1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/ethtool.h> 21 #include <linux/topology.h> 22 #include <linux/gfp.h> 23 #include <linux/aer.h> 24 #include <linux/interrupt.h> 25 #include "net_driver.h" 26 #include "efx.h" 27 #include "nic.h" 28 #include "selftest.h" 29 30 #include "workarounds.h" 31 32 /************************************************************************** 33 * 34 * Type name strings 35 * 36 ************************************************************************** 37 */ 38 39 /* Loopback mode names (see LOOPBACK_MODE()) */ 40 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX; 41 const char *const ef4_loopback_mode_names[] = { 42 [LOOPBACK_NONE] = "NONE", 43 [LOOPBACK_DATA] = "DATAPATH", 44 [LOOPBACK_GMAC] = "GMAC", 45 [LOOPBACK_XGMII] = "XGMII", 46 [LOOPBACK_XGXS] = "XGXS", 47 [LOOPBACK_XAUI] = "XAUI", 48 [LOOPBACK_GMII] = "GMII", 49 [LOOPBACK_SGMII] = "SGMII", 50 [LOOPBACK_XGBR] = "XGBR", 51 [LOOPBACK_XFI] = "XFI", 52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 53 [LOOPBACK_GMII_FAR] = "GMII_FAR", 54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 55 [LOOPBACK_XFI_FAR] = "XFI_FAR", 56 [LOOPBACK_GPHY] = "GPHY", 57 [LOOPBACK_PHYXS] = "PHYXS", 58 [LOOPBACK_PCS] = "PCS", 59 [LOOPBACK_PMAPMD] = "PMA/PMD", 60 [LOOPBACK_XPORT] = "XPORT", 61 [LOOPBACK_XGMII_WS] = "XGMII_WS", 62 [LOOPBACK_XAUI_WS] = "XAUI_WS", 63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 65 [LOOPBACK_GMII_WS] = "GMII_WS", 66 [LOOPBACK_XFI_WS] = "XFI_WS", 67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 69 }; 70 71 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX; 72 const char *const ef4_reset_type_names[] = { 73 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 74 [RESET_TYPE_ALL] = "ALL", 75 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 76 [RESET_TYPE_WORLD] = "WORLD", 77 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 78 [RESET_TYPE_DATAPATH] = "DATAPATH", 79 [RESET_TYPE_DISABLE] = "DISABLE", 80 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 81 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 82 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 83 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 84 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 85 }; 86 87 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 88 * queued onto this work queue. This is not a per-nic work queue, because 89 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised. 90 */ 91 static struct workqueue_struct *reset_workqueue; 92 93 /* How often and how many times to poll for a reset while waiting for a 94 * BIST that another function started to complete. 95 */ 96 #define BIST_WAIT_DELAY_MS 100 97 #define BIST_WAIT_DELAY_COUNT 100 98 99 /************************************************************************** 100 * 101 * Configurable values 102 * 103 *************************************************************************/ 104 105 /* 106 * Use separate channels for TX and RX events 107 * 108 * Set this to 1 to use separate channels for TX and RX. It allows us 109 * to control interrupt affinity separately for TX and RX. 110 * 111 * This is only used in MSI-X interrupt mode 112 */ 113 bool ef4_separate_tx_channels; 114 module_param(ef4_separate_tx_channels, bool, 0444); 115 MODULE_PARM_DESC(ef4_separate_tx_channels, 116 "Use separate channels for TX and RX"); 117 118 /* This is the weight assigned to each of the (per-channel) virtual 119 * NAPI devices. 120 */ 121 static int napi_weight = 64; 122 123 /* This is the time (in jiffies) between invocations of the hardware 124 * monitor. 125 * On Falcon-based NICs, this will: 126 * - Check the on-board hardware monitor; 127 * - Poll the link state and reconfigure the hardware as necessary. 128 * On Siena-based NICs for power systems with EEH support, this will give EEH a 129 * chance to start. 130 */ 131 static unsigned int ef4_monitor_interval = 1 * HZ; 132 133 /* Initial interrupt moderation settings. They can be modified after 134 * module load with ethtool. 135 * 136 * The default for RX should strike a balance between increasing the 137 * round-trip latency and reducing overhead. 138 */ 139 static unsigned int rx_irq_mod_usec = 60; 140 141 /* Initial interrupt moderation settings. They can be modified after 142 * module load with ethtool. 143 * 144 * This default is chosen to ensure that a 10G link does not go idle 145 * while a TX queue is stopped after it has become full. A queue is 146 * restarted when it drops below half full. The time this takes (assuming 147 * worst case 3 descriptors per packet and 1024 descriptors) is 148 * 512 / 3 * 1.2 = 205 usec. 149 */ 150 static unsigned int tx_irq_mod_usec = 150; 151 152 /* This is the first interrupt mode to try out of: 153 * 0 => MSI-X 154 * 1 => MSI 155 * 2 => legacy 156 */ 157 static unsigned int interrupt_mode; 158 159 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 160 * i.e. the number of CPUs among which we may distribute simultaneous 161 * interrupt handling. 162 * 163 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 164 * The default (0) means to assign an interrupt to each core. 165 */ 166 static unsigned int rss_cpus; 167 module_param(rss_cpus, uint, 0444); 168 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 169 170 static bool phy_flash_cfg; 171 module_param(phy_flash_cfg, bool, 0644); 172 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 173 174 static unsigned irq_adapt_low_thresh = 8000; 175 module_param(irq_adapt_low_thresh, uint, 0644); 176 MODULE_PARM_DESC(irq_adapt_low_thresh, 177 "Threshold score for reducing IRQ moderation"); 178 179 static unsigned irq_adapt_high_thresh = 16000; 180 module_param(irq_adapt_high_thresh, uint, 0644); 181 MODULE_PARM_DESC(irq_adapt_high_thresh, 182 "Threshold score for increasing IRQ moderation"); 183 184 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 185 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 186 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 187 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 188 module_param(debug, uint, 0); 189 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 190 191 /************************************************************************** 192 * 193 * Utility functions and prototypes 194 * 195 *************************************************************************/ 196 197 static int ef4_soft_enable_interrupts(struct ef4_nic *efx); 198 static void ef4_soft_disable_interrupts(struct ef4_nic *efx); 199 static void ef4_remove_channel(struct ef4_channel *channel); 200 static void ef4_remove_channels(struct ef4_nic *efx); 201 static const struct ef4_channel_type ef4_default_channel_type; 202 static void ef4_remove_port(struct ef4_nic *efx); 203 static void ef4_init_napi_channel(struct ef4_channel *channel); 204 static void ef4_fini_napi(struct ef4_nic *efx); 205 static void ef4_fini_napi_channel(struct ef4_channel *channel); 206 static void ef4_fini_struct(struct ef4_nic *efx); 207 static void ef4_start_all(struct ef4_nic *efx); 208 static void ef4_stop_all(struct ef4_nic *efx); 209 210 #define EF4_ASSERT_RESET_SERIALISED(efx) \ 211 do { \ 212 if ((efx->state == STATE_READY) || \ 213 (efx->state == STATE_RECOVERY) || \ 214 (efx->state == STATE_DISABLED)) \ 215 ASSERT_RTNL(); \ 216 } while (0) 217 218 static int ef4_check_disabled(struct ef4_nic *efx) 219 { 220 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 221 netif_err(efx, drv, efx->net_dev, 222 "device is disabled due to earlier errors\n"); 223 return -EIO; 224 } 225 return 0; 226 } 227 228 /************************************************************************** 229 * 230 * Event queue processing 231 * 232 *************************************************************************/ 233 234 /* Process channel's event queue 235 * 236 * This function is responsible for processing the event queue of a 237 * single channel. The caller must guarantee that this function will 238 * never be concurrently called more than once on the same channel, 239 * though different channels may be being processed concurrently. 240 */ 241 static int ef4_process_channel(struct ef4_channel *channel, int budget) 242 { 243 struct ef4_tx_queue *tx_queue; 244 int spent; 245 246 if (unlikely(!channel->enabled)) 247 return 0; 248 249 ef4_for_each_channel_tx_queue(tx_queue, channel) { 250 tx_queue->pkts_compl = 0; 251 tx_queue->bytes_compl = 0; 252 } 253 254 spent = ef4_nic_process_eventq(channel, budget); 255 if (spent && ef4_channel_has_rx_queue(channel)) { 256 struct ef4_rx_queue *rx_queue = 257 ef4_channel_get_rx_queue(channel); 258 259 ef4_rx_flush_packet(channel); 260 ef4_fast_push_rx_descriptors(rx_queue, true); 261 } 262 263 /* Update BQL */ 264 ef4_for_each_channel_tx_queue(tx_queue, channel) { 265 if (tx_queue->bytes_compl) { 266 netdev_tx_completed_queue(tx_queue->core_txq, 267 tx_queue->pkts_compl, tx_queue->bytes_compl); 268 } 269 } 270 271 return spent; 272 } 273 274 /* NAPI poll handler 275 * 276 * NAPI guarantees serialisation of polls of the same device, which 277 * provides the guarantee required by ef4_process_channel(). 278 */ 279 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel) 280 { 281 int step = efx->irq_mod_step_us; 282 283 if (channel->irq_mod_score < irq_adapt_low_thresh) { 284 if (channel->irq_moderation_us > step) { 285 channel->irq_moderation_us -= step; 286 efx->type->push_irq_moderation(channel); 287 } 288 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 289 if (channel->irq_moderation_us < 290 efx->irq_rx_moderation_us) { 291 channel->irq_moderation_us += step; 292 efx->type->push_irq_moderation(channel); 293 } 294 } 295 296 channel->irq_count = 0; 297 channel->irq_mod_score = 0; 298 } 299 300 static int ef4_poll(struct napi_struct *napi, int budget) 301 { 302 struct ef4_channel *channel = 303 container_of(napi, struct ef4_channel, napi_str); 304 struct ef4_nic *efx = channel->efx; 305 int spent; 306 307 netif_vdbg(efx, intr, efx->net_dev, 308 "channel %d NAPI poll executing on CPU %d\n", 309 channel->channel, raw_smp_processor_id()); 310 311 spent = ef4_process_channel(channel, budget); 312 313 if (spent < budget) { 314 if (ef4_channel_has_rx_queue(channel) && 315 efx->irq_rx_adaptive && 316 unlikely(++channel->irq_count == 1000)) { 317 ef4_update_irq_mod(efx, channel); 318 } 319 320 ef4_filter_rfs_expire(channel); 321 322 /* There is no race here; although napi_disable() will 323 * only wait for napi_complete(), this isn't a problem 324 * since ef4_nic_eventq_read_ack() will have no effect if 325 * interrupts have already been disabled. 326 */ 327 napi_complete_done(napi, spent); 328 ef4_nic_eventq_read_ack(channel); 329 } 330 331 return spent; 332 } 333 334 /* Create event queue 335 * Event queue memory allocations are done only once. If the channel 336 * is reset, the memory buffer will be reused; this guards against 337 * errors during channel reset and also simplifies interrupt handling. 