1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/aer.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include "efx.h" 24 #include "nic.h" 25 #include "selftest.h" 26 27 #include "workarounds.h" 28 29 /************************************************************************** 30 * 31 * Type name strings 32 * 33 ************************************************************************** 34 */ 35 36 /* Loopback mode names (see LOOPBACK_MODE()) */ 37 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX; 38 const char *const ef4_loopback_mode_names[] = { 39 [LOOPBACK_NONE] = "NONE", 40 [LOOPBACK_DATA] = "DATAPATH", 41 [LOOPBACK_GMAC] = "GMAC", 42 [LOOPBACK_XGMII] = "XGMII", 43 [LOOPBACK_XGXS] = "XGXS", 44 [LOOPBACK_XAUI] = "XAUI", 45 [LOOPBACK_GMII] = "GMII", 46 [LOOPBACK_SGMII] = "SGMII", 47 [LOOPBACK_XGBR] = "XGBR", 48 [LOOPBACK_XFI] = "XFI", 49 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 50 [LOOPBACK_GMII_FAR] = "GMII_FAR", 51 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 52 [LOOPBACK_XFI_FAR] = "XFI_FAR", 53 [LOOPBACK_GPHY] = "GPHY", 54 [LOOPBACK_PHYXS] = "PHYXS", 55 [LOOPBACK_PCS] = "PCS", 56 [LOOPBACK_PMAPMD] = "PMA/PMD", 57 [LOOPBACK_XPORT] = "XPORT", 58 [LOOPBACK_XGMII_WS] = "XGMII_WS", 59 [LOOPBACK_XAUI_WS] = "XAUI_WS", 60 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 61 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 62 [LOOPBACK_GMII_WS] = "GMII_WS", 63 [LOOPBACK_XFI_WS] = "XFI_WS", 64 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 65 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 66 }; 67 68 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX; 69 const char *const ef4_reset_type_names[] = { 70 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 71 [RESET_TYPE_ALL] = "ALL", 72 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 73 [RESET_TYPE_WORLD] = "WORLD", 74 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 75 [RESET_TYPE_DATAPATH] = "DATAPATH", 76 [RESET_TYPE_DISABLE] = "DISABLE", 77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 78 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 80 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 81 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 82 }; 83 84 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 85 * queued onto this work queue. This is not a per-nic work queue, because 86 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised. 87 */ 88 static struct workqueue_struct *reset_workqueue; 89 90 /* How often and how many times to poll for a reset while waiting for a 91 * BIST that another function started to complete. 92 */ 93 #define BIST_WAIT_DELAY_MS 100 94 #define BIST_WAIT_DELAY_COUNT 100 95 96 /************************************************************************** 97 * 98 * Configurable values 99 * 100 *************************************************************************/ 101 102 /* 103 * Use separate channels for TX and RX events 104 * 105 * Set this to 1 to use separate channels for TX and RX. It allows us 106 * to control interrupt affinity separately for TX and RX. 107 * 108 * This is only used in MSI-X interrupt mode 109 */ 110 bool ef4_separate_tx_channels; 111 module_param(ef4_separate_tx_channels, bool, 0444); 112 MODULE_PARM_DESC(ef4_separate_tx_channels, 113 "Use separate channels for TX and RX"); 114 115 /* This is the weight assigned to each of the (per-channel) virtual 116 * NAPI devices. 117 */ 118 static int napi_weight = 64; 119 120 /* This is the time (in jiffies) between invocations of the hardware 121 * monitor. 122 * On Falcon-based NICs, this will: 123 * - Check the on-board hardware monitor; 124 * - Poll the link state and reconfigure the hardware as necessary. 125 * On Siena-based NICs for power systems with EEH support, this will give EEH a 126 * chance to start. 127 */ 128 static unsigned int ef4_monitor_interval = 1 * HZ; 129 130 /* Initial interrupt moderation settings. They can be modified after 131 * module load with ethtool. 132 * 133 * The default for RX should strike a balance between increasing the 134 * round-trip latency and reducing overhead. 135 */ 136 static unsigned int rx_irq_mod_usec = 60; 137 138 /* Initial interrupt moderation settings. They can be modified after 139 * module load with ethtool. 140 * 141 * This default is chosen to ensure that a 10G link does not go idle 142 * while a TX queue is stopped after it has become full. A queue is 143 * restarted when it drops below half full. The time this takes (assuming 144 * worst case 3 descriptors per packet and 1024 descriptors) is 145 * 512 / 3 * 1.2 = 205 usec. 146 */ 147 static unsigned int tx_irq_mod_usec = 150; 148 149 /* This is the first interrupt mode to try out of: 150 * 0 => MSI-X 151 * 1 => MSI 152 * 2 => legacy 153 */ 154 static unsigned int interrupt_mode; 155 156 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 157 * i.e. the number of CPUs among which we may distribute simultaneous 158 * interrupt handling. 159 * 160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 161 * The default (0) means to assign an interrupt to each core. 162 */ 163 static unsigned int rss_cpus; 164 module_param(rss_cpus, uint, 0444); 165 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 166 167 static bool phy_flash_cfg; 168 module_param(phy_flash_cfg, bool, 0644); 169 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 170 171 static unsigned irq_adapt_low_thresh = 8000; 172 module_param(irq_adapt_low_thresh, uint, 0644); 173 MODULE_PARM_DESC(irq_adapt_low_thresh, 174 "Threshold score for reducing IRQ moderation"); 175 176 static unsigned irq_adapt_high_thresh = 16000; 177 module_param(irq_adapt_high_thresh, uint, 0644); 178 MODULE_PARM_DESC(irq_adapt_high_thresh, 179 "Threshold score for increasing IRQ moderation"); 180 181 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 182 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 183 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 184 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 185 module_param(debug, uint, 0); 186 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 187 188 /************************************************************************** 189 * 190 * Utility functions and prototypes 191 * 192 *************************************************************************/ 193 194 static int ef4_soft_enable_interrupts(struct ef4_nic *efx); 195 static void ef4_soft_disable_interrupts(struct ef4_nic *efx); 196 static void ef4_remove_channel(struct ef4_channel *channel); 197 static void ef4_remove_channels(struct ef4_nic *efx); 198 static const struct ef4_channel_type ef4_default_channel_type; 199 static void ef4_remove_port(struct ef4_nic *efx); 200 static void ef4_init_napi_channel(struct ef4_channel *channel); 201 static void ef4_fini_napi(struct ef4_nic *efx); 202 static void ef4_fini_napi_channel(struct ef4_channel *channel); 203 static void ef4_fini_struct(struct ef4_nic *efx); 204 static void ef4_start_all(struct ef4_nic *efx); 205 static void ef4_stop_all(struct ef4_nic *efx); 206 207 #define EF4_ASSERT_RESET_SERIALISED(efx) \ 208 do { \ 209 if ((efx->state == STATE_READY) || \ 210 (efx->state == STATE_RECOVERY) || \ 211 (efx->state == STATE_DISABLED)) \ 212 ASSERT_RTNL(); \ 213 } while (0) 214 215 static int ef4_check_disabled(struct ef4_nic *efx) 216 { 217 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 218 netif_err(efx, drv, efx->net_dev, 219 "device is disabled due to earlier errors\n"); 220 return -EIO; 221 } 222 return 0; 223 } 224 225 /************************************************************************** 226 * 227 * Event queue processing 228 * 229 *************************************************************************/ 230 231 /* Process channel's event queue 232 * 233 * This function is responsible for processing the event queue of a 234 * single channel. The caller must guarantee that this function will 235 * never be concurrently called more than once on the same channel, 236 * though different channels may be being processed concurrently. 237 */ 238 static int ef4_process_channel(struct ef4_channel *channel, int budget) 239 { 240 struct ef4_tx_queue *tx_queue; 241 int spent; 242 243 if (unlikely(!channel->enabled)) 244 return 0; 245 246 ef4_for_each_channel_tx_queue(tx_queue, channel) { 247 tx_queue->pkts_compl = 0; 248 tx_queue->bytes_compl = 0; 249 } 250 251 spent = ef4_nic_process_eventq(channel, budget); 252 if (spent && ef4_channel_has_rx_queue(channel)) { 253 struct ef4_rx_queue *rx_queue = 254 ef4_channel_get_rx_queue(channel); 255 256 ef4_rx_flush_packet(channel); 257 ef4_fast_push_rx_descriptors(rx_queue, true); 258 } 259 260 /* Update BQL */ 261 ef4_for_each_channel_tx_queue(tx_queue, channel) { 262 if (tx_queue->bytes_compl) { 263 netdev_tx_completed_queue(tx_queue->core_txq, 264 tx_queue->pkts_compl, tx_queue->bytes_compl); 265 } 266 } 267 268 return spent; 269 } 270 271 /* NAPI poll handler 272 * 273 * NAPI guarantees serialisation of polls of the same device, which 274 * provides the guarantee required by ef4_process_channel(). 275 */ 276 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel) 277 { 278 int step = efx->irq_mod_step_us; 279 280 if (channel->irq_mod_score < irq_adapt_low_thresh) { 281 if (channel->irq_moderation_us > step) { 282 channel->irq_moderation_us -= step; 283 efx->type->push_irq_moderation(channel); 284 } 285 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 286 if (channel->irq_moderation_us < 287 efx->irq_rx_moderation_us) { 288 channel->irq_moderation_us += step; 289 efx->type->push_irq_moderation(channel); 290 } 291 } 292 293 channel->irq_count = 0; 294 channel->irq_mod_score = 0; 295 } 296 297 static int ef4_poll(struct napi_struct *napi, int budget) 298 { 299 struct ef4_channel *channel = 300 container_of(napi, struct ef4_channel, napi_str); 301 struct ef4_nic *efx = channel->efx; 302 int spent; 303 304 netif_vdbg(efx, intr, efx->net_dev, 305 "channel %d NAPI poll executing on CPU %d\n", 306 channel->channel, raw_smp_processor_id()); 307 308 spent = ef4_process_channel(channel, budget); 309 310 if (spent < budget) { 311 if (ef4_channel_has_rx_queue(channel) && 312 efx->irq_rx_adaptive && 313 unlikely(++channel->irq_count == 1000)) { 314 ef4_update_irq_mod(efx, channel); 315 } 316 317 ef4_filter_rfs_expire(channel); 318 319 /* There is no race here; although napi_disable() will 320 * only wait for napi_complete(), this isn't a problem 321 * since ef4_nic_eventq_read_ack() will have no effect if 322 * interrupts have already been disabled. 323 */ 324 napi_complete_done(napi, spent); 325 ef4_nic_eventq_read_ack(channel); 326 } 327 328 return spent; 329 } 330 331 /* Create event queue 332 * Event queue memory allocations are done only once. If the channel 333 * is reset, the memory buffer will be reused; this guards against 334 * errors during channel reset and also simplifies interrupt handling. 