); 1768 if (rc) { 1769 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1770 goto fail1; 1771 } 1772 1773 rc = ef4_probe_port(efx); 1774 if (rc) { 1775 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1776 goto fail2; 1777 } 1778 1779 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT); 1780 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) { 1781 rc = -EINVAL; 1782 goto fail3; 1783 } 1784 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE; 1785 1786 rc = ef4_probe_filters(efx); 1787 if (rc) { 1788 netif_err(efx, probe, efx->net_dev, 1789 "failed to create filter tables\n"); 1790 goto fail4; 1791 } 1792 1793 rc = ef4_probe_channels(efx); 1794 if (rc) 1795 goto fail5; 1796 1797 return 0; 1798 1799 fail5: 1800 ef4_remove_filters(efx); 1801 fail4: 1802 fail3: 1803 ef4_remove_port(efx); 1804 fail2: 1805 ef4_remove_nic(efx); 1806 fail1: 1807 return rc; 1808 } 1809 1810 /* If the interface is supposed to be running but is not, start 1811 * the hardware and software data path, regular activity for the port 1812 * (MAC statistics, link polling, etc.) and schedule the port to be 1813 * reconfigured. Interrupts must already be enabled. This function 1814 * is safe to call multiple times, so long as the NIC is not disabled. 1815 * Requires the RTNL lock. 1816 */ 1817 static void ef4_start_all(struct ef4_nic *efx) 1818 { 1819 EF4_ASSERT_RESET_SERIALISED(efx); 1820 BUG_ON(efx->state == STATE_DISABLED); 1821 1822 /* Check that it is appropriate to restart the interface. All 1823 * of these flags are safe to read under just the rtnl lock */ 1824 if (efx->port_enabled || !netif_running(efx->net_dev) || 1825 efx->reset_pending) 1826 return; 1827 1828 ef4_start_port(efx); 1829 ef4_start_datapath(efx); 1830 1831 /* Start the hardware monitor if there is one */ 1832 if (efx->type->monitor != NULL) 1833 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1834 ef4_monitor_interval); 1835 1836 efx->type->start_stats(efx); 1837 efx->type->pull_stats(efx); 1838 spin_lock_bh(&efx->stats_lock); 1839 efx->type->update_stats(efx, NULL, NULL); 1840 spin_unlock_bh(&efx->stats_lock); 1841 } 1842 1843 /* Quiesce the hardware and software data path, and regular activity 1844 * for the port without bringing the link down. Safe to call multiple 1845 * times with the NIC in almost any state, but interrupts should be 1846 * enabled. Requires the RTNL lock. 1847 */ 1848 static void ef4_stop_all(struct ef4_nic *efx) 1849 { 1850 EF4_ASSERT_RESET_SERIALISED(efx); 1851 1852 /* port_enabled can be read safely under the rtnl lock */ 1853 if (!efx->port_enabled) 1854 return; 1855 1856 /* update stats before we go down so we can accurately count 1857 * rx_nodesc_drops 1858 */ 1859 efx->type->pull_stats(efx); 1860 spin_lock_bh(&efx->stats_lock); 1861 efx->type->update_stats(efx, NULL, NULL); 1862 spin_unlock_bh(&efx->stats_lock); 1863 efx->type->stop_stats(efx); 1864 ef4_stop_port(efx); 1865 1866 /* Stop the kernel transmit interface. This is only valid if 1867 * the device is stopped or detached; otherwise the watchdog 1868 * may fire immediately. 1869 */ 1870 WARN_ON(netif_running(efx->net_dev) && 1871 netif_device_present(efx->net_dev)); 1872 netif_tx_disable(efx->net_dev); 1873 1874 ef4_stop_datapath(efx); 1875 } 1876 1877 static void ef4_remove_all(struct ef4_nic *efx) 1878 { 1879 ef4_remove_channels(efx); 1880 ef4_remove_filters(efx); 1881 ef4_remove_port(efx); 1882 ef4_remove_nic(efx); 1883 } 1884 1885 /************************************************************************** 1886 * 1887 * Interrupt moderation 1888 * 1889 **************************************************************************/ 1890 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs) 1891 { 1892 if (usecs == 0) 1893 return 0; 1894 if (usecs * 1000 < efx->timer_quantum_ns) 1895 return 1; /* never round down to 0 */ 1896 return usecs * 1000 / efx->timer_quantum_ns; 1897 } 1898 1899 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks) 1900 { 1901 /* We must round up when converting ticks to microseconds 1902 * because we round down when converting the other way. 1903 */ 1904 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 1905 } 1906 1907 /* Set interrupt moderation parameters */ 1908 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs, 1909 unsigned int rx_usecs, bool rx_adaptive, 1910 bool rx_may_override_tx) 1911 { 1912 struct ef4_channel *channel; 1913 unsigned int timer_max_us; 1914 1915 EF4_ASSERT_RESET_SERIALISED(efx); 1916 1917 timer_max_us = efx->timer_max_ns / 1000; 1918 1919 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 1920 return -EINVAL; 1921 1922 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 1923 !rx_may_override_tx) { 1924 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1925 "RX and TX IRQ moderation must be equal\n"); 1926 return -EINVAL; 1927 } 1928 1929 efx->irq_rx_adaptive = rx_adaptive; 1930 efx->irq_rx_moderation_us = rx_usecs; 1931 ef4_for_each_channel(channel, efx) { 1932 if (ef4_channel_has_rx_queue(channel)) 1933 channel->irq_moderation_us = rx_usecs; 1934 else if (ef4_channel_has_tx_queues(channel)) 1935 channel->irq_moderation_us = tx_usecs; 1936 } 1937 1938 return 0; 1939 } 1940 1941 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs, 1942 unsigned int *rx_usecs, bool *rx_adaptive) 1943 { 1944 *rx_adaptive = efx->irq_rx_adaptive; 1945 *rx_usecs = efx->irq_rx_moderation_us; 1946 1947 /* If channels are shared between RX and TX, so is IRQ 1948 * moderation. Otherwise, IRQ moderation is the same for all 1949 * TX channels and is not adaptive. 