338 */ 339 static int ef4_probe_eventq(struct ef4_channel *channel) 340 { 341 struct ef4_nic *efx = channel->efx; 342 unsigned long entries; 343 344 netif_dbg(efx, probe, efx->net_dev, 345 "chan %d create event queue\n", channel->channel); 346 347 /* Build an event queue with room for one event per tx and rx buffer, 348 * plus some extra for link state events and MCDI completions. */ 349 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 350 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE); 351 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1; 352 353 return ef4_nic_probe_eventq(channel); 354 } 355 356 /* Prepare channel's event queue */ 357 static int ef4_init_eventq(struct ef4_channel *channel) 358 { 359 struct ef4_nic *efx = channel->efx; 360 int rc; 361 362 EF4_WARN_ON_PARANOID(channel->eventq_init); 363 364 netif_dbg(efx, drv, efx->net_dev, 365 "chan %d init event queue\n", channel->channel); 366 367 rc = ef4_nic_init_eventq(channel); 368 if (rc == 0) { 369 efx->type->push_irq_moderation(channel); 370 channel->eventq_read_ptr = 0; 371 channel->eventq_init = true; 372 } 373 return rc; 374 } 375 376 /* Enable event queue processing and NAPI */ 377 void ef4_start_eventq(struct ef4_channel *channel) 378 { 379 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 380 "chan %d start event queue\n", channel->channel); 381 382 /* Make sure the NAPI handler sees the enabled flag set */ 383 channel->enabled = true; 384 smp_wmb(); 385 386 napi_enable(&channel->napi_str); 387 ef4_nic_eventq_read_ack(channel); 388 } 389 390 /* Disable event queue processing and NAPI */ 391 void ef4_stop_eventq(struct ef4_channel *channel) 392 { 393 if (!channel->enabled) 394 return; 395 396 napi_disable(&channel->napi_str); 397 channel->enabled = false; 398 } 399 400 static void ef4_fini_eventq(struct ef4_channel *channel) 401 { 402 if (!channel->eventq_init) 403 return; 404 405 netif_dbg(channel->efx, drv, channel->efx->net_dev, 406 "chan %d fini event queue\n", channel->channel); 407 408 ef4_nic_fini_eventq(channel); 409 channel->eventq_init = false; 410 } 411 412 static void ef4_remove_eventq(struct ef4_channel *channel) 413 { 414 netif_dbg(channel->efx, drv, channel->efx->net_dev, 415 "chan %d remove event queue\n", channel->channel); 416 417 ef4_nic_remove_eventq(channel); 418 } 419 420 /************************************************************************** 421 * 422 * Channel handling 423 * 424 *************************************************************************/ 425 426 /* Allocate and initialise a channel structure. */ 427 static struct ef4_channel * 428 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel) 429 { 430 struct ef4_channel *channel; 431 struct ef4_rx_queue *rx_queue; 432 struct ef4_tx_queue *tx_queue; 433 int j; 434 435 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 436 if (!channel) 437 return NULL; 438 439 channel->efx = efx; 440 channel->channel = i; 441 channel->type = &ef4_default_channel_type; 442 443 for (j = 0; j < EF4_TXQ_TYPES; j++) { 444 tx_queue = &channel->tx_queue[j]; 445 tx_queue->efx = efx; 446 tx_queue->queue = i * EF4_TXQ_TYPES + j; 447 tx_queue->channel = channel; 448 } 449 450 rx_queue = &channel->rx_queue; 451 rx_queue->efx = efx; 452 setup_timer(&rx_queue->slow_fill, ef4_rx_slow_fill, 453 (unsigned long)rx_queue); 454 455 return channel; 456 } 457 458 /* Allocate and initialise a channel structure, copying parameters 459 * (but not resources) from an old channel structure. 460 */ 461 static struct ef4_channel * 462 ef4_copy_channel(const struct ef4_channel *old_channel) 463 { 464 struct ef4_channel *channel; 465 struct ef4_rx_queue *rx_queue; 466 struct ef4_tx_queue *tx_queue; 467 int j; 468 469 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 470 if (!channel) 471 return NULL; 472 473 *channel = *old_channel; 474 475 channel->napi_dev = NULL; 476 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 477 channel->napi_str.napi_id = 0; 478 channel->napi_str.state = 0; 479 memset(&channel->eventq, 0, sizeof(channel->eventq)); 480 481 for (j = 0; j < EF4_TXQ_TYPES; j++) { 482 tx_queue = &channel->tx_queue[j]; 483 if (tx_queue->channel) 484 tx_queue->channel = channel; 485 tx_queue->buffer = NULL; 486 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 487 } 488 489 rx_queue = &channel->rx_queue; 490 rx_queue->buffer = NULL; 491 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 492 setup_timer(&rx_queue->slow_fill, ef4_rx_slow_fill, 493 (unsigned long)rx_queue); 494 495 return channel; 496 } 497 498 static int ef4_probe_channel(struct ef4_channel *channel) 499 { 500 struct ef4_tx_queue *tx_queue; 501 struct ef4_rx_queue *rx_queue; 502 int rc; 503 504 netif_dbg(channel->efx, probe, channel->efx->net_dev, 505 "creating channel %d\n", channel->channel); 506 507 rc = channel->type->pre_probe(channel); 508 if (rc) 509 goto fail; 510 511 rc = ef4_probe_eventq(channel); 512 if (rc) 513 goto fail; 514 515 ef4_for_each_channel_tx_queue(tx_queue, channel) { 516 rc = ef4_probe_tx_queue(tx_queue); 517 if (rc) 518 goto fail; 519 } 520 521 ef4_for_each_channel_rx_queue(rx_queue, channel) { 522 rc = ef4_probe_rx_queue(rx_queue); 523 if (rc) 524 goto fail; 525 } 526 527 return 0; 528 529 fail: 530 ef4_remove_channel(channel); 531 return rc; 532 } 533 534 static void 535 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len) 536 { 537 struct ef4_nic *efx = channel->efx; 538 const char *type; 539 int number; 540 541 number = channel->channel; 542 if (efx->tx_channel_offset == 0) { 543 type = ""; 544 } else if (channel->channel < efx->tx_channel_offset) { 545 type = "-rx"; 546 } else { 547 type = "-tx"; 548 number -= efx->tx_channel_offset; 549 } 550 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 551 } 552 553 static void ef4_set_channel_names(struct ef4_nic *efx) 554 { 555 struct ef4_channel *channel; 556 557 ef4_for_each_channel(channel, efx) 558 channel->type->get_name(channel, 559 efx->msi_context[channel->channel].name, 560 sizeof(efx->msi_context[0].name)); 561 } 562 563 static int ef4_probe_channels(struct ef4_nic *efx) 564 { 565 struct ef4_channel *channel; 566 int rc; 567 568 /* Restart special buffer allocation */ 569 efx->next_buffer_table = 0; 570 571 /* Probe channels in reverse, so that any 'extra' channels 572 * use the start of the buffer table. This allows the traffic 573 * channels to be resized without moving them or wasting the 574 * entries before them. 575 */ 576 ef4_for_each_channel_rev(channel, efx) { 577 rc = ef4_probe_channel(channel); 578 if (rc) { 579 netif_err(efx, probe, efx->net_dev, 580 "failed to create channel %d\n", 581 channel->channel); 582 goto fail; 583 } 584 } 585 ef4_set_channel_names(efx); 586 587 return 0; 588 589 fail: 590 ef4_remove_channels(efx); 591 return rc; 592 } 593 594 /* Channels are shutdown and reinitialised whilst the NIC is running 595 * to propagate configuration changes (mtu, checksum offload), or 596 * to clear hardware error conditions 597 */ 598 static void ef4_start_datapath(struct ef4_nic *efx) 599 { 600 netdev_features_t old_features = efx->net_dev->features; 601 bool old_rx_scatter = efx->rx_scatter; 602 struct ef4_tx_queue *tx_queue; 603 struct ef4_rx_queue *rx_queue; 604 struct ef4_channel *channel; 605 size_t rx_buf_len; 606 607 /* Calculate the rx buffer allocation parameters required to 608 * support the current MTU, including padding for header 609 * alignment and overruns. 610 */ 611 efx->rx_dma_len = (efx->rx_prefix_size + 612 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) + 613 efx->type->rx_buffer_padding); 614 rx_buf_len = (sizeof(struct ef4_rx_page_state) + 615 efx->rx_ip_align + efx->rx_dma_len); 616 if (rx_buf_len <= PAGE_SIZE) { 617 efx->rx_scatter = efx->type->always_rx_scatter; 618 efx->rx_buffer_order = 0; 619 } else if (efx->type->can_rx_scatter) { 620 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 621 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) + 622 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE, 623 EF4_RX_BUF_ALIGNMENT) > 624 PAGE_SIZE); 625 efx->rx_scatter = true; 626 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE; 627 efx->rx_buffer_order = 0; 628 } else { 629 efx->rx_scatter = false; 630 efx->rx_buffer_order = get_order(rx_buf_len); 631 } 632 633 ef4_rx_config_page_split(efx); 634 if (efx->rx_buffer_order) 635 netif_dbg(efx, drv, efx->net_dev, 636 "RX buf len=%u; page order=%u batch=%u\n", 637 efx->rx_dma_len, efx->rx_buffer_order, 638 efx->rx_pages_per_batch); 639 else 640 netif_dbg(efx, drv, efx->net_dev, 641 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 642 efx->rx_dma_len, efx->rx_page_buf_step, 643 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 644 645 /* Restore previously fixed features in hw_features and remove 646 * features which are fixed now 647 */ 648 efx->net_dev->hw_features |= efx->net_dev->features; 649 efx->net_dev->hw_features &= ~efx->fixed_features; 650 efx->net_dev->features |= efx->fixed_features; 651 if (efx->net_dev->features != old_features) 652 netdev_features_change(efx->net_dev); 653 654 /* RX filters may also have scatter-enabled flags */ 655 if (efx->rx_scatter != old_rx_scatter) 656 efx->type->filter_update_rx_scatter(efx); 657 658 /* We must keep at least one descriptor in a TX ring empty. 659 * We could avoid this when the queue size does not exactly 660 * match the hardware ring size, but it's not that important. 661 * Therefore we stop the queue when one more skb might fill 662 * the ring completely. We wake it when half way back to 663 * empty. 664 */ 665 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx); 666 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 667 668 /* Initialise the channels */ 669 ef4_for_each_channel(channel, efx) { 670 ef4_for_each_channel_tx_queue(tx_queue, channel) { 671 ef4_init_tx_queue(tx_queue); 672 atomic_inc(&efx->active_queues); 673 } 674 675 ef4_for_each_channel_rx_queue(rx_queue, channel) { 676 ef4_init_rx_queue(rx_queue); 677 atomic_inc(&efx->active_queues); 678 ef4_stop_eventq(channel); 679 ef4_fast_push_rx_descriptors(rx_queue, false); 680 ef4_start_eventq(channel); 681 } 682 683 WARN_ON(channel->rx_pkt_n_frags); 684 } 685 686 if (netif_device_present(efx->net_dev)) 687 netif_tx_wake_all_queues(efx->net_dev); 688 } 689 690 static void ef4_stop_datapath(struct ef4_nic *efx) 691 { 692 struct ef4_channel *channel; 693 struct ef4_tx_queue *tx_queue; 694 struct ef4_rx_queue *rx_queue; 695 int rc; 696 697 EF4_ASSERT_RESET_SERIALISED(efx); 698 BUG_ON(efx->port_enabled); 699 700 /* Stop RX refill */ 701 ef4_for_each_channel(channel, efx) { 702 ef4_for_each_channel_rx_queue(rx_queue, channel) 703 rx_queue->refill_enabled = false; 704 } 705 706 ef4_for_each_channel(channel, efx) { 707 /* RX packet processing is pipelined, so wait for the 708 * NAPI handler to complete. At least event queue 0 709 * might be kept active by non-data events, so don't 710 * use napi_synchronize() but actually disable NAPI 711 * temporarily. 712 */ 713 if (ef4_channel_has_rx_queue(channel)) { 714 ef4_stop_eventq(channel); 715 ef4_start_eventq(channel); 716 } 717 } 718 719 rc = efx->type->fini_dmaq(efx); 720 if (rc && EF4_WORKAROUND_7803(efx)) { 721 /* Schedule a reset to recover from the flush failure. The 722 * descriptor caches reference memory we're about to free, 723 * but falcon_reconfigure_mac_wrapper() won't reconnect 724 * the MACs because of the pending reset. 725 */ 726 netif_err(efx, drv, efx->net_dev, 727 "Resetting to recover from flush failure\n"); 728 ef4_schedule_reset(efx, RESET_TYPE_ALL); 729 } else if (rc) { 730 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 731 } else { 732 netif_dbg(efx, drv, efx->net_dev, 733 "successfully flushed all queues\n"); 734 } 735 736 ef4_for_each_channel(channel, efx) { 737 ef4_for_each_channel_rx_queue(rx_queue, channel) 738 ef4_fini_rx_queue(rx_queue); 739 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 740 ef4_fini_tx_queue(tx_queue); 741 } 742 } 743 744 static void ef4_remove_channel(struct ef4_channel *channel) 745 { 746 struct ef4_tx_queue *tx_queue; 747 struct ef4_rx_queue *rx_queue; 748 749 netif_dbg(channel->efx, drv, channel->efx->net_dev, 750 "destroy chan %d\n", channel->channel); 751 752 ef4_for_each_channel_rx_queue(rx_queue, channel) 753 ef4_remove_rx_queue(rx_queue); 754 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 755 ef4_remove_tx_queue(tx_queue); 756 ef4_remove_eventq(channel); 757 channel->type->post_remove(channel); 758 } 759 760 static void ef4_remove_channels(struct ef4_nic *efx) 761 { 762 struct ef4_channel *channel; 763 764 ef4_for_each_channel(channel, efx) 765 ef4_remove_channel(channel); 766 } 767 768 int 769 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries) 770 { 771 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel; 772 u32 old_rxq_entries, old_txq_entries; 773 unsigned i, next_buffer_table = 0; 774 int rc, rc2; 775 776 rc = ef4_check_disabled(efx); 777 if (rc) 778 return rc; 779 780 /* Not all channels should be reallocated. We must avoid 781 * reallocating their buffer table entries. 