335 */ 336 static int ef4_probe_eventq(struct ef4_channel *channel) 337 { 338 struct ef4_nic *efx = channel->efx; 339 unsigned long entries; 340 341 netif_dbg(efx, probe, efx->net_dev, 342 "chan %d create event queue\n", channel->channel); 343 344 /* Build an event queue with room for one event per tx and rx buffer, 345 * plus some extra for link state events and MCDI completions. */ 346 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 347 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE); 348 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1; 349 350 return ef4_nic_probe_eventq(channel); 351 } 352 353 /* Prepare channel's event queue */ 354 static int ef4_init_eventq(struct ef4_channel *channel) 355 { 356 struct ef4_nic *efx = channel->efx; 357 int rc; 358 359 EF4_WARN_ON_PARANOID(channel->eventq_init); 360 361 netif_dbg(efx, drv, efx->net_dev, 362 "chan %d init event queue\n", channel->channel); 363 364 rc = ef4_nic_init_eventq(channel); 365 if (rc == 0) { 366 efx->type->push_irq_moderation(channel); 367 channel->eventq_read_ptr = 0; 368 channel->eventq_init = true; 369 } 370 return rc; 371 } 372 373 /* Enable event queue processing and NAPI */ 374 void ef4_start_eventq(struct ef4_channel *channel) 375 { 376 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 377 "chan %d start event queue\n", channel->channel); 378 379 /* Make sure the NAPI handler sees the enabled flag set */ 380 channel->enabled = true; 381 smp_wmb(); 382 383 napi_enable(&channel->napi_str); 384 ef4_nic_eventq_read_ack(channel); 385 } 386 387 /* Disable event queue processing and NAPI */ 388 void ef4_stop_eventq(struct ef4_channel *channel) 389 { 390 if (!channel->enabled) 391 return; 392 393 napi_disable(&channel->napi_str); 394 channel->enabled = false; 395 } 396 397 static void ef4_fini_eventq(struct ef4_channel *channel) 398 { 399 if (!channel->eventq_init) 400 return; 401 402 netif_dbg(channel->efx, drv, channel->efx->net_dev, 403 "chan %d fini event queue\n", channel->channel); 404 405 ef4_nic_fini_eventq(channel); 406 channel->eventq_init = false; 407 } 408 409 static void ef4_remove_eventq(struct ef4_channel *channel) 410 { 411 netif_dbg(channel->efx, drv, channel->efx->net_dev, 412 "chan %d remove event queue\n", channel->channel); 413 414 ef4_nic_remove_eventq(channel); 415 } 416 417 /************************************************************************** 418 * 419 * Channel handling 420 * 421 *************************************************************************/ 422 423 /* Allocate and initialise a channel structure. */ 424 static struct ef4_channel * 425 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel) 426 { 427 struct ef4_channel *channel; 428 struct ef4_rx_queue *rx_queue; 429 struct ef4_tx_queue *tx_queue; 430 int j; 431 432 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 433 if (!channel) 434 return NULL; 435 436 channel->efx = efx; 437 channel->channel = i; 438 channel->type = &ef4_default_channel_type; 439 440 for (j = 0; j < EF4_TXQ_TYPES; j++) { 441 tx_queue = &channel->tx_queue[j]; 442 tx_queue->efx = efx; 443 tx_queue->queue = i * EF4_TXQ_TYPES + j; 444 tx_queue->channel = channel; 445 } 446 447 rx_queue = &channel->rx_queue; 448 rx_queue->efx = efx; 449 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); 450 451 return channel; 452 } 453 454 /* Allocate and initialise a channel structure, copying parameters 455 * (but not resources) from an old channel structure. 456 */ 457 static struct ef4_channel * 458 ef4_copy_channel(const struct ef4_channel *old_channel) 459 { 460 struct ef4_channel *channel; 461 struct ef4_rx_queue *rx_queue; 462 struct ef4_tx_queue *tx_queue; 463 int j; 464 465 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 466 if (!channel) 467 return NULL; 468 469 *channel = *old_channel; 470 471 channel->napi_dev = NULL; 472 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 473 channel->napi_str.napi_id = 0; 474 channel->napi_str.state = 0; 475 memset(&channel->eventq, 0, sizeof(channel->eventq)); 476 477 for (j = 0; j < EF4_TXQ_TYPES; j++) { 478 tx_queue = &channel->tx_queue[j]; 479 if (tx_queue->channel) 480 tx_queue->channel = channel; 481 tx_queue->buffer = NULL; 482 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 483 } 484 485 rx_queue = &channel->rx_queue; 486 rx_queue->buffer = NULL; 487 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 488 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); 489 490 return channel; 491 } 492 493 static int ef4_probe_channel(struct ef4_channel *channel) 494 { 495 struct ef4_tx_queue *tx_queue; 496 struct ef4_rx_queue *rx_queue; 497 int rc; 498 499 netif_dbg(channel->efx, probe, channel->efx->net_dev, 500 "creating channel %d\n", channel->channel); 501 502 rc = channel->type->pre_probe(channel); 503 if (rc) 504 goto fail; 505 506 rc = ef4_probe_eventq(channel); 507 if (rc) 508 goto fail; 509 510 ef4_for_each_channel_tx_queue(tx_queue, channel) { 511 rc = ef4_probe_tx_queue(tx_queue); 512 if (rc) 513 goto fail; 514 } 515 516 ef4_for_each_channel_rx_queue(rx_queue, channel) { 517 rc = ef4_probe_rx_queue(rx_queue); 518 if (rc) 519 goto fail; 520 } 521 522 return 0; 523 524 fail: 525 ef4_remove_channel(channel); 526 return rc; 527 } 528 529 static void 530 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len) 531 { 532 struct ef4_nic *efx = channel->efx; 533 const char *type; 534 int number; 535 536 number = channel->channel; 537 if (efx->tx_channel_offset == 0) { 538 type = ""; 539 } else if (channel->channel < efx->tx_channel_offset) { 540 type = "-rx"; 541 } else { 542 type = "-tx"; 543 number -= efx->tx_channel_offset; 544 } 545 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 546 } 547 548 static void ef4_set_channel_names(struct ef4_nic *efx) 549 { 550 struct ef4_channel *channel; 551 552 ef4_for_each_channel(channel, efx) 553 channel->type->get_name(channel, 554 efx->msi_context[channel->channel].name, 555 sizeof(efx->msi_context[0].name)); 556 } 557 558 static int ef4_probe_channels(struct ef4_nic *efx) 559 { 560 struct ef4_channel *channel; 561 int rc; 562 563 /* Restart special buffer allocation */ 564 efx->next_buffer_table = 0; 565 566 /* Probe channels in reverse, so that any 'extra' channels 567 * use the start of the buffer table. This allows the traffic 568 * channels to be resized without moving them or wasting the 569 * entries before them. 570 */ 571 ef4_for_each_channel_rev(channel, efx) { 572 rc = ef4_probe_channel(channel); 573 if (rc) { 574 netif_err(efx, probe, efx->net_dev, 575 "failed to create channel %d\n", 576 channel->channel); 577 goto fail; 578 } 579 } 580 ef4_set_channel_names(efx); 581 582 return 0; 583 584 fail: 585 ef4_remove_channels(efx); 586 return rc; 587 } 588 589 /* Channels are shutdown and reinitialised whilst the NIC is running 590 * to propagate configuration changes (mtu, checksum offload), or 591 * to clear hardware error conditions 592 */ 593 static void ef4_start_datapath(struct ef4_nic *efx) 594 { 595 netdev_features_t old_features = efx->net_dev->features; 596 bool old_rx_scatter = efx->rx_scatter; 597 struct ef4_tx_queue *tx_queue; 598 struct ef4_rx_queue *rx_queue; 599 struct ef4_channel *channel; 600 size_t rx_buf_len; 601 602 /* Calculate the rx buffer allocation parameters required to 603 * support the current MTU, including padding for header 604 * alignment and overruns. 605 */ 606 efx->rx_dma_len = (efx->rx_prefix_size + 607 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) + 608 efx->type->rx_buffer_padding); 609 rx_buf_len = (sizeof(struct ef4_rx_page_state) + 610 efx->rx_ip_align + efx->rx_dma_len); 611 if (rx_buf_len <= PAGE_SIZE) { 612 efx->rx_scatter = efx->type->always_rx_scatter; 613 efx->rx_buffer_order = 0; 614 } else if (efx->type->can_rx_scatter) { 615 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 616 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) + 617 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE, 618 EF4_RX_BUF_ALIGNMENT) > 619 PAGE_SIZE); 620 efx->rx_scatter = true; 621 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE; 622 efx->rx_buffer_order = 0; 623 } else { 624 efx->rx_scatter = false; 625 efx->rx_buffer_order = get_order(rx_buf_len); 626 } 627 628 ef4_rx_config_page_split(efx); 629 if (efx->rx_buffer_order) 630 netif_dbg(efx, drv, efx->net_dev, 631 "RX buf len=%u; page order=%u batch=%u\n", 632 efx->rx_dma_len, efx->rx_buffer_order, 633 efx->rx_pages_per_batch); 634 else 635 netif_dbg(efx, drv, efx->net_dev, 636 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 637 efx->rx_dma_len, efx->rx_page_buf_step, 638 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 639 640 /* Restore previously fixed features in hw_features and remove 641 * features which are fixed now 642 */ 643 efx->net_dev->hw_features |= efx->net_dev->features; 644 efx->net_dev->hw_features &= ~efx->fixed_features; 645 efx->net_dev->features |= efx->fixed_features; 646 if (efx->net_dev->features != old_features) 647 netdev_features_change(efx->net_dev); 648 649 /* RX filters may also have scatter-enabled flags */ 650 if (efx->rx_scatter != old_rx_scatter) 651 efx->type->filter_update_rx_scatter(efx); 652 653 /* We must keep at least one descriptor in a TX ring empty. 654 * We could avoid this when the queue size does not exactly 655 * match the hardware ring size, but it's not that important. 656 * Therefore we stop the queue when one more skb might fill 657 * the ring completely. We wake it when half way back to 658 * empty. 659 */ 660 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx); 661 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 662 663 /* Initialise the channels */ 664 ef4_for_each_channel(channel, efx) { 665 ef4_for_each_channel_tx_queue(tx_queue, channel) { 666 ef4_init_tx_queue(tx_queue); 667 atomic_inc(&efx->active_queues); 668 } 669 670 ef4_for_each_channel_rx_queue(rx_queue, channel) { 671 ef4_init_rx_queue(rx_queue); 672 atomic_inc(&efx->active_queues); 673 ef4_stop_eventq(channel); 674 ef4_fast_push_rx_descriptors(rx_queue, false); 675 ef4_start_eventq(channel); 676 } 677 678 WARN_ON(channel->rx_pkt_n_frags); 679 } 680 681 if (netif_device_present(efx->net_dev)) 682 netif_tx_wake_all_queues(efx->net_dev); 683 } 684 685 static void ef4_stop_datapath(struct ef4_nic *efx) 686 { 687 struct ef4_channel *channel; 688 struct ef4_tx_queue *tx_queue; 689 struct ef4_rx_queue *rx_queue; 690 int rc; 691 692 EF4_ASSERT_RESET_SERIALISED(efx); 693 BUG_ON(efx->port_enabled); 694 695 /* Stop RX refill */ 696 ef4_for_each_channel(channel, efx) { 697 ef4_for_each_channel_rx_queue(rx_queue, channel) 698 rx_queue->refill_enabled = false; 699 } 700 701 ef4_for_each_channel(channel, efx) { 702 /* RX packet processing is pipelined, so wait for the 703 * NAPI handler to complete. At least event queue 0 704 * might be kept active by non-data events, so don't 705 * use napi_synchronize() but actually disable NAPI 706 * temporarily. 707 */ 708 if (ef4_channel_has_rx_queue(channel)) { 709 ef4_stop_eventq(channel); 710 ef4_start_eventq(channel); 711 } 712 } 713 714 rc = efx->type->fini_dmaq(efx); 715 if (rc && EF4_WORKAROUND_7803(efx)) { 716 /* Schedule a reset to recover from the flush failure. The 717 * descriptor caches reference memory we're about to free, 718 * but falcon_reconfigure_mac_wrapper() won't reconnect 719 * the MACs because of the pending reset. 720 */ 721 netif_err(efx, drv, efx->net_dev, 722 "Resetting to recover from flush failure\n"); 723 ef4_schedule_reset(efx, RESET_TYPE_ALL); 724 } else if (rc) { 725 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 726 } else { 727 netif_dbg(efx, drv, efx->net_dev, 728 "successfully flushed all queues\n"); 729 } 730 731 ef4_for_each_channel(channel, efx) { 732 ef4_for_each_channel_rx_queue(rx_queue, channel) 733 ef4_fini_rx_queue(rx_queue); 734 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 735 ef4_fini_tx_queue(tx_queue); 736 } 737 } 738 739 static void ef4_remove_channel(struct ef4_channel *channel) 740 { 741 struct ef4_tx_queue *tx_queue; 742 struct ef4_rx_queue *rx_queue; 743 744 netif_dbg(channel->efx, drv, channel->efx->net_dev, 745 "destroy chan %d\n", channel->channel); 746 747 ef4_for_each_channel_rx_queue(rx_queue, channel) 748 ef4_remove_rx_queue(rx_queue); 749 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 750 ef4_remove_tx_queue(tx_queue); 751 ef4_remove_eventq(channel); 752 channel->type->post_remove(channel); 753 } 754 755 static void ef4_remove_channels(struct ef4_nic *efx) 756 { 757 struct ef4_channel *channel; 758 759 ef4_for_each_channel(channel, efx) 760 ef4_remove_channel(channel); 761 } 762 763 int 764 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries) 765 { 766 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel; 767 u32 old_rxq_entries, old_txq_entries; 768 unsigned i, next_buffer_table = 0; 769 int rc, rc2; 770 771 rc = ef4_check_disabled(efx); 772 if (rc) 773 return rc; 774 775 /* Not all channels should be reallocated. We must avoid 776 * reallocating their buffer table entries. 