1950 */ 1951 if (efx->tx_channel_offset == 0) { 1952 *tx_usecs = *rx_usecs; 1953 } else { 1954 struct ef4_channel *tx_channel; 1955 1956 tx_channel = efx->channel[efx->tx_channel_offset]; 1957 *tx_usecs = tx_channel->irq_moderation_us; 1958 } 1959 } 1960 1961 /************************************************************************** 1962 * 1963 * Hardware monitor 1964 * 1965 **************************************************************************/ 1966 1967 /* Run periodically off the general workqueue */ 1968 static void ef4_monitor(struct work_struct *data) 1969 { 1970 struct ef4_nic *efx = container_of(data, struct ef4_nic, 1971 monitor_work.work); 1972 1973 netif_vdbg(efx, timer, efx->net_dev, 1974 "hardware monitor executing on CPU %d\n", 1975 raw_smp_processor_id()); 1976 BUG_ON(efx->type->monitor == NULL); 1977 1978 /* If the mac_lock is already held then it is likely a port 1979 * reconfiguration is already in place, which will likely do 1980 * most of the work of monitor() anyway. */ 1981 if (mutex_trylock(&efx->mac_lock)) { 1982 if (efx->port_enabled) 1983 efx->type->monitor(efx); 1984 mutex_unlock(&efx->mac_lock); 1985 } 1986 1987 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1988 ef4_monitor_interval); 1989 } 1990 1991 /************************************************************************** 1992 * 1993 * ioctls 1994 * 1995 *************************************************************************/ 1996 1997 /* Net device ioctl 1998 * Context: process, rtnl_lock() held. 1999 */ 2000 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 2001 { 2002 struct ef4_nic *efx = netdev_priv(net_dev); 2003 struct mii_ioctl_data *data = if_mii(ifr); 2004 2005 /* Convert phy_id from older PRTAD/DEVAD format */ 2006 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 2007 (data->phy_id & 0xfc00) == 0x0400) 2008 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 2009 2010 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2011 } 2012 2013 /************************************************************************** 2014 * 2015 * NAPI interface 2016 * 2017 **************************************************************************/ 2018 2019 static void ef4_init_napi_channel(struct ef4_channel *channel) 2020 { 2021 struct ef4_nic *efx = channel->efx; 2022 2023 channel->napi_dev = efx->net_dev; 2024 netif_napi_add(channel->napi_dev, &channel->napi_str, 2025 ef4_poll, napi_weight); 2026 } 2027 2028 static void ef4_init_napi(struct ef4_nic *efx) 2029 { 2030 struct ef4_channel *channel; 2031 2032 ef4_for_each_channel(channel, efx) 2033 ef4_init_napi_channel(channel); 2034 } 2035 2036 static void ef4_fini_napi_channel(struct ef4_channel *channel) 2037 { 2038 if (channel->napi_dev) 2039 netif_napi_del(&channel->napi_str); 2040 2041 channel->napi_dev = NULL; 2042 } 2043 2044 static void ef4_fini_napi(struct ef4_nic *efx) 2045 { 2046 struct ef4_channel *channel; 2047 2048 ef4_for_each_channel(channel, efx) 2049 ef4_fini_napi_channel(channel); 2050 } 2051 2052 /************************************************************************** 2053 * 2054 * Kernel net device interface 2055 * 2056 *************************************************************************/ 2057 2058 /* Context: process, rtnl_lock() held. */ 2059 int ef4_net_open(struct net_device *net_dev) 2060 { 2061 struct ef4_nic *efx = netdev_priv(net_dev); 2062 int rc; 2063 2064 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2065 raw_smp_processor_id()); 2066 2067 rc = ef4_check_disabled(efx); 2068 if (rc) 2069 return rc; 2070 if (efx->phy_mode & PHY_MODE_SPECIAL) 2071 return -EBUSY; 2072 2073 /* Notify the kernel of the link state polled during driver load, 2074 * before the monitor starts running */ 2075 ef4_link_status_changed(efx); 2076 2077 ef4_start_all(efx); 2078 ef4_selftest_async_start(efx); 2079 return 0; 2080 } 2081 2082 /* Context: process, rtnl_lock() held. 2083 * Note that the kernel will ignore our return code; this method 2084 * should really be a void. 2085 */ 2086 int ef4_net_stop(struct net_device *net_dev) 2087 { 2088 struct ef4_nic *efx = netdev_priv(net_dev); 2089 2090 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2091 raw_smp_processor_id()); 2092 2093 /* Stop the device and flush all the channels */ 2094 ef4_stop_all(efx); 2095 2096 return 0; 2097 } 2098 2099 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2100 static void ef4_net_stats(struct net_device *net_dev, 2101 struct rtnl_link_stats64 *stats) 2102 { 2103 struct ef4_nic *efx = netdev_priv(net_dev); 2104 2105 spin_lock_bh(&efx->stats_lock); 2106 efx->type->update_stats(efx, NULL, stats); 2107 spin_unlock_bh(&efx->stats_lock); 2108 } 2109 2110 /* Context: netif_tx_lock held, BHs disabled. */ 2111 static void ef4_watchdog(struct net_device *net_dev) 2112 { 2113 struct ef4_nic *efx = netdev_priv(net_dev); 2114 2115 netif_err(efx, tx_err, efx->net_dev, 2116 "TX stuck with port_enabled=%d: resetting channels\n", 2117 efx->port_enabled); 2118 2119 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2120 } 2121 2122 2123 /* Context: process, rtnl_lock() held. */ 2124 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu) 2125 { 2126 struct ef4_nic *efx = netdev_priv(net_dev); 2127 int rc; 2128 2129 