782 */ 783 ef4_for_each_channel(channel, efx) { 784 struct ef4_rx_queue *rx_queue; 785 struct ef4_tx_queue *tx_queue; 786 787 if (channel->type->copy) 788 continue; 789 next_buffer_table = max(next_buffer_table, 790 channel->eventq.index + 791 channel->eventq.entries); 792 ef4_for_each_channel_rx_queue(rx_queue, channel) 793 next_buffer_table = max(next_buffer_table, 794 rx_queue->rxd.index + 795 rx_queue->rxd.entries); 796 ef4_for_each_channel_tx_queue(tx_queue, channel) 797 next_buffer_table = max(next_buffer_table, 798 tx_queue->txd.index + 799 tx_queue->txd.entries); 800 } 801 802 ef4_device_detach_sync(efx); 803 ef4_stop_all(efx); 804 ef4_soft_disable_interrupts(efx); 805 806 /* Clone channels (where possible) */ 807 memset(other_channel, 0, sizeof(other_channel)); 808 for (i = 0; i < efx->n_channels; i++) { 809 channel = efx->channel[i]; 810 if (channel->type->copy) 811 channel = channel->type->copy(channel); 812 if (!channel) { 813 rc = -ENOMEM; 814 goto out; 815 } 816 other_channel[i] = channel; 817 } 818 819 /* Swap entry counts and channel pointers */ 820 old_rxq_entries = efx->rxq_entries; 821 old_txq_entries = efx->txq_entries; 822 efx->rxq_entries = rxq_entries; 823 efx->txq_entries = txq_entries; 824 for (i = 0; i < efx->n_channels; i++) { 825 channel = efx->channel[i]; 826 efx->channel[i] = other_channel[i]; 827 other_channel[i] = channel; 828 } 829 830 /* Restart buffer table allocation */ 831 efx->next_buffer_table = next_buffer_table; 832 833 for (i = 0; i < efx->n_channels; i++) { 834 channel = efx->channel[i]; 835 if (!channel->type->copy) 836 continue; 837 rc = ef4_probe_channel(channel); 838 if (rc) 839 goto rollback; 840 ef4_init_napi_channel(efx->channel[i]); 841 } 842 843 out: 844 /* Destroy unused channel structures */ 845 for (i = 0; i < efx->n_channels; i++) { 846 channel = other_channel[i]; 847 if (channel && channel->type->copy) { 848 ef4_fini_napi_channel(channel); 849 ef4_remove_channel(channel); 850 kfree(channel); 851 } 852 } 853 854 rc2 = ef4_soft_enable_interrupts(efx); 855 if (rc2) { 856 rc = rc ? rc : rc2; 857 netif_err(efx, drv, efx->net_dev, 858 "unable to restart interrupts on channel reallocation\n"); 859 ef4_schedule_reset(efx, RESET_TYPE_DISABLE); 860 } else { 861 ef4_start_all(efx); 862 netif_device_attach(efx->net_dev); 863 } 864 return rc; 865 866 rollback: 867 /* Swap back */ 868 efx->rxq_entries = old_rxq_entries; 869 efx->txq_entries = old_txq_entries; 870 for (i = 0; i < efx->n_channels; i++) { 871 channel = efx->channel[i]; 872 efx->channel[i] = other_channel[i]; 873 other_channel[i] = channel; 874 } 875 goto out; 876 } 877 878 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue) 879 { 880 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 881 } 882 883 static const struct ef4_channel_type ef4_default_channel_type = { 884 .pre_probe = ef4_channel_dummy_op_int, 885 .post_remove = ef4_channel_dummy_op_void, 886 .get_name = ef4_get_channel_name, 887 .copy = ef4_copy_channel, 888 .keep_eventq = false, 889 }; 890 891 int ef4_channel_dummy_op_int(struct ef4_channel *channel) 892 { 893 return 0; 894 } 895 896 void ef4_channel_dummy_op_void(struct ef4_channel *channel) 897 { 898 } 899 900 /************************************************************************** 901 * 902 * Port handling 903 * 904 **************************************************************************/ 905 906 /* This ensures that the kernel is kept informed (via 907 * netif_carrier_on/off) of the link status, and also maintains the 908 * link status's stop on the port's TX queue. 909 */ 910 void ef4_link_status_changed(struct ef4_nic *efx) 911 { 912 struct ef4_link_state *link_state = &efx->link_state; 913 914 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 915 * that no events are triggered between unregister_netdev() and the 916 * driver unloading. A more general condition is that NETDEV_CHANGE 917 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 918 if (!netif_running(efx->net_dev)) 919 return; 920 921 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 922 efx->n_link_state_changes++; 923 924 if (link_state->up) 925 netif_carrier_on(efx->net_dev); 926 else 927 netif_carrier_off(efx->net_dev); 928 } 929 930 /* Status message for kernel log */ 931 if (link_state->up) 932 netif_info(efx, link, efx->net_dev, 933 "link up at %uMbps %s-duplex (MTU %d)\n", 934 link_state->speed, link_state->fd ? "full" : "half", 935 efx->net_dev->mtu); 936 else 937 netif_info(efx, link, efx->net_dev, "link down\n"); 938 } 939 940 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising) 941 { 942 efx->link_advertising = advertising; 943 if (advertising) { 944 if (advertising & ADVERTISED_Pause) 945 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX); 946 else 947 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX); 948 if (advertising & ADVERTISED_Asym_Pause) 949 efx->wanted_fc ^= EF4_FC_TX; 950 } 951 } 952 953 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc) 954 { 955 efx->wanted_fc = wanted_fc; 956 if (efx->link_advertising) { 957 if (wanted_fc & EF4_FC_RX) 958 efx->link_advertising |= (ADVERTISED_Pause | 959 ADVERTISED_Asym_Pause); 960 else 961 efx->link_advertising &= ~(ADVERTISED_Pause | 962 ADVERTISED_Asym_Pause); 963 if (wanted_fc & EF4_FC_TX) 964 efx->link_advertising ^= ADVERTISED_Asym_Pause; 965 } 966 } 967 968 static void ef4_fini_port(struct ef4_nic *efx); 969 970 /* We assume that efx->type->reconfigure_mac will always try to sync RX 971 * filters and therefore needs to read-lock the filter table against freeing 972 */ 973 void ef4_mac_reconfigure(struct ef4_nic *efx) 974 { 975 down_read(&efx->filter_sem); 976 efx->type->reconfigure_mac(efx); 977 up_read(&efx->filter_sem); 978 } 979 980 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 981 * the MAC appropriately. All other PHY configuration changes are pushed 982 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC 983 * through ef4_monitor(). 984 * 985 * Callers must hold the mac_lock 986 */ 987 int __ef4_reconfigure_port(struct ef4_nic *efx) 988 { 989 enum ef4_phy_mode phy_mode; 990 int rc; 991 992 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 993 994 /* Disable PHY transmit in mac level loopbacks */ 995 phy_mode = efx->phy_mode; 996 if (LOOPBACK_INTERNAL(efx)) 997 efx->phy_mode |= PHY_MODE_TX_DISABLED; 998 else 999 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 1000 1001 rc = efx->type->reconfigure_port(efx); 1002 1003 if (rc) 1004 efx->phy_mode = phy_mode; 1005 1006 return rc; 1007 } 1008 1009 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1010 * disabled. */ 1011 int ef4_reconfigure_port(struct ef4_nic *efx) 1012 { 1013 int rc; 1014 1015 EF4_ASSERT_RESET_SERIALISED(efx); 1016 1017 mutex_lock(&efx->mac_lock); 1018 rc = __ef4_reconfigure_port(efx); 1019 mutex_unlock(&efx->mac_lock); 1020 1021 return rc; 1022 } 1023 1024 /* Asynchronous work item for changing MAC promiscuity and multicast 1025 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1026 * MAC directly. */ 1027 static void ef4_mac_work(struct work_struct *data) 1028 { 1029 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work); 1030 1031 mutex_lock(&efx->mac_lock); 1032 if (efx->port_enabled) 1033 ef4_mac_reconfigure(efx); 1034 mutex_unlock(&efx->mac_lock); 1035 } 1036 1037 static int ef4_probe_port(struct ef4_nic *efx) 1038 { 1039 int rc; 1040 1041 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1042 1043 if (phy_flash_cfg) 1044 efx->phy_mode = PHY_MODE_SPECIAL; 1045 1046 /* Connect up MAC/PHY operations table */ 1047 rc = efx->type->probe_port(efx); 1048 if (rc) 1049 return rc; 1050 1051 /* Initialise MAC address to permanent address */ 1052 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1053 1054 return 0; 1055 } 1056 1057 static int ef4_init_port(struct ef4_nic *efx) 1058 { 1059 int rc; 1060 1061 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1062 1063 mutex_lock(&efx->mac_lock); 1064 1065 rc = efx->phy_op->init(efx); 1066 if (rc) 1067 goto fail1; 1068 1069 efx->port_initialized = true; 1070 1071 /* Reconfigure the MAC before creating dma queues (required for 1072 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1073 ef4_mac_reconfigure(efx); 1074 1075 /* Ensure the PHY advertises the correct flow control settings */ 1076 rc = efx->phy_op->reconfigure(efx); 1077 if (rc && rc != -EPERM) 1078 goto fail2; 1079 1080 mutex_unlock(&efx->mac_lock); 1081 return 0; 1082 1083 fail2: 1084 efx->phy_op->fini(efx); 1085 fail1: 1086 mutex_unlock(&efx->mac_lock); 1087 return rc; 1088 } 1089 1090 static void ef4_start_port(struct ef4_nic *efx) 1091 { 1092 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1093 BUG_ON(efx->port_enabled); 1094 1095 mutex_lock(&efx->mac_lock); 1096 efx->port_enabled = true; 1097 1098 /* Ensure MAC ingress/egress is enabled */ 1099 ef4_mac_reconfigure(efx); 1100 1101 mutex_unlock(&efx->mac_lock); 1102 } 1103 1104 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1105 * and the async self-test, wait for them to finish and prevent them 1106 * being scheduled again. This doesn't cover online resets, which 1107 * should only be cancelled when removing the device. 1108 */ 1109 static void ef4_stop_port(struct ef4_nic *efx) 1110 { 1111 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1112 1113 EF4_ASSERT_RESET_SERIALISED(efx); 1114 1115 mutex_lock(&efx->mac_lock); 1116 efx->port_enabled = false; 1117 mutex_unlock(&efx->mac_lock); 1118 1119 /* Serialise against ef4_set_multicast_list() */ 1120 netif_addr_lock_bh(efx->net_dev); 1121 netif_addr_unlock_bh(efx->net_dev); 1122 1123 cancel_delayed_work_sync(&efx->monitor_work); 1124 ef4_selftest_async_cancel(efx); 1125 cancel_work_sync(&efx->mac_work); 1126 } 1127 1128 static void ef4_fini_port(struct ef4_nic *efx) 1129 { 1130 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1131 1132 if (!efx->port_initialized) 1133 return; 1134 1135 efx->phy_op->fini(efx); 1136 efx->port_initialized = false; 1137 1138 efx->link_state.up = false; 1139 ef4_link_status_changed(efx); 1140 } 1141 1142 static void ef4_remove_port(struct ef4_nic *efx) 1143 { 1144 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1145 1146 efx->type->remove_port(efx); 1147 } 1148 1149 /************************************************************************** 1150 * 1151 * NIC handling 1152 * 1153 **************************************************************************/ 1154 1155 static LIST_HEAD(ef4_primary_list); 1156 static LIST_HEAD(ef4_unassociated_list); 1157 1158 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right) 1159 { 1160 return left->type == right->type && 1161 left->vpd_sn && right->vpd_sn && 1162 !strcmp(left->vpd_sn, right->vpd_sn); 1163 } 1164 1165 static void ef4_associate(struct ef4_nic *efx) 1166 { 1167 struct ef4_nic *other, *next; 1168 1169 if (efx->primary == efx) { 1170 /* Adding primary function; look for secondaries */ 1171 1172 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1173 list_add_tail(&efx->node, &ef4_primary_list); 1174 1175 list_for_each_entry_safe(other, next, &ef4_unassociated_list, 1176 node) { 1177 if (ef4_same_controller(efx, other)) { 1178 list_del(&other->node); 1179 netif_dbg(other, probe, other->net_dev, 1180 "moving to secondary list of %s %s\n", 1181 pci_name(efx->pci_dev), 1182 efx->net_dev->name); 1183 list_add_tail(&other->node, 1184 &efx->secondary_list); 1185 other->primary = efx; 1186 } 1187 } 1188 } else { 1189 /* Adding secondary function; look for primary */ 1190 1191 list_for_each_entry(other, &ef4_primary_list, node) { 1192 if (ef4_same_controller(efx, other)) { 1193 netif_dbg(efx, probe, efx->net_dev, 1194 "adding to secondary list of %s %s\n", 1195 pci_name(other->pci_dev), 1196 other->net_dev->name); 1197 list_add_tail(&efx->node, 1198 &other->secondary_list); 1199 efx->primary = other; 1200 return; 1201 } 1202 } 1203 1204 netif_dbg(efx, probe, efx->net_dev, 1205 "adding to unassociated list\n"); 1206 list_add_tail(&efx->node, &ef4_unassociated_list); 1207 } 1208 } 1209 1210 static void ef4_dissociate(struct ef4_nic *efx) 1211 { 1212 struct ef4_nic *other, *next; 1213 1214 list_del(&efx->node); 1215 efx->primary = NULL; 1216 1217 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1218 list_del(&other->node); 1219 netif_dbg(other, probe, other->net_dev, 1220 "moving to unassociated list\n"); 1221 list_add_tail(&other->node, &ef4_unassociated_list); 1222 other->primary = NULL; 1223 } 1224 } 1225 1226 /* This configures the PCI device to enable I/O and DMA. */ 1227 static int ef4_init_io(struct ef4_nic *efx) 1228 { 1229 struct pci_dev *pci_dev = efx->pci_dev; 1230 dma_addr_t dma_mask = efx->type->max_dma_mask; 1231 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1232 int rc, bar; 1233 1234 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1235 1236 bar = efx->type->mem_bar; 1237 1238 rc = pci_enable_device(pci_dev); 1239 if (rc) { 1240 netif_err(efx, probe, efx->net_dev, 1241 "failed to enable PCI device\n"); 1242 goto fail1; 1243 } 1244 1245 pci_set_master(pci_dev); 1246 1247 /* Set the PCI DMA mask. Try all possibilities from our 1248 * genuine mask down to 32 bits, because some architectures 1249 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit 1250 * masks event though they reject 46 bit masks. 