777 */ 778 ef4_for_each_channel(channel, efx) { 779 struct ef4_rx_queue *rx_queue; 780 struct ef4_tx_queue *tx_queue; 781 782 if (channel->type->copy) 783 continue; 784 next_buffer_table = max(next_buffer_table, 785 channel->eventq.index + 786 channel->eventq.entries); 787 ef4_for_each_channel_rx_queue(rx_queue, channel) 788 next_buffer_table = max(next_buffer_table, 789 rx_queue->rxd.index + 790 rx_queue->rxd.entries); 791 ef4_for_each_channel_tx_queue(tx_queue, channel) 792 next_buffer_table = max(next_buffer_table, 793 tx_queue->txd.index + 794 tx_queue->txd.entries); 795 } 796 797 ef4_device_detach_sync(efx); 798 ef4_stop_all(efx); 799 ef4_soft_disable_interrupts(efx); 800 801 /* Clone channels (where possible) */ 802 memset(other_channel, 0, sizeof(other_channel)); 803 for (i = 0; i < efx->n_channels; i++) { 804 channel = efx->channel[i]; 805 if (channel->type->copy) 806 channel = channel->type->copy(channel); 807 if (!channel) { 808 rc = -ENOMEM; 809 goto out; 810 } 811 other_channel[i] = channel; 812 } 813 814 /* Swap entry counts and channel pointers */ 815 old_rxq_entries = efx->rxq_entries; 816 old_txq_entries = efx->txq_entries; 817 efx->rxq_entries = rxq_entries; 818 efx->txq_entries = txq_entries; 819 for (i = 0; i < efx->n_channels; i++) { 820 swap(efx->channel[i], other_channel[i]); 821 } 822 823 /* Restart buffer table allocation */ 824 efx->next_buffer_table = next_buffer_table; 825 826 for (i = 0; i < efx->n_channels; i++) { 827 channel = efx->channel[i]; 828 if (!channel->type->copy) 829 continue; 830 rc = ef4_probe_channel(channel); 831 if (rc) 832 goto rollback; 833 ef4_init_napi_channel(efx->channel[i]); 834 } 835 836 out: 837 /* Destroy unused channel structures */ 838 for (i = 0; i < efx->n_channels; i++) { 839 channel = other_channel[i]; 840 if (channel && channel->type->copy) { 841 ef4_fini_napi_channel(channel); 842 ef4_remove_channel(channel); 843 kfree(channel); 844 } 845 } 846 847 rc2 = ef4_soft_enable_interrupts(efx); 848 if (rc2) { 849 rc = rc ? rc : rc2; 850 netif_err(efx, drv, efx->net_dev, 851 "unable to restart interrupts on channel reallocation\n"); 852 ef4_schedule_reset(efx, RESET_TYPE_DISABLE); 853 } else { 854 ef4_start_all(efx); 855 netif_device_attach(efx->net_dev); 856 } 857 return rc; 858 859 rollback: 860 /* Swap back */ 861 efx->rxq_entries = old_rxq_entries; 862 efx->txq_entries = old_txq_entries; 863 for (i = 0; i < efx->n_channels; i++) { 864 swap(efx->channel[i], other_channel[i]); 865 } 866 goto out; 867 } 868 869 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue) 870 { 871 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 872 } 873 874 static const struct ef4_channel_type ef4_default_channel_type = { 875 .pre_probe = ef4_channel_dummy_op_int, 876 .post_remove = ef4_channel_dummy_op_void, 877 .get_name = ef4_get_channel_name, 878 .copy = ef4_copy_channel, 879 .keep_eventq = false, 880 }; 881 882 int ef4_channel_dummy_op_int(struct ef4_channel *channel) 883 { 884 return 0; 885 } 886 887 void ef4_channel_dummy_op_void(struct ef4_channel *channel) 888 { 889 } 890 891 /************************************************************************** 892 * 893 * Port handling 894 * 895 **************************************************************************/ 896 897 /* This ensures that the kernel is kept informed (via 898 * netif_carrier_on/off) of the link status, and also maintains the 899 * link status's stop on the port's TX queue. 900 */ 901 void ef4_link_status_changed(struct ef4_nic *efx) 902 { 903 struct ef4_link_state *link_state = &efx->link_state; 904 905 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 906 * that no events are triggered between unregister_netdev() and the 907 * driver unloading. A more general condition is that NETDEV_CHANGE 908 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 909 if (!netif_running(efx->net_dev)) 910 return; 911 912 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 913 efx->n_link_state_changes++; 914 915 if (link_state->up) 916 netif_carrier_on(efx->net_dev); 917 else 918 netif_carrier_off(efx->net_dev); 919 } 920 921 /* Status message for kernel log */ 922 if (link_state->up) 923 netif_info(efx, link, efx->net_dev, 924 "link up at %uMbps %s-duplex (MTU %d)\n", 925 link_state->speed, link_state->fd ? "full" : "half", 926 efx->net_dev->mtu); 927 else 928 netif_info(efx, link, efx->net_dev, "link down\n"); 929 } 930 931 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising) 932 { 933 efx->link_advertising = advertising; 934 if (advertising) { 935 if (advertising & ADVERTISED_Pause) 936 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX); 937 else 938 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX); 939 if (advertising & ADVERTISED_Asym_Pause) 940 efx->wanted_fc ^= EF4_FC_TX; 941 } 942 } 943 944 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc) 945 { 946 efx->wanted_fc = wanted_fc; 947 if (efx->link_advertising) { 948 if (wanted_fc & EF4_FC_RX) 949 efx->link_advertising |= (ADVERTISED_Pause | 950 ADVERTISED_Asym_Pause); 951 else 952 efx->link_advertising &= ~(ADVERTISED_Pause | 953 ADVERTISED_Asym_Pause); 954 if (wanted_fc & EF4_FC_TX) 955 efx->link_advertising ^= ADVERTISED_Asym_Pause; 956 } 957 } 958 959 static void ef4_fini_port(struct ef4_nic *efx); 960 961 /* We assume that efx->type->reconfigure_mac will always try to sync RX 962 * filters and therefore needs to read-lock the filter table against freeing 963 */ 964 void ef4_mac_reconfigure(struct ef4_nic *efx) 965 { 966 down_read(&efx->filter_sem); 967 efx->type->reconfigure_mac(efx); 968 up_read(&efx->filter_sem); 969 } 970 971 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 972 * the MAC appropriately. All other PHY configuration changes are pushed 973 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC 974 * through ef4_monitor(). 975 * 976 * Callers must hold the mac_lock 977 */ 978 int __ef4_reconfigure_port(struct ef4_nic *efx) 979 { 980 enum ef4_phy_mode phy_mode; 981 int rc; 982 983 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 984 985 /* Disable PHY transmit in mac level loopbacks */ 986 phy_mode = efx->phy_mode; 987 if (LOOPBACK_INTERNAL(efx)) 988 efx->phy_mode |= PHY_MODE_TX_DISABLED; 989 else 990 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 991 992 rc = efx->type->reconfigure_port(efx); 993 994 if (rc) 995 efx->phy_mode = phy_mode; 996 997 return rc; 998 } 999 1000 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1001 * disabled. */ 1002 int ef4_reconfigure_port(struct ef4_nic *efx) 1003 { 1004 int rc; 1005 1006 EF4_ASSERT_RESET_SERIALISED(efx); 1007 1008 mutex_lock(&efx->mac_lock); 1009 rc = __ef4_reconfigure_port(efx); 1010 mutex_unlock(&efx->mac_lock); 1011 1012 return rc; 1013 } 1014 1015 /* Asynchronous work item for changing MAC promiscuity and multicast 1016 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1017 * MAC directly. */ 1018 static void ef4_mac_work(struct work_struct *data) 1019 { 1020 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work); 1021 1022 mutex_lock(&efx->mac_lock); 1023 if (efx->port_enabled) 1024 ef4_mac_reconfigure(efx); 1025 mutex_unlock(&efx->mac_lock); 1026 } 1027 1028 static int ef4_probe_port(struct ef4_nic *efx) 1029 { 1030 int rc; 1031 1032 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1033 1034 if (phy_flash_cfg) 1035 efx->phy_mode = PHY_MODE_SPECIAL; 1036 1037 /* Connect up MAC/PHY operations table */ 1038 rc = efx->type->probe_port(efx); 1039 if (rc) 1040 return rc; 1041 1042 /* Initialise MAC address to permanent address */ 1043 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr); 1044 1045 return 0; 1046 } 1047 1048 static int ef4_init_port(struct ef4_nic *efx) 1049 { 1050 int rc; 1051 1052 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1053 1054 mutex_lock(&efx->mac_lock); 1055 1056 rc = efx->phy_op->init(efx); 1057 if (rc) 1058 goto fail1; 1059 1060 efx->port_initialized = true; 1061 1062 /* Reconfigure the MAC before creating dma queues (required for 1063 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1064 ef4_mac_reconfigure(efx); 1065 1066 /* Ensure the PHY advertises the correct flow control settings */ 1067 rc = efx->phy_op->reconfigure(efx); 1068 if (rc && rc != -EPERM) 1069 goto fail2; 1070 1071 mutex_unlock(&efx->mac_lock); 1072 return 0; 1073 1074 fail2: 1075 efx->phy_op->fini(efx); 1076 fail1: 1077 mutex_unlock(&efx->mac_lock); 1078 return rc; 1079 } 1080 1081 static void ef4_start_port(struct ef4_nic *efx) 1082 { 1083 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1084 BUG_ON(efx->port_enabled); 1085 1086 mutex_lock(&efx->mac_lock); 1087 efx->port_enabled = true; 1088 1089 /* Ensure MAC ingress/egress is enabled */ 1090 ef4_mac_reconfigure(efx); 1091 1092 mutex_unlock(&efx->mac_lock); 1093 } 1094 1095 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1096 * and the async self-test, wait for them to finish and prevent them 1097 * being scheduled again. This doesn't cover online resets, which 1098 * should only be cancelled when removing the device. 1099 */ 1100 static void ef4_stop_port(struct ef4_nic *efx) 1101 { 1102 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1103 1104 EF4_ASSERT_RESET_SERIALISED(efx); 1105 1106 mutex_lock(&efx->mac_lock); 1107 efx->port_enabled = false; 1108 mutex_unlock(&efx->mac_lock); 1109 1110 /* Serialise against ef4_set_multicast_list() */ 1111 netif_addr_lock_bh(efx->net_dev); 1112 netif_addr_unlock_bh(efx->net_dev); 1113 1114 cancel_delayed_work_sync(&efx->monitor_work); 1115 ef4_selftest_async_cancel(efx); 1116 cancel_work_sync(&efx->mac_work); 1117 } 1118 1119 static void ef4_fini_port(struct ef4_nic *efx) 1120 { 1121 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1122 1123 if (!efx->port_initialized) 1124 return; 1125 1126 efx->phy_op->fini(efx); 1127 efx->port_initialized = false; 1128 1129 efx->link_state.up = false; 1130 ef4_link_status_changed(efx); 1131 } 1132 1133 static void ef4_remove_port(struct ef4_nic *efx) 1134 { 1135 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1136 1137 efx->type->remove_port(efx); 1138 } 1139 1140 /************************************************************************** 1141 * 1142 * NIC handling 1143 * 1144 **************************************************************************/ 1145 1146 static LIST_HEAD(ef4_primary_list); 1147 static LIST_HEAD(ef4_unassociated_list); 1148 1149 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right) 1150 { 1151 return left->type == right->type && 1152 left->vpd_sn && right->vpd_sn && 1153 !strcmp(left->vpd_sn, right->vpd_sn); 1154 } 1155 1156 static void ef4_associate(struct ef4_nic *efx) 1157 { 1158 struct ef4_nic *other, *next; 1159 1160 if (efx->primary == efx) { 1161 /* Adding primary function; look for secondaries */ 1162 1163 