rc = ef4_check_disabled(efx); 2130 if (rc) 2131 return rc; 2132 2133 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2134 2135 ef4_device_detach_sync(efx); 2136 ef4_stop_all(efx); 2137 2138 mutex_lock(&efx->mac_lock); 2139 net_dev->mtu = new_mtu; 2140 ef4_mac_reconfigure(efx); 2141 mutex_unlock(&efx->mac_lock); 2142 2143 ef4_start_all(efx); 2144 netif_device_attach(efx->net_dev); 2145 return 0; 2146 } 2147 2148 static int ef4_set_mac_address(struct net_device *net_dev, void *data) 2149 { 2150 struct ef4_nic *efx = netdev_priv(net_dev); 2151 struct sockaddr *addr = data; 2152 u8 *new_addr = addr->sa_data; 2153 u8 old_addr[6]; 2154 int rc; 2155 2156 if (!is_valid_ether_addr(new_addr)) { 2157 netif_err(efx, drv, efx->net_dev, 2158 "invalid ethernet MAC address requested: %pM\n", 2159 new_addr); 2160 return -EADDRNOTAVAIL; 2161 } 2162 2163 /* save old address */ 2164 ether_addr_copy(old_addr, net_dev->dev_addr); 2165 ether_addr_copy(net_dev->dev_addr, new_addr); 2166 if (efx->type->set_mac_address) { 2167 rc = efx->type->set_mac_address(efx); 2168 if (rc) { 2169 ether_addr_copy(net_dev->dev_addr, old_addr); 2170 return rc; 2171 } 2172 } 2173 2174 /* Reconfigure the MAC */ 2175 mutex_lock(&efx->mac_lock); 2176 ef4_mac_reconfigure(efx); 2177 mutex_unlock(&efx->mac_lock); 2178 2179 return 0; 2180 } 2181 2182 /* Context: netif_addr_lock held, BHs disabled. */ 2183 static void ef4_set_rx_mode(struct net_device *net_dev) 2184 { 2185 struct ef4_nic *efx = netdev_priv(net_dev); 2186 2187 if (efx->port_enabled) 2188 queue_work(efx->workqueue, &efx->mac_work); 2189 /* Otherwise ef4_start_port() will do this */ 2190 } 2191 2192 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data) 2193 { 2194 struct ef4_nic *efx = netdev_priv(net_dev); 2195 int rc; 2196 2197 /* If disabling RX n-tuple filtering, clear existing filters */ 2198 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 2199 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL); 2200 if (rc) 2201 return rc; 2202 } 2203 2204 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */ 2205 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) { 2206 /* ef4_set_rx_mode() will schedule MAC work to update filters 2207 * when a new features are finally set in net_dev. 2208 */ 2209 ef4_set_rx_mode(net_dev); 2210 } 2211 2212 return 0; 2213 } 2214 2215 static const struct net_device_ops ef4_netdev_ops = { 2216 .ndo_open = ef4_net_open, 2217 .ndo_stop = ef4_net_stop, 2218 .ndo_get_stats64 = ef4_net_stats, 2219 .ndo_tx_timeout = ef4_watchdog, 2220 .ndo_start_xmit = ef4_hard_start_xmit, 2221 .ndo_validate_addr = eth_validate_addr, 2222 .ndo_do_ioctl = ef4_ioctl, 2223 .ndo_change_mtu = ef4_change_mtu, 2224 .ndo_set_mac_address = ef4_set_mac_address, 2225 .ndo_set_rx_mode = ef4_set_rx_mode, 2226 .ndo_set_features = ef4_set_features, 2227 .ndo_setup_tc = ef4_setup_tc, 2228 #ifdef CONFIG_RFS_ACCEL 2229 .ndo_rx_flow_steer = ef4_filter_rfs, 2230 #endif 2231 }; 2232 2233 static void ef4_update_name(struct ef4_nic *efx) 2234 { 2235 strcpy(efx->name, efx->net_dev->name); 2236 ef4_mtd_rename(efx); 2237 ef4_set_channel_names(efx); 2238 } 2239 2240 static int ef4_netdev_event(struct notifier_block *this, 2241 unsigned long event, void *ptr) 2242 { 2243 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2244 2245 if ((net_dev->netdev_ops == &ef4_netdev_ops) && 2246 event == NETDEV_CHANGENAME) 2247 ef4_update_name(netdev_priv(net_dev)); 2248 2249 return NOTIFY_DONE; 2250 } 2251 2252 static struct notifier_block ef4_netdev_notifier = { 2253 .notifier_call = ef4_netdev_event, 2254 }; 2255 2256 static ssize_t 2257 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2258 { 2259 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2260 return sprintf(buf, "%d\n", efx->phy_type); 2261 } 2262 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2263 2264 static int ef4_register_netdev(struct ef4_nic *efx) 2265 { 2266 struct net_device *net_dev = efx->net_dev; 2267 struct ef4_channel *channel; 2268 int rc; 2269 2270 net_dev->watchdog_timeo = 5 * HZ; 2271 net_dev->irq = efx->pci_dev->irq; 2272 net_dev->netdev_ops = &ef4_netdev_ops; 2273 net_dev->ethtool_ops = &ef4_ethtool_ops; 2274 net_dev->gso_max_segs = EF4_TSO_MAX_SEGS; 2275 net_dev->min_mtu = EF4_MIN_MTU; 2276 net_dev->max_mtu = EF4_MAX_MTU; 2277 2278 rtnl_lock(); 2279 2280 /* Enable resets to be scheduled and check whether any were 2281 * already requested. If so, the NIC is probably hosed so we 2282 * abort. 2283 */ 2284 efx->state = STATE_READY; 2285 smp_mb(); /* ensure we change state before checking reset_pending */ 2286 if (efx->reset_pending) { 2287 netif_err(efx, probe, efx->net_dev, 2288 "aborting probe due to scheduled reset\n"); 2289 rc = -EIO; 2290 goto fail_locked; 2291 } 2292 2293 rc = dev_alloc_name(net_dev, net_dev->name); 2294 if (rc < 0) 2295 goto fail_locked; 2296 ef4_update_name(efx); 2297 2298 /* Always start with carrier off; PHY events will detect the link */ 2299 netif_carrier_off(net_dev); 2300 2301 rc = register_netdevice(net_dev); 2302 if (rc) 2303 goto fail_locked; 2304 2305 ef4_for_each_channel(channel, efx) { 2306 struct ef4_tx_queue *tx_queue; 2307 ef4_for_each_channel_tx_queue(tx_queue, channel) 2308 ef4_init_tx_queue_core_txq(tx_queue); 2309 } 2310 2311 ef4_associate(efx); 2312 2313 rtnl_unlock(); 2314 2315 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2316 if (rc) { 2317 netif_err(efx, drv, efx->net_dev, 