1251 */ 1252 while (dma_mask > 0x7fffffffUL) { 1253 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1254 if (rc == 0) 1255 break; 1256 dma_mask >>= 1; 1257 } 1258 if (rc) { 1259 netif_err(efx, probe, efx->net_dev, 1260 "could not find a suitable DMA mask\n"); 1261 goto fail2; 1262 } 1263 netif_dbg(efx, probe, efx->net_dev, 1264 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1265 1266 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1267 rc = pci_request_region(pci_dev, bar, "sfc"); 1268 if (rc) { 1269 netif_err(efx, probe, efx->net_dev, 1270 "request for memory BAR failed\n"); 1271 rc = -EIO; 1272 goto fail3; 1273 } 1274 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1275 if (!efx->membase) { 1276 netif_err(efx, probe, efx->net_dev, 1277 "could not map memory BAR at %llx+%x\n", 1278 (unsigned long long)efx->membase_phys, mem_map_size); 1279 rc = -ENOMEM; 1280 goto fail4; 1281 } 1282 netif_dbg(efx, probe, efx->net_dev, 1283 "memory BAR at %llx+%x (virtual %p)\n", 1284 (unsigned long long)efx->membase_phys, mem_map_size, 1285 efx->membase); 1286 1287 return 0; 1288 1289 fail4: 1290 pci_release_region(efx->pci_dev, bar); 1291 fail3: 1292 efx->membase_phys = 0; 1293 fail2: 1294 pci_disable_device(efx->pci_dev); 1295 fail1: 1296 return rc; 1297 } 1298 1299 static void ef4_fini_io(struct ef4_nic *efx) 1300 { 1301 int bar; 1302 1303 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1304 1305 if (efx->membase) { 1306 iounmap(efx->membase); 1307 efx->membase = NULL; 1308 } 1309 1310 if (efx->membase_phys) { 1311 bar = efx->type->mem_bar; 1312 pci_release_region(efx->pci_dev, bar); 1313 efx->membase_phys = 0; 1314 } 1315 1316 /* Don't disable bus-mastering if VFs are assigned */ 1317 if (!pci_vfs_assigned(efx->pci_dev)) 1318 pci_disable_device(efx->pci_dev); 1319 } 1320 1321 void ef4_set_default_rx_indir_table(struct ef4_nic *efx) 1322 { 1323 size_t i; 1324 1325 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1326 efx->rx_indir_table[i] = 1327 ethtool_rxfh_indir_default(i, efx->rss_spread); 1328 } 1329 1330 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx) 1331 { 1332 cpumask_var_t thread_mask; 1333 unsigned int count; 1334 int cpu; 1335 1336 if (rss_cpus) { 1337 count = rss_cpus; 1338 } else { 1339 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1340 netif_warn(efx, probe, efx->net_dev, 1341 "RSS disabled due to allocation failure\n"); 1342 return 1; 1343 } 1344 1345 count = 0; 1346 for_each_online_cpu(cpu) { 1347 if (!cpumask_test_cpu(cpu, thread_mask)) { 1348 ++count; 1349 cpumask_or(thread_mask, thread_mask, 1350 topology_sibling_cpumask(cpu)); 1351 } 1352 } 1353 1354 free_cpumask_var(thread_mask); 1355 } 1356 1357 return count; 1358 } 1359 1360 /* Probe the number and type of interrupts we are able to obtain, and 1361 * the resulting numbers of channels and RX queues. 1362 */ 1363 static int ef4_probe_interrupts(struct ef4_nic *efx) 1364 { 1365 unsigned int extra_channels = 0; 1366 unsigned int i, j; 1367 int rc; 1368 1369 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) 1370 if (efx->extra_channel_type[i]) 1371 ++extra_channels; 1372 1373 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) { 1374 struct msix_entry xentries[EF4_MAX_CHANNELS]; 1375 unsigned int n_channels; 1376 1377 n_channels = ef4_wanted_parallelism(efx); 1378 if (ef4_separate_tx_channels) 1379 n_channels *= 2; 1380 n_channels += extra_channels; 1381 n_channels = min(n_channels, efx->max_channels); 1382 1383 for (i = 0; i < n_channels; i++) 1384 xentries[i].entry = i; 1385 rc = pci_enable_msix_range(efx->pci_dev, 1386 xentries, 1, n_channels); 1387 if (rc < 0) { 1388 /* Fall back to single channel MSI */ 1389 efx->interrupt_mode = EF4_INT_MODE_MSI; 1390 netif_err(efx, drv, efx->net_dev, 1391 "could not enable MSI-X\n"); 1392 } else if (rc < n_channels) { 1393 netif_err(efx, drv, efx->net_dev, 1394 "WARNING: Insufficient MSI-X vectors" 1395 " available (%d < %u).\n", rc, n_channels); 1396 netif_err(efx, drv, efx->net_dev, 1397 "WARNING: Performance may be reduced.\n"); 1398 n_channels = rc; 1399 } 1400 1401 if (rc > 0) { 1402 efx->n_channels = n_channels; 1403 if (n_channels > extra_channels) 1404 n_channels -= extra_channels; 1405 if (ef4_separate_tx_channels) { 1406 efx->n_tx_channels = min(max(n_channels / 2, 1407 1U), 1408 efx->max_tx_channels); 1409 efx->n_rx_channels = max(n_channels - 1410 efx->n_tx_channels, 1411 1U); 1412 } else { 1413 efx->n_tx_channels = min(n_channels, 1414 efx->max_tx_channels); 1415 efx->n_rx_channels = n_channels; 1416 } 1417 for (i = 0; i < efx->n_channels; i++) 1418 ef4_get_channel(efx, i)->irq = 1419 xentries[i].vector; 1420 } 1421 } 1422 1423 /* Try single interrupt MSI */ 1424 if (efx->interrupt_mode == EF4_INT_MODE_MSI) { 1425 efx->n_channels = 1; 1426 efx->n_rx_channels = 1; 1427 efx->n_tx_channels = 1; 1428 rc = pci_enable_msi(efx->pci_dev); 1429 if (rc == 0) { 1430 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1431 } else { 1432 netif_err(efx, drv, efx->net_dev, 1433 "could not enable MSI\n"); 1434 efx->interrupt_mode = EF4_INT_MODE_LEGACY; 1435 } 1436 } 1437 1438 /* Assume legacy interrupts */ 1439 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) { 1440 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0); 1441 efx->n_rx_channels = 1; 1442 efx->n_tx_channels = 1; 1443 efx->legacy_irq = efx->pci_dev->irq; 1444 } 1445 1446 /* Assign extra channels if possible */ 1447 j = efx->n_channels; 1448 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) { 1449 if (!efx->extra_channel_type[i]) 1450 continue; 1451 if (efx->interrupt_mode != EF4_INT_MODE_MSIX || 1452 efx->n_channels <= extra_channels) { 1453 efx->extra_channel_type[i]->handle_no_channel(efx); 1454 } else { 1455 --j; 1456 ef4_get_channel(efx, j)->type = 1457 efx->extra_channel_type[i]; 1458 } 1459 } 1460 1461 efx->rss_spread = efx->n_rx_channels; 1462 1463 return 0; 1464 } 1465 1466 static int ef4_soft_enable_interrupts(struct ef4_nic *efx) 1467 { 1468 struct ef4_channel *channel, *end_channel; 1469 int rc; 1470 1471 BUG_ON(efx->state == STATE_DISABLED); 1472 1473 efx->irq_soft_enabled = true; 1474 smp_wmb(); 1475 1476 ef4_for_each_channel(channel, efx) { 1477 if (!channel->type->keep_eventq) { 1478 rc = ef4_init_eventq(channel); 1479 if (rc) 1480 goto fail; 1481 } 1482 ef4_start_eventq(channel); 1483 } 1484 1485 return 0; 1486 fail: 1487 end_channel = channel; 1488 ef4_for_each_channel(channel, efx) { 1489 if (channel == end_channel) 1490 break; 1491 ef4_stop_eventq(channel); 1492 if (!channel->type->keep_eventq) 1493 ef4_fini_eventq(channel); 1494 } 1495 1496 return rc; 1497 } 1498 1499 static void ef4_soft_disable_interrupts(struct ef4_nic *efx) 1500 { 1501 struct ef4_channel *channel; 1502 1503 if (efx->state == STATE_DISABLED) 1504 return; 1505 1506 efx->irq_soft_enabled = false; 1507 smp_wmb(); 1508 1509 if (efx->legacy_irq) 1510 synchronize_irq(efx->legacy_irq); 1511 1512 ef4_for_each_channel(channel, efx) { 1513 if (channel->irq) 1514 synchronize_irq(channel->irq); 1515 1516 ef4_stop_eventq(channel); 1517 if (!channel->type->keep_eventq) 1518 ef4_fini_eventq(channel); 1519 } 1520 } 1521 1522 static int ef4_enable_interrupts(struct ef4_nic *efx) 1523 { 1524 struct ef4_channel *channel, *end_channel; 1525 int rc; 1526 1527 BUG_ON(efx->state == STATE_DISABLED); 1528 1529 if (efx->eeh_disabled_legacy_irq) { 1530 enable_irq(efx->legacy_irq); 1531 efx->eeh_disabled_legacy_irq = false; 1532 } 1533 1534 efx->type->irq_enable_master(efx); 1535 1536 ef4_for_each_channel(channel, efx) { 1537 if (channel->type->keep_eventq) { 1538 rc = ef4_init_eventq(channel); 1539 if (rc) 1540 goto fail; 1541 } 1542 } 1543 1544 rc = ef4_soft_enable_interrupts(efx); 1545 if (rc) 1546 goto fail; 1547 1548 return 0; 1549 1550 fail: 1551 end_channel = channel; 1552 ef4_for_each_channel(channel, efx) { 1553 if (channel == end_channel) 1554 break; 1555 if (channel->type->keep_eventq) 1556 ef4_fini_eventq(channel); 1557 } 1558 1559 efx->type->irq_disable_non_ev(efx); 1560 1561 return rc; 1562 } 1563 1564 static void ef4_disable_interrupts(struct ef4_nic *efx) 1565 { 1566 struct ef4_channel *channel; 1567 1568 ef4_soft_disable_interrupts(efx); 1569 1570 ef4_for_each_channel(channel, efx) { 1571 if (channel->type->keep_eventq) 1572 ef4_fini_eventq(channel); 1573 } 1574 1575 efx->type->irq_disable_non_ev(efx); 1576 } 1577 1578 static void ef4_remove_interrupts(struct ef4_nic *efx) 1579 { 1580 struct ef4_channel *channel; 1581 1582 /* Remove MSI/MSI-X interrupts */ 1583 ef4_for_each_channel(channel, efx) 1584 channel->irq = 0; 1585 pci_disable_msi(efx->pci_dev); 1586 pci_disable_msix(efx->pci_dev); 1587 1588 /* Remove legacy interrupt */ 1589 efx->legacy_irq = 0; 1590 } 1591 1592 static void ef4_set_channels(struct ef4_nic *efx) 1593 { 1594 struct ef4_channel *channel; 1595 struct ef4_tx_queue *tx_queue; 1596 1597 efx->tx_channel_offset = 1598 ef4_separate_tx_channels ? 1599 efx->n_channels - efx->n_tx_channels : 0; 1600 1601 /* We need to mark which channels really have RX and TX 1602 * queues, and adjust the TX queue numbers if we have separate 1603 * RX-only and TX-only channels. 1604 */ 1605 ef4_for_each_channel(channel, efx) { 1606 if (channel->channel < efx->n_rx_channels) 1607 channel->rx_queue.core_index = channel->channel; 1608 else 1609 channel->rx_queue.core_index = -1; 1610 1611 ef4_for_each_channel_tx_queue(tx_queue, channel) 1612 tx_queue->queue -= (efx->tx_channel_offset * 1613 EF4_TXQ_TYPES); 1614 } 1615 } 1616 1617 static int ef4_probe_nic(struct ef4_nic *efx) 1618 { 1619 int rc; 1620 1621 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1622 1623 /* Carry out hardware-type specific initialisation */ 1624 rc = efx->type->probe(efx); 1625 if (rc) 1626 return rc; 1627 1628 do { 1629 if (!efx->max_channels || !efx->max_tx_channels) { 1630 netif_err(efx, drv, efx->net_dev, 1631 "Insufficient resources to allocate" 1632 " any channels\n"); 1633 rc = -ENOSPC; 1634 goto fail1; 1635 } 1636 1637 /* Determine the number of channels and queues by trying 1638 * to hook in MSI-X interrupts. 