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1164 list_add_tail(&efx->node, &ef4_primary_list); 1165 1166 list_for_each_entry_safe(other, next, &ef4_unassociated_list, 1167 node) { 1168 if (ef4_same_controller(efx, other)) { 1169 list_del(&other->node); 1170 netif_dbg(other, probe, other->net_dev, 1171 "moving to secondary list of %s %s\n", 1172 pci_name(efx->pci_dev), 1173 efx->net_dev->name); 1174 list_add_tail(&other->node, 1175 &efx->secondary_list); 1176 other->primary = efx; 1177 } 1178 } 1179 } else { 1180 /* Adding secondary function; look for primary */ 1181 1182 list_for_each_entry(other, &ef4_primary_list, node) { 1183 if (ef4_same_controller(efx, other)) { 1184 netif_dbg(efx, probe, efx->net_dev, 1185 "adding to secondary list of %s %s\n", 1186 pci_name(other->pci_dev), 1187 other->net_dev->name); 1188 list_add_tail(&efx->node, 1189 &other->secondary_list); 1190 efx->primary = other; 1191 return; 1192 } 1193 } 1194 1195 netif_dbg(efx, probe, efx->net_dev, 1196 "adding to unassociated list\n"); 1197 list_add_tail(&efx->node, &ef4_unassociated_list); 1198 } 1199 } 1200 1201 static void ef4_dissociate(struct ef4_nic *efx) 1202 { 1203 struct ef4_nic *other, *next; 1204 1205 list_del(&efx->node); 1206 efx->primary = NULL; 1207 1208 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1209 list_del(&other->node); 1210 netif_dbg(other, probe, other->net_dev, 1211 "moving to unassociated list\n"); 1212 list_add_tail(&other->node, &ef4_unassociated_list); 1213 other->primary = NULL; 1214 } 1215 } 1216 1217 /* This configures the PCI device to enable I/O and DMA. */ 1218 static int ef4_init_io(struct ef4_nic *efx) 1219 { 1220 struct pci_dev *pci_dev = efx->pci_dev; 1221 dma_addr_t dma_mask = efx->type->max_dma_mask; 1222 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1223 int rc, bar; 1224 1225 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1226 1227 bar = efx->type->mem_bar; 1228 1229 rc = pci_enable_device(pci_dev); 1230 if (rc) { 1231 netif_err(efx, probe, efx->net_dev, 1232 "failed to enable PCI device\n"); 1233 goto fail1; 1234 } 1235 1236 pci_set_master(pci_dev); 1237 1238 /* Set the PCI DMA mask. Try all possibilities from our genuine mask 1239 * down to 32 bits, because some architectures will allow 40 bit 1240 * masks event though they reject 46 bit masks. 1241 */ 1242 while (dma_mask > 0x7fffffffUL) { 1243 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1244 if (rc == 0) 1245 break; 1246 dma_mask >>= 1; 1247 } 1248 if (rc) { 1249 netif_err(efx, probe, efx->net_dev, 1250 "could not find a suitable DMA mask\n"); 1251 goto fail2; 1252 } 1253 netif_dbg(efx, probe, efx->net_dev, 1254 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1255 1256 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1257 rc = pci_request_region(pci_dev, bar, "sfc"); 1258 if (rc) { 1259 netif_err(efx, probe, efx->net_dev, 1260 "request for memory BAR failed\n"); 1261 rc = -EIO; 1262 goto fail3; 1263 } 1264 efx->membase = ioremap(efx->membase_phys, mem_map_size); 1265 if (!efx->membase) { 1266 netif_err(efx, probe, efx->net_dev, 1267 "could not map memory BAR at %llx+%x\n", 1268 (unsigned long long)efx->membase_phys, mem_map_size); 1269 rc = -ENOMEM; 1270 goto fail4; 1271 } 1272 netif_dbg(efx, probe, efx->net_dev, 1273 "memory BAR at %llx+%x (virtual %p)\n", 1274 (unsigned long long)efx->membase_phys, mem_map_size, 1275 efx->membase); 1276 1277 return 0; 1278 1279 fail4: 1280 pci_release_region(efx->pci_dev, bar); 1281 fail3: 1282 efx->membase_phys = 0; 1283 fail2: 1284 pci_disable_device(efx->pci_dev); 1285 fail1: 1286 return rc; 1287 } 1288 1289 static void ef4_fini_io(struct ef4_nic *efx) 1290 { 1291 int bar; 1292 1293 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1294 1295 if (efx->membase) { 1296 iounmap(efx->membase); 1297 efx->membase = NULL; 1298 } 1299 1300 if (efx->membase_phys) { 1301 bar = efx->type->mem_bar; 1302 pci_release_region(efx->pci_dev, bar); 1303 efx->membase_phys = 0; 1304 } 1305 1306 /* Don't disable bus-mastering if VFs are assigned */ 1307 if (!pci_vfs_assigned(efx->pci_dev)) 1308 pci_disable_device(efx->pci_dev); 1309 } 1310 1311 void ef4_set_default_rx_indir_table(struct ef4_nic *efx) 1312 { 1313 size_t i; 1314 1315 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1316 efx->rx_indir_table[i] = 1317 ethtool_rxfh_indir_default(i, efx->rss_spread); 1318 } 1319 1320 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx) 1321 { 1322 cpumask_var_t thread_mask; 1323 unsigned int count; 1324 int cpu; 1325 1326 if (rss_cpus) { 1327 count = rss_cpus; 1328 } else { 1329 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1330 netif_warn(efx, probe, efx->net_dev, 1331 "RSS disabled due to allocation failure\n"); 1332 return 1; 1333 } 1334 1335 count = 0; 1336 for_each_online_cpu(cpu) { 1337 if (!cpumask_test_cpu(cpu, thread_mask)) { 1338 ++count; 1339 cpumask_or(thread_mask, thread_mask, 1340 topology_sibling_cpumask(cpu)); 1341 } 1342 } 1343 1344 free_cpumask_var(thread_mask); 1345 } 1346 1347 if (count > EF4_MAX_RX_QUEUES) { 1348 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, 1349 "Reducing number of rx queues from %u to %u.\n", 1350 count, EF4_MAX_RX_QUEUES); 1351 count = EF4_MAX_RX_QUEUES; 1352 } 1353 1354 return count; 1355 } 1356 1357 /* Probe the number and type of interrupts we are able to obtain, and 1358 * the resulting numbers of channels and RX queues. 1359 */ 1360 static int ef4_probe_interrupts(struct ef4_nic *efx) 1361 { 1362 unsigned int extra_channels = 0; 1363 unsigned int i, j; 1364 int rc; 1365 1366 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) 1367 if (efx->extra_channel_type[i]) 1368 ++extra_channels; 1369 1370 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) { 1371 struct msix_entry xentries[EF4_MAX_CHANNELS]; 1372 unsigned int n_channels; 1373 1374 n_channels = ef4_wanted_parallelism(efx); 1375 if (ef4_separate_tx_channels) 1376 n_channels *= 2; 1377 n_channels += extra_channels; 1378 n_channels = min(n_channels, efx->max_channels); 1379 1380 for (i = 0; i < n_channels; i++) 1381 xentries[i].entry = i; 1382 rc = pci_enable_msix_range(efx->pci_dev, 1383 xentries, 1, n_channels); 1384 if (rc < 0) { 1385 /* Fall back to single channel MSI */ 1386 efx->interrupt_mode = EF4_INT_MODE_MSI; 1387 netif_err(efx, drv, efx->net_dev, 1388 "could not enable MSI-X\n"); 1389 } else if (rc < n_channels) { 1390 netif_err(efx, drv, efx->net_dev, 1391 "WARNING: Insufficient MSI-X vectors" 1392 " available (%d < %u).\n", rc, n_channels); 1393 netif_err(efx, drv, efx->net_dev, 1394 "WARNING: Performance may be reduced.\n"); 1395 n_channels = rc; 1396 } 1397 1398 if (rc > 0) { 1399 efx->n_channels = n_channels; 1400 if (n_channels > extra_channels) 1401 n_channels -= extra_channels; 1402 if (ef4_separate_tx_channels) { 1403 efx->n_tx_channels = min(max(n_channels / 2, 1404 1U), 1405 efx->max_tx_channels); 1406 efx->n_rx_channels = max(n_channels - 1407 efx->n_tx_channels, 1408 1U); 1409 } else { 1410 efx->n_tx_channels = min(n_channels, 1411 efx->max_tx_channels); 1412 efx->n_rx_channels = n_channels; 1413 } 1414 for (i = 0; i < efx->n_channels; i++) 1415 ef4_get_channel(efx, i)->irq = 1416 xentries[i].vector; 1417 } 1418 } 1419 1420 /* Try single interrupt MSI */ 1421 if (efx->interrupt_mode == EF4_INT_MODE_MSI) { 1422 efx->n_channels = 1; 1423 efx->n_rx_channels = 1; 1424 efx->n_tx_channels = 1; 1425 rc = pci_enable_msi(efx->pci_dev); 1426 if (rc == 0) { 1427 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1428 } else { 1429 netif_err(efx, drv, efx->net_dev, 1430 "could not enable MSI\n"); 1431 efx->interrupt_mode = EF4_INT_MODE_LEGACY; 1432 } 1433 } 1434 1435 /* Assume legacy interrupts */ 1436 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) { 1437 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0); 1438 efx->n_rx_channels = 1; 1439 efx->n_tx_channels = 1; 1440 efx->legacy_irq = efx->pci_dev->irq; 1441 } 1442 1443 /* Assign extra channels if possible */ 1444 j = efx->n_channels; 1445 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) { 1446 if (!efx->extra_channel_type[i]) 1447 continue; 1448 if (efx->interrupt_mode != EF4_INT_MODE_MSIX || 1449 efx->n_channels <= extra_channels) { 1450 efx->extra_channel_type[i]->handle_no_channel(efx); 1451 } else { 1452 --j; 1453 ef4_get_channel(efx, j)->type = 1454 efx->extra_channel_type[i]; 1455 } 1456 } 1457 1458 efx->rss_spread = efx->n_rx_channels; 1459 1460 return 0; 1461 } 1462 1463 static int ef4_soft_enable_interrupts(struct ef4_nic *efx) 1464 { 1465 struct ef4_channel *channel, *end_channel; 1466 int rc; 1467 1468 BUG_ON(efx->state == STATE_DISABLED); 1469 1470 efx->irq_soft_enabled = true; 1471 smp_wmb(); 1472 1473 ef4_for_each_channel(channel, efx) { 1474 if (!channel->type->keep_eventq) { 1475 rc = ef4_init_eventq(channel); 1476 if (rc) 1477 goto fail; 1478 } 1479 ef4_start_eventq(channel); 1480 } 1481 1482 return 0; 1483 fail: 1484 end_channel = channel; 1485 ef4_for_each_channel(channel, efx) { 1486 if (channel == end_channel) 1487 break; 1488 ef4_stop_eventq(channel); 1489 if (!channel->type->keep_eventq) 1490 ef4_fini_eventq(channel); 1491 } 1492 1493 return rc; 1494 } 1495 1496 static void ef4_soft_disable_interrupts(struct ef4_nic *efx) 1497 { 1498 struct ef4_channel *channel; 1499 1500 if (efx->state == STATE_DISABLED) 1501 return; 1502 1503 efx->irq_soft_enabled = false; 1504 smp_wmb(); 1505 1506 if (efx->legacy_irq) 1507 synchronize_irq(efx->legacy_irq); 1508 1509 ef4_for_each_channel(channel, efx) { 1510 if (channel->irq) 1511 synchronize_irq(channel->irq); 1512 1513 ef4_stop_eventq(channel); 1514 if (!channel->type->keep_eventq) 1515 ef4_fini_eventq(channel); 1516 } 1517 } 1518 1519 static int ef4_enable_interrupts(struct ef4_nic *efx) 1520 { 1521 struct ef4_channel *channel, *end_channel; 1522 int rc; 1523 1524 BUG_ON(efx->state == STATE_DISABLED); 1525 1526 if (efx->eeh_disabled_legacy_irq) { 1527 enable_irq(efx->legacy_irq); 1528 efx->eeh_disabled_legacy_irq = false; 1529 } 1530 1531 efx->type->irq_enable_master(efx); 1532 1533 ef4_for_each_channel(channel, efx) { 1534 if (channel->type->keep_eventq) { 1535 rc = ef4_init_eventq(channel); 1536 if (rc) 1537 goto fail; 1538 } 1539 } 1540 1541 rc = ef4_soft_enable_interrupts(efx); 1542 if (rc) 1543 goto fail; 1544 1545 return 0; 1546 1547 fail: 1548 end_channel = channel; 1549 ef4_for_each_channel(channel, efx) { 1550 if (channel == end_channel) 1551 break; 1552 if (channel->type->keep_eventq) 1553 ef4_fini_eventq(channel); 1554 } 1555 1556 efx->type->irq_disable_non_ev(efx); 1557 1558 return rc; 1559 } 1560 1561 static void ef4_disable_interrupts(struct ef4_nic *efx) 1562 { 1563 struct ef4_channel *channel; 1564 1565 ef4_soft_disable_interrupts(efx); 1566 1567 ef4_for_each_channel(channel, efx) { 1568 if (channel->type->keep_eventq) 1569 ef4_fini_eventq(channel); 1570 } 1571 1572 efx->type->irq_disable_non_ev(efx); 1573 } 1574 1575 static void ef4_remove_interrupts(struct ef4_nic *efx) 1576 { 1577 struct ef4_channel *channel; 1578 1579 /* Remove MSI/MSI-X interrupts */ 1580 ef4_for_each_channel(channel, efx) 1581 channel->irq = 0; 1582 pci_disable_msi(efx->pci_dev); 1583 pci_disable_msix(efx->pci_dev); 1584 1585 /* Remove legacy interrupt */ 1586 efx->legacy_irq = 0; 1587 } 1588 1589 static void ef4_set_channels(struct ef4_nic *efx) 1590 { 1591 struct ef4_channel *channel; 1592 struct ef4_tx_queue *tx_queue; 1593 1594 efx->tx_channel_offset = 1595 ef4_separate_tx_channels ? 1596 efx->n_channels - efx->n_tx_channels : 0; 1597 1598 /* We need to mark which channels really have RX and TX 1599 * queues, and adjust the TX queue numbers if we have separate 1600 * RX-only and TX-only channels. 