2318 "failed to init net dev attributes\n"); 2319 goto fail_registered; 2320 } 2321 return 0; 2322 2323 fail_registered: 2324 rtnl_lock(); 2325 ef4_dissociate(efx); 2326 unregister_netdevice(net_dev); 2327 fail_locked: 2328 efx->state = STATE_UNINIT; 2329 rtnl_unlock(); 2330 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2331 return rc; 2332 } 2333 2334 static void ef4_unregister_netdev(struct ef4_nic *efx) 2335 { 2336 if (!efx->net_dev) 2337 return; 2338 2339 BUG_ON(netdev_priv(efx->net_dev) != efx); 2340 2341 if (ef4_dev_registered(efx)) { 2342 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2343 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2344 unregister_netdev(efx->net_dev); 2345 } 2346 } 2347 2348 /************************************************************************** 2349 * 2350 * Device reset and suspend 2351 * 2352 **************************************************************************/ 2353 2354 /* Tears down the entire software state and most of the hardware state 2355 * before reset. */ 2356 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method) 2357 { 2358 EF4_ASSERT_RESET_SERIALISED(efx); 2359 2360 ef4_stop_all(efx); 2361 ef4_disable_interrupts(efx); 2362 2363 mutex_lock(&efx->mac_lock); 2364 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2365 method != RESET_TYPE_DATAPATH) 2366 efx->phy_op->fini(efx); 2367 efx->type->fini(efx); 2368 } 2369 2370 /* This function will always ensure that the locks acquired in 2371 * ef4_reset_down() are released. A failure return code indicates 2372 * that we were unable to reinitialise the hardware, and the 2373 * driver should be disabled. If ok is false, then the rx and tx 2374 * engines are not restarted, pending a RESET_DISABLE. */ 2375 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok) 2376 { 2377 int rc; 2378 2379 EF4_ASSERT_RESET_SERIALISED(efx); 2380 2381 /* Ensure that SRAM is initialised even if we're disabling the device */ 2382 rc = efx->type->init(efx); 2383 if (rc) { 2384 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2385 goto fail; 2386 } 2387 2388 if (!ok) 2389 goto fail; 2390 2391 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2392 method != RESET_TYPE_DATAPATH) { 2393 rc = efx->phy_op->init(efx); 2394 if (rc) 2395 goto fail; 2396 rc = efx->phy_op->reconfigure(efx); 2397 if (rc && rc != -EPERM) 2398 netif_err(efx, drv, efx->net_dev, 2399 "could not restore PHY settings\n"); 2400 } 2401 2402 rc = ef4_enable_interrupts(efx); 2403 if (rc) 2404 goto fail; 2405 2406 down_read(&efx->filter_sem); 2407 ef4_restore_filters(efx); 2408 up_read(&efx->filter_sem); 2409 2410 mutex_unlock(&efx->mac_lock); 2411 2412 ef4_start_all(efx); 2413 2414 return 0; 2415 2416 fail: 2417 efx->port_initialized = false; 2418 2419 mutex_unlock(&efx->mac_lock); 2420 2421 return rc; 2422 } 2423 2424 /* Reset the NIC using the specified method. Note that the reset may 2425 * fail, in which case the card will be left in an unusable state. 2426 * 2427 * Caller must hold the rtnl_lock. 2428 */ 2429 int ef4_reset(struct ef4_nic *efx, enum reset_type method) 2430 { 2431 int rc, rc2; 2432 bool disabled; 2433 2434 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2435 RESET_TYPE(method)); 2436 2437 ef4_device_detach_sync(efx); 2438 ef4_reset_down(efx, method); 2439 2440 rc = efx->type->reset(efx, method); 2441 if (rc) { 2442 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2443 goto out; 2444 } 2445 2446 /* Clear flags for the scopes we covered. We assume the NIC and 2447 * driver are now quiescent so that there is no race here. 2448 */ 2449 if (method < RESET_TYPE_MAX_METHOD) 2450 efx->reset_pending &= -(1 << (method + 1)); 2451 else /* it doesn't fit into the well-ordered scope hierarchy */ 2452 __clear_bit(method, &efx->reset_pending); 2453 2454 /* Reinitialise bus-mastering, which may have been turned off before 2455 * the reset was scheduled. This is still appropriate, even in the 2456 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2457 * can respond to requests. */ 2458 pci_set_master(efx->pci_dev); 2459 2460 out: 2461 /* Leave device stopped if necessary */ 2462 disabled = rc || 2463 method == RESET_TYPE_DISABLE || 2464 method == RESET_TYPE_RECOVER_OR_DISABLE; 2465 rc2 = ef4_reset_up(efx, method, !disabled); 2466 if (rc2) { 2467 disabled = true; 2468 if (!rc) 2469 rc = rc2; 2470 } 2471 2472 if (disabled) { 2473 dev_close(efx->net_dev); 2474 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2475 efx->state = STATE_DISABLED; 2476 } else { 2477 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2478 netif_device_attach(efx->net_dev); 2479 } 2480 return rc; 2481 } 2482 2483 /* Try recovery mechanisms. 2484 * For now only EEH is supported. 2485 * Returns 0 if the recovery mechanisms are unsuccessful. 2486 * Returns a non-zero value otherwise. 2487 */ 2488 int ef4_try_recovery(struct ef4_nic *efx) 2489 { 2490 #ifdef CONFIG_EEH 2491 /* A PCI error can occur and not be seen by EEH because nothing 2492 * happens on the PCI bus. In this case the driver may fail and 2493 * schedule a 'recover or reset', leading to this recovery handler. 2494 * Manually call the eeh failure check function. 2495 */ 2496 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 2497 if (eeh_dev_check_failure(eehdev)) { 2498 /* The EEH mechanisms will handle the error and reset the 2499 * device if necessary. 