1639 */ 1640 rc = ef4_probe_interrupts(efx); 1641 if (rc) 1642 goto fail1; 1643 1644 ef4_set_channels(efx); 1645 1646 /* dimension_resources can fail with EAGAIN */ 1647 rc = efx->type->dimension_resources(efx); 1648 if (rc != 0 && rc != -EAGAIN) 1649 goto fail2; 1650 1651 if (rc == -EAGAIN) 1652 /* try again with new max_channels */ 1653 ef4_remove_interrupts(efx); 1654 1655 } while (rc == -EAGAIN); 1656 1657 if (efx->n_channels > 1) 1658 netdev_rss_key_fill(&efx->rx_hash_key, 1659 sizeof(efx->rx_hash_key)); 1660 ef4_set_default_rx_indir_table(efx); 1661 1662 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1663 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1664 1665 /* Initialise the interrupt moderation settings */ 1666 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 1667 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1668 true); 1669 1670 return 0; 1671 1672 fail2: 1673 ef4_remove_interrupts(efx); 1674 fail1: 1675 efx->type->remove(efx); 1676 return rc; 1677 } 1678 1679 static void ef4_remove_nic(struct ef4_nic *efx) 1680 { 1681 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1682 1683 ef4_remove_interrupts(efx); 1684 efx->type->remove(efx); 1685 } 1686 1687 static int ef4_probe_filters(struct ef4_nic *efx) 1688 { 1689 int rc; 1690 1691 spin_lock_init(&efx->filter_lock); 1692 init_rwsem(&efx->filter_sem); 1693 mutex_lock(&efx->mac_lock); 1694 down_write(&efx->filter_sem); 1695 rc = efx->type->filter_table_probe(efx); 1696 if (rc) 1697 goto out_unlock; 1698 1699 #ifdef CONFIG_RFS_ACCEL 1700 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1701 struct ef4_channel *channel; 1702 int i, success = 1; 1703 1704 ef4_for_each_channel(channel, efx) { 1705 channel->rps_flow_id = 1706 kcalloc(efx->type->max_rx_ip_filters, 1707 sizeof(*channel->rps_flow_id), 1708 GFP_KERNEL); 1709 if (!channel->rps_flow_id) 1710 success = 0; 1711 else 1712 for (i = 0; 1713 i < efx->type->max_rx_ip_filters; 1714 ++i) 1715 channel->rps_flow_id[i] = 1716 RPS_FLOW_ID_INVALID; 1717 } 1718 1719 if (!success) { 1720 ef4_for_each_channel(channel, efx) 1721 kfree(channel->rps_flow_id); 1722 efx->type->filter_table_remove(efx); 1723 rc = -ENOMEM; 1724 goto out_unlock; 1725 } 1726 1727 efx->rps_expire_index = efx->rps_expire_channel = 0; 1728 } 1729 #endif 1730 out_unlock: 1731 up_write(&efx->filter_sem); 1732 mutex_unlock(&efx->mac_lock); 1733 return rc; 1734 } 1735 1736 static void ef4_remove_filters(struct ef4_nic *efx) 1737 { 1738 #ifdef CONFIG_RFS_ACCEL 1739 struct ef4_channel *channel; 1740 1741 ef4_for_each_channel(channel, efx) 1742 kfree(channel->rps_flow_id); 1743 #endif 1744 down_write(&efx->filter_sem); 1745 efx->type->filter_table_remove(efx); 1746 up_write(&efx->filter_sem); 1747 } 1748 1749 static void ef4_restore_filters(struct ef4_nic *efx) 1750 { 1751 down_read(&efx->filter_sem); 1752 efx->type->filter_table_restore(efx); 1753 up_read(&efx->filter_sem); 1754 } 1755 1756 /************************************************************************** 1757 * 1758 * NIC startup/shutdown 1759 * 1760 *************************************************************************/ 1761 1762 static int ef4_probe_all(struct ef4_nic *efx) 1763 { 1764 int rc; 1765 1766 rc = ef4_probe_nic(efx); 1767 if (rc) { 1768 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1769 goto fail1; 1770 } 1771 1772 rc = ef4_probe_port(efx); 1773 if (rc) { 1774 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1775 goto fail2; 1776 } 1777 1778 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT); 1779 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) { 1780 rc = -EINVAL; 1781 goto fail3; 1782 } 1783 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE; 1784 1785 rc = ef4_probe_filters(efx); 1786 if (rc) { 1787 netif_err(efx, probe, efx->net_dev, 1788 "failed to create filter tables\n"); 1789 goto fail4; 1790 } 1791 1792 rc = ef4_probe_channels(efx); 1793 if (rc) 1794 goto fail5; 1795 1796 return 0; 1797 1798 fail5: 1799 ef4_remove_filters(efx); 1800 fail4: 1801 fail3: 1802 ef4_remove_port(efx); 1803 fail2: 1804 ef4_remove_nic(efx); 1805 fail1: 1806 return rc; 1807 } 1808 1809 /* If the interface is supposed to be running but is not, start 1810 * the hardware and software data path, regular activity for the port 1811 * (MAC statistics, link polling, etc.) and schedule the port to be 1812 * reconfigured. Interrupts must already be enabled. This function 1813 * is safe to call multiple times, so long as the NIC is not disabled. 1814 * Requires the RTNL lock. 1815 */ 1816 static void ef4_start_all(struct ef4_nic *efx) 1817 { 1818 EF4_ASSERT_RESET_SERIALISED(efx); 1819 BUG_ON(efx->state == STATE_DISABLED); 1820 1821 /* Check that it is appropriate to restart the interface. All 1822 * of these flags are safe to read under just the rtnl lock */ 1823 if (efx->port_enabled || !netif_running(efx->net_dev) || 1824 efx->reset_pending) 1825 return; 1826 1827 ef4_start_port(efx); 1828 ef4_start_datapath(efx); 1829 1830 /* Start the hardware monitor if there is one */ 1831 if (efx->type->monitor != NULL) 1832 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1833 ef4_monitor_interval); 1834 1835 efx->type->start_stats(efx); 1836 efx->type->pull_stats(efx); 1837 spin_lock_bh(&efx->stats_lock); 1838 efx->type->update_stats(efx, NULL, NULL); 1839 spin_unlock_bh(&efx->stats_lock); 1840 } 1841 1842 /* Quiesce the hardware and software data path, and regular activity 1843 * for the port without bringing the link down. Safe to call multiple 1844 * times with the NIC in almost any state, but interrupts should be 1845 * enabled. Requires the RTNL lock. 1846 */ 1847 static void ef4_stop_all(struct ef4_nic *efx) 1848 { 1849 EF4_ASSERT_RESET_SERIALISED(efx); 1850 1851 /* port_enabled can be read safely under the rtnl lock */ 1852 if (!efx->port_enabled) 1853 return; 1854 1855 /* update stats before we go down so we can accurately count 1856 * rx_nodesc_drops 1857 */ 1858 efx->type->pull_stats(efx); 1859 spin_lock_bh(&efx->stats_lock); 1860 efx->type->update_stats(efx, NULL, NULL); 1861 spin_unlock_bh(&efx->stats_lock); 1862 efx->type->stop_stats(efx); 1863 ef4_stop_port(efx); 1864 1865 /* Stop the kernel transmit interface. This is only valid if 1866 * the device is stopped or detached; otherwise the watchdog 1867 * may fire immediately. 1868 */ 1869 WARN_ON(netif_running(efx->net_dev) && 1870 netif_device_present(efx->net_dev)); 1871 netif_tx_disable(efx->net_dev); 1872 1873 ef4_stop_datapath(efx); 1874 } 1875 1876 static void ef4_remove_all(struct ef4_nic *efx) 1877 { 1878 ef4_remove_channels(efx); 1879 ef4_remove_filters(efx); 1880 ef4_remove_port(efx); 1881 ef4_remove_nic(efx); 1882 } 1883 1884 /************************************************************************** 1885 * 1886 * Interrupt moderation 1887 * 1888 **************************************************************************/ 1889 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs) 1890 { 1891 if (usecs == 0) 1892 return 0; 1893 if (usecs * 1000 < efx->timer_quantum_ns) 1894 return 1; /* never round down to 0 */ 1895 return usecs * 1000 / efx->timer_quantum_ns; 1896 } 1897 1898 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks) 1899 { 1900 /* We must round up when converting ticks to microseconds 1901 * because we round down when converting the other way. 1902 */ 1903 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 1904 } 1905 1906 /* Set interrupt moderation parameters */ 1907 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs, 1908 unsigned int rx_usecs, bool rx_adaptive, 1909 bool rx_may_override_tx) 1910 { 1911 struct ef4_channel *channel; 1912 unsigned int timer_max_us; 1913 1914 EF4_ASSERT_RESET_SERIALISED(efx); 1915 1916 timer_max_us = efx->timer_max_ns / 1000; 1917 1918 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 1919 return -EINVAL; 1920 1921 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 1922 !rx_may_override_tx) { 1923 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1924 "RX and TX IRQ moderation must be equal\n"); 1925 return -EINVAL; 1926 } 1927 1928 efx->irq_rx_adaptive = rx_adaptive; 1929 efx->irq_rx_moderation_us = rx_usecs; 1930 ef4_for_each_channel(channel, efx) { 1931 if (ef4_channel_has_rx_queue(channel)) 1932 channel->irq_moderation_us = rx_usecs; 1933 else if (ef4_channel_has_tx_queues(channel)) 1934 channel->irq_moderation_us = tx_usecs; 1935 } 1936 1937 return 0; 1938 } 1939 1940 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs, 1941 unsigned int *rx_usecs, bool *rx_adaptive) 1942 { 1943 *rx_adaptive = efx->irq_rx_adaptive; 1944 *rx_usecs = efx->irq_rx_moderation_us; 1945 1946 /* If channels are shared between RX and TX, so is IRQ 1947 * moderation. Otherwise, IRQ moderation is the same for all 1948 * TX channels and is not adaptive. 1949 */ 1950 if (efx->tx_channel_offset == 0) { 1951 *tx_usecs = *rx_usecs; 1952 } else { 1953 struct ef4_channel *tx_channel; 1954 1955 tx_channel = efx->channel[efx->tx_channel_offset]; 1956 *tx_usecs = tx_channel->irq_moderation_us; 1957 } 1958 } 1959 1960 /************************************************************************** 1961 * 1962 * Hardware monitor 1963 * 1964 **************************************************************************/ 1965 1966 /* Run periodically off the general workqueue */ 1967 static void ef4_monitor(struct work_struct *data) 1968 { 1969 struct ef4_nic *efx = container_of(data, struct ef4_nic, 1970 monitor_work.work); 1971 1972 netif_vdbg(efx, timer, efx->net_dev, 1973 "hardware monitor executing on CPU %d\n", 1974 raw_smp_processor_id()); 1975 BUG_ON(efx->type->monitor == NULL); 1976 1977 /* If the mac_lock is already held then it is likely a port 1978 * reconfiguration is already in place, which will likely do 1979 * most of the work of monitor() anyway. */ 1980 if (mutex_trylock(&efx->mac_lock)) { 1981 if (efx->port_enabled) 1982 efx->type->monitor(efx); 1983 mutex_unlock(&efx->mac_lock); 1984 } 1985 1986 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1987 ef4_monitor_interval); 1988 } 1989 1990 /************************************************************************** 1991 * 1992 * ioctls 1993 * 1994 *************************************************************************/ 1995 1996 /* Net device ioctl 1997 * Context: process, rtnl_lock() held. 1998 */ 1999 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 2000 { 2001 struct ef4_nic *efx = netdev_priv(net_dev); 2002 struct mii_ioctl_data *data = if_mii(ifr); 2003 2004 /* Convert phy_id from older PRTAD/DEVAD format */ 2005 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 2006 (data->phy_id & 0xfc00) == 0x0400) 2007 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 2008 2009 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2010 } 2011 2012 /************************************************************************** 2013 * 2014 * NAPI interface 2015 * 2016 **************************************************************************/ 2017 2018 static void ef4_init_napi_channel(struct ef4_channel *channel) 2019 { 2020 struct ef4_nic *efx = channel->efx; 2021 2022 channel->napi_dev = efx->net_dev; 2023 netif_napi_add(channel->napi_dev, &channel->napi_str, 2024 ef4_poll, napi_weight); 2025 } 2026 2027 static void ef4_init_napi(struct ef4_nic *efx) 2028 { 2029 struct ef4_channel *channel; 2030 2031 ef4_for_each_channel(channel, efx) 2032 ef4_init_napi_channel(channel); 2033 } 2034 2035 static void ef4_fini_napi_channel(struct ef4_channel *channel) 2036 { 2037 if (channel->napi_dev) 2038 netif_napi_del(&channel->napi_str); 2039 2040 channel->napi_dev = NULL; 2041 } 2042 2043 static void ef4_fini_napi(struct ef4_nic *efx) 2044 { 2045 struct ef4_channel *channel; 2046 2047 ef4_for_each_channel(channel, efx) 2048 ef4_fini_napi_channel(channel); 2049 } 2050 2051 /************************************************************************** 2052 * 2053 * Kernel netpoll interface 2054 * 2055 *************************************************************************/ 2056 2057 #ifdef CONFIG_NET_POLL_CONTROLLER 2058 2059 /* Although in the common case interrupts will be disabled, this is not 2060 * guaranteed. However, all our work happens inside the NAPI callback, 2061 * so no locking is required. 