1601 */ 1602 ef4_for_each_channel(channel, efx) { 1603 if (channel->channel < efx->n_rx_channels) 1604 channel->rx_queue.core_index = channel->channel; 1605 else 1606 channel->rx_queue.core_index = -1; 1607 1608 ef4_for_each_channel_tx_queue(tx_queue, channel) 1609 tx_queue->queue -= (efx->tx_channel_offset * 1610 EF4_TXQ_TYPES); 1611 } 1612 } 1613 1614 static int ef4_probe_nic(struct ef4_nic *efx) 1615 { 1616 int rc; 1617 1618 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1619 1620 /* Carry out hardware-type specific initialisation */ 1621 rc = efx->type->probe(efx); 1622 if (rc) 1623 return rc; 1624 1625 do { 1626 if (!efx->max_channels || !efx->max_tx_channels) { 1627 netif_err(efx, drv, efx->net_dev, 1628 "Insufficient resources to allocate" 1629 " any channels\n"); 1630 rc = -ENOSPC; 1631 goto fail1; 1632 } 1633 1634 /* Determine the number of channels and queues by trying 1635 * to hook in MSI-X interrupts. 1636 */ 1637 rc = ef4_probe_interrupts(efx); 1638 if (rc) 1639 goto fail1; 1640 1641 ef4_set_channels(efx); 1642 1643 /* dimension_resources can fail with EAGAIN */ 1644 rc = efx->type->dimension_resources(efx); 1645 if (rc != 0 && rc != -EAGAIN) 1646 goto fail2; 1647 1648 if (rc == -EAGAIN) 1649 /* try again with new max_channels */ 1650 ef4_remove_interrupts(efx); 1651 1652 } while (rc == -EAGAIN); 1653 1654 if (efx->n_channels > 1) 1655 netdev_rss_key_fill(&efx->rx_hash_key, 1656 sizeof(efx->rx_hash_key)); 1657 ef4_set_default_rx_indir_table(efx); 1658 1659 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1660 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1661 1662 /* Initialise the interrupt moderation settings */ 1663 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 1664 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1665 true); 1666 1667 return 0; 1668 1669 fail2: 1670 ef4_remove_interrupts(efx); 1671 fail1: 1672 efx->type->remove(efx); 1673 return rc; 1674 } 1675 1676 static void ef4_remove_nic(struct ef4_nic *efx) 1677 { 1678 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1679 1680 ef4_remove_interrupts(efx); 1681 efx->type->remove(efx); 1682 } 1683 1684 static int ef4_probe_filters(struct ef4_nic *efx) 1685 { 1686 int rc; 1687 1688 spin_lock_init(&efx->filter_lock); 1689 init_rwsem(&efx->filter_sem); 1690 mutex_lock(&efx->mac_lock); 1691 down_write(&efx->filter_sem); 1692 rc = efx->type->filter_table_probe(efx); 1693 if (rc) 1694 goto out_unlock; 1695 1696 #ifdef CONFIG_RFS_ACCEL 1697 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1698 struct ef4_channel *channel; 1699 int i, success = 1; 1700 1701 ef4_for_each_channel(channel, efx) { 1702 channel->rps_flow_id = 1703 kcalloc(efx->type->max_rx_ip_filters, 1704 sizeof(*channel->rps_flow_id), 1705 GFP_KERNEL); 1706 if (!channel->rps_flow_id) 1707 success = 0; 1708 else 1709 for (i = 0; 1710 i < efx->type->max_rx_ip_filters; 1711 ++i) 1712 channel->rps_flow_id[i] = 1713 RPS_FLOW_ID_INVALID; 1714 } 1715 1716 if (!success) { 1717 ef4_for_each_channel(channel, efx) 1718 kfree(channel->rps_flow_id); 1719 efx->type->filter_table_remove(efx); 1720 rc = -ENOMEM; 1721 goto out_unlock; 1722 } 1723 1724 efx->rps_expire_index = efx->rps_expire_channel = 0; 1725 } 1726 #endif 1727 out_unlock: 1728 up_write(&efx->filter_sem); 1729 mutex_unlock(&efx->mac_lock); 1730 return rc; 1731 } 1732 1733 static void ef4_remove_filters(struct ef4_nic *efx) 1734 { 1735 #ifdef CONFIG_RFS_ACCEL 1736 struct ef4_channel *channel; 1737 1738 ef4_for_each_channel(channel, efx) 1739 kfree(channel->rps_flow_id); 1740 #endif 1741 down_write(&efx->filter_sem); 1742 efx->type->filter_table_remove(efx); 1743 up_write(&efx->filter_sem); 1744 } 1745 1746 static void ef4_restore_filters(struct ef4_nic *efx) 1747 { 1748 down_read(&efx->filter_sem); 1749 efx->type->filter_table_restore(efx); 1750 up_read(&efx->filter_sem); 1751 } 1752 1753 /************************************************************************** 1754 * 1755 * NIC startup/shutdown 1756 * 1757 *************************************************************************/ 1758 1759 static int ef4_probe_all(struct ef4_nic *efx) 1760 { 1761 int rc; 1762 1763 rc = ef4_probe_nic(efx); 1764 if (rc) { 1765 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1766 goto fail1; 1767 } 1768 1769 rc = ef4_probe_port(efx); 1770 if (rc) { 1771 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1772 goto fail2; 1773 } 1774 1775 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT); 1776 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) { 1777 rc = -EINVAL; 1778 goto fail3; 1779 } 1780 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE; 1781 1782 rc = ef4_probe_filters(efx); 1783 if (rc) { 1784 netif_err(efx, probe, efx->net_dev, 1785 "failed to create filter tables\n"); 1786 goto fail4; 1787 } 1788 1789 rc = ef4_probe_channels(efx); 1790 if (rc) 1791 goto fail5; 1792 1793 return 0; 1794 1795 fail5: 1796 ef4_remove_filters(efx); 1797 fail4: 1798 fail3: 1799 ef4_remove_port(efx); 1800 fail2: 1801 ef4_remove_nic(efx); 1802 fail1: 1803 return rc; 1804 } 1805 1806 /* If the interface is supposed to be running but is not, start 1807 * the hardware and software data path, regular activity for the port 1808 * (MAC statistics, link polling, etc.) and schedule the port to be 1809 * reconfigured. Interrupts must already be enabled. This function 1810 * is safe to call multiple times, so long as the NIC is not disabled. 1811 * Requires the RTNL lock. 1812 */ 1813 static void ef4_start_all(struct ef4_nic *efx) 1814 { 1815 EF4_ASSERT_RESET_SERIALISED(efx); 1816 BUG_ON(efx->state == STATE_DISABLED); 1817 1818 /* Check that it is appropriate to restart the interface. All 1819 * of these flags are safe to read under just the rtnl lock */ 1820 if (efx->port_enabled || !netif_running(efx->net_dev) || 1821 efx->reset_pending) 1822 return; 1823 1824 ef4_start_port(efx); 1825 ef4_start_datapath(efx); 1826 1827 /* Start the hardware monitor if there is one */ 1828 if (efx->type->monitor != NULL) 1829 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1830 ef4_monitor_interval); 1831 1832 efx->type->start_stats(efx); 1833 efx->type->pull_stats(efx); 1834 spin_lock_bh(&efx->stats_lock); 1835 efx->type->update_stats(efx, NULL, NULL); 1836 spin_unlock_bh(&efx->stats_lock); 1837 } 1838 1839 /* Quiesce the hardware and software data path, and regular activity 1840 * for the port without bringing the link down. Safe to call multiple 1841 * times with the NIC in almost any state, but interrupts should be 1842 * enabled. Requires the RTNL lock. 1843 */ 1844 static void ef4_stop_all(struct ef4_nic *efx) 1845 { 1846 EF4_ASSERT_RESET_SERIALISED(efx); 1847 1848 /* port_enabled can be read safely under the rtnl lock */ 1849 if (!efx->port_enabled) 1850 return; 1851 1852 /* update stats before we go down so we can accurately count 1853 * rx_nodesc_drops 1854 */ 1855 efx->type->pull_stats(efx); 1856 spin_lock_bh(&efx->stats_lock); 1857 efx->type->update_stats(efx, NULL, NULL); 1858 spin_unlock_bh(&efx->stats_lock); 1859 efx->type->stop_stats(efx); 1860 ef4_stop_port(efx); 1861 1862 /* Stop the kernel transmit interface. This is only valid if 1863 * the device is stopped or detached; otherwise the watchdog 1864 * may fire immediately. 1865 */ 1866 WARN_ON(netif_running(efx->net_dev) && 1867 netif_device_present(efx->net_dev)); 1868 netif_tx_disable(efx->net_dev); 1869 1870 ef4_stop_datapath(efx); 1871 } 1872 1873 static void ef4_remove_all(struct ef4_nic *efx) 1874 { 1875 ef4_remove_channels(efx); 1876 ef4_remove_filters(efx); 1877 ef4_remove_port(efx); 1878 ef4_remove_nic(efx); 1879 } 1880 1881 /************************************************************************** 1882 * 1883 * Interrupt moderation 1884 * 1885 **************************************************************************/ 1886 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs) 1887 { 1888 if (usecs == 0) 1889 return 0; 1890 if (usecs * 1000 < efx->timer_quantum_ns) 1891 return 1; /* never round down to 0 */ 1892 return usecs * 1000 / efx->timer_quantum_ns; 1893 } 1894 1895 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks) 1896 { 1897 /* We must round up when converting ticks to microseconds 1898 * because we round down when converting the other way. 1899 */ 1900 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 1901 } 1902 1903 /* Set interrupt moderation parameters */ 1904 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs, 1905 unsigned int rx_usecs, bool rx_adaptive, 1906 bool rx_may_override_tx) 1907 { 1908 struct ef4_channel *channel; 1909 unsigned int timer_max_us; 1910 1911 EF4_ASSERT_RESET_SERIALISED(efx); 1912 1913 timer_max_us = efx->timer_max_ns / 1000; 1914 1915 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 1916 return -EINVAL; 1917 1918 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 1919 !rx_may_override_tx) { 1920 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1921 "RX and TX IRQ moderation must be equal\n"); 1922 return -EINVAL; 1923 } 1924 1925 efx->irq_rx_adaptive = rx_adaptive; 1926 efx->irq_rx_moderation_us = rx_usecs; 1927 ef4_for_each_channel(channel, efx) { 1928 if (ef4_channel_has_rx_queue(channel)) 1929 channel->irq_moderation_us = rx_usecs; 1930 else if (ef4_channel_has_tx_queues(channel)) 1931 channel->irq_moderation_us = tx_usecs; 1932 } 1933 1934 return 0; 1935 } 1936 1937 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs, 1938 unsigned int *rx_usecs, bool *rx_adaptive) 1939 { 1940 *rx_adaptive = efx->irq_rx_adaptive; 1941 *rx_usecs = efx->irq_rx_moderation_us; 1942 1943 /* If channels are shared between RX and TX, so is IRQ 1944 * moderation. Otherwise, IRQ moderation is the same for all 1945 * TX channels and is not adaptive. 1946 */ 1947 if (efx->tx_channel_offset == 0) { 1948 *tx_usecs = *rx_usecs; 1949 } else { 1950 struct ef4_channel *tx_channel; 1951 1952 tx_channel = efx->channel[efx->tx_channel_offset]; 1953 *tx_usecs = tx_channel->irq_moderation_us; 1954 } 1955 } 1956 1957 /************************************************************************** 1958 * 1959 * Hardware monitor 1960 * 1961 **************************************************************************/ 1962 1963 /* Run periodically off the general workqueue */ 1964 static void ef4_monitor(struct work_struct *data) 1965 { 1966 struct ef4_nic *efx = container_of(data, struct ef4_nic, 1967 monitor_work.work); 1968 1969 netif_vdbg(efx, timer, efx->net_dev, 1970 "hardware monitor executing on CPU %d\n", 1971 raw_smp_processor_id()); 1972 BUG_ON(efx->type->monitor == NULL); 1973 1974 /* If the mac_lock is already held then it is likely a port 1975 * reconfiguration is already in place, which will likely do 1976 * most of the work of monitor() anyway. */ 1977 if (mutex_trylock(&efx->mac_lock)) { 1978 if (efx->port_enabled) 1979 efx->type->monitor(efx); 1980 mutex_unlock(&efx->mac_lock); 1981 } 1982 1983 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1984 ef4_monitor_interval); 1985 } 1986 1987 /************************************************************************** 1988 * 1989 * ioctls 1990 * 1991 *************************************************************************/ 1992 1993 /* Net device ioctl 1994 * Context: process, rtnl_lock() held. 1995 */ 1996 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 1997 { 1998 struct ef4_nic *efx = netdev_priv(net_dev); 1999 struct mii_ioctl_data *data = if_mii(ifr); 2000 2001 /* Convert phy_id from older PRTAD/DEVAD format */ 2002 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 2003 (data->phy_id & 0xfc00) == 0x0400) 2004 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 2005 2006 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2007 } 2008 2009 /************************************************************************** 2010 * 2011 * NAPI interface 2012 * 2013 **************************************************************************/ 2014 2015 static void ef4_init_napi_channel(struct ef4_channel *channel) 2016 { 2017 struct ef4_nic *efx = channel->efx; 2018 2019 channel->napi_dev = efx->net_dev; 2020 netif_napi_add(channel->napi_dev, &channel->napi_str, 2021 ef4_poll, napi_weight); 2022 } 2023 2024 static void ef4_init_napi(struct ef4_nic *efx) 2025 { 2026 struct ef4_channel *channel; 2027 2028 ef4_for_each_channel(channel, efx) 2029 ef4_init_napi_channel(channel); 2030 } 2031 2032 static void ef4_fini_napi_channel(struct ef4_channel *channel) 2033 { 2034 if (channel->napi_dev) 2035 netif_napi_del(&channel->napi_str); 2036 2037 channel->napi_dev = NULL; 2038 } 2039 2040 static void ef4_fini_napi(struct ef4_nic *efx) 2041 { 2042 struct ef4_channel *channel; 2043 2044 ef4_for_each_channel(channel, efx) 2045 ef4_fini_napi_channel(channel); 2046 } 2047 2048 /************************************************************************** 2049 * 2050 * Kernel net device interface 2051 * 2052 *************************************************************************/ 2053 2054 /* Context: process, rtnl_lock() held. */ 2055 int ef4_net_open(struct net_device *net_dev) 2056 { 2057 struct ef4_nic *efx = netdev_priv(net_dev); 2058 int rc; 2059 2060 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2061 raw_smp_processor_id()); 2062 2063 rc = ef4_check_disabled(efx); 2064 if (rc) 2065 return rc; 2066 if (efx->phy_mode & PHY_MODE_SPECIAL) 2067 return -EBUSY; 2068 2069 /* Notify the kernel of the link state polled during driver load, 2070 * before the monitor starts running */ 2071 ef4_link_status_changed(efx); 2072 2073 ef4_start_all(efx); 2074 ef4_selftest_async_start(efx); 2075 return 0; 2076 } 2077 2078 /* Context: process, rtnl_lock() held. 2079 * Note that the kernel will ignore our return code; this method 2080 * should really be a void. 2081 */ 2082 int ef4_net_stop(struct net_device *net_dev) 2083 { 2084 struct ef4_nic *efx = netdev_priv(net_dev); 2085 2086 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2087 raw_smp_processor_id()); 2088 2089 /* Stop the device and flush all the channels */ 2090 ef4_stop_all(efx); 2091 2092 return 0; 2093 } 2094 2095 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2096 static void ef4_net_stats(struct net_device *net_dev, 2097 struct rtnl_link_stats64 *stats) 2098 { 2099 struct ef4_nic *efx = netdev_priv(net_dev); 2100 2101 spin_lock_bh(&efx->stats_lock); 2102 efx->type->update_stats(efx, NULL, stats); 2103 spin_unlock_bh(&efx->stats_lock); 2104 } 2105 2106 /* Context: netif_tx_lock held, BHs disabled. */ 2107 static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue) 2108 { 2109 struct ef4_nic *efx = netdev_priv(net_dev); 2110 2111 netif_err(efx, tx_err, efx->net_dev, 2112 "TX stuck with port_enabled=%d: resetting channels\n", 2113 efx->port_enabled); 2114 2115 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2116 } 2117 2118 2119 /* Context: process, rtnl_lock() held. */ 2120 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu) 2121 { 2122 struct ef4_nic *efx = netdev_priv(net_dev); 2123 int rc; 2124 2125 rc = ef4_check_disabled(efx); 2126 if (rc) 2127 return rc; 2128 2129 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2130 2131 ef4_device_detach_sync(efx); 2132 ef4_stop_all(efx); 2133 2134 mutex_lock(&efx->mac_lock); 2135 net_dev->mtu = new_mtu; 2136 ef4_mac_reconfigure(efx); 2137 mutex_unlock(&efx->mac_lock); 2138 2139 ef4_start_all(efx); 2140 netif_device_attach(efx->net_dev); 2141 return 0; 2142 } 2143 2144 static int ef4_set_mac_address(struct net_device *net_dev, void *data) 2145 { 2146 struct ef4_nic *efx = netdev_priv(net_dev); 2147 struct sockaddr *addr = data; 2148 u8 *new_addr = addr->sa_data; 2149 u8 old_addr[6]; 2150 int rc; 2151 2152 if (!is_valid_ether_addr(new_addr)) { 2153 netif_err(efx, drv, efx->net_dev, 2154 "invalid ethernet MAC address requested: %pM\n", 2155 new_addr); 2156 return -EADDRNOTAVAIL; 2157 } 2158 2159 /* save old address */ 2160 ether_addr_copy(old_addr, net_dev->dev_addr); 2161 eth_hw_addr_set(net_dev, new_addr); 2162 if (efx->type->set_mac_address) { 2163 rc = efx->type->set_mac_address(efx); 2164 if (rc) { 2165 eth_hw_addr_set(net_dev, old_addr); 2166 return rc; 2167 } 2168 } 2169 2170 /* Reconfigure the MAC */ 2171 mutex_lock(&efx->mac_lock); 2172 ef4_mac_reconfigure(efx); 2173 mutex_unlock(&efx->mac_lock); 2174 2175 return 0; 2176 } 2177 2178 /* Context: netif_addr_lock held, BHs disabled. */ 2179 static void ef4_set_rx_mode(struct net_device *net_dev) 2180 { 2181 struct ef4_nic *efx = netdev_priv(net_dev); 2182 2183 if (efx->port_enabled) 2184 queue_work(efx->workqueue, &efx->mac_work); 2185 /* Otherwise ef4_start_port() will do this */ 2186 } 2187 2188 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data) 2189 { 2190 struct ef4_nic *efx = netdev_priv(net_dev); 2191 int rc; 2192 2193 /* If disabling RX n-tuple filtering, clear existing filters */ 2194 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 2195 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL); 2196 if (rc) 2197 return rc; 2198 } 2199 2200 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */ 2201 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) { 2202 /* ef4_set_rx_mode() will schedule MAC work to update filters 2203 * when a new features are finally set in net_dev. 2204 */ 2205 ef4_set_rx_mode(net_dev); 2206 } 2207 2208 return 0; 2209 } 2210 2211 static const struct net_device_ops ef4_netdev_ops = { 2212 .ndo_open = ef4_net_open, 2213 .ndo_stop = ef4_net_stop, 2214 .ndo_get_stats64 = ef4_net_stats, 2215 .ndo_tx_timeout = ef4_watchdog, 2216 .ndo_start_xmit = ef4_hard_start_xmit, 2217 .ndo_validate_addr = eth_validate_addr, 2218 .ndo_eth_ioctl = ef4_ioctl, 2219 .ndo_change_mtu = ef4_change_mtu, 2220 .ndo_set_mac_address = ef4_set_mac_address, 2221 .ndo_set_rx_mode = ef4_set_rx_mode, 2222 .ndo_set_features = ef4_set_features, 2223 .ndo_setup_tc = ef4_setup_tc, 2224 #ifdef CONFIG_RFS_ACCEL 2225 .ndo_rx_flow_steer = ef4_filter_rfs, 2226 #endif 2227 }; 2228 2229 static void ef4_update_name(struct ef4_nic *efx) 2230 { 2231 strcpy(efx->name, efx->net_dev->name); 2232 ef4_mtd_rename(efx); 2233 ef4_set_channel_names(efx); 2234 } 2235 2236 static int ef4_netdev_event(struct notifier_block *this, 2237 unsigned long event, void *ptr) 2238 { 2239 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2240 2241 if ((net_dev->netdev_ops == &ef4_netdev_ops) && 2242 event == NETDEV_CHANGENAME) 2243 ef4_update_name(netdev_priv(net_dev)); 2244 2245 return NOTIFY_DONE; 2246 } 2247 2248 static struct notifier_block ef4_netdev_notifier = { 2249 .notifier_call = ef4_netdev_event, 2250 }; 2251 2252 static ssize_t 2253 phy_type_show(struct device *dev, struct device_attribute *attr, char *buf) 2254 { 2255 struct ef4_nic *efx = dev_get_drvdata(dev); 2256 return sprintf(buf, "%d\n", efx->phy_type); 2257 } 2258 static DEVICE_ATTR_RO(phy_type); 2259 2260 static int ef4_register_netdev(struct ef4_nic *efx) 2261 { 2262 struct net_device *net_dev = efx->net_dev; 2263 struct ef4_channel *channel; 2264 int rc; 2265 2266 net_dev->watchdog_timeo = 5 * HZ; 2267 net_dev->irq = efx->pci_dev->irq; 2268 net_dev->netdev_ops = &ef4_netdev_ops; 2269 net_dev->ethtool_ops = &ef4_ethtool_ops; 2270 netif_set_gso_max_segs(net_dev, EF4_TSO_MAX_SEGS); 2271 net_dev->min_mtu = EF4_MIN_MTU; 2272 net_dev->max_mtu = EF4_MAX_MTU; 2273 2274 rtnl_lock(); 2275 2276 /* Enable resets to be scheduled and check whether any were 2277 * already requested. If so, the NIC is probably hosed so we 2278 * abort. 2279 */ 2280 efx->state = STATE_READY; 2281 smp_mb(); /* ensure we change state before checking reset_pending */ 2282 if (efx->reset_pending) { 2283 netif_err(efx, probe, efx->net_dev, 2284 "aborting probe due to scheduled reset\n"); 2285 rc = -EIO; 2286 goto fail_locked; 2287 } 2288 2289 rc = dev_alloc_name(net_dev, net_dev->name); 2290 if (rc < 0) 2291 goto fail_locked; 2292 ef4_update_name(efx); 2293 2294 /* Always start with carrier off; PHY events will detect the link */ 2295 netif_carrier_off(net_dev); 2296 2297 rc = register_netdevice(net_dev); 2298 if (rc) 2299 goto fail_locked; 2300 2301 ef4_for_each_channel(channel, efx) { 2302 struct ef4_tx_queue *tx_queue; 2303 ef4_for_each_channel_tx_queue(tx_queue, channel) 2304 ef4_init_tx_queue_core_txq(tx_queue); 2305 } 2306 2307 ef4_associate(efx); 2308 2309 rtnl_unlock(); 2310 2311 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2312 if (rc) { 2313 netif_err(efx, drv, efx->net_dev, 2314 "failed to init net dev attributes\n"); 2315 goto fail_registered; 2316 } 2317 return 0; 2318 2319 fail_registered: 2320 rtnl_lock(); 2321 ef4_dissociate(efx); 2322 unregister_netdevice(net_dev); 2323 fail_locked: 2324 efx->state = STATE_UNINIT; 2325 rtnl_unlock(); 2326 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2327 return rc; 2328 } 2329 2330 static void ef4_unregister_netdev(struct ef4_nic *efx) 2331 { 2332 if (!efx->net_dev) 2333 return; 2334 2335 BUG_ON(netdev_priv(efx->net_dev) != efx); 2336 2337 if (ef4_dev_registered(efx)) { 2338 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2339 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2340 unregister_netdev(efx->net_dev); 2341 } 2342 } 2343 2344 /************************************************************************** 2345 * 2346 * Device reset and suspend 2347 * 2348 **************************************************************************/ 2349 2350 /* Tears down the entire software state and most of the hardware state 2351 * before reset. */ 2352 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method) 2353 { 2354 EF4_ASSERT_RESET_SERIALISED(efx); 2355 2356 ef4_stop_all(efx); 2357 ef4_disable_interrupts(efx); 2358 2359 mutex_lock(&efx->mac_lock); 2360 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2361 method != RESET_TYPE_DATAPATH) 2362 efx->phy_op->fini(efx); 2363 efx->type->fini(efx); 2364 } 2365 2366 /* This function will always ensure that the locks acquired in 2367 * ef4_reset_down() are released. A failure return code indicates 2368 * that we were unable to reinitialise the hardware, and the 2369 * driver should be disabled. If ok is false, then the rx and tx 2370 * engines are not restarted, pending a RESET_DISABLE. */ 2371 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok) 2372 { 2373 int rc; 2374 2375 EF4_ASSERT_RESET_SERIALISED(efx); 2376 2377 /* Ensure that SRAM is initialised even if we're disabling the device */ 2378 rc = efx->type->init(efx); 2379 if (rc) { 2380 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2381 goto fail; 2382 } 2383 2384 if (!ok) 2385 goto fail; 2386 2387 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2388 method != RESET_TYPE_DATAPATH) { 2389 rc = efx->phy_op->init(efx); 2390 if (rc) 2391 goto fail; 2392 rc = efx->phy_op->reconfigure(efx); 2393 if (rc && rc != -EPERM) 2394 netif_err(efx, drv, efx->net_dev, 2395 "could not restore PHY settings\n"); 2396 } 2397 2398 rc = ef4_enable_interrupts(efx); 2399 if (rc) 2400 goto fail; 2401 2402 down_read(&efx->filter_sem); 2403 ef4_restore_filters(efx); 2404 up_read(&efx->filter_sem); 2405 2406 mutex_unlock(&efx->mac_lock); 2407 2408 ef4_start_all(efx); 2409 2410 return 0; 2411 2412 fail: 2413 efx->port_initialized = false; 2414 2415 mutex_unlock(&efx->mac_lock); 2416 2417 return rc; 2418 } 2419 2420 /* Reset the NIC using the specified method. Note that the reset may 2421 * fail, in which case the card will be left in an unusable state. 