2500 */ 2501 return 1; 2502 } 2503 #endif 2504 return 0; 2505 } 2506 2507 /* The worker thread exists so that code that cannot sleep can 2508 * schedule a reset for later. 2509 */ 2510 static void ef4_reset_work(struct work_struct *data) 2511 { 2512 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work); 2513 unsigned long pending; 2514 enum reset_type method; 2515 2516 pending = READ_ONCE(efx->reset_pending); 2517 method = fls(pending) - 1; 2518 2519 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2520 method == RESET_TYPE_RECOVER_OR_ALL) && 2521 ef4_try_recovery(efx)) 2522 return; 2523 2524 if (!pending) 2525 return; 2526 2527 rtnl_lock(); 2528 2529 /* We checked the state in ef4_schedule_reset() but it may 2530 * have changed by now. Now that we have the RTNL lock, 2531 * it cannot change again. 2532 */ 2533 if (efx->state == STATE_READY) 2534 (void)ef4_reset(efx, method); 2535 2536 rtnl_unlock(); 2537 } 2538 2539 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type) 2540 { 2541 enum reset_type method; 2542 2543 if (efx->state == STATE_RECOVERY) { 2544 netif_dbg(efx, drv, efx->net_dev, 2545 "recovering: skip scheduling %s reset\n", 2546 RESET_TYPE(type)); 2547 return; 2548 } 2549 2550 switch (type) { 2551 case RESET_TYPE_INVISIBLE: 2552 case RESET_TYPE_ALL: 2553 case RESET_TYPE_RECOVER_OR_ALL: 2554 case RESET_TYPE_WORLD: 2555 case RESET_TYPE_DISABLE: 2556 case RESET_TYPE_RECOVER_OR_DISABLE: 2557 case RESET_TYPE_DATAPATH: 2558 method = type; 2559 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2560 RESET_TYPE(method)); 2561 break; 2562 default: 2563 method = efx->type->map_reset_reason(type); 2564 netif_dbg(efx, drv, efx->net_dev, 2565 "scheduling %s reset for %s\n", 2566 RESET_TYPE(method), RESET_TYPE(type)); 2567 break; 2568 } 2569 2570 set_bit(method, &efx->reset_pending); 2571 smp_mb(); /* ensure we change reset_pending before checking state */ 2572 2573 /* If we're not READY then just leave the flags set as the cue 2574 * to abort probing or reschedule the reset later. 2575 */ 2576 if (READ_ONCE(efx->state) != STATE_READY) 2577 return; 2578 2579 queue_work(reset_workqueue, &efx->reset_work); 2580 } 2581 2582 /************************************************************************** 2583 * 2584 * List of NICs we support 2585 * 2586 **************************************************************************/ 2587 2588 /* PCI device ID table */ 2589 static const struct pci_device_id ef4_pci_table[] = { 2590 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2591 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2592 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2593 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2594 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2595 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2596 {0} /* end of list */ 2597 }; 2598 2599 /************************************************************************** 2600 * 2601 * Dummy PHY/MAC operations 2602 * 2603 * Can be used for some unimplemented operations 2604 * Needed so all function pointers are valid and do not have to be tested 2605 * before use 2606 * 2607 **************************************************************************/ 2608 int ef4_port_dummy_op_int(struct ef4_nic *efx) 2609 { 2610 return 0; 2611 } 2612 void ef4_port_dummy_op_void(struct ef4_nic *efx) {} 2613 2614 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx) 2615 { 2616 return false; 2617 } 2618 2619 static const struct ef4_phy_operations ef4_dummy_phy_operations = { 2620 .init = ef4_port_dummy_op_int, 2621 .reconfigure = ef4_port_dummy_op_int, 2622 .poll = ef4_port_dummy_op_poll, 2623 .fini = ef4_port_dummy_op_void, 2624 }; 2625 2626 /************************************************************************** 2627 * 2628 * Data housekeeping 2629 * 2630 **************************************************************************/ 2631 2632 /* This zeroes out and then fills in the invariants in a struct 2633 * ef4_nic (including all sub-structures). 2634 */ 2635 static int ef4_init_struct(struct ef4_nic *efx, 2636 struct pci_dev *pci_dev, struct net_device *net_dev) 2637 { 2638 int i; 2639 2640 /* Initialise common structures */ 2641 INIT_LIST_HEAD(&efx->node); 2642 INIT_LIST_HEAD(&efx->secondary_list); 2643 spin_lock_init(&efx->biu_lock); 2644 #ifdef CONFIG_SFC_FALCON_MTD 2645 INIT_LIST_HEAD(&efx->mtd_list); 2646 #endif 2647 INIT_WORK(&efx->reset_work, ef4_reset_work); 2648 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor); 2649 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work); 2650 efx->pci_dev = pci_dev; 2651 efx->msg_enable = debug; 2652 efx->state = STATE_UNINIT; 2653 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2654 2655 efx->net_dev = net_dev; 2656 efx->rx_prefix_size = efx->type->rx_prefix_size; 2657 efx->rx_ip_align = 2658 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2659 efx->rx_packet_hash_offset = 2660 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2661 efx->rx_packet_ts_offset = 2662 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2663 spin_lock_init(&efx->stats_lock); 2664 mutex_init(&efx->mac_lock); 2665 efx->phy_op = &ef4_dummy_phy_operations; 2666 efx->mdio.dev = net_dev; 2667 INIT_WORK(&efx->mac_work, ef4_mac_work); 2668 init_waitqueue_head(&efx->flush_wq); 2669 2670 for (i = 0; i < EF4_MAX_CHANNELS; i++) { 2671 efx->channel[i] = ef4_alloc_channel(efx, i, NULL); 