2062 */ 2063 static void ef4_netpoll(struct net_device *net_dev) 2064 { 2065 struct ef4_nic *efx = netdev_priv(net_dev); 2066 struct ef4_channel *channel; 2067 2068 ef4_for_each_channel(channel, efx) 2069 ef4_schedule_channel(channel); 2070 } 2071 2072 #endif 2073 2074 /************************************************************************** 2075 * 2076 * Kernel net device interface 2077 * 2078 *************************************************************************/ 2079 2080 /* Context: process, rtnl_lock() held. */ 2081 int ef4_net_open(struct net_device *net_dev) 2082 { 2083 struct ef4_nic *efx = netdev_priv(net_dev); 2084 int rc; 2085 2086 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2087 raw_smp_processor_id()); 2088 2089 rc = ef4_check_disabled(efx); 2090 if (rc) 2091 return rc; 2092 if (efx->phy_mode & PHY_MODE_SPECIAL) 2093 return -EBUSY; 2094 2095 /* Notify the kernel of the link state polled during driver load, 2096 * before the monitor starts running */ 2097 ef4_link_status_changed(efx); 2098 2099 ef4_start_all(efx); 2100 ef4_selftest_async_start(efx); 2101 return 0; 2102 } 2103 2104 /* Context: process, rtnl_lock() held. 2105 * Note that the kernel will ignore our return code; this method 2106 * should really be a void. 2107 */ 2108 int ef4_net_stop(struct net_device *net_dev) 2109 { 2110 struct ef4_nic *efx = netdev_priv(net_dev); 2111 2112 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2113 raw_smp_processor_id()); 2114 2115 /* Stop the device and flush all the channels */ 2116 ef4_stop_all(efx); 2117 2118 return 0; 2119 } 2120 2121 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2122 static void ef4_net_stats(struct net_device *net_dev, 2123 struct rtnl_link_stats64 *stats) 2124 { 2125 struct ef4_nic *efx = netdev_priv(net_dev); 2126 2127 spin_lock_bh(&efx->stats_lock); 2128 efx->type->update_stats(efx, NULL, stats); 2129 spin_unlock_bh(&efx->stats_lock); 2130 } 2131 2132 /* Context: netif_tx_lock held, BHs disabled. */ 2133 static void ef4_watchdog(struct net_device *net_dev) 2134 { 2135 struct ef4_nic *efx = netdev_priv(net_dev); 2136 2137 netif_err(efx, tx_err, efx->net_dev, 2138 "TX stuck with port_enabled=%d: resetting channels\n", 2139 efx->port_enabled); 2140 2141 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2142 } 2143 2144 2145 /* Context: process, rtnl_lock() held. */ 2146 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu) 2147 { 2148 struct ef4_nic *efx = netdev_priv(net_dev); 2149 int rc; 2150 2151 rc = ef4_check_disabled(efx); 2152 if (rc) 2153 return rc; 2154 2155 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2156 2157 ef4_device_detach_sync(efx); 2158 ef4_stop_all(efx); 2159 2160 mutex_lock(&efx->mac_lock); 2161 net_dev->mtu = new_mtu; 2162 ef4_mac_reconfigure(efx); 2163 mutex_unlock(&efx->mac_lock); 2164 2165 ef4_start_all(efx); 2166 netif_device_attach(efx->net_dev); 2167 return 0; 2168 } 2169 2170 static int ef4_set_mac_address(struct net_device *net_dev, void *data) 2171 { 2172 struct ef4_nic *efx = netdev_priv(net_dev); 2173 struct sockaddr *addr = data; 2174 u8 *new_addr = addr->sa_data; 2175 u8 old_addr[6]; 2176 int rc; 2177 2178 if (!is_valid_ether_addr(new_addr)) { 2179 netif_err(efx, drv, efx->net_dev, 2180 "invalid ethernet MAC address requested: %pM\n", 2181 new_addr); 2182 return -EADDRNOTAVAIL; 2183 } 2184 2185 /* save old address */ 2186 ether_addr_copy(old_addr, net_dev->dev_addr); 2187 ether_addr_copy(net_dev->dev_addr, new_addr); 2188 if (efx->type->set_mac_address) { 2189 rc = efx->type->set_mac_address(efx); 2190 if (rc) { 2191 ether_addr_copy(net_dev->dev_addr, old_addr); 2192 return rc; 2193 } 2194 } 2195 2196 /* Reconfigure the MAC */ 2197 mutex_lock(&efx->mac_lock); 2198 ef4_mac_reconfigure(efx); 2199 mutex_unlock(&efx->mac_lock); 2200 2201 return 0; 2202 } 2203 2204 /* Context: netif_addr_lock held, BHs disabled. */ 2205 static void ef4_set_rx_mode(struct net_device *net_dev) 2206 { 2207 struct ef4_nic *efx = netdev_priv(net_dev); 2208 2209 if (efx->port_enabled) 2210 queue_work(efx->workqueue, &efx->mac_work); 2211 /* Otherwise ef4_start_port() will do this */ 2212 } 2213 2214 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data) 2215 { 2216 struct ef4_nic *efx = netdev_priv(net_dev); 2217 int rc; 2218 2219 /* If disabling RX n-tuple filtering, clear existing filters */ 2220 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 2221 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL); 2222 if (rc) 2223 return rc; 2224 } 2225 2226 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */ 2227 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) { 2228 /* ef4_set_rx_mode() will schedule MAC work to update filters 2229 * when a new features are finally set in net_dev. 2230 */ 2231 ef4_set_rx_mode(net_dev); 2232 } 2233 2234 return 0; 2235 } 2236 2237 static const struct net_device_ops ef4_netdev_ops = { 2238 .ndo_open = ef4_net_open, 2239 .ndo_stop = ef4_net_stop, 2240 .ndo_get_stats64 = ef4_net_stats, 2241 .ndo_tx_timeout = ef4_watchdog, 2242 .ndo_start_xmit = ef4_hard_start_xmit, 2243 .ndo_validate_addr = eth_validate_addr, 2244 .ndo_do_ioctl = ef4_ioctl, 2245 .ndo_change_mtu = ef4_change_mtu, 2246 .ndo_set_mac_address = ef4_set_mac_address, 2247 .ndo_set_rx_mode = ef4_set_rx_mode, 2248 .ndo_set_features = ef4_set_features, 2249 #ifdef CONFIG_NET_POLL_CONTROLLER 2250 .ndo_poll_controller = ef4_netpoll, 2251 #endif 2252 .ndo_setup_tc = ef4_setup_tc, 2253 #ifdef CONFIG_RFS_ACCEL 2254 .ndo_rx_flow_steer = ef4_filter_rfs, 2255 #endif 2256 }; 2257 2258 static void ef4_update_name(struct ef4_nic *efx) 2259 { 2260 strcpy(efx->name, efx->net_dev->name); 2261 ef4_mtd_rename(efx); 2262 ef4_set_channel_names(efx); 2263 } 2264 2265 static int ef4_netdev_event(struct notifier_block *this, 2266 unsigned long event, void *ptr) 2267 { 2268 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2269 2270 if ((net_dev->netdev_ops == &ef4_netdev_ops) && 2271 event == NETDEV_CHANGENAME) 2272 ef4_update_name(netdev_priv(net_dev)); 2273 2274 return NOTIFY_DONE; 2275 } 2276 2277 static struct notifier_block ef4_netdev_notifier = { 2278 .notifier_call = ef4_netdev_event, 2279 }; 2280 2281 static ssize_t 2282 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2283 { 2284 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2285 return sprintf(buf, "%d\n", efx->phy_type); 2286 } 2287 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2288 2289 static int ef4_register_netdev(struct ef4_nic *efx) 2290 { 2291 struct net_device *net_dev = efx->net_dev; 2292 struct ef4_channel *channel; 2293 int rc; 2294 2295 net_dev->watchdog_timeo = 5 * HZ; 2296 net_dev->irq = efx->pci_dev->irq; 2297 net_dev->netdev_ops = &ef4_netdev_ops; 2298 net_dev->ethtool_ops = &ef4_ethtool_ops; 2299 net_dev->gso_max_segs = EF4_TSO_MAX_SEGS; 2300 net_dev->min_mtu = EF4_MIN_MTU; 2301 net_dev->max_mtu = EF4_MAX_MTU; 2302 2303 rtnl_lock(); 2304 2305 /* Enable resets to be scheduled and check whether any were 2306 * already requested. If so, the NIC is probably hosed so we 2307 * abort. 2308 */ 2309 efx->state = STATE_READY; 2310 smp_mb(); /* ensure we change state before checking reset_pending */ 2311 if (efx->reset_pending) { 2312 netif_err(efx, probe, efx->net_dev, 2313 "aborting probe due to scheduled reset\n"); 2314 rc = -EIO; 2315 goto fail_locked; 2316 } 2317 2318 rc = dev_alloc_name(net_dev, net_dev->name); 2319 if (rc < 0) 2320 goto fail_locked; 2321 ef4_update_name(efx); 2322 2323 /* Always start with carrier off; PHY events will detect the link */ 2324 netif_carrier_off(net_dev); 2325 2326 rc = register_netdevice(net_dev); 2327 if (rc) 2328 goto fail_locked; 2329 2330 ef4_for_each_channel(channel, efx) { 2331 struct ef4_tx_queue *tx_queue; 2332 ef4_for_each_channel_tx_queue(tx_queue, channel) 2333 ef4_init_tx_queue_core_txq(tx_queue); 2334 } 2335 2336 ef4_associate(efx); 2337 2338 rtnl_unlock(); 2339 2340 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2341 if (rc) { 2342 netif_err(efx, drv, efx->net_dev, 2343 "failed to init net dev attributes\n"); 2344 goto fail_registered; 2345 } 2346 return 0; 2347 2348 fail_registered: 2349 rtnl_lock(); 2350 ef4_dissociate(efx); 2351 unregister_netdevice(net_dev); 2352 fail_locked: 2353 efx->state = STATE_UNINIT; 2354 rtnl_unlock(); 2355 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2356 return rc; 2357 } 2358 2359 static void ef4_unregister_netdev(struct ef4_nic *efx) 2360 { 2361 if (!efx->net_dev) 2362 return; 2363 2364 BUG_ON(netdev_priv(efx->net_dev) != efx); 2365 2366 if (ef4_dev_registered(efx)) { 2367 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2368 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2369 unregister_netdev(efx->net_dev); 2370 } 2371 } 2372 2373 /************************************************************************** 2374 * 2375 * Device reset and suspend 2376 * 2377 **************************************************************************/ 2378 2379 /* Tears down the entire software state and most of the hardware state 2380 * before reset. */ 2381 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method) 2382 { 2383 EF4_ASSERT_RESET_SERIALISED(efx); 2384 2385 ef4_stop_all(efx); 2386 ef4_disable_interrupts(efx); 2387 2388 mutex_lock(&efx->mac_lock); 2389 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2390 method != RESET_TYPE_DATAPATH) 2391 efx->phy_op->fini(efx); 2392 efx->type->fini(efx); 2393 } 2394 2395 /* This function will always ensure that the locks acquired in 2396 * ef4_reset_down() are released. A failure return code indicates 2397 * that we were unable to reinitialise the hardware, and the 2398 * driver should be disabled. If ok is false, then the rx and tx 2399 * engines are not restarted, pending a RESET_DISABLE. */ 2400 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok) 2401 { 2402 int rc; 2403 2404 EF4_ASSERT_RESET_SERIALISED(efx); 2405 2406 /* Ensure that SRAM is initialised even if we're disabling the device */ 2407 rc = efx->type->init(efx); 2408 if (rc) { 2409 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2410 goto fail; 2411 } 2412 2413 if (!ok) 2414 goto fail; 2415 2416 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2417 method != RESET_TYPE_DATAPATH) { 2418 rc = efx->phy_op->init(efx); 2419 if (rc) 2420 goto fail; 2421 rc = efx->phy_op->reconfigure(efx); 2422 if (rc && rc != -EPERM) 2423 netif_err(efx, drv, efx->net_dev, 2424 "could not restore PHY settings\n"); 2425 } 2426 2427 rc = ef4_enable_interrupts(efx); 2428 if (rc) 2429 goto fail; 2430 2431 down_read(&efx->filter_sem); 2432 ef4_restore_filters(efx); 2433 up_read(&efx->filter_sem); 2434 2435 mutex_unlock(&efx->mac_lock); 2436 2437 ef4_start_all(efx); 2438 2439 return 0; 2440 2441 fail: 2442 efx->port_initialized = false; 2443 2444 mutex_unlock(&efx->mac_lock); 2445 2446 return rc; 2447 } 2448 2449 /* Reset the NIC using the specified method. Note that the reset may 2450 * fail, in which case the card will be left in an unusable state. 