2422 * 2423 * Caller must hold the rtnl_lock. 2424 */ 2425 int ef4_reset(struct ef4_nic *efx, enum reset_type method) 2426 { 2427 int rc, rc2; 2428 bool disabled; 2429 2430 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2431 RESET_TYPE(method)); 2432 2433 ef4_device_detach_sync(efx); 2434 ef4_reset_down(efx, method); 2435 2436 rc = efx->type->reset(efx, method); 2437 if (rc) { 2438 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2439 goto out; 2440 } 2441 2442 /* Clear flags for the scopes we covered. We assume the NIC and 2443 * driver are now quiescent so that there is no race here. 2444 */ 2445 if (method < RESET_TYPE_MAX_METHOD) 2446 efx->reset_pending &= -(1 << (method + 1)); 2447 else /* it doesn't fit into the well-ordered scope hierarchy */ 2448 __clear_bit(method, &efx->reset_pending); 2449 2450 /* Reinitialise bus-mastering, which may have been turned off before 2451 * the reset was scheduled. This is still appropriate, even in the 2452 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2453 * can respond to requests. */ 2454 pci_set_master(efx->pci_dev); 2455 2456 out: 2457 /* Leave device stopped if necessary */ 2458 disabled = rc || 2459 method == RESET_TYPE_DISABLE || 2460 method == RESET_TYPE_RECOVER_OR_DISABLE; 2461 rc2 = ef4_reset_up(efx, method, !disabled); 2462 if (rc2) { 2463 disabled = true; 2464 if (!rc) 2465 rc = rc2; 2466 } 2467 2468 if (disabled) { 2469 dev_close(efx->net_dev); 2470 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2471 efx->state = STATE_DISABLED; 2472 } else { 2473 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2474 netif_device_attach(efx->net_dev); 2475 } 2476 return rc; 2477 } 2478 2479 /* Try recovery mechanisms. 2480 * For now only EEH is supported. 2481 * Returns 0 if the recovery mechanisms are unsuccessful. 2482 * Returns a non-zero value otherwise. 2483 */ 2484 int ef4_try_recovery(struct ef4_nic *efx) 2485 { 2486 #ifdef CONFIG_EEH 2487 /* A PCI error can occur and not be seen by EEH because nothing 2488 * happens on the PCI bus. In this case the driver may fail and 2489 * schedule a 'recover or reset', leading to this recovery handler. 2490 * Manually call the eeh failure check function. 2491 */ 2492 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 2493 if (eeh_dev_check_failure(eehdev)) { 2494 /* The EEH mechanisms will handle the error and reset the 2495 * device if necessary. 2496 */ 2497 return 1; 2498 } 2499 #endif 2500 return 0; 2501 } 2502 2503 /* The worker thread exists so that code that cannot sleep can 2504 * schedule a reset for later. 2505 */ 2506 static void ef4_reset_work(struct work_struct *data) 2507 { 2508 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work); 2509 unsigned long pending; 2510 enum reset_type method; 2511 2512 pending = READ_ONCE(efx->reset_pending); 2513 method = fls(pending) - 1; 2514 2515 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2516 method == RESET_TYPE_RECOVER_OR_ALL) && 2517 ef4_try_recovery(efx)) 2518 return; 2519 2520 if (!pending) 2521 return; 2522 2523 rtnl_lock(); 2524 2525 /* We checked the state in ef4_schedule_reset() but it may 2526 * have changed by now. Now that we have the RTNL lock, 2527 * it cannot change again. 2528 */ 2529 if (efx->state == STATE_READY) 2530 (void)ef4_reset(efx, method); 2531 2532 rtnl_unlock(); 2533 } 2534 2535 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type) 2536 { 2537 enum reset_type method; 2538 2539 if (efx->state == STATE_RECOVERY) { 2540 netif_dbg(efx, drv, efx->net_dev, 2541 "recovering: skip scheduling %s reset\n", 2542 RESET_TYPE(type)); 2543 return; 2544 } 2545 2546 switch (type) { 2547 case RESET_TYPE_INVISIBLE: 2548 case RESET_TYPE_ALL: 2549 case RESET_TYPE_RECOVER_OR_ALL: 2550 case RESET_TYPE_WORLD: 2551 case RESET_TYPE_DISABLE: 2552 case RESET_TYPE_RECOVER_OR_DISABLE: 2553 case RESET_TYPE_DATAPATH: 2554 method = type; 2555 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2556 RESET_TYPE(method)); 2557 break; 2558 default: 2559 method = efx->type->map_reset_reason(type); 2560 netif_dbg(efx, drv, efx->net_dev, 2561 "scheduling %s reset for %s\n", 2562 RESET_TYPE(method), RESET_TYPE(type)); 2563 break; 2564 } 2565 2566 set_bit(method, &efx->reset_pending); 2567 smp_mb(); /* ensure we change reset_pending before checking state */ 2568 2569 /* If we're not READY then just leave the flags set as the cue 2570 * to abort probing or reschedule the reset later. 2571 */ 2572 if (READ_ONCE(efx->state) != STATE_READY) 2573 return; 2574 2575 queue_work(reset_workqueue, &efx->reset_work); 2576 } 2577 2578 /************************************************************************** 2579 * 2580 * List of NICs we support 2581 * 2582 **************************************************************************/ 2583 2584 /* PCI device ID table */ 2585 static const struct pci_device_id ef4_pci_table[] = { 2586 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2587 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2588 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2589 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2590 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2591 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2592 {0} /* end of list */ 2593 }; 2594 2595 /************************************************************************** 2596 * 2597 * Dummy PHY/MAC operations 2598 * 2599 * Can be used for some unimplemented operations 2600 * Needed so all function pointers are valid and do not have to be tested 2601 * before use 2602 * 2603 **************************************************************************/ 2604 int ef4_port_dummy_op_int(struct ef4_nic *efx) 2605 { 2606 return 0; 2607 } 2608 void ef4_port_dummy_op_void(struct ef4_nic *efx) {} 2609 2610 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx) 2611 { 2612 return false; 2613 } 2614 2615 static const struct ef4_phy_operations ef4_dummy_phy_operations = { 2616 .init = ef4_port_dummy_op_int, 2617 .reconfigure = ef4_port_dummy_op_int, 2618 .poll = ef4_port_dummy_op_poll, 2619 .fini = ef4_port_dummy_op_void, 2620 }; 2621 2622 /************************************************************************** 2623 * 2624 * Data housekeeping 2625 * 2626 **************************************************************************/ 2627 2628 /* This zeroes out and then fills in the invariants in a struct 2629 * ef4_nic (including all sub-structures). 2630 */ 2631 static int ef4_init_struct(struct ef4_nic *efx, 2632 struct pci_dev *pci_dev, struct net_device *net_dev) 2633 { 2634 int i; 2635 2636 /* Initialise common structures */ 2637 INIT_LIST_HEAD(&efx->node); 2638 INIT_LIST_HEAD(&efx->secondary_list); 2639 spin_lock_init(&efx->biu_lock); 2640 #ifdef CONFIG_SFC_FALCON_MTD 2641 INIT_LIST_HEAD(&efx->mtd_list); 2642 #endif 2643 INIT_WORK(&efx->reset_work, ef4_reset_work); 2644 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor); 2645 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work); 2646 efx->pci_dev = pci_dev; 2647 efx->msg_enable = debug; 2648 efx->state = STATE_UNINIT; 2649 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2650 2651 efx->net_dev = net_dev; 2652 efx->rx_prefix_size = efx->type->rx_prefix_size; 2653 efx->rx_ip_align = 2654 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2655 efx->rx_packet_hash_offset = 2656 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2657 efx->rx_packet_ts_offset = 2658 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2659 spin_lock_init(&efx->stats_lock); 2660 mutex_init(&efx->mac_lock); 2661 efx->phy_op = &ef4_dummy_phy_operations; 2662 efx->mdio.dev = net_dev; 2663 INIT_WORK(&efx->mac_work, ef4_mac_work); 2664 init_waitqueue_head(&efx->flush_wq); 2665 2666 for (i = 0; i < EF4_MAX_CHANNELS; i++) { 2667 efx->channel[i] = ef4_alloc_channel(efx, i, NULL); 2668 if (!efx->channel[i]) 2669 goto fail; 2670 efx->msi_context[i].efx = efx; 2671 efx->msi_context[i].index = i; 2672 } 2673 2674 /* Higher numbered interrupt modes are less capable! */ 2675 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2676 interrupt_mode); 2677 2678 /* Would be good to use the net_dev name, but we're too early */ 2679 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2680 pci_name(pci_dev)); 2681 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2682 if (!efx->workqueue) 2683 goto fail; 2684 2685 return 0; 2686 2687 fail: 2688 ef4_fini_struct(efx); 2689 return -ENOMEM; 2690 } 2691 2692 static void ef4_fini_struct(struct ef4_nic *efx) 2693 { 2694 int i; 2695 2696 for (i = 0; i < EF4_MAX_CHANNELS; i++) 2697 kfree(efx->channel[i]); 2698 2699 kfree(efx->vpd_sn); 2700 2701 if (efx->workqueue) { 2702 destroy_workqueue(efx->workqueue); 2703 efx->workqueue = NULL; 2704 } 2705 } 2706 2707 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats) 2708 { 2709 u64 n_rx_nodesc_trunc = 0; 2710 struct ef4_channel *channel; 2711 2712 ef4_for_each_channel(channel, efx) 2713 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 2714 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 2715 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 2716 } 2717 2718 /************************************************************************** 2719 * 2720 * PCI interface 2721 * 2722 **************************************************************************/ 2723 2724 /* Main body of final NIC shutdown code 2725 * This is called only at module unload (or hotplug removal). 2726 */ 2727 static void ef4_pci_remove_main(struct ef4_nic *efx) 2728 { 2729 /* Flush reset_work. It can no longer be scheduled since we 2730 * are not READY. 2731 */ 2732 BUG_ON(efx->state == STATE_READY); 2733 cancel_work_sync(&efx->reset_work); 2734 2735 ef4_disable_interrupts(efx); 2736 ef4_nic_fini_interrupt(efx); 2737 ef4_fini_port(efx); 2738 efx->type->fini(efx); 2739 ef4_fini_napi(efx); 2740 ef4_remove_all(efx); 2741 } 2742 2743 /* Final NIC shutdown 2744 * This is called only at module unload (or hotplug removal). A PF can call 2745 * this on its VFs to ensure they are unbound first. 2746 */ 2747 static void ef4_pci_remove(struct pci_dev *pci_dev) 2748 { 2749 struct ef4_nic *efx; 2750 2751 efx = pci_get_drvdata(pci_dev); 2752 if (!efx) 2753 return; 2754 2755 /* Mark the NIC as fini, then stop the interface */ 2756 rtnl_lock(); 2757 ef4_dissociate(efx); 2758 dev_close(efx->net_dev); 2759 ef4_disable_interrupts(efx); 2760 efx->state = STATE_UNINIT; 2761 rtnl_unlock(); 2762 2763 ef4_unregister_netdev(efx); 2764 2765 ef4_mtd_remove(efx); 2766 2767 ef4_pci_remove_main(efx); 2768 2769 ef4_fini_io(efx); 2770 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2771 2772 ef4_fini_struct(efx); 2773 free_netdev(efx->net_dev); 2774 2775 pci_disable_pcie_error_reporting(pci_dev); 2776 }; 2777 2778 /* NIC VPD information 2779 * Called during probe to display the part number of the installed NIC. 2780 */ 2781 static void ef4_probe_vpd_strings(struct ef4_nic *efx) 2782 { 2783 struct pci_dev *dev = efx->pci_dev; 2784 unsigned int vpd_size, kw_len; 2785 u8 *vpd_data; 2786 int start; 2787 2788 vpd_data = pci_vpd_alloc(dev, &vpd_size); 2789 if (IS_ERR(vpd_data)) { 2790 pci_warn(dev, "Unable to read VPD\n"); 2791 return; 2792 } 2793 2794 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 2795 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 2796 if (start < 0) 2797 pci_warn(dev, "Part number not found or incomplete\n"); 2798 else 2799 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start); 2800 2801 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 2802 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len); 2803 if (start < 0) 2804 pci_warn(dev, "Serial number not found or incomplete\n"); 2805 else 2806 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL); 2807 2808 kfree(vpd_data); 2809 } 2810 2811 2812 /* Main body of NIC initialisation 2813 * This is called at module load (or hotplug insertion, theoretically). 