2672 if (!efx->channel[i]) 2673 goto fail; 2674 efx->msi_context[i].efx = efx; 2675 efx->msi_context[i].index = i; 2676 } 2677 2678 /* Higher numbered interrupt modes are less capable! */ 2679 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2680 interrupt_mode); 2681 2682 /* Would be good to use the net_dev name, but we're too early */ 2683 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2684 pci_name(pci_dev)); 2685 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2686 if (!efx->workqueue) 2687 goto fail; 2688 2689 return 0; 2690 2691 fail: 2692 ef4_fini_struct(efx); 2693 return -ENOMEM; 2694 } 2695 2696 static void ef4_fini_struct(struct ef4_nic *efx) 2697 { 2698 int i; 2699 2700 for (i = 0; i < EF4_MAX_CHANNELS; i++) 2701 kfree(efx->channel[i]); 2702 2703 kfree(efx->vpd_sn); 2704 2705 if (efx->workqueue) { 2706 destroy_workqueue(efx->workqueue); 2707 efx->workqueue = NULL; 2708 } 2709 } 2710 2711 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats) 2712 { 2713 u64 n_rx_nodesc_trunc = 0; 2714 struct ef4_channel *channel; 2715 2716 ef4_for_each_channel(channel, efx) 2717 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 2718 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 2719 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 2720 } 2721 2722 /************************************************************************** 2723 * 2724 * PCI interface 2725 * 2726 **************************************************************************/ 2727 2728 /* Main body of final NIC shutdown code 2729 * This is called only at module unload (or hotplug removal). 2730 */ 2731 static void ef4_pci_remove_main(struct ef4_nic *efx) 2732 { 2733 /* Flush reset_work. It can no longer be scheduled since we 2734 * are not READY. 2735 */ 2736 BUG_ON(efx->state == STATE_READY); 2737 cancel_work_sync(&efx->reset_work); 2738 2739 ef4_disable_interrupts(efx); 2740 ef4_nic_fini_interrupt(efx); 2741 ef4_fini_port(efx); 2742 efx->type->fini(efx); 2743 ef4_fini_napi(efx); 2744 ef4_remove_all(efx); 2745 } 2746 2747 /* Final NIC shutdown 2748 * This is called only at module unload (or hotplug removal). A PF can call 2749 * this on its VFs to ensure they are unbound first. 2750 */ 2751 static void ef4_pci_remove(struct pci_dev *pci_dev) 2752 { 2753 struct ef4_nic *efx; 2754 2755 efx = pci_get_drvdata(pci_dev); 2756 if (!efx) 2757 return; 2758 2759 /* Mark the NIC as fini, then stop the interface */ 2760 rtnl_lock(); 2761 ef4_dissociate(efx); 2762 dev_close(efx->net_dev); 2763 ef4_disable_interrupts(efx); 2764 efx->state = STATE_UNINIT; 2765 rtnl_unlock(); 2766 2767 ef4_unregister_netdev(efx); 2768 2769 ef4_mtd_remove(efx); 2770 2771 ef4_pci_remove_main(efx); 2772 2773 ef4_fini_io(efx); 2774 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2775 2776 ef4_fini_struct(efx); 2777 free_netdev(efx->net_dev); 2778 2779 pci_disable_pcie_error_reporting(pci_dev); 2780 }; 2781 2782 /* NIC VPD information 2783 * Called during probe to display the part number of the 2784 * installed NIC. VPD is potentially very large but this should 2785 * always appear within the first 512 bytes. 2786 */ 2787 #define SFC_VPD_LEN 512 2788 static void ef4_probe_vpd_strings(struct ef4_nic *efx) 2789 { 2790 struct pci_dev *dev = efx->pci_dev; 2791 char vpd_data[SFC_VPD_LEN]; 2792 ssize_t vpd_size; 2793 int ro_start, ro_size, i, j; 2794 2795 /* Get the vpd data from the device */ 2796 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 2797 if (vpd_size <= 0) { 2798 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 2799 return; 2800 } 2801 2802 /* Get the Read only section */ 2803 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 2804 if (ro_start < 0) { 2805 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 2806 return; 2807 } 2808 2809 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 2810 j = ro_size; 2811 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2812 if (i + j > vpd_size) 2813 j = vpd_size - i; 2814 2815 /* Get the Part number */ 2816 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 2817 if (i < 0) { 2818 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 2819 return; 2820 } 2821 2822 j = pci_vpd_info_field_size(&vpd_data[i]); 2823 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2824 if (i + j > vpd_size) { 2825 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 2826 return; 2827 } 2828 2829 netif_info(efx, drv, efx->net_dev, 2830 "Part Number : %.*s\n", j, &vpd_data[i]); 2831 2832 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2833 j = ro_size; 2834 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 2835 if (i < 0) { 2836 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 2837 return; 2838 } 2839 2840 j = pci_vpd_info_field_size(&vpd_data[i]); 2841 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2842 if (i + j > vpd_size) { 2843 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 2844 return; 2845 } 2846 2847 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 2848 if (!efx->vpd_sn) 2849 return; 2850 2851 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 2852 } 2853 2854 2855 /* Main body of NIC initialisation 2856 * This is called at module load (or hotplug insertion, theoretically). 