2451 * 2452 * Caller must hold the rtnl_lock. 2453 */ 2454 int ef4_reset(struct ef4_nic *efx, enum reset_type method) 2455 { 2456 int rc, rc2; 2457 bool disabled; 2458 2459 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2460 RESET_TYPE(method)); 2461 2462 ef4_device_detach_sync(efx); 2463 ef4_reset_down(efx, method); 2464 2465 rc = efx->type->reset(efx, method); 2466 if (rc) { 2467 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2468 goto out; 2469 } 2470 2471 /* Clear flags for the scopes we covered. We assume the NIC and 2472 * driver are now quiescent so that there is no race here. 2473 */ 2474 if (method < RESET_TYPE_MAX_METHOD) 2475 efx->reset_pending &= -(1 << (method + 1)); 2476 else /* it doesn't fit into the well-ordered scope hierarchy */ 2477 __clear_bit(method, &efx->reset_pending); 2478 2479 /* Reinitialise bus-mastering, which may have been turned off before 2480 * the reset was scheduled. This is still appropriate, even in the 2481 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2482 * can respond to requests. */ 2483 pci_set_master(efx->pci_dev); 2484 2485 out: 2486 /* Leave device stopped if necessary */ 2487 disabled = rc || 2488 method == RESET_TYPE_DISABLE || 2489 method == RESET_TYPE_RECOVER_OR_DISABLE; 2490 rc2 = ef4_reset_up(efx, method, !disabled); 2491 if (rc2) { 2492 disabled = true; 2493 if (!rc) 2494 rc = rc2; 2495 } 2496 2497 if (disabled) { 2498 dev_close(efx->net_dev); 2499 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2500 efx->state = STATE_DISABLED; 2501 } else { 2502 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2503 netif_device_attach(efx->net_dev); 2504 } 2505 return rc; 2506 } 2507 2508 /* Try recovery mechanisms. 2509 * For now only EEH is supported. 2510 * Returns 0 if the recovery mechanisms are unsuccessful. 2511 * Returns a non-zero value otherwise. 2512 */ 2513 int ef4_try_recovery(struct ef4_nic *efx) 2514 { 2515 #ifdef CONFIG_EEH 2516 /* A PCI error can occur and not be seen by EEH because nothing 2517 * happens on the PCI bus. In this case the driver may fail and 2518 * schedule a 'recover or reset', leading to this recovery handler. 2519 * Manually call the eeh failure check function. 2520 */ 2521 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 2522 if (eeh_dev_check_failure(eehdev)) { 2523 /* The EEH mechanisms will handle the error and reset the 2524 * device if necessary. 2525 */ 2526 return 1; 2527 } 2528 #endif 2529 return 0; 2530 } 2531 2532 /* The worker thread exists so that code that cannot sleep can 2533 * schedule a reset for later. 2534 */ 2535 static void ef4_reset_work(struct work_struct *data) 2536 { 2537 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work); 2538 unsigned long pending; 2539 enum reset_type method; 2540 2541 pending = ACCESS_ONCE(efx->reset_pending); 2542 method = fls(pending) - 1; 2543 2544 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2545 method == RESET_TYPE_RECOVER_OR_ALL) && 2546 ef4_try_recovery(efx)) 2547 return; 2548 2549 if (!pending) 2550 return; 2551 2552 rtnl_lock(); 2553 2554 /* We checked the state in ef4_schedule_reset() but it may 2555 * have changed by now. Now that we have the RTNL lock, 2556 * it cannot change again. 2557 */ 2558 if (efx->state == STATE_READY) 2559 (void)ef4_reset(efx, method); 2560 2561 rtnl_unlock(); 2562 } 2563 2564 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type) 2565 { 2566 enum reset_type method; 2567 2568 if (efx->state == STATE_RECOVERY) { 2569 netif_dbg(efx, drv, efx->net_dev, 2570 "recovering: skip scheduling %s reset\n", 2571 RESET_TYPE(type)); 2572 return; 2573 } 2574 2575 switch (type) { 2576 case RESET_TYPE_INVISIBLE: 2577 case RESET_TYPE_ALL: 2578 case RESET_TYPE_RECOVER_OR_ALL: 2579 case RESET_TYPE_WORLD: 2580 case RESET_TYPE_DISABLE: 2581 case RESET_TYPE_RECOVER_OR_DISABLE: 2582 case RESET_TYPE_DATAPATH: 2583 method = type; 2584 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2585 RESET_TYPE(method)); 2586 break; 2587 default: 2588 method = efx->type->map_reset_reason(type); 2589 netif_dbg(efx, drv, efx->net_dev, 2590 "scheduling %s reset for %s\n", 2591 RESET_TYPE(method), RESET_TYPE(type)); 2592 break; 2593 } 2594 2595 set_bit(method, &efx->reset_pending); 2596 smp_mb(); /* ensure we change reset_pending before checking state */ 2597 2598 /* If we're not READY then just leave the flags set as the cue 2599 * to abort probing or reschedule the reset later. 2600 */ 2601 if (ACCESS_ONCE(efx->state) != STATE_READY) 2602 return; 2603 2604 queue_work(reset_workqueue, &efx->reset_work); 2605 } 2606 2607 /************************************************************************** 2608 * 2609 * List of NICs we support 2610 * 2611 **************************************************************************/ 2612 2613 /* PCI device ID table */ 2614 static const struct pci_device_id ef4_pci_table[] = { 2615 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2616 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2617 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2618 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2619 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2620 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2621 {0} /* end of list */ 2622 }; 2623 2624 /************************************************************************** 2625 * 2626 * Dummy PHY/MAC operations 2627 * 2628 * Can be used for some unimplemented operations 2629 * Needed so all function pointers are valid and do not have to be tested 2630 * before use 2631 * 2632 **************************************************************************/ 2633 int ef4_port_dummy_op_int(struct ef4_nic *efx) 2634 { 2635 return 0; 2636 } 2637 void ef4_port_dummy_op_void(struct ef4_nic *efx) {} 2638 2639 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx) 2640 { 2641 return false; 2642 } 2643 2644 static const struct ef4_phy_operations ef4_dummy_phy_operations = { 2645 .init = ef4_port_dummy_op_int, 2646 .reconfigure = ef4_port_dummy_op_int, 2647 .poll = ef4_port_dummy_op_poll, 2648 .fini = ef4_port_dummy_op_void, 2649 }; 2650 2651 /************************************************************************** 2652 * 2653 * Data housekeeping 2654 * 2655 **************************************************************************/ 2656 2657 /* This zeroes out and then fills in the invariants in a struct 2658 * ef4_nic (including all sub-structures). 2659 */ 2660 static int ef4_init_struct(struct ef4_nic *efx, 2661 struct pci_dev *pci_dev, struct net_device *net_dev) 2662 { 2663 int i; 2664 2665 /* Initialise common structures */ 2666 INIT_LIST_HEAD(&efx->node); 2667 INIT_LIST_HEAD(&efx->secondary_list); 2668 spin_lock_init(&efx->biu_lock); 2669 #ifdef CONFIG_SFC_FALCON_MTD 2670 INIT_LIST_HEAD(&efx->mtd_list); 2671 #endif 2672 INIT_WORK(&efx->reset_work, ef4_reset_work); 2673 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor); 2674 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work); 2675 efx->pci_dev = pci_dev; 2676 efx->msg_enable = debug; 2677 efx->state = STATE_UNINIT; 2678 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2679 2680 efx->net_dev = net_dev; 2681 efx->rx_prefix_size = efx->type->rx_prefix_size; 2682 efx->rx_ip_align = 2683 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2684 efx->rx_packet_hash_offset = 2685 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2686 efx->rx_packet_ts_offset = 2687 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2688 spin_lock_init(&efx->stats_lock); 2689 mutex_init(&efx->mac_lock); 2690 efx->phy_op = &ef4_dummy_phy_operations; 2691 efx->mdio.dev = net_dev; 2692 INIT_WORK(&efx->mac_work, ef4_mac_work); 2693 init_waitqueue_head(&efx->flush_wq); 2694 2695 for (i = 0; i < EF4_MAX_CHANNELS; i++) { 2696 efx->channel[i] = ef4_alloc_channel(efx, i, NULL); 2697 if (!efx->channel[i]) 2698 goto fail; 2699 efx->msi_context[i].efx = efx; 2700 efx->msi_context[i].index = i; 2701 } 2702 2703 /* Higher numbered interrupt modes are less capable! */ 2704 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2705 interrupt_mode); 2706 2707 /* Would be good to use the net_dev name, but we're too early */ 2708 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2709 pci_name(pci_dev)); 2710 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2711 if (!efx->workqueue) 2712 goto fail; 2713 2714 return 0; 2715 2716 fail: 2717 ef4_fini_struct(efx); 2718 return -ENOMEM; 2719 } 2720 2721 static void ef4_fini_struct(struct ef4_nic *efx) 2722 { 2723 int i; 2724 2725 for (i = 0; i < EF4_MAX_CHANNELS; i++) 2726 kfree(efx->channel[i]); 2727 2728 kfree(efx->vpd_sn); 2729 2730 if (efx->workqueue) { 2731 destroy_workqueue(efx->workqueue); 2732 efx->workqueue = NULL; 2733 } 2734 } 2735 2736 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats) 2737 { 2738 u64 n_rx_nodesc_trunc = 0; 2739 struct ef4_channel *channel; 2740 2741 ef4_for_each_channel(channel, efx) 2742 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 2743 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 2744 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 2745 } 2746 2747 /************************************************************************** 2748 * 2749 * PCI interface 2750 * 2751 **************************************************************************/ 2752 2753 /* Main body of final NIC shutdown code 2754 * This is called only at module unload (or hotplug removal). 2755 */ 2756 static void ef4_pci_remove_main(struct ef4_nic *efx) 2757 { 2758 /* Flush reset_work. It can no longer be scheduled since we 2759 * are not READY. 2760 */ 2761 BUG_ON(efx->state == STATE_READY); 2762 cancel_work_sync(&efx->reset_work); 2763 2764 ef4_disable_interrupts(efx); 2765 ef4_nic_fini_interrupt(efx); 2766 ef4_fini_port(efx); 2767 efx->type->fini(efx); 2768 ef4_fini_napi(efx); 2769 ef4_remove_all(efx); 2770 } 2771 2772 /* Final NIC shutdown 2773 * This is called only at module unload (or hotplug removal). A PF can call 2774 * this on its VFs to ensure they are unbound first. 2775 */ 2776 static void ef4_pci_remove(struct pci_dev *pci_dev) 2777 { 2778 struct ef4_nic *efx; 2779 2780 efx = pci_get_drvdata(pci_dev); 2781 if (!efx) 2782 return; 2783 2784 /* Mark the NIC as fini, then stop the interface */ 2785 rtnl_lock(); 2786 ef4_dissociate(efx); 2787 dev_close(efx->net_dev); 2788 ef4_disable_interrupts(efx); 2789 efx->state = STATE_UNINIT; 2790 rtnl_unlock(); 2791 2792 ef4_unregister_netdev(efx); 2793 2794 ef4_mtd_remove(efx); 2795 2796 ef4_pci_remove_main(efx); 2797 2798 ef4_fini_io(efx); 2799 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2800 2801 ef4_fini_struct(efx); 2802 free_netdev(efx->net_dev); 2803 2804 pci_disable_pcie_error_reporting(pci_dev); 2805 }; 2806 2807 /* NIC VPD information 2808 * Called during probe to display the part number of the 2809 * installed NIC. VPD is potentially very large but this should 2810 * always appear within the first 512 bytes. 2811 */ 2812 #define SFC_VPD_LEN 512 2813 static void ef4_probe_vpd_strings(struct ef4_nic *efx) 2814 { 2815 struct pci_dev *dev = efx->pci_dev; 2816 char vpd_data[SFC_VPD_LEN]; 2817 ssize_t vpd_size; 2818 int ro_start, ro_size, i, j; 2819 2820 /* Get the vpd data from the device */ 2821 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 2822 if (vpd_size <= 0) { 2823 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 2824 return; 2825 } 2826 2827 /* Get the Read only section */ 2828 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 2829 if (ro_start < 0) { 2830 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 2831 return; 2832 } 2833 2834 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 2835 j = ro_size; 2836 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2837 if (i + j > vpd_size) 2838 j = vpd_size - i; 2839 2840 /* Get the Part number */ 2841 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 2842 if (i < 0) { 2843 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 2844 return; 2845 } 2846 2847 j = pci_vpd_info_field_size(&vpd_data[i]); 2848 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2849 if (i + j > vpd_size) { 2850 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 2851 return; 2852 } 2853 2854 netif_info(efx, drv, efx->net_dev, 2855 "Part Number : %.