2814 */ 2815 static int ef4_pci_probe_main(struct ef4_nic *efx) 2816 { 2817 int rc; 2818 2819 /* Do start-of-day initialisation */ 2820 rc = ef4_probe_all(efx); 2821 if (rc) 2822 goto fail1; 2823 2824 ef4_init_napi(efx); 2825 2826 rc = efx->type->init(efx); 2827 if (rc) { 2828 netif_err(efx, probe, efx->net_dev, 2829 "failed to initialise NIC\n"); 2830 goto fail3; 2831 } 2832 2833 rc = ef4_init_port(efx); 2834 if (rc) { 2835 netif_err(efx, probe, efx->net_dev, 2836 "failed to initialise port\n"); 2837 goto fail4; 2838 } 2839 2840 rc = ef4_nic_init_interrupt(efx); 2841 if (rc) 2842 goto fail5; 2843 rc = ef4_enable_interrupts(efx); 2844 if (rc) 2845 goto fail6; 2846 2847 return 0; 2848 2849 fail6: 2850 ef4_nic_fini_interrupt(efx); 2851 fail5: 2852 ef4_fini_port(efx); 2853 fail4: 2854 efx->type->fini(efx); 2855 fail3: 2856 ef4_fini_napi(efx); 2857 ef4_remove_all(efx); 2858 fail1: 2859 return rc; 2860 } 2861 2862 /* NIC initialisation 2863 * 2864 * This is called at module load (or hotplug insertion, 2865 * theoretically). It sets up PCI mappings, resets the NIC, 2866 * sets up and registers the network devices with the kernel and hooks 2867 * the interrupt service routine. It does not prepare the device for 2868 * transmission; this is left to the first time one of the network 2869 * interfaces is brought up (i.e. ef4_net_open). 2870 */ 2871 static int ef4_pci_probe(struct pci_dev *pci_dev, 2872 const struct pci_device_id *entry) 2873 { 2874 struct net_device *net_dev; 2875 struct ef4_nic *efx; 2876 int rc; 2877 2878 /* Allocate and initialise a struct net_device and struct ef4_nic */ 2879 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES, 2880 EF4_MAX_RX_QUEUES); 2881 if (!net_dev) 2882 return -ENOMEM; 2883 efx = netdev_priv(net_dev); 2884 efx->type = (const struct ef4_nic_type *) entry->driver_data; 2885 efx->fixed_features |= NETIF_F_HIGHDMA; 2886 2887 pci_set_drvdata(pci_dev, efx); 2888 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2889 rc = ef4_init_struct(efx, pci_dev, net_dev); 2890 if (rc) 2891 goto fail1; 2892 2893 netif_info(efx, probe, efx->net_dev, 2894 "Solarflare NIC detected\n"); 2895 2896 ef4_probe_vpd_strings(efx); 2897 2898 /* Set up basic I/O (BAR mappings etc) */ 2899 rc = ef4_init_io(efx); 2900 if (rc) 2901 goto fail2; 2902 2903 rc = ef4_pci_probe_main(efx); 2904 if (rc) 2905 goto fail3; 2906 2907 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 2908 NETIF_F_RXCSUM); 2909 /* Mask for features that also apply to VLAN devices */ 2910 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 2911 NETIF_F_HIGHDMA | NETIF_F_RXCSUM); 2912 2913 net_dev->hw_features = net_dev->features & ~efx->fixed_features; 2914 2915 /* Disable VLAN filtering by default. It may be enforced if 2916 * the feature is fixed (i.e. VLAN filters are required to 2917 * receive VLAN tagged packets due to vPort restrictions). 2918 */ 2919 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 2920 net_dev->features |= efx->fixed_features; 2921 2922 rc = ef4_register_netdev(efx); 2923 if (rc) 2924 goto fail4; 2925 2926 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 2927 2928 /* Try to create MTDs, but allow this to fail */ 2929 rtnl_lock(); 2930 rc = ef4_mtd_probe(efx); 2931 rtnl_unlock(); 2932 if (rc && rc != -EPERM) 2933 netif_warn(efx, probe, efx->net_dev, 2934 "failed to create MTDs (%d)\n", rc); 2935 2936 rc = pci_enable_pcie_error_reporting(pci_dev); 2937 if (rc && rc != -EINVAL) 2938 netif_notice(efx, probe, efx->net_dev, 2939 "PCIE error reporting unavailable (%d).\n", 2940 rc); 2941 2942 return 0; 2943 2944 fail4: 2945 ef4_pci_remove_main(efx); 2946 fail3: 2947 ef4_fini_io(efx); 2948 fail2: 2949 ef4_fini_struct(efx); 2950 fail1: 2951 WARN_ON(rc > 0); 2952 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 2953 free_netdev(net_dev); 2954 return rc; 2955 } 2956 2957 static int ef4_pm_freeze(struct device *dev) 2958 { 2959 struct ef4_nic *efx = dev_get_drvdata(dev); 2960 2961 rtnl_lock(); 2962 2963 if (efx->state != STATE_DISABLED) { 2964 efx->state = STATE_UNINIT; 2965 2966 ef4_device_detach_sync(efx); 2967 2968 ef4_stop_all(efx); 2969 ef4_disable_interrupts(efx); 2970 } 2971 2972 rtnl_unlock(); 2973 2974 return 0; 2975 } 2976 2977 static int ef4_pm_thaw(struct device *dev) 2978 { 2979 int rc; 2980 struct ef4_nic *efx = dev_get_drvdata(dev); 2981 2982 rtnl_lock(); 2983 2984 if (efx->state != STATE_DISABLED) { 2985 rc = ef4_enable_interrupts(efx); 2986 if (rc) 2987 goto fail; 2988 2989 mutex_lock(&efx->mac_lock); 2990 efx->phy_op->reconfigure(efx); 2991 mutex_unlock(&efx->mac_lock); 2992 2993 ef4_start_all(efx); 2994 2995 netif_device_attach(efx->net_dev); 2996 2997 efx->state = STATE_READY; 2998 2999 efx->type->resume_wol(efx); 3000 } 3001 3002 rtnl_unlock(); 3003 3004 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */ 3005 queue_work(reset_workqueue, &efx->reset_work); 3006 3007 return 0; 3008 3009 fail: 3010 rtnl_unlock(); 3011 3012 return rc; 3013 } 3014 3015 static int ef4_pm_poweroff(struct device *dev) 3016 { 3017 struct pci_dev *pci_dev = to_pci_dev(dev); 3018 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3019 3020 efx->type->fini(efx); 3021 3022 efx->reset_pending = 0; 3023 3024 pci_save_state(pci_dev); 3025 return pci_set_power_state(pci_dev, PCI_D3hot); 3026 } 3027 3028 /* Used for both resume and restore */ 3029 static int ef4_pm_resume(struct device *dev) 3030 { 3031 struct pci_dev *pci_dev = to_pci_dev(dev); 3032 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3033 int rc; 3034 3035 rc = pci_set_power_state(pci_dev, PCI_D0); 3036 if (rc) 3037 return rc; 3038 pci_restore_state(pci_dev); 3039 rc = pci_enable_device(pci_dev); 3040 if (rc) 3041 return rc; 3042 pci_set_master(efx->pci_dev); 3043 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3044 if (rc) 3045 return rc; 3046 rc = efx->type->init(efx); 3047 if (rc) 3048 return rc; 3049 rc = ef4_pm_thaw(dev); 3050 return rc; 3051 } 3052 3053 static int ef4_pm_suspend(struct device *dev) 3054 { 3055 int rc; 3056 3057 ef4_pm_freeze(dev); 3058 rc = ef4_pm_poweroff(dev); 3059 if (rc) 3060 ef4_pm_resume(dev); 3061 return rc; 3062 } 3063 3064 static const struct dev_pm_ops ef4_pm_ops = { 3065 .suspend = ef4_pm_suspend, 3066 .resume = ef4_pm_resume, 3067 .freeze = ef4_pm_freeze, 3068 .thaw = ef4_pm_thaw, 3069 .poweroff = ef4_pm_poweroff, 3070 .restore = ef4_pm_resume, 3071 }; 3072 3073 /* A PCI error affecting this device was detected. 3074 * At this point MMIO and DMA may be disabled. 3075 * Stop the software path and request a slot reset. 3076 */ 3077 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev, 3078 pci_channel_state_t state) 3079 { 3080 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3081 struct ef4_nic *efx = pci_get_drvdata(pdev); 3082 3083 if (state == pci_channel_io_perm_failure) 3084 return PCI_ERS_RESULT_DISCONNECT; 3085 3086 rtnl_lock(); 3087 3088 if (efx->state != STATE_DISABLED) { 3089 efx->state = STATE_RECOVERY; 3090 efx->reset_pending = 0; 3091 3092 ef4_device_detach_sync(efx); 3093 3094 ef4_stop_all(efx); 3095 ef4_disable_interrupts(efx); 3096 3097 status = PCI_ERS_RESULT_NEED_RESET; 3098 } else { 3099 /* If the interface is disabled we don't want to do anything 3100 * with it. 3101 */ 3102 status = PCI_ERS_RESULT_RECOVERED; 3103 } 3104 3105 rtnl_unlock(); 3106 3107 pci_disable_device(pdev); 3108 3109 return status; 3110 } 3111 3112 /* Fake a successful reset, which will be performed later in ef4_io_resume. */ 3113 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev) 3114 { 3115 struct ef4_nic *efx = pci_get_drvdata(pdev); 3116 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3117 3118 if (pci_enable_device(pdev)) { 3119 netif_err(efx, hw, efx->net_dev, 3120 "Cannot re-enable PCI device after reset.\n"); 3121 status = PCI_ERS_RESULT_DISCONNECT; 3122 } 3123 3124 return status; 3125 } 3126 3127 /* Perform the actual reset and resume I/O operations. */ 3128 static void ef4_io_resume(struct pci_dev *pdev) 3129 { 3130 struct ef4_nic *efx = pci_get_drvdata(pdev); 3131 int rc; 3132 3133 rtnl_lock(); 3134 3135 if (efx->state == STATE_DISABLED) 3136 goto out; 3137 3138 rc = ef4_reset(efx, RESET_TYPE_ALL); 3139 if (rc) { 3140 netif_err(efx, hw, efx->net_dev, 3141 "ef4_reset failed after PCI error (%d)\n", rc); 3142 } else { 3143 efx->state = STATE_READY; 3144 netif_dbg(efx, hw, efx->net_dev, 3145 "Done resetting and resuming IO after PCI error.\n"); 3146 } 3147 3148 out: 3149 rtnl_unlock(); 3150 } 3151 3152 /* For simplicity and reliability, we always require a slot reset and try to 3153 * reset the hardware when a pci error affecting the device is detected. 3154 * We leave both the link_reset and mmio_enabled callback unimplemented: 3155 * with our request for slot reset the mmio_enabled callback will never be 3156 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3157 */ 3158 static const struct pci_error_handlers ef4_err_handlers = { 3159 .error_detected = ef4_io_error_detected, 3160 .slot_reset = ef4_io_slot_reset, 3161 .resume = ef4_io_resume, 3162 }; 3163 3164 static struct pci_driver ef4_pci_driver = { 3165 .name = KBUILD_MODNAME, 3166 .id_table = ef4_pci_table, 3167 .probe = ef4_pci_probe, 3168 .remove = ef4_pci_remove, 3169 .driver.pm = &ef4_pm_ops, 3170 .err_handler = &ef4_err_handlers, 3171 }; 3172 3173 /************************************************************************** 3174 * 3175 * Kernel module interface 3176 * 3177 *************************************************************************/ 3178 3179 module_param(interrupt_mode, uint, 0444); 3180 MODULE_PARM_DESC(interrupt_mode, 3181 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3182 3183 static int __init ef4_init_module(void) 3184 { 3185 int rc; 3186 3187 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n"); 3188 3189 rc = register_netdevice_notifier(&ef4_netdev_notifier); 3190 if (rc) 3191 goto err_notifier; 3192 3193 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3194 if (!reset_workqueue) { 3195 rc = -ENOMEM; 3196 goto err_reset; 3197 } 3198 3199 rc = pci_register_driver(&ef4_pci_driver); 3200 if (rc < 0) 3201 goto err_pci; 3202 3203 return 0; 3204 3205 err_pci: 3206 destroy_workqueue(reset_workqueue); 3207 err_reset: 3208 unregister_netdevice_notifier(&ef4_netdev_notifier); 3209 err_notifier: 3210 return rc; 3211 } 3212 3213 static void __exit ef4_exit_module(void) 3214 { 3215 printk(KERN_INFO "Solarflare Falcon driver unloading\n"); 3216 3217 pci_unregister_driver(&ef4_pci_driver); 3218 destroy_workqueue(reset_workqueue); 3219 unregister_netdevice_notifier(&ef4_netdev_notifier); 3220 3221 } 3222 3223 module_init(ef4_init_module); 3224 module_exit(ef4_exit_module); 3225 3226 MODULE_AUTHOR("Solarflare Communications and " 3227 "Michael Brown <mbrown@fensystems.co.uk>"); 3228 MODULE_DESCRIPTION("Solarflare Falcon network driver"); 3229 MODULE_LICENSE("GPL"); 3230 MODULE_DEVICE_TABLE(pci, ef4_pci_table); 3231 MODULE_VERSION(EF4_DRIVER_VERSION); 3232