2857 */ 2858 static int ef4_pci_probe_main(struct ef4_nic *efx) 2859 { 2860 int rc; 2861 2862 /* Do start-of-day initialisation */ 2863 rc = ef4_probe_all(efx); 2864 if (rc) 2865 goto fail1; 2866 2867 ef4_init_napi(efx); 2868 2869 rc = efx->type->init(efx); 2870 if (rc) { 2871 netif_err(efx, probe, efx->net_dev, 2872 "failed to initialise NIC\n"); 2873 goto fail3; 2874 } 2875 2876 rc = ef4_init_port(efx); 2877 if (rc) { 2878 netif_err(efx, probe, efx->net_dev, 2879 "failed to initialise port\n"); 2880 goto fail4; 2881 } 2882 2883 rc = ef4_nic_init_interrupt(efx); 2884 if (rc) 2885 goto fail5; 2886 rc = ef4_enable_interrupts(efx); 2887 if (rc) 2888 goto fail6; 2889 2890 return 0; 2891 2892 fail6: 2893 ef4_nic_fini_interrupt(efx); 2894 fail5: 2895 ef4_fini_port(efx); 2896 fail4: 2897 efx->type->fini(efx); 2898 fail3: 2899 ef4_fini_napi(efx); 2900 ef4_remove_all(efx); 2901 fail1: 2902 return rc; 2903 } 2904 2905 /* NIC initialisation 2906 * 2907 * This is called at module load (or hotplug insertion, 2908 * theoretically). It sets up PCI mappings, resets the NIC, 2909 * sets up and registers the network devices with the kernel and hooks 2910 * the interrupt service routine. It does not prepare the device for 2911 * transmission; this is left to the first time one of the network 2912 * interfaces is brought up (i.e. ef4_net_open). 2913 */ 2914 static int ef4_pci_probe(struct pci_dev *pci_dev, 2915 const struct pci_device_id *entry) 2916 { 2917 struct net_device *net_dev; 2918 struct ef4_nic *efx; 2919 int rc; 2920 2921 /* Allocate and initialise a struct net_device and struct ef4_nic */ 2922 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES, 2923 EF4_MAX_RX_QUEUES); 2924 if (!net_dev) 2925 return -ENOMEM; 2926 efx = netdev_priv(net_dev); 2927 efx->type = (const struct ef4_nic_type *) entry->driver_data; 2928 efx->fixed_features |= NETIF_F_HIGHDMA; 2929 2930 pci_set_drvdata(pci_dev, efx); 2931 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2932 rc = ef4_init_struct(efx, pci_dev, net_dev); 2933 if (rc) 2934 goto fail1; 2935 2936 netif_info(efx, probe, efx->net_dev, 2937 "Solarflare NIC detected\n"); 2938 2939 ef4_probe_vpd_strings(efx); 2940 2941 /* Set up basic I/O (BAR mappings etc) */ 2942 rc = ef4_init_io(efx); 2943 if (rc) 2944 goto fail2; 2945 2946 rc = ef4_pci_probe_main(efx); 2947 if (rc) 2948 goto fail3; 2949 2950 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 2951 NETIF_F_RXCSUM); 2952 /* Mask for features that also apply to VLAN devices */ 2953 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 2954 NETIF_F_HIGHDMA | NETIF_F_RXCSUM); 2955 2956 net_dev->hw_features = net_dev->features & ~efx->fixed_features; 2957 2958 /* Disable VLAN filtering by default. It may be enforced if 2959 * the feature is fixed (i.e. VLAN filters are required to 2960 * receive VLAN tagged packets due to vPort restrictions). 2961 */ 2962 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 2963 net_dev->features |= efx->fixed_features; 2964 2965 rc = ef4_register_netdev(efx); 2966 if (rc) 2967 goto fail4; 2968 2969 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 2970 2971 /* Try to create MTDs, but allow this to fail */ 2972 rtnl_lock(); 2973 rc = ef4_mtd_probe(efx); 2974 rtnl_unlock(); 2975 if (rc && rc != -EPERM) 2976 netif_warn(efx, probe, efx->net_dev, 2977 "failed to create MTDs (%d)\n", rc); 2978 2979 rc = pci_enable_pcie_error_reporting(pci_dev); 2980 if (rc && rc != -EINVAL) 2981 netif_notice(efx, probe, efx->net_dev, 2982 "PCIE error reporting unavailable (%d).\n", 2983 rc); 2984 2985 return 0; 2986 2987 fail4: 2988 ef4_pci_remove_main(efx); 2989 fail3: 2990 ef4_fini_io(efx); 2991 fail2: 2992 ef4_fini_struct(efx); 2993 fail1: 2994 WARN_ON(rc > 0); 2995 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 2996 free_netdev(net_dev); 2997 return rc; 2998 } 2999 3000 static int ef4_pm_freeze(struct device *dev) 3001 { 3002 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3003 3004 rtnl_lock(); 3005 3006 if (efx->state != STATE_DISABLED) { 3007 efx->state = STATE_UNINIT; 3008 3009 ef4_device_detach_sync(efx); 3010 3011 ef4_stop_all(efx); 3012 ef4_disable_interrupts(efx); 3013 } 3014 3015 rtnl_unlock(); 3016 3017 return 0; 3018 } 3019 3020 static int ef4_pm_thaw(struct device *dev) 3021 { 3022 int rc; 3023 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3024 3025 rtnl_lock(); 3026 3027 if (efx->state != STATE_DISABLED) { 3028 rc = ef4_enable_interrupts(efx); 3029 if (rc) 3030 goto fail; 3031 3032 mutex_lock(&efx->mac_lock); 3033 efx->phy_op->reconfigure(efx); 3034 mutex_unlock(&efx->mac_lock); 3035 3036 ef4_start_all(efx); 3037 3038 netif_device_attach(efx->net_dev); 3039 3040 efx->state = STATE_READY; 3041 3042 efx->type->resume_wol(efx); 3043 } 3044 3045 rtnl_unlock(); 3046 3047 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */ 3048 queue_work(reset_workqueue, &efx->reset_work); 3049 3050 return 0; 3051 3052 fail: 3053 rtnl_unlock(); 3054 3055 return rc; 3056 } 3057 3058 static int ef4_pm_poweroff(struct device *dev) 3059 { 3060 struct pci_dev *pci_dev = to_pci_dev(dev); 3061 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3062 3063 efx->type->fini(efx); 3064 3065 efx->reset_pending = 0; 3066 3067 pci_save_state(pci_dev); 3068 return pci_set_power_state(pci_dev, PCI_D3hot); 3069 } 3070 3071 /* Used for both resume and restore */ 3072 static int ef4_pm_resume(struct device *dev) 3073 { 3074 struct pci_dev *pci_dev = to_pci_dev(dev); 3075 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3076 int rc; 3077 3078 rc = pci_set_power_state(pci_dev, PCI_D0); 