*s\n", j, &vpd_data[i]); 2856 2857 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2858 j = ro_size; 2859 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 2860 if (i < 0) { 2861 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 2862 return; 2863 } 2864 2865 j = pci_vpd_info_field_size(&vpd_data[i]); 2866 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2867 if (i + j > vpd_size) { 2868 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 2869 return; 2870 } 2871 2872 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 2873 if (!efx->vpd_sn) 2874 return; 2875 2876 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 2877 } 2878 2879 2880 /* Main body of NIC initialisation 2881 * This is called at module load (or hotplug insertion, theoretically). 2882 */ 2883 static int ef4_pci_probe_main(struct ef4_nic *efx) 2884 { 2885 int rc; 2886 2887 /* Do start-of-day initialisation */ 2888 rc = ef4_probe_all(efx); 2889 if (rc) 2890 goto fail1; 2891 2892 ef4_init_napi(efx); 2893 2894 rc = efx->type->init(efx); 2895 if (rc) { 2896 netif_err(efx, probe, efx->net_dev, 2897 "failed to initialise NIC\n"); 2898 goto fail3; 2899 } 2900 2901 rc = ef4_init_port(efx); 2902 if (rc) { 2903 netif_err(efx, probe, efx->net_dev, 2904 "failed to initialise port\n"); 2905 goto fail4; 2906 } 2907 2908 rc = ef4_nic_init_interrupt(efx); 2909 if (rc) 2910 goto fail5; 2911 rc = ef4_enable_interrupts(efx); 2912 if (rc) 2913 goto fail6; 2914 2915 return 0; 2916 2917 fail6: 2918 ef4_nic_fini_interrupt(efx); 2919 fail5: 2920 ef4_fini_port(efx); 2921 fail4: 2922 efx->type->fini(efx); 2923 fail3: 2924 ef4_fini_napi(efx); 2925 ef4_remove_all(efx); 2926 fail1: 2927 return rc; 2928 } 2929 2930 /* NIC initialisation 2931 * 2932 * This is called at module load (or hotplug insertion, 2933 * theoretically). It sets up PCI mappings, resets the NIC, 2934 * sets up and registers the network devices with the kernel and hooks 2935 * the interrupt service routine. It does not prepare the device for 2936 * transmission; this is left to the first time one of the network 2937 * interfaces is brought up (i.e. ef4_net_open). 2938 */ 2939 static int ef4_pci_probe(struct pci_dev *pci_dev, 2940 const struct pci_device_id *entry) 2941 { 2942 struct net_device *net_dev; 2943 struct ef4_nic *efx; 2944 int rc; 2945 2946 /* Allocate and initialise a struct net_device and struct ef4_nic */ 2947 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES, 2948 EF4_MAX_RX_QUEUES); 2949 if (!net_dev) 2950 return -ENOMEM; 2951 efx = netdev_priv(net_dev); 2952 efx->type = (const struct ef4_nic_type *) entry->driver_data; 2953 efx->fixed_features |= NETIF_F_HIGHDMA; 2954 2955 pci_set_drvdata(pci_dev, efx); 2956 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2957 rc = ef4_init_struct(efx, pci_dev, net_dev); 2958 if (rc) 2959 goto fail1; 2960 2961 netif_info(efx, probe, efx->net_dev, 2962 "Solarflare NIC detected\n"); 2963 2964 ef4_probe_vpd_strings(efx); 2965 2966 /* Set up basic I/O (BAR mappings etc) */ 2967 rc = ef4_init_io(efx); 2968 if (rc) 2969 goto fail2; 2970 2971 rc = ef4_pci_probe_main(efx); 2972 if (rc) 2973 goto fail3; 2974 2975 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 2976 NETIF_F_RXCSUM); 2977 /* Mask for features that also apply to VLAN devices */ 2978 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 2979 NETIF_F_HIGHDMA | NETIF_F_RXCSUM); 2980 2981 net_dev->hw_features = net_dev->features & ~efx->fixed_features; 2982 2983 /* Disable VLAN filtering by default. It may be enforced if 2984 * the feature is fixed (i.e. VLAN filters are required to 2985 * receive VLAN tagged packets due to vPort restrictions). 2986 */ 2987 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 2988 net_dev->features |= efx->fixed_features; 2989 2990 rc = ef4_register_netdev(efx); 2991 if (rc) 2992 goto fail4; 2993 2994 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 2995 2996 /* Try to create MTDs, but allow this to fail */ 2997 rtnl_lock(); 2998 rc = ef4_mtd_probe(efx); 2999 rtnl_unlock(); 3000 if (rc && rc != -EPERM) 3001 netif_warn(efx, probe, efx->net_dev, 3002 "failed to create MTDs (%d)\n", rc); 3003 3004 rc = pci_enable_pcie_error_reporting(pci_dev); 3005 if (rc && rc != -EINVAL) 3006 netif_notice(efx, probe, efx->net_dev, 3007 "PCIE error reporting unavailable (%d).\n", 3008 rc); 3009 3010 return 0; 3011 3012 fail4: 3013 ef4_pci_remove_main(efx); 3014 fail3: 3015 ef4_fini_io(efx); 3016 fail2: 3017 ef4_fini_struct(efx); 3018 fail1: 3019 WARN_ON(rc > 0); 3020 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 3021 free_netdev(net_dev); 3022 return rc; 3023 } 3024 3025 static int ef4_pm_freeze(struct device *dev) 3026 { 3027 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3028 3029 rtnl_lock(); 3030 3031 if (efx->state != STATE_DISABLED) { 3032 efx->state = STATE_UNINIT; 3033 3034 ef4_device_detach_sync(efx); 3035 3036 ef4_stop_all(efx); 3037 ef4_disable_interrupts(efx); 3038 } 3039 3040 rtnl_unlock(); 3041 3042 return 0; 3043 } 3044 3045 static int ef4_pm_thaw(struct device *dev) 3046 { 3047 int rc; 3048 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3049 3050 rtnl_lock(); 3051 3052 if (efx->state != STATE_DISABLED) { 3053 rc = ef4_enable_interrupts(efx); 3054 if (rc) 3055 goto fail; 3056 3057 mutex_lock(&efx->mac_lock); 3058 efx->phy_op->reconfigure(efx); 3059 mutex_unlock(&efx->mac_lock); 3060 3061 ef4_start_all(efx); 3062 3063 netif_device_attach(efx->net_dev); 3064 3065 efx->state = STATE_READY; 3066 3067 efx->type->resume_wol(efx); 3068 } 3069 3070 rtnl_unlock(); 3071 3072 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */ 3073 queue_work(reset_workqueue, &efx->reset_work); 3074 3075 return 0; 3076 3077 fail: 3078 rtnl_unlock(); 3079 3080 return rc; 3081 } 3082 3083 static int ef4_pm_poweroff(struct device *dev) 3084 { 3085 struct pci_dev *pci_dev = to_pci_dev(dev); 3086 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3087 3088 efx->type->fini(efx); 3089 3090 efx->reset_pending = 0; 3091 3092 pci_save_state(pci_dev); 3093 return pci_set_power_state(pci_dev, PCI_D3hot); 3094 } 3095 3096 /* Used for both resume and restore */ 3097 static int ef4_pm_resume(struct device *dev) 3098 { 3099 struct pci_dev *pci_dev = to_pci_dev(dev); 3100 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3101 int rc; 3102 3103 rc = pci_set_power_state(pci_dev, PCI_D0); 3104 if (rc) 3105 return rc; 3106 pci_restore_state(pci_dev); 3107 rc = pci_enable_device(pci_dev); 3108 if (rc) 3109 return rc; 3110 pci_set_master(efx->pci_dev); 3111 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3112 if (rc) 3113 return rc; 3114 rc = efx->type->init(efx); 3115 if (rc) 3116 return rc; 3117 rc = ef4_pm_thaw(dev); 3118 return rc; 3119 } 3120 3121 static int ef4_pm_suspend(struct device *dev) 3122 { 3123 int rc; 3124 3125 ef4_pm_freeze(dev); 3126 rc = ef4_pm_poweroff(dev); 3127 if (rc) 3128 ef4_pm_resume(dev); 3129 return rc; 3130 } 3131 3132 static const struct dev_pm_ops ef4_pm_ops = { 3133 .suspend = ef4_pm_suspend, 3134 .resume = ef4_pm_resume, 3135 .freeze = ef4_pm_freeze, 3136 .thaw = ef4_pm_thaw, 3137 .poweroff = ef4_pm_poweroff, 3138 .restore = ef4_pm_resume, 3139 }; 3140 3141 /* A PCI error affecting this device was detected. 3142 * At this point MMIO and DMA may be disabled. 3143 * Stop the software path and request a slot reset. 3144 */ 3145 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev, 3146 enum pci_channel_state state) 3147 { 3148 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3149 struct ef4_nic *efx = pci_get_drvdata(pdev); 3150 3151 if (state == pci_channel_io_perm_failure) 3152 return PCI_ERS_RESULT_DISCONNECT; 3153 3154 rtnl_lock(); 3155 3156 if (efx->state != STATE_DISABLED) { 3157 efx->state = STATE_RECOVERY; 3158 efx->reset_pending = 0; 3159 3160 ef4_device_detach_sync(efx); 3161 3162 ef4_stop_all(efx); 3163 ef4_disable_interrupts(efx); 3164 3165 status = PCI_ERS_RESULT_NEED_RESET; 3166 } else { 3167 /* If the interface is disabled we don't want to do anything 3168 * with it. 3169 */ 3170 status = PCI_ERS_RESULT_RECOVERED; 3171 } 3172 3173 rtnl_unlock(); 3174 3175 pci_disable_device(pdev); 3176 3177 return status; 3178 } 3179 3180 /* Fake a successful reset, which will be performed later in ef4_io_resume. */ 3181 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev) 3182 { 3183 struct ef4_nic *efx = pci_get_drvdata(pdev); 3184 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3185 int rc; 3186 3187 if (pci_enable_device(pdev)) { 3188 netif_err(efx, hw, efx->net_dev, 3189 "Cannot re-enable PCI device after reset.\n"); 3190 status = PCI_ERS_RESULT_DISCONNECT; 3191 } 3192 3193 rc = pci_cleanup_aer_uncorrect_error_status(pdev); 3194 if (rc) { 3195 netif_err(efx, hw, efx->net_dev, 3196 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); 3197 /* Non-fatal error. Continue. */ 3198 } 3199 3200 return status; 3201 } 3202 3203 /* Perform the actual reset and resume I/O operations. */ 3204 static void ef4_io_resume(struct pci_dev *pdev) 3205 { 3206 struct ef4_nic *efx = pci_get_drvdata(pdev); 3207 int rc; 3208 3209 rtnl_lock(); 3210 3211 if (efx->state == STATE_DISABLED) 3212 goto out; 3213 3214 rc = ef4_reset(efx, RESET_TYPE_ALL); 3215 if (rc) { 3216 netif_err(efx, hw, efx->net_dev, 3217 "ef4_reset failed after PCI error (%d)\n", rc); 3218 } else { 3219 efx->state = STATE_READY; 3220 netif_dbg(efx, hw, efx->net_dev, 3221 "Done resetting and resuming IO after PCI error.\n"); 3222 } 3223 3224 out: 3225 rtnl_unlock(); 3226 } 3227 3228 /* For simplicity and reliability, we always require a slot reset and try to 3229 * reset the hardware when a pci error affecting the device is detected. 3230 * We leave both the link_reset and mmio_enabled callback unimplemented: 3231 * with our request for slot reset the mmio_enabled callback will never be 3232 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3233 */ 3234 static const struct pci_error_handlers ef4_err_handlers = { 3235 .error_detected = ef4_io_error_detected, 3236 .slot_reset = ef4_io_slot_reset, 3237 .resume = ef4_io_resume, 3238 }; 3239 3240 static struct pci_driver ef4_pci_driver = { 3241 .name = KBUILD_MODNAME, 3242 .id_table = ef4_pci_table, 3243 .probe = ef4_pci_probe, 3244 .remove = ef4_pci_remove, 3245 .driver.pm = &ef4_pm_ops, 3246 .err_handler = &ef4_err_handlers, 3247 }; 3248 3249 /************************************************************************** 3250 * 3251 * Kernel module interface 3252 * 3253 *************************************************************************/ 3254 3255 module_param(interrupt_mode, uint, 0444); 3256 MODULE_PARM_DESC(interrupt_mode, 3257 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3258 3259 static int __init ef4_init_module(void) 3260 { 3261 int rc; 3262 3263 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n"); 3264 3265 rc = register_netdevice_notifier(&ef4_netdev_notifier); 3266 if (rc) 3267 goto err_notifier; 3268 3269 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3270 if (!reset_workqueue) { 3271 rc = -ENOMEM; 3272 goto err_reset; 3273 } 3274 3275 rc = pci_register_driver(&ef4_pci_driver); 3276 if (rc < 0) 3277 goto err_pci; 3278 3279 return 0; 3280 3281 err_pci: 3282 destroy_workqueue(reset_workqueue); 3283 err_reset: 3284 unregister_netdevice_notifier(&ef4_netdev_notifier); 3285 err_notifier: 3286 return rc; 3287 } 3288 3289 static void __exit ef4_exit_module(void) 3290 { 3291 printk(KERN_INFO "Solarflare Falcon driver unloading\n"); 3292 3293 pci_unregister_driver(&ef4_pci_driver); 3294 destroy_workqueue(reset_workqueue); 3295 unregister_netdevice_notifier(&ef4_netdev_notifier); 3296 3297 } 3298 3299 module_init(ef4_init_module); 3300 module_exit(ef4_exit_module); 3301 3302 MODULE_AUTHOR("Solarflare Communications and " 3303 "Michael Brown <mbrown@fensystems.co.uk>"); 3304 MODULE_DESCRIPTION("Solarflare Falcon network driver"); 3305 MODULE_LICENSE("GPL"); 3306 MODULE_DEVICE_TABLE(pci, ef4_pci_table); 3307 MODULE_VERSION(EF4_DRIVER_VERSION); 3308