3079 if (rc) 3080 return rc; 3081 pci_restore_state(pci_dev); 3082 rc = pci_enable_device(pci_dev); 3083 if (rc) 3084 return rc; 3085 pci_set_master(efx->pci_dev); 3086 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3087 if (rc) 3088 return rc; 3089 rc = efx->type->init(efx); 3090 if (rc) 3091 return rc; 3092 rc = ef4_pm_thaw(dev); 3093 return rc; 3094 } 3095 3096 static int ef4_pm_suspend(struct device *dev) 3097 { 3098 int rc; 3099 3100 ef4_pm_freeze(dev); 3101 rc = ef4_pm_poweroff(dev); 3102 if (rc) 3103 ef4_pm_resume(dev); 3104 return rc; 3105 } 3106 3107 static const struct dev_pm_ops ef4_pm_ops = { 3108 .suspend = ef4_pm_suspend, 3109 .resume = ef4_pm_resume, 3110 .freeze = ef4_pm_freeze, 3111 .thaw = ef4_pm_thaw, 3112 .poweroff = ef4_pm_poweroff, 3113 .restore = ef4_pm_resume, 3114 }; 3115 3116 /* A PCI error affecting this device was detected. 3117 * At this point MMIO and DMA may be disabled. 3118 * Stop the software path and request a slot reset. 3119 */ 3120 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev, 3121 enum pci_channel_state state) 3122 { 3123 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3124 struct ef4_nic *efx = pci_get_drvdata(pdev); 3125 3126 if (state == pci_channel_io_perm_failure) 3127 return PCI_ERS_RESULT_DISCONNECT; 3128 3129 rtnl_lock(); 3130 3131 if (efx->state != STATE_DISABLED) { 3132 efx->state = STATE_RECOVERY; 3133 efx->reset_pending = 0; 3134 3135 ef4_device_detach_sync(efx); 3136 3137 ef4_stop_all(efx); 3138 ef4_disable_interrupts(efx); 3139 3140 status = PCI_ERS_RESULT_NEED_RESET; 3141 } else { 3142 /* If the interface is disabled we don't want to do anything 3143 * with it. 3144 */ 3145 status = PCI_ERS_RESULT_RECOVERED; 3146 } 3147 3148 rtnl_unlock(); 3149 3150 pci_disable_device(pdev); 3151 3152 return status; 3153 } 3154 3155 /* Fake a successful reset, which will be performed later in ef4_io_resume. */ 3156 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev) 3157 { 3158 struct ef4_nic *efx = pci_get_drvdata(pdev); 3159 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3160 3161 if (pci_enable_device(pdev)) { 3162 netif_err(efx, hw, efx->net_dev, 3163 "Cannot re-enable PCI device after reset.\n"); 3164 status = PCI_ERS_RESULT_DISCONNECT; 3165 } 3166 3167 return status; 3168 } 3169 3170 /* Perform the actual reset and resume I/O operations. */ 3171 static void ef4_io_resume(struct pci_dev *pdev) 3172 { 3173 struct ef4_nic *efx = pci_get_drvdata(pdev); 3174 int rc; 3175 3176 rtnl_lock(); 3177 3178 if (efx->state == STATE_DISABLED) 3179 goto out; 3180 3181 rc = ef4_reset(efx, RESET_TYPE_ALL); 3182 if (rc) { 3183 netif_err(efx, hw, efx->net_dev, 3184 "ef4_reset failed after PCI error (%d)\n", rc); 3185 } else { 3186 efx->state = STATE_READY; 3187 netif_dbg(efx, hw, efx->net_dev, 3188 "Done resetting and resuming IO after PCI error.\n"); 3189 } 3190 3191 out: 3192 rtnl_unlock(); 3193 } 3194 3195 /* For simplicity and reliability, we always require a slot reset and try to 3196 * reset the hardware when a pci error affecting the device is detected. 3197 * We leave both the link_reset and mmio_enabled callback unimplemented: 3198 * with our request for slot reset the mmio_enabled callback will never be 3199 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3200 */ 3201 static const struct pci_error_handlers ef4_err_handlers = { 3202 .error_detected = ef4_io_error_detected, 3203 .slot_reset = ef4_io_slot_reset, 3204 .resume = ef4_io_resume, 3205 }; 3206 3207 static struct pci_driver ef4_pci_driver = { 3208 .name = KBUILD_MODNAME, 3209 .id_table = ef4_pci_table, 3210 .probe = ef4_pci_probe, 3211 .remove = ef4_pci_remove, 3212 .driver.pm = &ef4_pm_ops, 3213 .err_handler = &ef4_err_handlers, 3214 }; 3215 3216 /************************************************************************** 3217 * 3218 * Kernel module interface 3219 * 3220 *************************************************************************/ 3221 3222 module_param(interrupt_mode, uint, 0444); 3223 MODULE_PARM_DESC(interrupt_mode, 3224 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3225 3226 static int __init ef4_init_module(void) 3227 { 3228 int rc; 3229 3230 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n"); 3231 3232 rc = register_netdevice_notifier(&ef4_netdev_notifier); 3233 if (rc) 3234 goto err_notifier; 3235 3236 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3237 if (!reset_workqueue) { 3238 rc = -ENOMEM; 3239 goto err_reset; 3240 } 3241 3242 rc = pci_register_driver(&ef4_pci_driver); 3243 if (rc < 0) 3244 goto err_pci; 3245 3246 return 0; 3247 3248 err_pci: 3249 destroy_workqueue(reset_workqueue); 3250 err_reset: 3251 unregister_netdevice_notifier(&ef4_netdev_notifier); 3252 err_notifier: 3253 return rc; 3254 } 3255 3256 static void __exit ef4_exit_module(void) 3257 { 3258 printk(KERN_INFO "Solarflare Falcon driver unloading\n"); 3259 3260 pci_unregister_driver(&ef4_pci_driver); 3261 destroy_workqueue(reset_workqueue); 3262 unregister_netdevice_notifier(&ef4_netdev_notifier); 3263 3264 } 3265 3266 module_init(ef4_init_module); 3267 module_exit(ef4_exit_module); 3268 3269 MODULE_AUTHOR("Solarflare Communications and " 3270 "Michael Brown <mbrown@fensystems.co.uk>"); 3271 MODULE_DESCRIPTION("Solarflare Falcon network driver"); 3272 MODULE_LICENSE("GPL"); 3273 MODULE_DEVICE_TABLE(pci, ef4_pci_table); 3274 MODULE_VERSION(EF4_DRIVER_VERSION); 3275